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Abstract
The aims of the study described in this dissertation are

andneuroscience forunderstandinghowhumanemotiondevelopsduring infancy
and

emotion model apply to communication robots.

We humans feel our physical and mental states as various emotions such as delight,

psychology, neuroscience, and cognitive science. However, the developmental mecha-
nisms of human emotion have not been elucidated. On the contrary, the characteris-
tics of emotion have attracted the attention of robotics researchers for actualization of

psychology, neuroscience, and cognitive science applied to robotics. The approach has
the potential to reveal how humans acquire the capabilities of emotion through de-

the above capabilities through interaction with humans.
This dissertation attempts to reproduce the developmental process of human emo-

tive developmental robotics. In revealing the development of human emotion, what
capabilities are important for acquiring emotion in infancy should be considered. Fur-
thermore, in realizing the emotional human{ robot interaction, how capabilities of the
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predictive codingmodel contribute to reproducing essential abilities for the realization
of emotional interaction should be validated. Focusing on these points, the following
two approaches are executed.

We propose the emotionmodel based on the idea of predictive coding with two
hypotheses that are a peculiarity of tactile sensation and perceptual improve-

science. The proposed model is evaluated with and without our hypotheses in
a virtual infant{ caregiver interaction environment. Experimental results show
that tactile dominance and perceptual improvement facilitate the development
of emotion perception when both mechanisms are integrated into the proposed
model.

2. The second approach attempts to reproduce abilities for emotional interaction
by using the capabilities of a predictive coding model. The proposed model is
constructed by a generativemodel, which can infer latent signals from observed
signals and their inverse. Additionally, it can predict unobserved signals from
observed ones through the above inference process. We evaluate the abilities of
themodel regarding the expression of emotional signals from the robot, estima-
tion of others' emotional states, and active perception based on the predictive
information in human{ robot interactions. Experimental results demonstrate
that the capabilities of the predictive coding model enable the robot to improve
emotional interaction with humans.

It is expected that the proposed models incorporate the knowledge from psychol-
ogy, neuroscience, and cognitive science, and provide suggestions for understanding
how human emotions develops in infancy and how humans interact emotionally.
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Chapter 1

Introduction

Humans feel their own physical and mental conditions as emotional states. Our feel-

change of emotions based on our own body reactions. We also express such emotional
states through various modalities such as voluntary body gestures and involuntary
changes in heart rate. For example, when our behavior is disturbed by someone, our
heart pumps faster, we feel anger, and we grimace. However, if the cause comes from
friends, wemight forbear expressing an angry face. Whenwe achieve goals, our heart

situation and may smile.
The study of emotionhas recently expanded inmany research areas (e.g., psychol-

ogy, cognitive science, neuroscience, and robotics). According to cognitive and neuro-

(e.g., changing perception and action, modulatingmemory and learning performance,

bodily state. Damasio [5] considered body responseswith a value of stimuli processed
in the limbic system of the brain. Oatley and Johnson-Laird [6] reviewed cognitive
theories of emotion in terms of evaluation, which is one of the cognitive functions
in the human brain. The concept of evaluation is critical in everyday life because it
allows us to learn how events change our physical and mental states. Then, we can
predict causes of our own perceptions and the results of our actions in the world and
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Related to the emotion mechanism of evaluation and prediction, some researchers
in neuroscience and cognitive developmental robotics have focused on the idea of
"predictive coding" for explaining and modeling the brain mechanisms of human
cognition [7{ 12]. Predictive coding theory assumes that the fundamental mechanism

expect and what we experience. Computational models based on predictive coding
have been proposed, and they allow us to understand the human brain mechanisms
from a constructive approach viewpoint [7,13]. Seth [14{16] attempts to explain the
process of emotional cognition based on the idea of predictive coding. He considers
multimodal sensory signals, which involve not only exteroceptive and proprioceptive
perception but also interoceptive perception related to physiological homeostasis (i.e.,
embodiment signals).
Emotion plays important roles in not only the cognitive functions of individuals

but also interactions between humans. Humans often attempt to communicate their
several emotional states with others through their gestures, facial expressions, and
vocalizations. They also recognize others' emotions from those multimodal signals.
Furthermore, we canestimate others' emotions frompartial observationof expressions
by predicting them based on own experiences and choose an action to acquire any
missing information from others for updating the estimation. We believe that these
four mechanisms (i.e., perception, expression, estimation, and active inference) are
essential capabilities for emotional interaction among humans.
Up to the present, we have described the roles of emotion in cognitive functions of

individual humans and interactions among humans. However, two questions remain.

how various types of human emotion develop during infancy, and

how humans gain the capabilities of emotional interaction such as emotion per-
ception, emotion expression, emotion estimation, and active perception.

development. Then, we apply the proposed model to robots, which interact with
humans through processing of multimodal signals, to acquire the four capabilities

2



of emotional interaction and evaluate the model capabilities. The idea of predictive

above issues. Themodel processesmultimodal emotional signals in face-to-face inter-
actions between humans and robots to reproduce development of emotions (emotion
development for short) and to realize the four capabilities of emotional interaction.

tion in terms of cognitive and neuroscience research and modeling approaches. From

opmental theory of human emotion, the connections between mirror neuron systems
and emotion, and the essential capabilities for emotional interaction betweenhumans.

we explain the idea of predictive coding, which is expected to explain human cogni-
tion, as a key mechanism for our models. Finally, the objective and the organization
of this dissertation are provided.

1.1 Background
In this section, we explain theories on the development of emotion from psychology
and cognitive science studies. The brain regions regarding emotion processing and
themirror neuron system, which represents a relevant mechanism to realize emotional

essential capabilities for emotional interaction used in this dissertation. Finally, we

between humans and robots.

1.1.1 Human Emotion

Psychological Findings of Emotion

Humans recognize their own physical and mental states as various types of emotions
such as delight, anger, sorrow, pleasure, and so on. We previously explained that

regulate their own emotions to some extent. Humans also express their emotions

3



through various modalities such as facial expressions, gestures, vocalizations, etc. In
social context, humansshare their emotions in communication. Inotherwords, people
perceive others' emotions from others' expressions and react accordingly. However,

by happiness, anger, and so on.
Theories on the development of emotionhaveadhered to the classical dichotomy of

nature versus nurture. Tomkins [17] and Izard [18] both hypothesized that emotional
states are innate. Conversely, Bridges [1], Sroufe [19], and Lewis [20] all speculated
that basic emotions are acquired through a developmental process from infancy to
childhood, which they attempted to support through observing infants' behavior. In

such as pleasure and displeasure to detailed emotions involving six basic emotions.
We discuss any other developmental studies regarding emotions in psychology and
neuroscience, in Section 2.

Neurological Findings of Emotion and Mirror Neuron System

Damasio [5] proposed the somatic marker hypothesiswhere emotion is associated with
body responses to stimuli, and emotional processes guide one's behaviors. Namely,
emotionworks as an evaluation system for external (and internal) stimuli. Within the
human brain, the evaluation mechanism is processed in the ventromedial prefrontal
cortex (VMPFC) and the amygdala. The amygdala is well known as a human brain
region regarding emotion processing and is a part of the limbic system[3]. It processes
low-level sensory signals corresponding to appraisal of stimuli, especially negative
emotion. The insular cortex is also a part of the limbic system and monitors sensory
signals such as exteroceptive and interoceptive signals [21]. Adding to the above
regions, it is known that the superior temporal sulcus (STS) integrates visual, audio,
and tactile signals [22] and engages inmultimodal information processing for emotion
perception [23, 24]. The superior temporal gyrus (STG), which is near the STS,
also responds to various non-verbal emotional stimuli [25], and the temporal area of
infants' brains perceives and reacts to audiovisual emotional stimuli [26].
In social contexts, people perceive others' emotions from multimodal signals and

4



may share an emotion. Humans' physical and mental states, which are base of emo-
tion, are very complex; however, we can share generalized emotional categories as

by Rizzolatti et al. [27] is a single neuron in the brain of the macaque monkey that
activates both when the macaque performs and when it observes the same action
being performed by another. In other words, the neuron mirrors the others' behav-
ior as though the observer were the one performing the behavior. Brain imaging
experiments have shown that the human brain also has similar mechanisms in the
inferior frontal cortex and superior parietal lobe. These brain regions perform the

(MNS) [28{31] Interestingly, the regions of MNSand emotion processing overlap, and
it is known that themechanismof MNSenables people to imagine the emotional state
of others based on their own experiences and of expressing the corresponding emotion
in the context of emotional interaction [29,32,33]. The emotional states exchanged
in the communication produce empathy in others based on the function of the MNS,
and they can induce and maintain relationships such as happy cooperation or angry

Sharing emotion with partners is an essential skill in social communication between
humans. The skill is even more important for the social robots interacting with hu-
mans. In attempts to achieve emotional interaction, several empathic robots have
been developed [34{46]. Kismet [41,42] is one of the most popular social robots to

cally arousal, valence, and stance) fromhumans' speech and recognize one's emotional
state. Then, Kismet generates a facial expression by interpolating preprogrammed
expression prototypes based on the recognized emotional state of others. However,
the empathic behaviors of many emotional robots are often preprogrammed by a

5



opmental Robotics", which extends the cognitive developmental robotics approach.
This research approach connects neuroscience and biobehavioral studies to robotics
studies more strongly than the cognitive developmental robotics approach. He pro-

embodiment, development of self{ other cognition (including MNS), and social inter-

from emotional contagion (a low-level phenomenon) to sympathy (a high-level cog-

posed by Watanabe et al. [50]. Their model acquired the relationships between its
own emotional states and the facial expressions of interaction partners via face-to-

opment and humans' focused capabilities for emotional interaction.

1.2 Four Essentials for Emotional Interaction
Humanshavemany cognitive capabilities to participate in emotional interactionswith
each other. We focus on four capabilities that are essential for emotional interaction
and describe them as follows.

Emotion Perception
The capability of recognizing the emotions of others. This capability is neces-
sary to recognize the emotional states of others from their expressions. This
capability is basic for emotion estimation and sharing emotion in interactions.
It is known that this capability is acquired via the developmental process from
infancy to childhood [51{54].

Emotion Expression
The capability of showing one's emotional state by generating signals. This ca-
pability is important to tell others what your emotional state is. We can share
and transmit emotional states with each other through any signals based on

6



both emotion perception and expression capabilities. Some researchers hypoth-
esize that the expression capability is innate and preprogrammed [17,18,55]. On
the other hand, other behavioral studies show evidence that the variations of
emotional expressions increase during infancy [1,19,20]. We support the devel-
opmental theories of emotion expression. In this dissertation, we focus on facial
expressions, vocalizations, skin contact, and gestures as signals of multimodal
emotional expressions.

Emotion Estimation
The capability of understanding others' emotions frompartial observationbased
onour ownexperience. Inpractical interactions, a fewparts of others' emotional
expressions are lacking; for instance, the partner is paying attention to others.
However, humans are able to estimate others' emotion from not only complete
observations of others' expressions but also partial observations by imagining
uncertain signals from observed ones based on experience. This capability is
called mental simulation and corresponds to MNSand mentalizing systems [29,
33].

Active Perception

information to update an estimation. This last capability, active perception,
is when humans select their own behaviors (e.g., expression of emotion, asking

ing and improving the estimation of the other's emotion. During interactions,
humans try to estimate others' emotions by observing their expressions. How-
ever, it is not always true that all modality signals link to the actual state and
complete at the same time. Some signals might be noisy or ambiguous. Then,
we should collect missing information from others by selecting our own actions

7



1.3 Predictive Coding: Modeling Approach of Hu-
man Cognition

The original idea of predictive coding was proposed as the concept of unconscious
inference by Helmholtz. Unconscious inference considers the interaction between sen-
sory stimuli and conceptual knowledge, and these bottom-up and top-down processes

adopted into a computational modeling approach as a key idea to replicate the visual
processing mechanisms in the human brain [7], modeling the dynamic interactions
between the human brain and body [12], and so on. Nagai and Asada [11] applied
predictive coding to reproduce the developmental process of cognitive abilities (e.g.,
such as self{ other cognition, estimation of others' goals, and the emergence of helping
behaviors). They also attempted to explain the characteristics of autism spectrum
disorder based on the theory. Fromboth bottom-up and top-down processing, we can

from the inner model by top-down process and actual perception from the bottom-
up process. The computational models of the above modeling studies attempt to
minimize this prediction error via updating the model parameters.
Friston, a neuroscientist, focused on the idea of predictive coding as a fundamen-

tal mechanism of the human brain. He extended it by including a Bayesian inference
and proposed the "Free Energy Principle" [8, 9]. The free energy (named from an
analogy with thermodynamics) is the sum of the prediction errors in the entire brain.
From the viewpoint of Bayesian inference, the prediction error is represented by the
divergence between distributions of prior knowledge and perceptions [56]. Friston as-
sumes that the free energy principle is a uniquemechanism in the human brain. Seth,
a colleague of Friston's extended the free energy principle from modeling perception
(in Seth's paper, it is called proprioception and exteroception) to interoception. He
proposed that human subjective feeling known as emotion is generated by predictive
systems that are built actively from causal interoceptive appraisals. This idea, which
assumes that emotion is an evaluation process or mechanism of embodiment reaction

It is known that the interoceptive signals also relate to evaluation signals linked with
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embodiment and self-awareness. Furthermore, the idea of the free energy principle

els. The generative model is a model for generating data that can be observed and
includes latent variables that can only be computed from observed data. In other
words, the generative model represents relationships among observations and latent
variables. Many types of generative models such as the hidden Markov model, latent
Dirichlet allocation [57], restricted Boltzmannmachine [58], and generative adversar-

the objectives of those generative models are the same in terms of minimizing the
divergence between a generative probability of data in the actual world and an ap-
proximated probability via training of the generative model using observed data (i.e.,
experience). This objective of generative models is also similar to the process of pre-
diction error minimization in predictive coding. Accordingly, Friston pointed out the
relationship between the human brain and the generative model [8,9].

the model broke through an important barrier, the vanishing gradient problem, of
neural networks by adopting layer-wise pre-training [60]. On the other hand, we

model. In the training phase, the restricted Boltzmann machine minimizes the cross
entropy between data probability and the probability of reconstructed data from
hidden neuron activations. This training method corresponds to the minimization of
the free energy of the network and also relates to the idea of predictive coding. In
our study, we employ the restricted Boltzmann machine as a fundamental module
in our model to reproduce emotion development and the capabilities in emotional
interaction. In later sections, we describe the details of the restricted Boltzmann
machine and the proposed models to address our objectives.

1.4 Overview

The aims of the study described in this dissertation are the following:
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and neuroscience to understand how human emotion develops during infancy,
and

cial emotion model for communication robots.

in this dissertation. The key idea in our study is employing the predictive coding

This dissertation consists of seven chapters including this one. The outlines of all
chapters are as follows:

Chapter 1. Introduction
The grand challenge of this study is to understand human emotion as well as

emotion development and interaction in terms of psychology, cognitive science,

predictive coding and modeling studies has been explained. We introduced
the reason why we employ the restricted Boltzmann machine as a fundamental

Chapter 2. Related Work

interaction from psychology, cognitive science, neuroscience are described. We
reviewknowledge regarding emotion development from the perspectives of emo-
tion perception and emotion expression. Then, this chapter introduces previous
studies that attempt to understand and mimic human emotion by constructing
computational models and realizing emotional human{ robot interactions with
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focused capabilities for emotional interaction are given. We focus on face-to-
face emotional interaction between an infant and a caregiver or interaction be-
tween humans and robots. In both interactions, we assume that humans and
robots perceive and express emotional states through multimodal signals. Sub-
sequently, this chapter explains the restricted Boltzmann machine as the key

correspond to predictive coding are described.

Chapter 4. Modeling Development of Multimodal Emotion Perception

development of emotion perception is presented. We hypothesize that the ca-
pability of emotion perception is acquired owing to two important functions of
infants: tactile dominance and perceptual improvement. The proposed model
is evaluated in multimodal interaction situations assuming face-to-face infant{
caregiver interaction. Experimental results show how both functions facilitate
the development of emotion perception from multimodal signals.

Chapter 5. Emotion Expression and Estimation by Mental Simulation
The second computational model is introduced. Thismodel is also based on the
idea of predictive coding. We utilize the restricted Boltzmann machine, which
is the generative model for reproducing the capabilities of emotion expression
and estimation. In particular, the estimation mechanism corresponds to the
mental simulation of the MNS. Experimental results demonstrate that a robot
using the proposed model can generate emotion expressions and can estimate
human emotion from partial multimodal signals.

Chapter 6. Active Perception based on Energy Minimization
The second proposed model is used again to reproduce the capability of active
perception. The model controls the robot's attention to humans' multimodal
signals based on an energy minimization criterion that corresponds to the free
energy principle. It is known that the energy values of the restricted Boltzmann

robot to select the modality that provides the lowest energy to exploit more
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the proposed model in emotion estimation during human{ robot interaction.

Chapter 7. Conclusion
Finally, we conclude this study and describe future work. The proposed emo-

reproduce the development of emotion perception through infant{ caregiver in-
teraction. This model enables us to verify knowledge from psychology and neu-
roscience studies. Furthermore, the second similar model handling multimodal
signals in emotional interaction with humans demonstrates its capabilities in
emotional interactions. However, several problems remain to be solved, e.g.,
generating continuous expressions (actions) and executing exploratory behavior
during an actual interaction, and so on. These problems are discussed as future
work.
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Chapter 2

Related Work

Emotion isan interesting research topic inpsychology, neuroscience, cognitive science,

of emotion and its capabilities have been studied based on behavioral approaches.

robots that interact with humans and to understand the mechanism of emotion by

This chapter presents the knowledge regarding the developmental process and ca-
pabilities of emotion and reviews robotics and computational science approaches to
develop andmodel emotion systems for realizing human{agent interactions. First, we
introduce two points of view on the structure of emotions: discrete and continuous
emotion. These two ideas relate to the theories of emotion development (generation).
One argues that emotional states are innate and the other that emotions are acquired
via development. We concur with the developmental theory of emotion and describe
the developmental changes regarding emotional capabilities. Then, this chapter de-
scribes two robotics approaches, called "Cognitive Developmental Robotics" and "Af-
fective Developmental Robotics," to build social and developmental robots based on
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2.1 Findings on Emotion in Psychology and Cog-
nitive Science

We humans, recognize our physical and mental states as various emotions such as de-
light, anger, sorrow, and pleasure and also express them through our ownmultimodal
expressions (e.g., facial expressions, gestures, and vocalizations). For example, when
we face a snake we might feel fear and exhibit avoidance behavior (e.g., run). When
we recognize that the snake is a rope in reality, we experience a feeling of relief.
Categorical emotion theory assumes that there is an assembly of discrete emotions

of emotion called six basic emotions: joy, surprise, anger, fear, sadness, and disgust.

expressions from other cultures. On the other hand, Russell [61{ 63] studied the re-
lationships among various emotional states and proposed a two-dimensional space

ory assumed that underlying any emotion is a state with two dimensions: pleasure
versus displeasure and level of arousal. Emotional categories such as anger and fear
are not distinct and not evolutionarily common. They overlap in continuous space as
prototypes of emotion.

2.1.1 Emotion Development

Adult humans are able to recognize and express several emotional states. However,
it remains unclear how these emotional states are acquired. Theories on the devel-
opment of emotion have adhered to the classical dichotomy of nature versus nurture.
From an evolutionary perspective, Tomkins [17] and Izard [18] both hypothesized
that emotional states are innate, which is the basis for their discrete emotion theory.
Frijda et al. [64] also considered that the basic emotions are elementary response

corresponding to phenomena such as facial expressions and bodily reactions.
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Figure 2.1: Bridges suggested a genetic theory of emotion by observing behavioral
changes in infants [1]. These branches also correspond to a developmental process for
an expression capability of emotions in infants.

Conversely, Bridges [1], Sroufe [19], and Lewis [20] all speculated that basic
emotions are acquired through a developmental process from infancy to childhood,
which they attempted to support through observing infants' behaviors. According to
Bridges' study, infants' only internal state is general excitement. Namely, it corre-

ates into delight and distress in response to positive and negative stimuli, respectively.

process of the capability for emotional expression during infancy.

To understand thedevelopmental changes inemotionperception, several researchers
displayed visual, audio, or audiovisual emotional expressions of others to infants and
young children (e.g., [51{ 54]). Walker-Andrews [51] argued that human infants have
only rudimentary capacities to detect, discriminate, and recognize (or perceive) oth-
ers' emotional expressions at birth; however, the capabilities rapidly develop during

old) can detect only primary meanings in the emotional expressions of others. On
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the other hand, older infants can discriminate and recognize various emotional cate-
gories of others' expressions (e.g., basic emotions) owing to perceptual development.

event-related potential in their brain when they faced angry and happy audiovisual
stimuli (i.e., facial and vocal emotional expressions of others). We consider that there
is more evidence in support of the developmental process of emotion perception in

only observed changes in behavior when the subjects faced emotional stimuli. Thus,
it remains unclear as to what causes the developmental changes in emotion perception
because there are no methods to represent the actual emotional states experienced
by infants.

2.2 Robotics Approaches to Modeling Emotion

Robotics Approaches to Understanding Emotion

mechanisms of the cognitive development process by synthetic approaches utilizing
human-like robots and computer simulations [68]. Recently, Asada extends the idea of

studies to robotics studies to extend cognitive developmental robotics to elucidate the

number of researchers in robotics have constructed emotional systemsand reproduced
the abilities and developmental process of emotion (e.g., [35,38,41,44,44,50,52,69{
73]), as discussed below.
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Robotics Approaches to Reproducing Emotion Capabilities

Blanchard and Ca~namero [70] proposed a general Perception-Action architecture,
which involves imprinting experiences and reward-based learning methods. Their
experimental results on simple human{robot interaction showed that the proposed

"comfort" caused by reward stimuli). Hiolle et al. [72] and Lones et al. [73] examined

and behavior learning using agents. These studies evaluated how robots' behaviors

between robots and their environment.

Preprogramed Systems for Realizing Emotion Interaction

Kismet [41,42] is one of the most popular social robots to have established emotional
communication with humans. The Kismet system extracts features corresponding to

and then generates a facial expression by interpolating preprogrammed expression
prototypes. The prototypes of facial expression sit at the extremes of each compo-

and negative valence, and open and closed stance. In addition to these prototypes,
three facial prototypes are used to distinguish the expressions for disgust, anger, and

information to generate a current facial expression as a linear combination of all pro-
totypes. This interpolation approach was able to generate continuous expressions in

ranged from 47% to 83%.
Trovato et al. [38] and Kishi et al. [39] developed an emotional model for a hu-

manoid robot named KOBIAN, based on psychological studies. Their model rep-
resented KOBIAN's internal state, which is modulated by external stimuli. It also

expressed facial patterns as combinations of these prototypes [74].
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Learning Systems for Realizing Emotion Interaction

Ogata et al. [69] developed an emotional robot that communicates with humans by
modeling human hormone systems. Their robot, WAMOEBA-2, modulates its own
emotional expressions and actions based on external stimuli and the homeostasis
activation of virtual hormones. WAMOEBA-2 is adaptive to external stimuli to
maintain a stable body. Therefore, the best behavior is sleeping in order to minimize
energy reduction unless external signals arise. As a result, it seemed to actually avoid
interaction with humans.

Watanabe et al. [50] built a mapping system for emotional states based on in-
tuitive parenting observed during infant{ caregiver interactions. They assumed that
caregivers imitate the facial expressions of infants when infants are expressing a par-

using psychological studies and change dynamically in response to stimuli. Their
model learned the relationships between its own emotional states and the facial ex-
pressions of interaction partners when its emotional states were changed through
external stimuli. After training, the model was able to modulate its own emotional
states according to not only the type of stimuli but also the facial expressions of the
caregivers.

Lim and Okuno [44,45] proposed multimodal emotional intelligence (MEI), which
utilizes an integrated architecture to recognize the emotional states of others and gen-
erate its own emotional expressions. Their model was inspired by MNS, amechanism
underlying human cognition. MEI is composed of Gaussianmixture models (GMMs)
to realizebothrecognitionand generation in the samearchitecture. Recognition of the

whereas expressions of one's own emotional states are achieved by sampling features

tant characteristic of their model is that it computes four features (Speed, Intensity,
irRegulation, and Extent (SIRE)) assumed to be very common among modalities.
Therefore, following training from speech using the SIRE features, MEI was able to
estimate categories of emotion from not only audio signals but also gait signals.
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2.2.2 Other Approaches

Breazeal et al. [40] presented a creature robot called Leonardo that can imitate hu-
mans' facial expressions. Leonardo learns a direct mapping between a person's facial
expression and its expression by using a neural network. Andra and Robinson [34]
developed an android head robot that mimicked the facial expressions of humanswith
the aim of social-emotional intervention for autistic children. Their robot tracked fa-
cial feature points of subjects who expressed emotional states and directly converted
them into corresponding control points to modify its own facial expression. Riek et
al. [75,76] developed a head gesture mimicry robot with the aim of eliciting empathic
behavior from humans. They tracked a subject head movement and the robot exe-
cuted an appropriate movement in response. However, the direct mapping of human
expressionsmay lead to misalignment of emotional states. For example, humansmay
show a tearful face when crying with delight. Further, their expressions vary de-
pending on context. Consequently mapping only facial expression (i.e., crying) can
result in miscommunication of the emotional state (i.e., happiness). Therefore, it
is better for robot systems to estimate the emotional states of communication part-
ners and generate expressions based on the estimated states. Kanoh et al. [36, 37]
proposed a continuous facial expression system called "iFbot". The system used
neural networks to abstract prototypes of iFbot's facial expression patterns and to
acquire their relationships. Matsui et al. [35] proposed a recurrent neural network
that generates facial expressions from external stimuli through simulated emotional
states. An anthropomorphic robot called BARTHOC is capable of recognizing hu-
man' emotion from speech and producing facial expressions corresponding to the six
basic emotions [43].

For emotional recognition, many studies focused on facial, vocal, and audiovi-
sual information to estimate humans' emotional states [77{80]. Wang et al. [78] used
audiovisual signals to recognize emotional states. They compared the recognition pre-
cision to models such as the Gaussian Mixture Model, k-nearest Neighbors, Neural
Network, and Fishier's Linear Discriminant Analysis with a feature selection method
named the stepwise method. The stepwise method starts with only one feature from
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audiovisual signals and progressively adds features. For each step in the selection pro-
cess, one feature is added or removed from a subset of selected features to maximize
the between-class Mahalanobis distance. The method increased the performance of
emotional recognition from 70.0% which used the original feature, set to 75.7%. This

estimate emotional states. Mower et al. [79] also selected a set of emotional features
from audiovisual signals by using information gain. This selection method was able
to assignweights to feature sets for recognition of each emotional state. For instance,
from their experiments, eyebrow movements were important for happy and neutral
states while a sad emotion was conveyed more obviously by audio signals. They as-
sumed that emotional expressions are composed of multi-emotional categories. This

from human{human audiovisual interactions by using a support vector machine with
margins. The recognition systemperformed well in estimating minor voted emotional
states.

2.3 Summary
This chapter has described knowledge regarding the developmental process and ca-
pabilities of emotion. We also reviewed robotics approaches to understand the mech-
anisms of human emotion and build empathic robots. Studies in psychology, neuro-

and emotion capabilities. Theories on emotion development continue to be discussed

ings and the proposed emotional systems and/ or robots that can develop emotional
behaviors through interactions with their environments.
The next chapter introduces the assumed tasks and a key mechanism in our emo-

tion model in this dissertation. The proposed models in later experiments are based
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Chapter 3

Our Approach for Modeling

the task settings to reproduce emotion development and realization of four essential
capabilities for emotional interaction (i.e., emotion perception, emotion expression,
emotion estimation, and active perception). We assume that robots (infants) interact
with humans (caregivers) by using multimodal signals with each other during face-
to-face interaction. In this dissertation, the proposed emotion models with a robot
are validated in the interaction situation, and the models enable the robot to acquire
four capabilities for emotional interaction. In particular, the capability of emotion
perception is evaluated in the infant{ caregiver interaction to elucidate our hypothesis

pabilities that are reproduced by the proposed models are evaluated in human{ robot
interaction.
Subsequently, we explain the details of the restricted Boltzmannmachine, which is

a key component, to incorporate the idea of predictive cording with our approaches.
The restricted Boltzmann machine is a generative model and is also a type of ar-

into latent information and decode the information into an original signal, and both
functions are based on the learning algorithm applied for predictive coding. This
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our research objectives.

In this section, weexplain the interaction that isassumed in thisdissertation. Humans
and robots (or infants and caregivers) can interact and collaborate with each other
inmany situations. However, we focus on face-to-face interaction in this dissertation.
Figure 3.1 shows our intended interaction between the human and the robot. In this
situation, we assume that the human and the robot use multimodal signals, such as
facial expressions, speech, gestures, and touch to interact with each other. The main
aim of this interaction is to exchange emotions between the human and the robot.

Figure 3.1: Overview of the assumed multimodal human{ robot interaction

Figure 3.2 illustrates more detailed tasks that realize emotional interaction. We
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describe the objectives of these interaction from the robot's perspective through cor-
relations with the four emotion capabilities of interaction discussed in Chapter 1.

First task: Emotion Perception

Emotion Perception in Chapter 1. The robot receives a human's
complete multimodal expressions and recognizes his/ her emotional state from them.

humans.

We address this issue (to acquire the capability of emotion perception) by con-

on infant{ caregiver interactions as an experimental interaction setting. The proposed
model is evaluated from two perspectives. One is the possibility of the predictive cod-
ing model to acquire emotion capabilities. The other is determining which factor(s)
is important to reproduce the development of emotion perception. This approach is
discussed in Chapter 4.

Second task: Emotion Expression

Emotion Expression The robot shows multimodal emotional expressions based on its
emotional state. This capability is important for the human to understand what the
robot's current emotional state is. It is necessary to continue an interaction because
the human gets tired and stops the interaction if the robot does not react to him/ her.

To acquire this capability, a similar model as discussed in Chapter 4 is employed
for the robot. However, we focus on the adult human{robot interaction in later
chapters. The robot learns how to express emotional states based on the expressions
of the interaction partner. This approach is discussed in Chapter 5.
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Third task: Emotion Estimation

The third task is emotion estimation. In a practical interaction, sometimes, human
expressions are no fully displayed and the robot receives only partial signals. It is dif-

robot should estimate the partner's emotion based on its own knowledge. For emo-
tion estimation, the robot executes a mental simulation based on its own knowledge
to compensate for missing signals. Actually, the capabilities of emotion perception
and emotion estimation are similar, although we separate these functions here. In

others' emotions based on complete information (i.e., full multimodal signals used

recognitionprocess based on incomplete information (e.g, only the facial expression or
reconstructed signals based on simulation) and where the estimated emotion includes
uncertainty.
To realize the emotion estimation capability, we employ the same model as for

emotionexpression. One characteristic of the restrictedBoltzmannmachine isutilized
for executing the mental simulation to update the estimation of a partner's emotion
in the interaction. This approach is discussed in Chapter 5 with the result of emotion
expression.

Fourth task: Active Perception

The fourth task is active perception. When the robot receives partial multimodal
signals from the human, the robot should select its own action to obtain additional
information from the interaction partner to renew its estimation. The robot not
only imagines lacked signals by mental simulation but also gains them using its own
actions. This capability is important to conduct interactions based onaccurate beliefs
regarding partner's emotional state.
The active perception capability is achieved based on the idea of predictive coding

on the same model as that proposed in Chapter 5. The robot selects its own actions
to minimize the network energy in the proposed model. This approach is discussed
in Chapter 6.
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Figure 3.2: Tasks from the robot perspective in emotional interaction

3.2 Restricted Boltzmann Machine: A Key Mech-

Predictive coding

ous section, we have many possible approaches available. This section explains the

models based on predictive coding.

network, was proposed by Hinton [58, 60]. It attracted the attention of many re-

the vanishing gradient problem of neural networks by adopting a characteristic train-
ing method called layer-wise pre-training. On the other hand, we pay attention to
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generative model is a model that infers the generating process of data in the world.
Namely, the generativemodel represents the relationships between observed data and
their latent information. The RBM is also able to represent the generating process
of data. The aim of RBM in the training phase is to minimize the cross entropy
between data probability and the probability of reconstructed data from the latent
information. In other words, the RBM tries to minimize the prediction error between
real data and reconstructed data in an unsupervised manner. This training method
mimics the idea of predictive coding and relates to theminimization in the free energy
of the network. Therefore, in this dissertation, we employ the RBM as a fundamen-
tal module for our computational models to reproduce emotion development and the
capabilities in emotional interaction. This section introduces two types of RBM:
the conventional RBM, which deals with binary signals (i.e., the Bernoulli{Bernoulli
RBM), and another type dealing with continuous signals (i.e. theGaussian{Bernoulli
RBM).

Figure 3.3: Structure of RBMs.vi and hj are the activations of the i-th visible layer
and the j -th hidden layer, respectively, and wij is the connection weight of their
relative weight.

The RBM [58, 60] is a generative model that represents the generative process
of data distribution and latent representation, and can generate data from latent
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of two types of stochastic neurons: visible units vi and hidden units hj , where i and
j are index numbers for each neuron. Each layer has fully symmetrical connections
with the other of layers (i.e., the connection weight wij = wj i); however, it has no
connections between units in the same layer (Figure 3.3). The visible units receive
input signals and the hidden units generate output (latent) signals. The RBM is able
to extract various features frominput signals (e.g., camera images) by acquiring latent
signals (e.g., the edges of the images), which can then beused to reconstruct the input
signals in an unsupervised manner [81{84]. We used RBMs for our model because
this characteristic allows the model to represent emotional states by integrating and
abstracting multimodal sensory signals from interactions.
A Bernoulli{Bernoulli RBM handles only binary signals for both visible (i.e., vi

0; 1 ) and hiddenunits (i.e., hj 0; 1 ). The activation probabilities for these units
are given by

p(hj = 1 v; ) = g bj +
i
viwij ; (3.1)

p(vi = 1 h; ) = g ai +
j
hjwij ; (3.2)

where g(x) is a logistic sigmoid function 1=(1 + exp( x)), and ai and bj are biases
corresponding to the i-th visible and j -th hidden units, respectively. = a; b;w
is the model parameter. Thus, the RBM not only can extract features from input
signals as hidden activations (per Eq. (3.1)) but also can reconstruct the input signals
from the extracted features (per Eq. (3.2)).
The joint probability over the visible and hidden units represents the Boltzmann

distribution that follows the energy function of the network. The probability distribu-
tion and the energy function of the Bernoulli{Bernoulli RBM, E(v; h;
as

P(v; h; ) = 1
( ) exp E(v; h; ) ; (3.3)

E(v; h; ) =
i
aivi

j
bj hj

i j
vihjwij ; (3.4)

where ( ) is a normalizing constant to limit the probability values within the range
0 to 1.
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The parameters of the RBM are trained through the minimization of the recon-
structionerror betweenactual input signalsand reconstructed input signals calculated
in Eqs. (3.1) and (3.2), respectively. This process is replaced by the minimization
of cross entropy, denoted by L, between two probability distributions: p(v) and
p(v h ).

L =
x
p(v) logp(v h ) (3.5)

Cross entropy corresponds to the distance between two probability distributions,
where p(v) and p(v h ) are the distributions of actual and reconstructed input
signals, respectively. In fact, the minimization of cross entropy in the RBM corre-
sponds to the minimization of the free-energy (i.e., this objective function relates to
predictive coding [7{12]).

using the traditional gradient-based method. The update rules for the parameters
are given by

wij = w vihj data vihj recon ; (3.6)

ai = a vi data vi recon ; (3.7)

bj = b hj data hj recon ; (3.8)

where the angle brackets data and recon denote the expectations under the distri-
butions of actual and reconstructed input signals, respectively, and w, a, and b are
the learning rates for the correspondingmodel parameters. Weupdate theparameters
by adding their values to subsequent ones during training (i.e., wt+ 1ij = wtij wtij ;
here, t is a learning step). For a detailed account of the learning process of RBMs,
see [58].
To take into account the modeling of real values in the visible layer (the robot's

sensory signals and their features are not binary values), we substitute Gaussian
units vi R for binary units. [85]. The activation probabilities for the visible and the
hidden units of this Gaussian{Bernoulli RBM are given as

p(hj = 1 v) = g bj +
i

1
2
i
viwij ; (3.9)

p(vi = v h) = v ai +
j
hjwij 2

i ; (3.10)
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where ( 2) denotes the probability of a normal distribution with amean and
a variance 2, and i is the standard deviation associated with the i-th Gaussian

activation with a small variance ismore weighted toward the hidden activations than
the large variance in Eq. (3.9). The energy function of Gaussian{Bernoulli RBMs is

E(v; h; ) =
i

(vi ai)2
2 2
i j

bj hj
i j

1
2
i
vihjwij ; (3.11)

p(v) and
p(v h
Bernoulli RBM. The rules for the Gaussian{Bernoulli RBM are given by

wij = w
1
2
i
vihj

data

1
2
i
vihj

recon
; (3.12)

ai = a
1
2
i
vi

data

1
2
i
vi

recon
; (3.13)

bj = b hj data hj recon : (3.14)

In addition to model parameters wij , ai, and bj , we can modulate another pa-
rameter i to minimize the cross entropy between p(v) and p(v h ) because these

standard deviation i via a surrogate parameter zi zi = log 2
i

because the variance 2
i takes only positive values ( 2

i > 0). The update rule for zi is
given by

zi = ze zi 1
2(vi ai)2

j
vihjwij

data

ze zi 1
2(vi ai)2

j
vihjwij

recon
:

(3.15)

Through thismodulation, each variance is expected to be closer to the actual variance
of the input signals. As the variance becomes closer to 0.0, the more strongly the
input signals contribute to the probabilities of the hidden activations. Similarly, the
noise in the reconstructed signals decreases with the variance.
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3.3 Summary
This chapter has provided our intended interaction scenario and four challenges to
realize emotional interactions between humans and robots. We assumed that humans
(caregivers) and robots (infants) interact with each other in a face-to-face situation,
and both of themusemultimodal expressions such as facial expressions and vocaliza-
tions. In the above interaction, a robot is required to have several capabilities such as
emotion perception, emotion expression, emotion estimation, and active perception.
To acquire these capabilities in emotional interactions, we employ an RBM as a key
mechanism for the proposed model based on the idea of predictive coding. Two types
of RBM have been evaluated for our model: the Bernoulli{Bernoulli RBM and the
Gaussian{Bernoulli RBM.
The following Chapters 4, 5, and 6 provide detailed descriptions of our challenges.

The proposed models for each challenge based on the RBMs are explained and eval-
uated.
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Chapter 4

Modeling Development of
Multimodal Emotion Perception

Humans recognize others' emotional states such as delight, anger, sorrow, and plea-
sure through multimodal expressions during interactions. However, it is unclear how
this capability of emotionperception isacquired during infancy. This chapter presents
aneural networkmodel that reproduces the developmental process of emotionpercep-
tion through an infant{ caregiver interaction. We employ an RBM, which is described
in Chapter 3, as a key component of the proposed model. The model receives multi-
modal expressions from a caregiver (visual, audio, and tactile signals in our current
experiment) and learns to recognize her/ his emotional states. We hypothesize that
emotional categories of multimodal stimuli are represented in a higher layer in the
network owing to two important functions: tactile dominance and perceptual im-
provement. The former refers to tactile sensors that can detect emotional valence
of stimuli such as positive, negative, and zero valence more directly than can other
sensors owing to characteristics of the nerve system of the skin. The latter refers
to developmental changes in perceptual acuity. Experimental results demonstrated
that tactile dominance and perceptual improvement play the role of facilitating the

only appear when both functions are included in the model.
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4.1 Background

Emotion perception refers to capabilities of recognizing emotions of others. We hu-
mans can estimate another person's emotional states such as joy, neutral, anger,
etc. from multimodal expressions during interactions [18, 62]. Many researchers
have studied how humans acquire the capability of emotion perception in infancy
(e.g., [20, 86]) although it is not fully understood to date. To investigate the de-
velopmental changes in emotion perception, several researchers applied audiovisual
emotional stimuli such as facial expressions and vocalizations to infants [51{54].
Walker-Andrews [51] claimed that human infants have immature capacities to de-
tect, discriminate, and recognize others' emotions at birth; for instance, younger

infants can discriminate and recognize the emotional categories of others' expressions
(e.g., basic emotions) owing to perceptual development. Grossmann [54] reported

their brainwhen they faced angry and happy audiovisual stimuli (i.e., facial and vocal
emotional expressions of others).
We consider that there is more evidence in support of the developmental pro-

between infants and their caregivers and where developmental disorders appear to

only changes in behaviors and brain activations when the subjects faced emotional
stimuli. Thus, it remains unclear what causes the developmental changes in emotion
perception during infancy.
To address this issue lacking in prior studies, we proposed a computational neural

network model based on the idea of predictive coding for reproducing developmental
changes in emotion perception in infancy. Thismodel relies on two key ideas based on

the sense of touch can detect the emotional valence of stimuli more directly than can
other modalities. The second idea is perceptual development of infants' multimodal
sensation (i.e., sense of vision, audio, and touch). We explain this and hypotheses
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for representing the development of emotion perception in Section 4.2. The proposed

tactile dominance, wasmodeled asa semi-supervisedmodule of the proposed network,
while the second idea, perceptual development, was modeled via a learning process
of the variance parameters in the distribution of input modules (see Section 4.3 for

with and without tactile dominance, and with and without perceptual development)
by using virtual infant{ caregiver interactions. Finally, we discuss the relationships
between our model and brain regions related to emotion, the validity of including
tactile dominance as a contributor to the development of emotion perception, which
will be discussed in relation to congenital insensitivity to tactile sensation; and the
future scope of this line of research in Section 4.5.

4.2 Our hypotheses

4.2.1 Tactile Dominance

Tactile sensation is extremely important for infants, and younger infants tend to use
touch to interact with their external environment, owing to their undeveloped vision
[67,88]. Touch allows infants to perceive the emotional valences of their interactions
as well as detect the shapes of objects. Interestingly, caregivers also employ the
tactile modality more often than others (e.g., vision and audio) when interacting
with infants [89].
Touch is also an important modality for emotional communication from a neuro-

of nerves in our skin are activated [90,91]: A

thanA

respond to gentle contact (e.g., stroking the surface of the skin) at a velocity range
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emotions and enhance the social aspects of human{ human interaction through skin

liver the information not only to the somatosensory area of the brain but also to the
limbic system (e.g., the insular cortex and thalamus) that is known as an emotional
brain region. It is conceivable that the emotional information ascribable to the tactile
dominance has an important role in the abstraction and the integration of sensory

state of the emotion to use only the intensity as a feature in auditory stimuli. How-

of features to obtain emotional information from tactile stimulation. Craig [21] mea-
sured the activity of the insular cortex to tactile stimuli by using functional Magnetic
Resonance Imaging (fMRI). Infants react more strongly in their cerebral cortex to
tactile stimuli than to other sensory inputs. Brain imaging study has revealed that
tactile stimulation activates a wider range of the neonatal cerebral cortex than visual
or auditory stimuli [93].

action into account for the modeling of emotion development. The second evidence

emotion in infancy. However, this communicative function (touch) has been neglected
in modeling studies of emotion.

We hypothesize that tactile communication allows infants to perceive the emo-
tional valence, a value of emotional stimuli (e.g., positive, negative, and non-valued
(zero value) information) from others' multimodal expressions. For instance, touch-
ing the skin of infants softly might elicit a positive emotional valence, whereas more
forceful contact or pinching might elicit a negative emotional valence during the in-
teraction. Consequently, the emotional valence from the sense of touch might aid in
perceiving emotional categories of other sensory signals during infancy.

4.2.2 Perceptual Development

Humans' sensory organs develop during the fetal period [94], whereas their perceptive
faculties develop after birth over the course of one year. For instance, infants' visual
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acuity increases from birth to 6 months of age [95]. Furthermore, for auditory percep-
tion, infants' ability to discriminate frequencies improves from 3-, 6-, to 12 months
after birth [96].

Walker-Andrews [51] studied the development of emotion perception from the

infancy. By reviewing many studies that considered the development of emotion
perception and perceptual development in the sense of vision and audio, she claimed

emotional meaning of others' expressions (e.g., positive or negative). She also claimed
that older infants (around one year old) are able to discriminate and then recognize
the emotional states (e.g., basic emotions) of others from their expressions because

others' multimodal expressions.

egory generalization [97, 98]. They compared tendencies in classifying new objects

(around 10 years old) used dimensional similarity (e.g., the size or color of objects)

More recently, several studies have considered perceptual development in modeling
cognitive and motor skill learning in robotics. The authors in [99] proposed a learning
model of joint attention employing a developmental mechanism of visual perception.
Joint attention is the ability to gaze at an object that someone else is looking at,
so visual input plays an important role in acquiring the ability. They introduced
perceptual development in the visual sense of a robot, which changed the sharpness

demonstrated that visual development enabled the robot to improve the accuracy of
joint attention owing to better-structured visuomotor mapping.
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perception from ambiguous emotion (e.g., emotional valences) to categorical emotions
(e.g., basic emotions [18]).

4.3 Computational Model for Emotional Develop-
ment

emotion perception in infancy. Then, we describe the basic idea and its computational
architecture using the proposed model and associated learning process. Finally, the
dataset of multimodal emotional expressions that simulated infant{ caregiver interac-
tions is explained.

4.3.1 Assumptions about the Interaction

We focus on face-to-face multimodal interactions between an infant and a caregiver.
Fig. 4.1 illustrates such an interaction, where the infant perceives stimuli from three
modalities: vision (focusing on the caregiver's face), audition (hearing the caregiver's
voice), and touch (experiencing the caregiver's touch). For instance, when the care-
giver tries to make the infant happy, the infant will see the smiling face of the caregiver,
hear her happy voice, and feel her gentle touch. Here, we assume that multimodal
expressions of the caregiver are consistent among the three modalities. Furthermore,
for the sake of simplicity, we suppose that the infant is receiving interaction signals
only from the caregiver.

4.3.2 Proposed Model

Fig. 4.2 provides an overview of the proposed model. The model comprises two
types of modules: sensory and emotion (see Fig. 4.2). There are three sensory mod-

and these modules process low-level sensory signals obtained in infant{ caregiver in-
teractions. The emotion module acquires the representation of emotional states by
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Figure 4.1: Example of face-to-face infant{ caregiver interaction. The infant perceives
emotional signals from the caregiver using three modalities: visual, auditory, and
tactile. The caregiver's expressions are consistent among the three modalities and
induce the same emotional state in the infant as in the caregiver.

integrating multimodal signals from the sensory modules. Our challenge is to pro-
pose a biologically- and neurologically-plausible mechanism for the development of
emotion perception. To address this issue, we constructed each module by adopting
the RBM [58, 60] that was described in Chapter 3. The reason why we employed
the RBM is that its learning mechanism corresponds to a well-known theory of the
human brain mechanism called the free energy principle [9]. The free energy princi-
ple proposed by Friston hypothesized that the fundamental mechanism of the human
brain is the reduction of prediction error by free-energy minimization, and the theory
is related to the idea of predictive coding. To propose the computational model based
on the theory might aid us in comprehending the mechanism for the development of
emotion perception.

Sensory Module

Each sensory module comprises a Gaussian{ Bernoulli RBM because the input signals
from the sensors are continuous values. The visible layers receive sensory signals from
the corresponding sensors (i.e., visual, auditory, and tactile). Each module processes
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Figure 4.2: Computational model for the development of emotion perception based
on tactile dominance and perceptual improvement in infancy. The three lower RBMs
denoted by blue connections (i.e., the region enclosed in broken lines), constitute

gion enclosed within the red solid line denotes the emotion module. The red arrows
with "BP characters indicate that the connection weights were modulated by back
propagation in the model training (see section 4.3.3).

these signals independently.
Perceptual development, which is one of the factors we proposed to drive the

development of emotionperception, was modeled asmodulations in the variance of the
2
i

parameterszi (Eq. (3.15)) to reduce the error between the actual input signalsand the
reconstructed input signals from the hidden activations. Early in the model training,
the variance of the visible units is large, which causes several Gaussian distributions to
cover many input signals (Fig. 4.3(a)). Therefore, the hidden layer initially represents
rough clusters of input data, which makes the reconstruction signals coarse. Later in

distributions decrease. The reduced variance leads to more precise reconstructions
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compared to when the variance is large (Fig. 4.3(c)). In parallel with this, the mean
values of the Gaussian distribution should also be updated to approach the actual

and the mean value of Gaussian distributions reproducesperceptual development, just
as in [99]. In Section 4.4.5, we illustrate the developmental changes in the variance
and reconstructed signals in the visual sensory module as an example.

Following the training, the hidden activations of the sensory modules represent
abstracted features of the corresponding sensory signals. These activations are then
used as input signals for the RBM in the emotion module.

Emotion Module

The Bernoulli{ Bernoulli RBM used in the emotion module is called the multimodal
RBM in the proposed model, given that it uses the combined hidden activations of the
three sensory modules as input signals. The hidden neurons of the multimodal RBM
are connected to the emotion valence layer. The emotion valence layer was introduced
into the model to represent tactile dominance. In Section 4.2.1, we mentioned that

stroke with slow velocity or a pinch) and transmit the emotional valence of the stim-
uli (i.e., positive or negative) to the brain regions that process emotion. To emulate
this function, we implemented two units in the emotion valence layer that detect and
transmit the positive and negative valence to the emotion layer. For example, when
stroke stimuli were presented, the activation value of the positive unit was set to one,
while that of the negative unit was set to zero. On the other hand, any unpleasant
contact set the negative unit to one. When the contact had no emotional valence
(e.g., weak pat and touch), both units were set to zero. How emotional valence is

from past studies [90{ 92,100].

In this module, the multimodal RBM was trained initially by using output sig-
nals from all sensory modules. It updates the parameters of the RBM to reduce the
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reconstruction error in the abstraction layer. The module eventually learns the rela-
tionships between the hidden layers of the multimodal RBM and emotional valence
in a supervised manner through a back propagation algorithm. In our model, the
back propagation mechanism modulates the connection weights not only between the
hidden layer and emotion valence nodes but also between the hidden and visible layers
of the multimodal RBM. We believed that the emotion layer (i.e., the hidden layer of
the multimodal RBM) acquires representations of emotional states from multimodal
signals.

4.3.3 Learning Process of the Proposed Model

We trained the proposed model by performing ten sequences of the following three
phases.

1. The parametersof the RBMsin the sensory moduleswere trained using Eqs.(3.12){
(3.15). This phase is illustrated by blue arrows in Fig. 4.2.

2. The multimodal RBM in the emotion module was trained using Eqs. (3.6){
(3.8). This phase is illustrated by the green arrow in Fig. 4.2.

3. The connection weights of the emotional valence units and the multimodal RBM
as well as in the multimodal RBM were modulated by back propagation. This
phase is illustrated by red arrows in Fig. 4.2.

We continued each training phase for 1000 steps. After the third phase, we began the

The model structure and learning method are based on a deep belief net [60]
and a multimodal deep belief net [83]. However, these previously used models only
executed one sequence of the training phases; in contrast, we partitioned the training
phases because we wanted to examine and illustrate the developmental changes in
the proposed model. For further details of the training method of the RBM, see [58].
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4.3.4 Multimodal Sensory Signals

We evaluated our model by using an interaction dataset that simulated infant{
caregiver interactions. Each interaction datum contains sensory signals for the three
modalities (i.e., visual, auditory, and tactile modalities) which represent the seven ba-
sic emotions (i.e., joy, surprise, anger, disgust, sadness, fear, and neutral). The data
were collected by using a robotic system, which consisted of a USB camera, a micro-
phone, and a soft tactile sensor. An experimenter faced the system and expressed
emotional expressions, unlike typical face-to-face interactions but like infant{ caregiver
interactions, namely, exaggerated expressions. For instance, auditory signals, es-
pecially called infant-directed speech, have salient acoustic features [101, 102] (e.g.,
wide-range pitch and fundamental frequency), and tactile signals also have wide-range
features [67]. Our dataset includes these characteristics of multimodal signals. We
assumed that the caregiver's expressions of emotional states to the infant were consis-
tent across all three modalities in each interaction, and that a given expression would
evoke the same emotional state in the infant. For example, we assumed that when
a caregiver showed the infant a smiling face, the infant would experience joy; fur-
thermore, caregiver's auditory and tactile expressions in the same interaction would
make the infant experience joy. It is important to note that the proposed model is
not provided with the emotional labels of the input signals (i.e., the seven basic emo-
tional states); instead, the model estimates the emotional states with a help of the
emotional valences of the signals (i.e., positive, negative, or zero emotional valence)
via tactile dominance.

Table 4.1 describes the infant{ caregiver interaction dataset, while Fig. 4.4 shows

sensory signals for joyful emotion. The second and third rows show the signals for
angry and neutral emotions. In the following subsections, we provide further details
on the multimodal sensory signals and their features for the sensory modules.
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activation

(a) Early stage

(b) Middle stage

(c) Later stage

Large
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Figure 4.3: Examples of the sensory module's behavior through training. The vertical
axis and color variation of the circles represent feature values of the sensory signals

white circles show the active and inactive hidden units, respectively, and the Gaussian
curves represent the Gaussian distributions that correspond to the hidden activations.

wtraining progresses over the (a) early, (b)middle, and (c) after stages.
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Table 4.1: Description of dataset simulating infant{ caregiver interaction
Emotional state Visual stimuli Auditory stimuli Tactile stimuli (emotional valence) Number of data
Joy Smiling face Pitch rise in voice Stroke (positive) 150
Surprise Surprised face Loud voice Touch (zero emotion) 150
Anger Angry face Loud voice Pinch (negative) 125
Disgust Worried face Low tone voice Pinch (negative) 125
Sadness Tearful face Quite voice Weak pat (zero emotion) 125
Fear Frighten face High frequency voice Pat (negative) 125
Neutral Neutral face Neutral voice Touch (zero emotion) 125
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Figure 4.4: Samples of multimodal signals in our interaction dataset

Visual Stimuli

The visual stimuli used were facial expressions produced by an experimenter playing
a parent. We cropped the face region from images captured using a USB camera,
and each image was converted to a gray scale image of size 30 30 pixels. The
experimenter expressed facial expressions of the seven basic emotions, and each emo-
tional face had ten variations. Fig. 4.4 (a){ (c) shows examples of the converted
facial images for joyful, angry, and neutral emotions, respectively, and Figs. 4.5 show
other examples. The shapes of the eyebrow, eye, and mouth represented emotional
characteristics of facial images. For instance, in many of the facial images of joy and
surprise in our dataset, the mouth was open. By contrast, for the other emotional

rates above 98 % were extracted from all of the converted images by the principal
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component analysis method to reduce the dimensions of the facial data. We utilized
these 20 principal components as input signals for the visual sensory module.

(a) Joy (b) Surprise (c) Neutral (d) Anger (e) Disgust (f) Sadness (g) Fear

Figure 4.5: Examples of facial expressions of caregivers in communication with infants
as visual stimuli.

Auditory Stimuli

Auditory stimuli were single mora voices expressed as "Maa" corresponding to the
seven basic emotions recorded from the same experimenter for the corresponding
visual stimuli, and each emotional voice had ten variations. The reason that we used
a single mora voice was that the acoustic characteristics were enhanced by simple
utterances as well as for infant-directed speech [102], and we wanted to simplify the
stimuli as much as possible for the experimental setting. The graphs in the center
column of Fig. 4.4 show the raw signals (i.e., sound waves) of voices corresponding to
joyful, angry, and neutral emotions. To extract features from these signals, we divided
each signal into ten even sections and calculated acoustic features, namely the change
in the fundamental frequency (F0) and the power of the F0 for the signals in each
section (i.e., there are 20 features). All features were normalized in each section to

features of audio signals as input values for the auditory sensory module. Fig. 4.6
shows an example of extracted acoustic features from the audio signals in Fig. 4.4.
As evident in Fig. 4.6, joyful and angry voices were shorter than were neutral voices.
The power of F0 (indicated by blue bars) was detected only during two consecutive
sections. Joyful and angry voices, on the other hand, had similar characteristics such
as a short duration and high-intensity sounds as seen in Figs. 4.4 and 4.6. This
implies that only some emotional states can be discriminated by low-level acoustic
characteristics, whereas ambiguities remain in certain types of emotional voices.
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Figure 4.6: Extracted auditory features from Figs. 4.4 (d){ (f) (i.e., joyful, angry, and
neutral voices). The horizontal axis represents the divided sections, and the vertical
axis shows the normalized value of each feature. The red and blue bars indicate the
change of the F0 between the current section and the previous section and the power
of the F0 in each section, respectively.

46



Tactile Stimuli and Emotional Valence

Tactile stimuli and emotional valence were some of the most important signals in
this experiment, as they were used to verify one of our hypotheses. We collected
tactile stimuli simulating those used in infant{ caregiver interaction via a human-
skin-like tactile sensor. An overview and schematic diagram of our sensor, which
was developed based on [103], are shown in Figs. 4.7(a) and 4.7(b). The tactile

voltage depending on the change rate of deformation (i.e., velocity of contact force),
were sandwiched between two layers of human-skin-like elastomers (EXSEAL Co.,
Ltd). Figs. 4.4 (g){ (i) provide examples of nine sensor output signalscorresponding to
joyful (stroke), angry (pinch), and neutral (touch) tactile stimuli, respectively. Each

samples to reduce noise. For instance, the stroke stimulus activated the tactile sensors
for a longer duration than did other forms of contact, and the sensor output signals
did not synchronize with each other (Fig. 4.4 (g)) because the contact point moved
over large areas very slowly. On the other hand, the pinch and touch stimuli activated
channels synchronously because their contact points did not move. Furthermore, the
dynamic deformation of the sensor during the pinch stimulus was evident by the large
values for the sensors' signals.

We calculated nine features from the sensory signals to extract the characteristics
of tactile stimuli. Fig. 4.8 shows the relationships between a single sensory signal

(i) the maximum absolute velocity of contacts, (ii) the number of code changes in the
signals, and the intensity of (iii) low, (iv) middle, and (v) high frequency bands (low:
1{60 Hz; middle: 61{100 Hz; and high: 101{ 200 Hz) from the raw signal. Next, we
calculated the integral values of the signal in terms of time to estimate the contact
force and extracted the remaining four features: (vi) the duration of contact, (vii)
duration of a contact with strong force, (viii) the maximum force of the contact, and
(ix) the number of channels that detected contact. The maximum features (i.e., (i)
and (viii)) were calculated from the whole channel (i.e., nine channels) values. The
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number of channels that detected contact (i.e., (ix)) was determined by counting the
channels where the integral value exceeded a threshold. The duration features (i.e.,
(vi) and (vii)) were logical disjunctions between all channels. The thresholds for
contact detection and strong contact detection were 0.8 and 1.5, respectively. The
other features (i.e., (ii), (iii), (iv), and (v)) were averaged across the whole channel,
individually. These nine features were determined based on our knowledge of tactile
receptors and the most important properties of touch [67,104], and they were used as
input signals for the tactile sensory module (i.e., the tactile sensory module has nine
input nodes).

In this experiment, we used three types of emotional valence: positive, negative,
and zero. Emotional valences were predetermined for each tactile stimulus by the

and weak pat stimuli corresponded to zero emotional valence. The pinch and pat
stimuli were considered to generate a negative emotional valence because the high

all relationships between tactile stimuli and emotional valences. These emotional
valence signals were represented as neuron activations of the emotion valence layer
in the emotion module. As described in Section 4.3.2, positive emotional valence set
the positive unit of the emotion valence layer to one, while the negative unit was set
to zero. On the other hand, negative valence set the negative unit to one and the
positive unit to zero. When the emotional signal had zero valence, both units were
set to zero.

48



(a) Tactile sensor (b) Structure of the tactile sensor

Figure 4.7: Overview and structure of our tactile sensor composed of urethane foam
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4.4 Experiments and Results
Section 4.4.1 outlines the experimental conditions used to verify our hypotheses re-
garding tactile dominance and perceptual development. Four conditions were de-
signed to investigate the roles of these two functions. Then, in Sections 4.4.2{ 4.4.5,

4.4.1 Experimental Conditions and Settings

We conducted experiments under the following four conditions to investigate how

A. A model with tactile dominance and perceptual development (i.e., wTD{wPD
condition)

B. A model with only perceptual development (i.e., w/ oTD{wPD condition)

C. A model with only tactile dominance (i.e., wTD{ w/ oPD condition)

D. A model without either function (i.e., w/ oTD{ w/ oPD condition)

Condition A (wTD{wPD) included both functions. Tactile dominance was modeled
using emotional valence units (which represented positive, negative, and zero emo-
tional valence signals based on tactile stimuli), whereas perceptual development was

This was the main condition for verifying our hypotheses.
Condition B (w/ oTD{wPD) omitted tactile dominance from the wTD{ wPD con-

dition. In this case, we assumed that the infant was not able to perceive positive
or negative valences from tactile stimuli; this disorder has been observed in infants
that are born without tactile nerves [105]. To replicate this situation, we removed
the emotional valence units and their connections from the emotion module, and
therefore skipped the third phase in the training process (see section 4.3.3). We used
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Condition C (wTD{ w/ oPD) excluded perceptual development instead of tactile
dominance. In this case, we assumed that the infant's perception had matured at

of sensory modules' input nodes to 0.1 and excluded the modulation of variance in
Eq. (3.15). By contrast, the initial values of the variance in the previous condi-
tions (wTD{ wPD and w/ oTD{ wPD) were set to 1.0 and modulated by Eq. (3.15).
This modulation represented the development of perceptual abilities from the imma-

In Condition D (w/ oTD{ w/ oPD), we excluded both functions from the wTD{

of the variance of the input nodes were removed from the proposed model as in the
Conditions B and C, respectively.

We utilized the dataset of the simulated infant{ caregiver interaction described in
section. 4.3.4. The parameters for the proposed model are listed in Table 4.2.
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Table 4.2: Parameters of the sensory modules and emotion module
Parameter Explanation Value
vt num Number of visible nodes of tactile sensory module 9
ht num Number of hidden nodes of tactile sensory module 10
va num Number of visible nodes of auditory sensory module 20
ha num Number of hidden nodes of auditory sensory module 10
vv num Number of visible nodes of visual sensory module 20
hv num Number of hidden nodes of visual sensory module 10

s
w Learning rate for weights of sensory module 0.001
s
a Learning rate for biases of visible units of sensory module 0.001
s
b Learning rate for biases of hidden units of sensory module 0.001

z Learning rate for log-variance 0.001

ve num Number of visible nodes of emotion module 30
he num Number of hidden nodes of emotion module 20

e
w Learning rate for weights of emotion module 0.01
e
a Learning rate for biases of visible units of emotion module 0.01
e
b Learning rate for biases of hidden units of emotion module 0.01

Learning rate for weights on back propagation 0.0001

4.4.2 Results

hypothesis, while in Section 4.4.4, we compare the results with focus on perceptual
improvement to test the second hypothesis.

To visualize and evaluate the acquired representations of emotion, we carried out
principal component analysis (PCA) on the activations of the emotion layer. Fig. 4.9
shows one example of the PCA results under the four conditions. We selected the

4.9(d), 4.9(f), and 4.9(h). All plotted data are labeled using the emotional states of
input signals. Note that these labels were not used in the model training, they are
shown only as a visual aid.
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To quantitatively evaluate the representations of emotion in the PC space, we
calculated the separation metric, given by

J = s2
b

s2
w

; (4.1)

s2
b = 1

n

C

c= 1
nc(m c m)t(m c m); (4.2)

s2
w = 1

n

C

c= 1 x2X c

nc(x m c)t(x m c); (4.3)

where s2
b and s2

w are the between-class and within-class variance, respectively; C and
c are the number and index of classes; n and nc are the number of all data used
for training and the number of data belonging to class c; and x X c, m c, and m
are data belonging to class c, the mean of values of X c, and the mean of all data,
respectively. The larger the separation metric is, the greater the separation of the
clusters in the PC space. Figs. 4.10(a) and 4.10(b) summarize the separation metrics
for the categories of emotional valences (i.e., positive, negative, and zero emotional
valences) and the seven basic emotions under the four experimental conditions. We
calculated the averages and standard deviations of the separation metrics over ten

The change of distribution of interaction data in PC spaces at steps 1, 5,000, and
10,000 are depicted in Figure 4.11. Through the learning sequence from 1 to 5,000
steps, the confused distributions of interaction data are separated into positive and

negative, and neutral states. At learning step 1, interaction data were also scattered

formed clusters corresponding to emotional states as learning progressed. Table 4.3
describes the change of separation metrics from the start to end of learning.
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(a) PC1-2 space under
wTD{ wPD

(b) PC1-3 space under
wTD{ wPD

(c) PC1-2 space under
w/ oTD{wPD

(d) PC1-3 space under
w/ oTD{wPD

(e) PC1-2 space under
wTD{ w/ oPD

(f) PC1-3 space under
wTD{ w/ oPD

(g) PC1-2 space under
w/ oTD{w/ oPD

(h) PC1-3 space under
w/ oTD{w/ oPD

Figure 4.9: Acquired low-dimensional representations of emotional stimuli by PCA
for the emotion layer activations in the proposed model under the four conditions.
(a), (c), (e), and (g) refer to PC1-2 spaces, and (b), (d), (f), and (h) refer to PC1-3
spaces for each condition.
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(b) Separation metric for the categories of seven basic emo-
tions

Figure 4.10: Separation metrics for the categories of emotional valences (i.e., positive,
negative, and zero) and the categories of the seven basic emotions under the four
conditions
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(a) Step 1 (b) Step 5,000 (c) Step 10,000

spaces under the wTD{ wPD condition.

Table 4.3: Separation metrics for each step under the wTD{ wPD condition
Learning steps 1 5,000 10,000
Separation metrics J 0.021 0.039 0.082

Emotion

space under the wTD{wPD condition (Fig. 4.9(a)), the positive (i.e., joy) and the
negative (i.e., anger, disgust, and fear) emotional valence clusters are separated by
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ated into fundamental emotional clusters (i.e., positive, negative, and zero emotional

axis (i.e., PC3) subdivides the clusters of negative and zero emotional valence into

of emotional valence were subdivided into the seven basic emotions. The separation

and 4.10(b)). In contrast to the above, the results for the other conditions show un-

into clusters of emotional valences in both spaces; however, the separation metric

conditions.

The overall comparison of these conditions demonstrates that tactile dominance
leads to better separation of the emotional categories; however, it is also necessary
to include perceptual development in the proposed model as seen in Figs. 4.9(a) and
4.9(b). When tactile dominance was excluded from the model (i.e., w/ oTD{ wPD and
w/ oTD{ w/ oPD conditions), the representation of emotional valence clusters could
not be obtained using the same interaction data. A potential reason is that visual
and auditory signals contained ambiguous features in terms of positive and negative
valence. For instance, joy and anger had similar auditory characteristics due to the
intensity of those stimuli (Section 4.3.4). By contrast, when tactile dominance was
included, the emotional valence inherent in the tactile stimuli disambiguated such
situations.
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of Emotion

perception. Fromthe comparisonof results betweenthe wTD{ wPD and wTD{ w/ oPD
conditions, we found that the distribution of interaction data, which was weakly

of the seven basic emotions in Fig. 4.9(b) owing to perceptual development. It was

relevant to the emotional valences as shown in Figs. 4.10(a) and 4.9(a), although

w/ oTD{ w/ oPD conditions.
Taken together, these results indicate that perceptual development does enhance

included in the model. The result suggests that the two functions facilitate the de-

only when they are both present in the model.

4.4.5 Perceptual Development Produced by Modulation of
RBM Parameter 2

i

We then closely analyzed how perceptual development was reproduced by the mod-
ulation of the variance parameters, 2

i , in the sensory RBMs. Fig. 4.12 shows the
transition of 2

i (i = 0; ; 20) of the vision module over the learning process as an
example. All variances of the visible nodes with perceptual development were ini-
tialized at 1.0 and updated using Eq. (3.15). The results showed that the variance
parameter 2

i was properly adjusted through training.
We also illustrate the changes in reconstructed images across the learning steps.

Fig. 4.13(d) shows four randomly selected input images depicting facial images of
joy (left top), neutral (right top), anger (lower left), and sadness (lower right). Figs.
4.13(a) to 4.13(c) show the reconstructed images in Fig. 4.13(d). For some images,
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in the early stages of learning (Fig. 4.13(a) { 4.13(b)), the reconstructed images were

images. For example, the top left in Fig. 4.13(a) looks similar to an angry face
although the input was a happy face. We described the reason for this result in
Section 4.3.2. The Gaussian distribution with a large variance covered many input
signals and thus generated highly-ambiguous reconstructions. However, in the later
stages of learning (Fig. 4.13(c)), the reconstructed images became more similar to the
input images. These results indicate that the sensory modules were able to simulate
perceptual development by updating the variance of their visible nodes.
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Figure 4.12: Transition of visual nodes' variance for the vision sensory module

(a) Step 0 (b) Step 1000

(c) Step 10000 (d) Input data

Figure 4.13: Examples of input stimuli and reconstructed images during the learning
process in the visual sensory module
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4.5 Discussion and Future Work

We proposed a computational neural network model comprising two modules (i.e., the
sensory module using three RBMs and the emotion module) to verify our hypotheses
regarding the development of emotion perception in infancy. The sensory module
components processed multimodal sensory signals individually, similar to the sensory
area of the cerebral cortex (i.e., the visual, auditory, and somatosensory cortices).
The emotion module, which was on a higher-level than the sensory module, was used
to integrate the abstracted signals obtained from the sensory module RBMs, and the
emotion layer in the module further integrated the information of emotional valences
based on tactile dominance. It is known that the STS integrates visual, audio, and
tactile signals [22] and engages in multimodal information processing for emotion per-
ception [23,24]. The STG, which is near the STS, also responds to various non-verbal
emotional stimuli [25], and the temporal area of an infant's brain perceives and re-
acts to audiovisual emotional stimuli [26]. There are also known neural connections
between the STS and the amygdala; Bj ornsdotter et al. [92] reported that tactile

system, such as the amygdala and insular cortex. All of this prior knowledge suggests
that the structure of the proposed model successfully reproduced that of the human
brain, at least in relation to emotional processing. In other words, the sensory module
corresponds to the sensory areas of the brain, while the emotional valence layer and

layer in the emotion module emulates brain functions, such as perception of cate-
gorical emotions in the temporal region (i.e., the STS and the STG). Furthermore,
we consider that the proposed model would replicate not only the development of
emotion perception but also multimodal sensory processing in general in the human
brain. In fact, our challenge was to design a biologically- and neurologically-plausible
mechanism for the development of emotion perception based on the latest knowledge
on multimodal sensory association (e.g., the free-energy principle [9]). We believe that

impact of our work.

In Section 4.4.3, we compared the experimental results between the four conditions
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in the human skin that perceive emotional valence produced by tactile stimuli. The

chemical substances, thermal stimuli, and otherwise negative stimuli such as tactile

transmit pain signals from the skin to the brain, especially to the somatosensory area.
There is a condition called congenital insensitivity to pain with anhidrosis (CIPA),

also shown that patients with CIPA have impairments in the perception, recognition,
and modulation of emotion [105]. Danziger et al. [87], in an experiment designed to
estimate others' emotional states, demonstrated that patients with a similar condition
called congenital insensitivity to pain (CIP) were inhibited in their ratings of others'
painful situations or propensity to infer pain from others' facial expressions using
control subjects. Note that CIP patients lose only the A

others' emotions. In our study, the experimental conditions where tactile dominance
was excluded appear to simulate the characteristics of patients with CIPA, which

opment of emotion perception. The comparison results of the four conditions showed

when tactile dominance was also included in the proposed model (i.e., the wTD{
wPD condition). This result supports the claim in Walker-Andrew's study [51] that
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nodes in the sensory modules during the training process. The experimental results
in Section 4.4.5 further demonstrated that the sensory modules simulated perceptual
development by modulating the variance parameters. Other cognitive developmental
robotics studies have proposed models whose perceptual capabilities develop accord-
ing to their performance on their corresponding tasks. For instance, Nagai et al. [99]

tion task. However, perceptual development in our model was independent from the
performance of the development of emotion perception. Thus, our model is more
generalizable than those of other studies because it demonstrates that perceptual

In summary, the proposed model represented the development of emotion per-
ception through learning of caregivers' visual, audio, and tactile expressions during
interactions. The experimental results demonstrated that both tactile dominance
and perceptual development have a combined role in facilitating the development of

integrated into the model together. Connecting our results to behavioral studies in
physiology helps to elucidate the neural and social mechanisms of the development

external senses but also by human behavior and internal, physiological systems (e.g.,
the endocrine system). It is important that we take such systems into account as in
other studies in cognitive developmental robotics [41, 44, 52, 70, 72, 73] when model-
ing the development of emotion perception. Additionally, we intend to examine the
development of emotion perception by integrating physiological indices using non-
parametric Bayesian models [106]. To address these future issues, we will combine
the results of our prior analyses for more accurate modeling of emotion development.
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Chapter 5

Emotion Expression and
Estimation by Mental Simulation

Humans can express their own emotion and estimate the emotional states of others

emotional states of others and generate emotional self-expressions. The proposed
model utilizes a multimodal RBM | a type of stochastic neural network. RBMs can
abstract latent information from input signals and reconstruct the signals from it.

tion models: constructing an emotional representation for estimation and generation
of emotion instead of using heuristic features, and actualizing mental simulation to
infer the emotions of others from their ambiguous signals. Our experimental results
indicate that the proposed model can extract features representing the distribution of
categories of emotion via self-organized learning. Imitation experiments demonstrate
that using our model, a robot can generate expressions better than with a direct
mapping mechanism when the expressions of others contain emotional inconsisten-
cies. Moreover, our model can improve the estimated belief in the emotional states of
others through the generation of imaginary sensory signals from defective multimodal
signals (i.e., mental simulation). These results suggest that these abilities of the pro-
posed model can facilitate emotional human{ robot communication in more complex
situations.
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5.1 Background

Sharing emotion with communication partners is an important attribute in human{
human and human{robot interaction. In attempts to achieve emotional communi-
cation, several empathic robots have been developed [34{ 46]. A study on emotion

Kim et al. [80] proposed deep neural networks that learn to extract features for emo-
tional categorization from audiovisual signals. In their system, deep belief networks
(DBNs) comprising RBM were used as unsupervised learning mechanisms. The RBM
can abstract input signals and reconstruct the signals therefrom. In experiments,

networks can obtain useful features to represent emotion.

erate its own emotional expressions to imitate human expressions based on the esti-

itation" as the generation of expressions of the robot considering the emotional state
of the interaction partner in this study. The model overcomes two issues confronting
previous emotional models: constructing an emotional representation of multimodal
signals for estimation and generation of emotion instead of using heuristic features,
and actualizing mental simulation to infer the emotions of others from their ambigu-
ous multimodal signals. We employed RBMs to address these two issues, as they are
able to abstract input signals and recall the signals from their abstract representa-

by reducing the dimensions of multimodal signals and associate the multimodal sig-
nals. Moreover, our model carries out mental simulation by exploiting the ability to
generate sensorimotor signals. The mental simulation mechanism enables the model
to estimate the emotional states of others from partial multimodal expressions based
on its own experiences.

We examine the abilitiesof the proposed model via three experiments: 1) construc-
tion of an emotional representation from human multimodal expressions using the
self-organizing feature extraction capability of RBMs to enable the robot to imitate
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the advantage of mental simulation in the imitation interaction with partial human
expressions. Finally, we discuss the relationships among the capabilities of our model
and MNS, the limitations of our model, and future issues to be addressed.

5.2 Target tasks and the proposed method
This section introduces our target tasks in human{ robot interaction and the proposed
model that enables the robot to imitate multimodal expressions of others based on
the estimation of their emotional states.

5.2.1 Challenges and requirements for emotion-based imita-
tion

We considered face-to-face interactions between a human and a robot as the target
situation in our study (Fig. 4.1). The human and the robot used multimodal signals,
such as facial expressions, hand movements, and speech to communicate with each
other. The aim of this interaction is for the human to express his/ her emotion by
using multimodal signals, and for the robot to imitate the partner's expressions as
its own multimodal expressions based on estimation of the partner's emotion. For
imitating the emotional expressions of others, it is important that the robot not
directly copy expressions of others but instead generate its own expressions through
emotion estimation of others because human expressions are sometimes ambiguous.
For example, human multimodal expressions are inconsistent between modalities (i.e.,
a tearful face when crying with delight), or the robot does not perceive complete
human expressions in interaction. To copy expressions of others only is not enough
to imitate the emotional expressions of others.

To achieve these goals by the robot, our computational model requires mechanisms
for estimation of emotion of others and generation of its own expressions based on
the perceived emotion. Moreover, the model requires that the estimation mechanism
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be robust against ambiguous observations. The proposed model composed of RBMs
can resolve these issues by representing two processes: estimation process of the
emotional states of others, and the generation process of its own expressions based
on the estimated emotion of others. To represent these processes in the same model
enables us to actualize the mental simulation mechanism to update the estimation
belief of emotion of others. In later sections, we explain the architecture of the
proposed model and the method to estimate and generate emotion.

5.2.2 Proposed model

Our model consists of two parts: stacked RBMs for each modality in the lower layers
and an RBM at the top layer that integrates signals from the lower RBMs (Fig. 5.1).

each modality RBM and estimates the emotional state of the partner through forward
sampling from the lower layers to the top layer (red arrows in Fig. 5.1). Following
the estimation, the model uses the estimated emotion to generate its own expressions
in imitation of the expressions of the partner based on the partner's emotion through
backward sampling from the top layer to the lower layers (green arrows in Fig. 5.1).
That is, the lower layers of our model represent the multimodal signals of human and
robot, and the top layer represents the emotional state inferred from the signals.

tion 5.2.2. Following this, we explain the estimation and generation mechanisms
of emotion as well as an approach to actualize the mental simulation that updates
the beliefs concerned with emotion estimation by reconstructing others' ambiguous
signals.

Multimodal deep belief network

We considered an association of multimodal signals (i.e., facial expression, hand move-
ment, and speech) in our experiments to acquire the representations of human emo-
tional expressions. To model this emotional representation, we use multiple RBMs
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Visual
(facial expression)

Visual
(hand movement)

Audio
(speech)

Emotion

Bernoulli-
Bernoulli 
RBM

Gaussian-
Bernoulli 
RBM

Figure 5.1: Overview of our proposed model. Each two layers (connected black
lines) represent an RBM. The red arrows signify forward sampling (estimation of the
partner's emotion) and the green arrows signify backward sampling (generation of
own emotional expressions).

dimensional features from each sensory signal, with the lower RBM being Gaussian{
Bernoulli due to the continuous sensory signals, and the upper RBM being Bernoulli{

is that using the Bernoulli{ Bernoulli RBM to process sensory signals induces infor-
mation loss because we must discretize the continuous sensory values to be able to
encode them. On the other hand, using the Gaussian{ Bernoulli RBM for discrete
values (i.e., encoded signals using Gaussian{ Bernoulli RBMs) induces an increasing
learning cost and creates more local solutions for most model parameters than the
Bernoulli{Bernoulli RBM. Then, an additional Bernoulli{ Bernoulli RBM, called an
association RBM, uses the top layers of each stacked RBM as its visible layer to inte-
grate entire modalities (see Fig. 5.1). This structure is called a multimodal DBN [83].

Let hF
t;i 0; 1 , hH

t;j 0; 1 , and hS
t;k 0; 1 denote the top hidden units of

facial expression, hand movement, and speech networks, respectively. The activation

69



probability of the s-th hidden unit of the association RBM hA
s 0; 1 is given by

p(hA
s = 1 hF

t ; hH
t ; hS

t ) =

i
hF

t;iwis +
j

hH
t;j wj s +

k
hS

t;kwks + bA
s ; (5.1)

where ws is the connection weight between each top hidden unit of the sensory RBMs
and the s-th hidden unit of the association RBM, and bA

s is a bias parameter.
Each RBM network of this model was separately trained and staked from a lower

layer to higher layer. The Gaussian{ Bernoulli and the Bernoulli{ Bernoulli RBMs
used Eq. (3.6){Eq. (3.8) and Eq. (3.12){ Eq. (3.15) to learn the model parameters,
respectively. For details of the training method, see [58].

5.2.3 Mechanism of mental simulation in the proposed model

It is known that MNS generates motor signals from observation signals based on
self-experience [31]. This simulation mechanism of MNS, called mental simulation,
facilitates comprehension of others' actions. Research in recent years has shown that
the mechanism also relates to the understanding of others' internal mental states,
including emotion [32, 33]. Humans estimate the emotional states of others based
not only on the perception of others' expressions, but also their own experiences
of expression and personal knowledge. Oberman et al. [107] reported that when
subjects stopped the mimicking of another person's facial expressions, the recognition
of emotional states of others was also disrupted. This result shows that use of self-
generated information improves the accuracy of the estimation of the emotional states
of others.

Our model demonstrates this capability for mental simulation by using the gener-
ative ability of a multimodal deep belief net. The model receives multimodal signals
(i.e., visual signals and audio signals, as shown in Fig. 4.1) from a partner during
human{ robot interaction. The model can estimate others' emotional states from the
multimodal signals through forward sampling from each stacked RBM to an associ-
ation RBM (represented by red arrows in Fig. 5.1). The model can also generate
its own multimodal expressions using the same network structure through backward
sampling from the top layer to each visible layer of the stacked RBMs (represented
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by green arrows). Based on these mechanisms, the model can reconstruct the absence
of the partner's multimodal expressions as virtual observation signals from observed
signals through the forward and backward samplings. For instance, assume that facial
signals are absent (i.e., vF = 0) in the interaction. The model reconstructs unob-
served facial signals (i.e., vF = 0 vF = v̂F ) from other modalities (i.e., hand
movements and speech) via the incompletely estimated state of the other. Then, the
model is able to update its belief of estimation of another's emotion via repeated
samplings by using the reconstructed signals with the observed signals. We propose
an energy-based sampling method to update estimation of others' emotions by recon-
structing imaginary signals from inputted signals. RBMs acquire the energy function
of the combination of visible and hidden activations (Eq. 3.4 and Eq. 3.11). This
energy corresponds to the frequency of data, and frequent combinations in the RBM
produce low energies (Eq. 3.3). We utilize this energy for updating estimation of
others' emotions. When a new sampled emotion representation in the top RBM of
the proposed model shows lower energy than the previous representation, the model
accepts the new representation. Algorithm 1 provides the details of the our proposed
sampling method, where vo, vu, and v̂u are observed signals, unobservable signals,
and reconstructed signals for the lowest visible units of the network, respectively,
and vs and hs are visible and hidden activations of the top RBM of the network,
respectively.

5.2.4 Support vector machine for quantitative evaluation of
estimate emotion

Our model learns the relationships between emotional states and multimodal expres-
sions of others without use of emotional labels in an unsupervised manner. The model
is able to estimate emotion of others as activations of the top RBM and is able to

nition of actual emotional state expressions (e.g., happiness, neutral, and anger). For
quantitative evaluation of estimated emotion in the proposed model, we employ a
support vector machine (SVM) as was done in [79,80]. The SVM uses the activations
of the top RBM in our model as the input and assigns emotional categories from a
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Algorithm 1 Energy-based sampling
vs p(vs vo; vu = 0)
hs p(hs vs)
E Energy(vs; hs; )
v̂u p(vu hs)
while 0 < N do

v̂s p(v̂s vo; v̂u)
ĥs p(ĥs v̂s)
Ê Energy(v̂s; ĥs; )
if Ê < E then

hs ĥs
end if
v̂u p(vu hs)
N N 1

end whilereturn hs

choice of four emotions. We use the default parameter of LIBSVM [108] with linear
kernels for training and evaluation.

5.3 Experiments and results
In this section, we introduce our experimental settings and report the experimental
results. The main objective of the proposed model is that the robot with our model
imitates the expressions of the interaction partner based on estimation of his/ her
emotion even when the partner's expressions are ambiguous or absent in the interac-
tion.

We evaluate the abilities of our model for imitation of human emotional expres-
sions via three experiments: 1) constructing an emotional representation from multi-
modal signals of humans, 2) comparing imitated expressions of our model with those
of the direct mapping method, and 3) evaluation of the mental simulation capability
in emotion estimation of a human from ambiguous signals. We examine the feature
extraction capability of our model, which enables the robot to imitate the expres-

In the second experiment, we compare the imitation capabilities between our model
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modalities. We examine the mental simulation capability for updating the emotion
estimation from partial observation of human expressions in the imitation task in the
third experiment.

features and parameter settings for the proposed model. Following this, we report
the results of three experiments.

5.3.1 Experimental settings

IEMOCAP dataset as interaction data

We used the Interactive Emotional Dyadic Motion Capture (IEMOCAP) database [2]
as interaction data for our experiments. The IEMOCAP database contains audiovi-
sual data from ten actors who acted in both scripted and improvised scenarios. Facial
expressions and hand movements were recorded with a motion-capture system. Fig.
6.2 shows a sample of the motion-capture markers. Subjects attached 53 markers to
their faces and six markers on their hands. Conversations were also recorded using
video cameras.

All recorded data were evaluated using categorical labels and continuous three-
dimensional values. More than three evaluators annotated each utterance of the

ness, neutral, anger, and sadness (as done by [79,80]). We selected only the majority
voted emotional category as the ground truth for each utterance if the annotations
were not agreed to among the evaluators. For instance, when two evaluators voted
the sad category whereas one evaluator voted the neutral category for a focused ut-
terance, we set the emotional category as sadness for the ground truth. We selected
three actors' data as the training dataset and one actor's data as the test dataset.
The total number of training datasets was 634 (happiness:106, neutral:171, anger:164,
sadness:193) and that of test datasets was 202 (happiness:31, neutral:70, anger:40,
sadness:61).
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Feature extraction from IEMOCAP dataset

We calculated the basic audiovisual features from the IEMOCAP database for exper-
iments in two steps. First, we extracted modality dependent features. Facial features

Each green line in Fig. 6.2 corresponds to a feature. Each distance is represented
in two-dimensional space (i.e., x, z) because markers do not conspicuously change
regarding the y-coordinate. Audio features include pitch, intensity, 13-dimensional

Moreover, we used hand movements as features in contrast to previous studies
[79, 80], as it is known that humans consider visual expressions to a greater extent

assumed that hand movements also represent emotional states, for instance, very
rapid hand movements may represent strong angry states or happy states. Hand
movement features consist of the velocities of four markers (LH2, LH3, RH2, and

expressed in three dimensions (i.e., x, y, and z).
Second, we calculated statistical features from all modality dependent features in

each utterance. The statistics included the mean, variance, range, maximum, and
minimum. All features were normalized using z-normalization. The mean and stan-
dard deviation for normalization were calculated over all of the training data. We used
the same mean and standard deviation values to normalize both the training dataset
and the test dataset. Finally, the number of facial expression features, hand move-
ment features, and audio features obtained represented 680, 120, and 150 dimensions
and the total number of extracted features was 950.

Parameter settings of the proposed model

Our model structure has already been shown in Fig. 5.1 and described in Section.
5.2.2. Each modality network has three layers and one RBM combines all modality

hidden, and second-hidden units to 680, 300, and 100, respectively. The number of
visible units for the hand movement and the audio network were set to 120 and 150,
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Figure 5.2: Motion capture marker-set of the IEMOCAP database. The vertical axis
represents the x direction and the horizontal axis shows the z
from [2]).

hand movement and the audio network to 100. The number of visible and hidden
nodes of the highest RBM were 300 and 50, respectively. The parameters for model
training, w, a, b, and z were set to 0.001 for Gaussian{ Bernoulli RBMs, and all
parameters except z were set to 0.01 for Bernoulli{Bernoulli RBMs.
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5.3.2 Experiment I: Constructing emotional representation
of multimodal signals by self-organization

To imitate the emotional expressions of others based on the estimation of their
emotional states, it is important to extract low-dimensional features from high-
dimensional multimodal signals. We assumed that each modality signal contained
distinctive features corresponding to emotion, and that humans' emotional states can
be represented by combinations of these distinctive features. To examine the capabil-
ity of the RBMs to extract relevant features from multimodal signals, we examined
the emotional representations acquired in our model.

outputs were concatenated as input data for the association RBM, which was then
trained. The maximum number of training steps was 10,000 for all RBMs. Following
the training of all RBMs, we calculated the activation in the hidden layer of the
association RBM through forward sampling (red arrows in Fig. 5.1) by using the
training dataset, and carried out PCA to visualize the activation in low-dimensional
space.

PCs space of highest layer of our model. The contribution ratio of each component
was 25.0%, 13.2%, and 9.37%, respectively. The color and shape of the markers in
Fig. 5.3(a) represent emotional states of each activation calculated from training
data. Note that the model did not use these labeled categories of emotion of data
for training. The distribution of each emotional data item overlapped with those of
others. In particular, neutral and happiness data spread across the entire PC space;
however, anger and sadness data formed a corresponding emotional cluster in this
space, and the distribution of happiness data was biased toward that of data related

gradual change, which related to the intensity of the emotional states from the upper-
left corner (i.e., sadness, which usually has low intensity) to the lower-right corner
(i.e., anger, which usually contains high-intensity features). In Fig. 5.3(b), the color
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evincing emotional expressions) for emotion estimation.
These results indicate that the proposed model can extract low-dimensional rep-

resentations of multimodal emotional expressions at the highest layer (50 dimensions)
from high-dimensional multimodal signals (a total of 950 dimensions) in an unsuper-
vised manner. The two main components of the emotional representation (i.e., the

centrated around each other and formed clusters. The distributions of both clusters
represented the variation in the intensity of the relevant emotion. Moreover, PC3
represented the personalities of multimodal expressions. These features of the ac-
quired representation can help to imitate a partner's emotional expression from the
estimation of his/ her emotional state.

5.3.3 Experiment II: Comparing imitated expressions via our
model with the direct mapping method

In this experiment, we examined the capability of the proposed model to imitate
emotional expressions of others and compared it with that of the direct mapping
system, which directly copies others' expressions to those of a robot. Our motivation
for this experiment was to examine this capability when the same person's expressions

is that the proposed model generated its own expressions through the estimation of
other's emotional states.

the multimodal expressions of others as input signals through forward sampling (red
arrows in Fig. 5.1). The model then generates multimodal signals by backward
sampling (green arrows in Fig. 5.1) to imitate others' expressions based on the esti-
mated emotion. There was no guarantee that the generated multimodal expressions
from the model would be identical to the corresponding human expressions, as the
multimodal signals interacted with other modalities through the sampling conducted
by the association RBM. However, the generated multimodal expressions were based
on the same emotional state, which was estimated by the model even when human
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expressions exhibited emotional inconsistency in modalities. By contrast, the direct
mapping system only copied the multimodal expressions of others as its own emo-
tional expressions. The multimodal expressions of the robot were always the same as
those of the humans in all modalities because the system operated the multimodal
signals individually.

We used a humanoid robot iCub to express emotions in this experiment. The
reconstructed multimodal signals through backward sampling were converted into
expressions for the iCub. Regarding facial expression, the iCub has two components
expressing emotional states: eyebrows and mouth. Twenty patterns can be expressed

sion pattern was selected by using the corresponding feature values. Because iCub

For instance, the open or closed mouth pattern was selected via the distance between
the center marker of the upper lip (MOU3) and the lower lip (MOU7) and the angle
of the mouth was decided by the angle between the edge of the mouth (MOU5) and
the immediate marker of the cheek (LC1) in Fig. 6.2. For hand movement and the
audio expression, we prepared prototype patterns (e.g., saying "hello" and moving
the hand in a cyclic manner) and only modulated their parameters to imitate the
partner. For example, we used the mean of the pitch and intensity from the auditory
features to modify the prosody of the iCub's speech. The speed of the iCub's hand
movement was modulated by the mean velocity of the partners corresponding hand
movement features. In the imitation experiments with our model, the iCub used sen-
sory features generated by backward sampling as its own expressions. On the other
hand, the iCub used extracted sensory features from other's expressions directory as
own expressions for the experiments with the direct mapping system.

Fig. 5.4 shows one example of our experimental results using the test dataset.
Fig. 5.4(a) is a screenshot of a human emotional expression from the IEMOCAP
dataset. The subject's expression for this utterance in the interaction was labeled
as an angry state in the dataset. However, recognizing the emotional state of the

state appears to be surprise or happiness. Fig. 5.4(b) shows the resultant expression
of the direct mapping system. The iCub expressed a surprised face with an opening
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mouth instead of an angry face. Because the direct mapping method was not able
to consider inconsistencies between modalities, there was a mismatch between the
iCub's expression and the other's actual emotional state. In contrast, Fig. 5.4(c)
shows the imitation result via estimation of the other's emotion by our model. In this

experiment, even though the input signal was the same. The estimated state of the
other's multimodal expressions in PC1-2 space is presented as a cross marker in Fig.

by considering a combination of the multimodal signals. These results show that the
proposed model can imitate expressions of others that correspond to their emotional
state even when their expressions include inconsistencies between sensory signals.

5.3.4 Experiment III: Evaluation of mental simulation capa-
bility in emotion estimation from partial multimodal
signals of partners

We conducted a third experiment to examine the mental simulation capability in our
model for imitation of multimodal expressions of others from partial observations.
The experimental settings and data used were similar to those in previous experi-
ments; however, the input signals lacked portions of their modalities. For example,
the robot could not perceive the partner's facial expressions and/ or hand movements
for emotion estimation because the robot attended to other people or objects. We
assumed that the model did not receive any signals for the absent modalities, and set
signals for these modalities as zero vectors 0.

with a linear SVM using complete multimodal signals. Here, the complete multimodal
signal means that no modalities signals are lacking in the dataset (i.e., the entire set
of multimodal signals was input). The SVM was trained with the training dataset
and corresponding emotional labels in a supervised manner. Training of the proposed
model and the SVM and the evaluation of emotion estimation were carried out ten
times each for the validation test.

Table 5.1 presents the confusion matrix of emotion estimation. The column labels
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indicate the actual emotional state of input data, and row labels show estimated emo-
tion labels. The correct estimation rates exceeded the random chance rate (25:0%),
and the general estimation accuracy achieved an average of 59:6%. The accuracy
in previous studies [79, 80] was approximately 65% for the general estimation. Our
results are similar to previous studies; nevertheless we did not conduct parameter
tuning for the proposed model and the SVM.

The correct estimations for happiness and neutral states are lower than for anger

the PC space (Figure 5.3).

Table 5.1: Estimation accuracy (%) of others' emotion from complete multimodal
expressions.

Happiness Neutral Anger Sadness
Happiness 52.6 14.5 20.0 12.9
Neutral 5.00 33.6 29.6 31.9
Anger 10.8 5.00 83.6 0.75
Sadness 4.26 21.5 5.4 68.9

In a second experiment, the proposed model received partial signals from others
(e.g., only other's speech for example). Our model reconstructed unobservable signals

based sampling (Algorithm 1). For instance, under a condition without the signals for
facial expression, the proposed model reconstructed the signals for hand movements
and speech. Subsequently, the model updated the estimate of another's emotion
using the actual signals with the reconstructed signals by mental simulation for N
iterations. We set a maximum number of sampling iterations N and unobservable
signals as 100 and 0, respectively. Experiments under all conditions were executed
ten times by changing initial parameters.

Table 5.2 shows the correct answer rate for each emotion, and Figure 5.6 shows
the average estimation rate under each condition, where the labels denote the signals

model received hand movements and facial expressions from the dataset, and the
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conditions (i.e., Fac.{ Han., Han.{ Aud. and Fac.{Aud.) provided fewer errors than
single-modality conditions (i.e., Fac., Han., and Aud. conditions). In the single-
modality conditions, the audio signal produced the lowest error. Subsequently, the
error increased from the Fac. condition to the Han. condition. This result indicates
that auditory signals contained information more relevant to emotion in the current
experiment. From these results, we noticed that hand signals did not correspond to
emotional states directly because they relate to the context of the interaction (e.g.,
passing objects). In the IEMOCAP dataset, some interactions simulated routine

signals also relate less to the scenarios of interaction less. Mouth movements as sole

two-modality conditions, the errors in the Han.-And. and Fac.-Aud. conditions had
similarvalues, and were lower thanthose of the Fac.-Han. condition. These resultsdid
not contradict previous results [79]. Lack of auditory signals led to noisier estimation
than in other conditions because facial and hand features contain large variances for
emotion estimation. These results indicated that auditory signals contribute more
than other modalities to the emotion estimation in these settings.

We compared the results with the update of emotion estimation (ES) to without
the update (BL: baseline) to assess the role of the signal sampling presented in Section
5.2.3. The student's t-test was conducted between BL and ES under each condition
individually. Figure 5.6 indicates that the estimation rates under the conditions
except for the Fac. condition increased from those of the baseline. Aud., Han.{

t(18) = 3:36,
p < 0:01, t(18) = 3:67, p < 0:01, and t(18) = 3:18, p < 0:01, respectively. Han., Han.{

t(18) = 2:57,
p < 0:05, t(18) = 2:69, p < 0:05, and t(18) = 2:16, p < 0:05, respectively, and the

t(18) = 1:00, p = 0:33.
Most estimation performances of sadness were increased by the reconstruction

of unobservable expressions (Table 5.2). However, the estimation accuracy of other
states with the proposed sampling method sometimes decreased compared with the
accuracy of the baseline because energy-based sampling considers only minimization
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of the energy of the top RBM's activations without considering lower layer activa-
tions. This phenomenon is similar to the preconception of estimation based on self-
experience in humans. When the received expression pattern is not similar to learned
patterns that belong to the same emotional state category of received signals, the
estimation may decrease using energy-based sampling. However, when the patterns
of others' expressions are close to one's self-knowledge of expressions, the estimation
will increase by using the reconstruction of unobservable signals.

Figure 5.7 illustrates an example of the transition of the emotion representation
over the energy-based sampling under the Aud. condition. In addition, Figure 5.9
shows changes in the distance between the sampled emotion representation and the
ground truth, and the energy of the top RBM. The ground truth was calculated as the
mean value of 100 sampled representations when the model received the entire set of
multimodal signals from the test dataset. The original emotion label of the example
was anger; however, the extracted emotion representation from the data was close to

energy-based sampling, the emotion representation came closer to the ground truth
and the distribution of the anger state. Moreover the energy of the top RBM was
reduced by reconstructing the unobserved signals from the observed ones.

Additionally, Fig. 5.8 shows the trajectory of estimation in 20 steps through men-
tal simulation. The original emotion label is anger as for the previous example. The
change in distance from the ground truth over the mental simulation is illustrated
in Fig. 5.10. Fig. 5.11 depicts reconstructed facial expressions through the men-

corresponding to Figs. 5.8 and 5.10. In this interaction, the subject expressed a
very strong angry face and a loud voice; therefore, he mostly opened his mouth (Fig.
5.11(a)). Our model reconstructed an expression that looks like a weak anger face

simulation, the facial expression became an angry face with open mouth, and the
estimation became even closer to the ground truth. In the 15th step, the mouth had
opened wider than the reconstruction in seventh step, and the estimated expression
was closer to the ground truth. These results demonstrate that our model can imitate
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expressions of others by updating the emotion estimation of others based on mental
simulation even when some expressions of partners were absent.
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Figure 5.3: Principal component space of the acquired representation of multimodal
signals in the highest hidden layer by self-organized learning in our model. (a) Each
color and shape of the markers indicate the emotional state from interaction data (b)
Each marker in the space corresponds to humans who expressed the data.84



(a) Human expression (b) iCub's expression gener-
ated by the direct mapping sys-
tem

(c) iCub's expression gener-
ated by the proposed model

Figure 5.4: Example of expressions obtained in imitation experiments from the di-
rect mapping system or the proposed model. In (a), the human expressed an angry
emotion in the interaction. Note that the model did not learn the expressions of the
human.
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Figure 5.5: Generated emotional representation of multimodal expressions from the
example data (Fig. 5.4(a)) in the PC1-2 space, which was acquired by Experiment I
(Fig. 5.3(a)). The estimation is highlighted by the red cross.
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Table 5.2: Comparison of estimation rates between baseline and energy based sampling conditions (%). Bold numbers
indicate best results.

Observation Han. Fac. Aud. Han.{ Fac. Han.{ Aud. Fac.{ Aud. Complete
Condition BL ES BL ES BL ES BL ES BL ES BL ES BL ES
Happiness 1.29 8.06 41.9 44.2 6.78 21.6 35.5 31.9 3.23 11.9 48.1 48.7 52.6 50.6
Neutral 48.7 26.4 34.0 28.7 48.0 31.7 38.2 21.6 53.3 39.7 34.4 34.6 33.6 35.4
Anger 3.00 4.25 50.3 19.3 55.6 84.5 20.0 39.7 53.5 78.3 80.0 87.0 83.6 87.3
Sadness 31.3 54.0 42.3 77.7 59.0 53.3 54.1 78.3 59.7 55.1 64.8 71.1 68.9 73.9
Average 21.1 23.2 42.1 42.5 42.3 47.8 37.0 55.0 42.3 46.2 56.8 60.4 59.6 61.8

87



20

30

40

50

60

Han. Fac. Aud. Han. -  Fac. Han. -  Aud. Fac. - Aud. Complete

Baseline

Energy-based sampling

[% ]

p< 0.05

p< 0.01
p< 0.01

p< 0.01
p< 0.05

Figure 5.6: General estimation rate under each condition corresponding to observed data.
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Figure 5.7: Example trajectory of the estimation in the PC1-2 space through mental
simulation under the Aud. condition.
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Figure 5.8: Example trajectory of the estimation in the PC1-2 space through mental
simulation under the Han.-Aud condition.
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Figure 5.9: Example of change in distance between ground truth and the energy of
the top RBM of the proposed model.
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(a) Actual hu-
man expression

(b) 1st step (c) 5th step (d) 7th step (e) 15th step

Figure 5.11: Example of the partner's facial expression and reconstructed facial ex-
pressions by the mental simulation. (a) A screenshot of the actual human expression
in this interaction. (b)-(e) Robot's facial expressions reconstructed by the mental
simulation mechanism from the partner's hand movements and audio expressions at
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5.4 Discussion and Future Work

5.4.1 Acquiring emotional representation of multimodal ex-
pressions

The proposed model was able to extract a set of features from multimodal general
features using the capability of RBMs. This is in contrast to Lim's model [44],
which uses ad hoc features. It is known that the STS | a region of the human
brain that belongs to MNS | processes feature selection and multimodal integration
for emotional categorization [22{ 24]. We did not consider the exact structure and
mechanisms of these areas in our model; however, our model could reproduce similar
functions using the abilities of the RBMs.

On the other hand, the categories of emotion in the PC1-2 space did not dif-
ferentiate from one another, although the space represents a gradual change in the
distribution of emotion. In a psychology study, Russell [61] proposed a circumplex

a positive/ negative axis and an arousal/ sleep axis. This representation of emotion in
low-dimensional space is useful for not only the analysis of human emotion but also
for modeling robots emotional states for human{robot interaction (HRI). The gradual
change in our model relates to the intensity of emotion in the PC1-2 space (see Sec-
tion 5.3.2 and Fig. 5.3(a)). It appears that our model acquired the arousal/ sleep axis
of Russell's model as the distribution in the PCs space in an unsupervised manner.
This result suggests that there is a possibility that communication robots can acquire
the relationship between emotions from only observing human emotional expressions.
We used emotion labels to visualize the distribution of the representations, but the
model did not require labeled input data. On the other hand, the other axis of Rus-
sell's model, the positive/ negative one, did not appear to exist in the PC space. To
obtain this axis, the model has to perceive the emotional valence of expressions (e.g.,
smiling face is a positive value, or a loud sound is a negative value for robots). Our
previous study showed that the proposed model was able to obtain a feature space,
which could isolate emotional states, similar to Russell's emotional model, by con-
sidering emotional valences based on tactile stimuli in interaction. That model used
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emotional valences as low-order emotion labels (i.e., positive, neutral, or negative) in
a semi-supervised manner. Including the information from sensory signals with the
current features in real HRI may aid in acquiring clear emotional representation of
multimodal expressions and it may enhance the performance of emotion estimation
and expression.

5.4.2 Limitations of the mental simulation mechanism in our
model

The results of Experiment 3 indicate that the performance of estimation after re-

emotion from partial expressions. However, the mental simulation mechanism does
not always lead to accurate estimation of others' emotions. The estimation of neutral

for such results is that the neutral data includes considerable variation in expressions
and their distribution spreads over the entire representation space. It suggests that
robots with our model estimate others' emotions more emotionally (i.e., extremely)
by putting themselves in another's shoes.

The energy-based sampling method corresponds to that of selection based on
proximity to self-experience, similar to prejudice. Humans do not employ mental

mental simulations when the belief of estimation changes saliently. From our results,
the enhancement of belief is not directly linked to accurate estimation, and induces
incorrect estimation, suchasprejudice would. However, neither the model nor humans
can determine the absolute emotions of others, so the ground truth does not actually
exist in human{ human or human{ robot interaction.

93





Chapter 6

Active Perception based on Energy
Minimization

Humans use various types of modalities to express their internal states. If a robot
interacting with humans can pay attention to limited signals, it should select the
more informative ones to estimate the partner's states. We propose an active per-
ception method that controls the robot's attention based on an energy minimization
criterion. An energy-based model, which has learned to estimate the latent state
from sensory signals, calculates energy values corresponding to occurrence probabili-
ties of the signals; the lower the energy is, the higher the likelihood of a signal being
correctly interpreted. Our method therefore selects the modality that provides the
lowest expectation energy among available ones to exploit more frequent experiences.
We employ a multimodal deep belief network to represent relationships between hu-
mans' states and expressions. Our method demonstrated better performance for the
modality selection than other methods in a task involving emotion estimation. We
discuss the potential of our method to advance human{robot interaction.

6.1 Background

Object properties such as categories and/ or states are observed and recognized from
various types of modality signals. For instance, visual information tells us what a
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tles. Similarly, humans' internal states (e.g., intentions and emotions) are expressed
through many types of signals, such as facial expressions, gestures, vocalization, etc.,
(Fig. 4.1). During communication, we humans try to estimate others' internal states
by observing their expressions. However, it is not always true that every modality
signal links to the actual state of the target. Some signals might be noisy or am-
biguous. If a robot manipulating objects and/ or interacting with humans has limited
resources to access multimodal signals (e.g., time for estimation and cost for percep-
tion), it should select the more informative ones among the available ones to estimate
the target states. For instance, if the robot can obtain only a single modality signal

information about the target.

tion [110,111]. Those studies assumed that one action allows the system to perceive
only a single sensory signal (i.e., one to one mapping) and the system cannot execute
more than one action at the same time. Therefore, the system should select actions
one by one. For instance, Sakaguchi [110] proposed a haptic sensing system that
estimated object categories based on sensory integration and the active perception
method using tactile sensors. His active perception method used mutual information
between the object category and the i-th sensory signal to select the next perception
from the set of tactile sensors (e.g., pressure-sensor, thermo-sensor, and vibration-
sensor). The mutual information tells the system by how much the entropy of the
object category probabilities is reduced when the system observes the object using
the i-th sensor. His system selects the sensor that indicates the maximum mutual
information. The proposed method demonstrated better performance than a random
selection strategy; the recognition accuracy was improved and the number of obser-
vation times was reduced by the method. Taniguchi et al. [111] focused on active
perception in an object recognition task based on multimodal sensory signals. They
represented the relationship between sensory perceptions of the robot and object cat-
egories by using a Bayesian probabilistic model called the multimodal hierarchical
Dirichlet process and proposed an active perception method from the viewpoint of
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information theory. Their method selects the next perception modality that max-
imizes the information gain between the present estimation and the expectation of
the estimation for unobserved signals. Their experimental results showed that the
proposed method achieved faster and more accurate recognition of objects.

Our research aim is to apply an active perception method to the estimation of
others' internal states in multimodal human{ robot interactions, as shown in Fig. 4.1.
This section proposes an active perception method based on an energy minimization
strategy using an energy-based model. The energy values of the model correspond
to the probabilities of the data. The proposed method selects the "attention" to the
modality that minimizes the expectation of the energy values among all selectable
modalities. The reason why the proposed method uses the energy minimization crite-
rion is that a lower energy indicates a higher likelihood of the data in the energy-based
model. We employed a multimodal deep belief network (MDBN), which is a type of
energy-based model and used in the previous chapter, to represent the relationship
between humans' internal states and their expressions by abstracting and integrat-
ing multimodal signals. Our model was applied to a task to estimate others' emo-

dataset [2], which is a multimodal human{ human interaction dataset, for training
the human{ robot interaction model (i.e., MDBN) and evaluating the proposed active
perception method. Experimental results showed that the proposed method achieved
higher estimation accuracy than other methods. Finally, we discuss the relationship
between the energy minimization method and the information gain maximization
method, which has been used in other studies.

6.2 Energy-based Model for Modeling Multimodal
Interactions

This section introduces the energy-based model, which is a RBM [58, 60] and the
MDBN [83], to represent the relationship between humans' internal states and their
multimodal expressions. Figs 3.3 shows the structure of the RBM, which is a key
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in 5.1. The MDBN consists of two parts: stacked RBMs for each modality in the lower
layers and an RBM at the top layer that associates the lower RBMs' outputs. First,
we provide details regarding the MDBN, and then we indicate the characteristics of
the energy-based model and the energy function for the proposed active perception
method.

6.2.1 Multimodal deep belief network

We consider an association of multimodal signals to acquire the relationships between
humans' internal states and their own expressions. We assume that the interaction
partners use a set of N modalities (i.e., M = m1; ; mn; ; mN ; M = N) such
as facial expressions, vocalization, gestures, etc. during interactions to express their

extract sensory features from input signals of each modality (i.e., from m1 to mN):
the lower RBM being Gaussian{ Bernoulli and the upper being Bernoulli{Bernoulli.
Then, the top layers of all stacked RBMs are connected to an additional Bernoulli{
Bernoulli RBM (see Figure 5.1).

Let h2
n 0; 1 Jn denotes the second hidden layer (i.e., the top layer of the stacked

RBM) activations of the n-th modality (mn) network. The activation probability of
the k-th hidden unit hk 0; 1 of the association RBM is given by replacing v of
the Bernoulli{ Bernoulli RBM with h2 = h2

1; ; h2
N . We acquire the probability

by modifying Eq. (3.1), resulting in Eq.(6.1),

p(hk = 1 h2 = h2
1; ; h2

N ) =

sig
J1

j
h2

1;j wj k + +
JN

j
h2

N;j wj k + ck ;
(6.1)

where wj k is the connection weight between the k-th unit of the highest layer and the
j -th unit of each top layer of the sensory RBMs, and ck is a bias parameter.
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6.2.2 Energy Function for the proposed method

The data probability of the energy-based model such as the RBM is represented by
the Boltzmann distribution, which is given as

p(X ; ) = 1
( ) exp E(X ; ) ; (6.2)

where X is data, and ( ) is a partition function. E(X ; ) is the energy function,
which assigns the energy value for corresponding data X based on the parameter
. Eq. (6.2) states that the occurrence probability of the data indicating the lower

energy is higher than the data indicating the higher energy. The energy-based model
modulates the parameter to minimize the energy values of training data, so that the
energy of experienced data (i.e., training data) becomes small, and their probabilities
become high to relate the above characteristic.

E(X = h2
1; ; h2

N ; h ; ) =
J1

j
bj h2

1;j

J1

j k
h2

1;j hkwj k

JN

j
bj h2

N;j

JN

j k
h2

N;j hkwj k

k
ckhk:

(6.3)

We use this energy function value as the criterion for the proposed active perception
method.

6.3 Active Perception based on Energy Minimiza-
tion

In this section, we describe our active perception method based on energy minimiza-
tion on the MDBN. The important point of our proposed method is that the model
selects the next modality that minimizes the expectation energy to the greatest ex-
tent in the entire unobserved modality. As described above, the energy value of the
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energy-based model represents the frequency of the corresponding data. In other
words, the modality signal, which leads to the lowest energy in the set of modality,

modality signal for estimation of another's state, the proposed model performs active
perception based on the above characteristics.

The interaction partners express their own states by using a modality set M. Let
Mr M denote the subset of observed modality signals by the robot, the active

signals M Mr.

of hidden activations of the association RBM. The blue manifold and color density
denote the distribution of the network energy given by Eq. (6.3). The darker color
indicates the lower energy; namely, each darker color distribution represents clusters
of the training data. The small circles represent variations of the hidden activation h
as the estimation of the other's state. The white nodes are hidden activations from
the observed modality signals Mr. The gray nodes are expected hidden activations
from the observed signals and the reconstructed modality signals m0

n, and the red
node is a truth activation from all modality signals. We introduce the outline of the

uses four modality expressions (i.e., M = m1; m2; m3; m4 ; M = 4), and the model
executes the active perception T times (T 5 N 1). The active perception method
performs the following steps.

Step 1
The model perceives the minit modality signal as the initial perception and adds
the signal to the set of observed modality signals Mr (here, minit = m1) and
estimates the other's state h[Mr] from the observed modality signals (e.g., h[m1]
in Fig. 6.1(a)).

Step 2
The model reconstructs unobserved modality signals as imaginary observations
m0

n (i.e., here m0
2, m0

3, and m0
4) from the hidden activation h[Mr]. Then the

model estimates the other's state again by using the observed modality signal
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and each imaginary observation one by one (i.e., each gray node connected with
h[m1 + m0

2], h[m1 + m0
3], and h[m1 + m0

4]) and calculates
the energy values En.

Step 3
The model selects the n-th modality, which minimizes the network energy of
hidden activation h[m1 + m0

n] most in all imaginary observations, as the next
perception (e.g., m4 is selected), and perceives the actual n-th modality signal.
Then the model estimates the other's state h[Mr] again (here h[m1 + m4] in Fig.
6.1(c)).

Step 4
Back to Step 2 until T iterations are reached.

Algorithm 1 provides the details of the proposed active perception method. Here, vn

and v0
n are n-th observed signals and reconstructed imaginary signals, h2

n , h, h2
n

0
,

and h0 are hidden activations of the top layer of the n-th modality network, hidden
activations of the association RBM, and their imaginary activations, respectively. T
is the maximum number of executions of the active perception. We introduce S as
the number of samples of the expectation energy used to calculate mean values.
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(a) Step 1

(b) Step 2

(c) Step 3

Figure 6.1: Outline of the active perception method based on the energy minimization
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Algorithm 1 Active perception based on energy minimization on MDBN
Require: T 5 N 1

select initial modality signals minit, and adding to set Mr

for t = 1 to T do
for s = 1 to S do

for n = 0 to N do
if mn Mr then

h2
n p(h2

n vn)
else

h2
n = 0

end if
end for
h p(h h2

1; ; h2
n ; ; h2

N )
for n = 1 to N do

if mn = Mr then
h2

n
0

p(h2
n

0
h)

vn
0 p(vn

0 h2
n

0
)

h2
n

0
p(h2

n vn
0)

h0 p(h0 h2
1; ; h2

n
0
; ; h2

N )
En;s E(h2

1; ; h2
n

0
; ; h2

N ; h0; )
end if

end for
end for
En = 1

S
S
s En;s

n = argminEn

Mr Mr mn

end for

for n = 1 to N do
if mn Mr then

h2
n p(h2

n vn)
else

h2
n = 0

end if
end for
h p(h h2

1; ; h2
n ; ; h2

N )
return h
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6.4 Experimental settings
Thissection introduces the experimental settings for evaluation of the proposed model
and method in human{ robot interactions. We focus on emotional states as mod-
eling targets of humans' internal states in our experiments. First, we discuss the
multimodal interaction dataset and extracted features from the dataset used in our
experiments. Then we provide detailed information on our proposed model.

6.4.1 Multimodal Interaction Dataset: IEMOCAP

which is a multimodal human{ human interaction dataset, for a training the human{
robot interaction model (i.e., MDBN) and for evaluation of the proposed active per-
ception method in our experiments. Fig. 6.2 shows an example of interaction data of
the IEMOCAP dataset. One actor, who has the attached motion capture markers,
(left side) interacts with another actor. The IEMOCAP database contains audiovisual
data from ten actors who performed scripted and improvised emotional scenarios in
face-to-face interactions. The facial expressions and hand movements were recorded
with a motion-capture system. The subjects mounted 53 markers on their faces and
six markers on their hands. In addition, their conversations were recorded using video
cameras.

All the recorded data were evaluated using categorical labels. Three evaluators
annotated an emotion label for each utterance of the interactions. We selected the
majority voted emotional category as the ground truth of each utterance if the an-
notations did not agree among the evaluators. For instance, when two evaluators
voted the sad category whereas one evaluator voted the neutral for a focused utter-
ance, we set the emotional category as sadness for the dataset. If some categories
had the same number of votes (one vote each), we set the category of the data as
an "ambiguous state". The set of emotional labels contains happiness, excitement,
surprise, neutral, frustration, anger, sadness, fear, disgust, and ambiguous state. We
selected eight actors' data as the training dataset and two actors' data as the test
dataset. The total number of training dataset was 3,993 (happiness: 247, excitement:
408, surprise: 26, neutral: 467, frustration: 792, anger: 525, sadness: 513, fear: 18,
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Figure 6.2: Example interaction data of IEMOCAP dataset

disgust: 1, ambiguous state: 996) and that of the test dataset was 992 (happiness:
50, excitement: 141, surprise: 5, neutral: 139, frustration: 206, anger: 96, sadness:
140, fear: 2, disgust: 0, ambiguous state: 213). In the experiments, our model was
trained with the training data in an unsupervised manner (i.e., the model did not
use the emotional labels for learning). We use the emotional labels to represent our
experimental result only.

6.4.2 Feature Extraction from Audiovisual Signals

We considered three modality signals (i.e., M = 3): facial expressions, hand move-
ments, and vocalization, and calculated the basic audio{ visual features from the
IEMOCAP database for the experiments in two steps. First, we extracted modality
dependent features. The features of facial expressions included nine patterns of dis-

is represented in two-dimensional space (i.e., x and z components of the distance),
which represents the surface of a full face. The hand movement features are composed

locity is expressed in three dimensions. The audio features include pitch, intensity,

Second, we calculated statistical features from all modality dependent features
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for each utterance. The statistics included the mean, variance, range, maximum,
and minimum of modality dependent features. All the features were normalized by
Z-score. Ultimately, the number of facial expression features (or dimensions), hand
movement features, and audio features obtained were 180, 120, and 150, respectively.

6.4.3 Network Structure

hidden layers) and one association RBM connected to the hidden layers of all the

to 180 for the facial expression network, 120 for the hand movement network, and

units for all networks were both set to 100. The number of visible and hidden nodes
of the association RBM were 300 and 50, respectively.

6.5 Results

We demonstrate our experimental results in this section. The proposed model was
trained by using the training dataset discussed in Section 6.4.1. Each modality-

to the association RBM, which was then trained. Note that we did not use any labeled
data for the model training (i.e., unsupervised learning).

After training, we selected one modality signal of test data as the initial modality
signal minit for the model to evaluate our proposed method. All types of modalities
were selected as the initial input and examined in the experiments. We set T = 1
and S = 100 in the experiments. First, we demonstrate the experimental results of
our active perception method and the method of Taniguchi et al. [111] in emotional
interactions, and then provide a detailed analysis of the results based on the type of
initial modality.
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6.5.1 Evaluation of the Proposed Active Perception Method

In the experiment, our model executed the active perception based on Algorithm
1. All modality signals of the test dataset were used as initial modality signals
minit (i.e., 2,976 data). We evaluate how close the hidden activation after the active
perception h[minit + mn] comes to the activation generated by using a complete set
of modality signals h[M]. Kulback-Leibler (KL) divergence was employed to evaluate
the closeness.

KL(p(h[minit + mn]); p(h[M])) =

p(h[minit + mn]) log p(h[minit + mn])
p(h[M]) ;

(6.4)

In Eq. (6.4), p(h[minit + mn]) and p(h[M]) are the probability of hidden activation of
h[minit + mn] and h[M], respectively. The smaller the KL divergence is, the higher
the performance result for the evaluation.

Fig. 6.3 shows the experimental results. Here, "EM.max", "EM.min", "Random",

indicates the result before the active perception (as a baseline). Under the EM.max
strategy, the model selected n = argminE[En] according to Algorithm 1 (i.e., the pro-
posed method). Under the EM.min strategy, the model set n = argmaxE[En]. Under
the Random strategy, the model selected mn from M Mr at random. IG.max indi-
cates the result of the active perception based on the method proposed by Taniguchi
et al. [111].

The KL divergence of the baseline was largest in all activations, namely, the es-
timated states were not accurate from only the single modality. In contrast, the
EM.max, the EM.min, the Random, and the IG.max strategies exhibited less diver-
gence than the initial activations. This result shows that the second modality signals
can help to estimate another's internal state. The divergence of the EM.max strategy
is the smallest for all strategies. A one-way repeated-measures analysis of variance

F(2; 8925) = 826:32; p < 0:001. The experimental results demonstrate the superiority
of the proposed active perception method. We will present the detailed analysis of
this result for all strategies in Sec. 6.5.2 and discuss the relationship between our
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proposed method and the method of Taniguchi et al. [111].
We performed a PCA for the 50-dimensional output of the network to visualize

PCs space of the hidden activations of the association RBM. Each marker indicates
the hidden activation from the training data, and the color and shape of the markers
correspond to emotional categories of the dataset. The background color presents the
energy values of corresponding activations. The region where the data was crowded
(i.e., PC1 is greater than zero, and PC2 is between minus one and one) indicates a low
energy distribution. The energy distribution is not smooth in this PC space because
many dimensional features are compressed by the analysis method; however, the
energy distribution in the original space may be smooth. We illustrate two examples
of our experimental results. Fig. 6.5 illustrates the 3D space, which is composed of the
two-dimensional PC space in Fig. 6.4, and a vertical axis indicating the energy value

shapes of the markers indicate the hidden activations of the association RBM under
each strategy, and color indicates each group of the experimental results. Both results
demonstrate that the proposed method (red arrows in Fig. 6.5) selects the modality
that minimizes the actual network energy to a greater extent than another modality.
The hidden activations obtained by the proposed method are closer together than
those obtained by the EM.min strategy in the PC space.

6.5.2 Detailed Analysis of Active Perception by Types of Ini-
tial Modality

We analyzed the experimental results based on the types of initial modality signals.
Fig. 6.6 shows the KL divergence from ground truth activations under each initial
modality condition. The graph labels: Hand only, Face only, and Audio only represent
the result when the model selects only the corresponding modality. Namely, under the
Hand only strategy, the model always selected hand signals as the second modality
signals regardless of the change in network energy.

The EM.max strategy (i.e., proposed method) under all initial conditions per-
formed more accurate estimations than the EM.min strategy. These results suggest
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that our active perception method works well regardless of initial modality signals.
However, the KL divergence of the EM.max strategy under the Audio initial condition
is larger than for other conditions, and the Hand only strategy shows higher perfor-
mance than the EM.max strategy. By analyzing the results based on the modality
types, it was revealed that the KL divergence between initial hidden activation and
the ground truth was not even, and the Hand initial condition represented the smallest

Fig. 6.7 shows the selection rates of the modality in the EM.max strategy under
each condition, and each number indicates the rate of the most selected modality.
Each experimental result tended to select the modality whose KL divergence is lower
than other modalities in the initial setting as the next attention modality. Especially,
the Face initial condition always selected the hand modality signals (i.e., same as
the Hand only strategy). The experimental results suggest that the hand modality
signals contain more information for the estimation of others' internal states than
other modalities in our experimental setting and that the proposed method makes
a good selection of highly informative signals (i.e., the signal has large information
gain) for active perception. The IG.max strategy [111] similarly selected highly in-
formative signals; however, under the Audio initial condition, the method has lower

based on the characteristics of the task.
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6.6 Discussion and Future Work

in an unsupervised manner, so there is no guarantee that the hidden activations
represent emotional categories clearly. Fig. 6.4 shows hidden activations of all trained
data labeled with emotional categories. There are no clear emotional clusters in
the space; however, the low-dimensional feature, which corresponds to the intensity
or activity of the multimodal expressions, is represented from the lower left corner
to the upper right corner based on the emotional categories. In the audiovisual
features, which were extracted from the IEMOCAP dataset, the hand signal's features
represent the highest correspondence to emotion expressions among all modalities
because the signals vary extremely in the interactions, as the features include the
velocity and the acceleration characteristics of the hand signals. As a result, the
hidden activations under the Hand initial condition showed the lowest KL divergence
in all modality conditions in the experiments, as depicted in Fig. 6.6.

The previous studies for estimating object categories [110,111] used mutual infor-
mation between the current estimation and unobserved modality signals as a criterion
for active perception. Their methods select the next modality whose expectation of
the mutual information is highest among all modalities. This selection method corre-
sponds to the minimization of the uncertainty of the category estimation because the
mutual information represents the amount of information between two variables. In
contrast, our active perception method uses the energy value of the network model
and selects the next modality whose expectation energy is lowest among all modal-
ities. This corresponds to the maximization of the amount of information between
modality signals and hidden activations for active perception because lower energy
indicates a higher likelihood of the data. We suppose that there are complemen-
tary relationships between our method and previous methods [110, 111]. Basically,
our proposed method and the previous method (i.e., the EM.max and the IG.max
strategies) showed similarly good performance under the Face initial condition and
the Hand initial condition. However, the KL divergence under the Audio initial con-
dition was worse than our result. To assess this supposition, we will compare our
active perception method with the mutual information maximization criterion by
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mathematically formulating them.
The proposed active perception method may be able to use other energy-based

models such as RBMs containing softmax nodes [112], the reinforcement learning
model [113], or the energy-based generative model [114]. We will attempt to apply
our method to these models to evaluate more complex scenarios, for example, the
human emotion changes over time and/ or by the robot's actions during interactions.

For future issues, we will formulate the reason(s) why our method showed better

as mutual information maximization proposed in [110, 111]. Furthermore, we will
apply the proposed method in actual human{ robot interactions.
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Chapter 7

Conclusion

The work presented in this dissertation addressed how to reproduce emotion devel-
opment and four essential capabilities for emotional interaction. For these aims, we

ated the models in our intended interaction situations.
We feel emotions in everyday life. Humans recognize their own physical and men-

tal conditions as emotions and express them in communication with others. Although
how humans acquire various types of emotions is still a topic of debate. Several ob-
servational and analytical studies in psychology, neuroscience, and cognitive science
have given evidence that human emotion and its functions are acquired in the de-
velopmental process during infancy. However, the developmental mechanisms and
factors remain unclear. On the other hand, emotion and its functions have attracted
not only psychological studies but also engineering studies. To elucidate those mech-
anisms and realize the functions of emotion in communication play essential roles
in building empathic robots. Actually, several robots focused on the mechanisms of
human emotion have been developed for interaction with humans. Regarding these

roscience, cognitive science, and robotics.
This chapter summarizes our approaches for modeling the development of emo-

tion perception and essential capabilities for emotional interaction and describes the
knowledge acquired through the experiments. Subsequently, research issues that
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should be solved in the future toward a deeper understanding of emotion and re-
alizing emotional communication between humans and robots are discussed.

7.1 Summary of Our Approaches

of predictive coding by employing a RBM as a key component. The proposed model
has been used for the study of emotion development in infant{ caregiver interactions

in emotion human{ robot interaction in Chapters 5 and 6. The following sections

7.1.1 Modeling Emotion Development by Predictive Coding
with Findings of Neuroscience and Developmental Psy-
chology

In Chapter 4, we have presented the model of development for emotion perception
based on the idea of predictive coding with our two hypotheses from neuroscience and

The proposed model was exposed to multimodal emotional expressionsof humanswho
imitate caregivers through the virtual infant{ caregiver interaction. We evaluated how
tactile dominance and perceptual improvement contribute to the development of emo-
tion perception, and their roles were examined by comparing among four conditions
(with and without each mechanism in the hypotheses).

From the experimental results, it was suggested that tactile dominance and per-
ceptual development facilitated the development of emotion perception only when
both mechanisms were integrated into the model. We conclude that the ability of the
human skin to perceive the emotional valence of interaction stimuli and improvement
in perceptual acuity play essential roles in the development of emotion perception.

elucidate on the neural and social mechanisms of the development of emotion.
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7.1.2 Reproducing Essential Ability in emotional interaction
by Predictive Coding

signals, estimate others' emotions, and execute active perception in emotional inter-
action between humans and robots. The model was constructed of RBMs with some

and perceptual improvement were not considered.

emotion estimation. Our model was expected to rectify two issues noted in previous

the emotional representation of multimodal expressions for emotion generation and
estimation. The second is the update of estimation belief of the partner's emotion
from ambiguous signals via mental simulation. In Chapter 6, we focused on the last
ability in emotional interaction, active perception. The key idea of execution of active
perception involvesminimizing thenetworkenergy of theproposedmodel based on the
idea of the free energy principle [8,9], because energy values represent the likelihood
of the corresponding data. So the criterion is to select the most plausible signals
based on the current estimation. Those abilities were evaluated through assumed
face-to-face human{robot emotional interaction using the IEMOCAP dataset.

The model can obtain low-dimensional emotional representation of multimodal
signals through interaction with humans and generate its own multimodal ex-
pressions based on the perceived emotional representation.

The model can update the estimated belief in the interaction partner's emo-
tional state fromhis/ her ambiguous expressions based on themental simulation
mechanism.

The model can execute active perception to estimate a partner's emotion by
selecting the next attention for his/ her multimodal expressions based on the
mental simulation using energy minimization.
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coding by utilizing an RBM network can represent the relationship between humans'
and robots' multimodal signals and emotional statesas latent signals. The second and
the third results show that the prediction of unobserved signals from observed ones
in the model can be used for reproducing essential abilities in emotional interaction
with humans. We concluded that the characteristics of themodel based on the idea of
predictive coding enable the robot to improve emotional interactions in human{ robot
communication.

7.2 Toward Deeper Understanding

This section discusses extensions of our approaches for better understanding human

7.2.1 Other Generative Models for Time and Spatial Exten-
sion

In this dissertation, we employed theRBMasa key mechanism that captures the idea

applying the free energy principle proposed Friston [8,9] that has attracted attention
in neuroscience, because the learning algorithm of the RBM is related to free energy
minimization. On the other hand, the RBM, especially the Bernoulli{Bernoulli RBM
described in Chapter 3, can handle limited information that represents only binary
states. Furthermore, the RBM cannot operate time-series information.

For example, the hiddenMarkov model [115] is a popularmodel used with time-series
data, and a Gaussian process hidden semi-Markov model [116] has been proposed as
anextensionof thehiddenMarkovmodel to represent high-dimensional complex time-
series data. Multimodal latent Dirichlet allocation [117] and the multimodal hidden
Markovmodel [118] canhandlemultiple signals for representing concepts fromvarious
modality signals such as object and motion categories. Moreover, some energy-based
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generative models, which can represent the uncertainty of information (similar to the
RBM), have also been proposed [114,119]. It is important to adopt the abovemodels

real environment and to simulate themore complex information processing conducted
in the human brain.

7.2.2 Considering Interoceptive and Embodiment Signals

We canmeasure the emotional states of humans as body and internal organ reactions
such asheart rate, sweating, and changes in hormones as these reactions are known to
be related to emotional perception inhumans. Seth [14{16] explains emotionbased on
the free energy principle. His idea is that emotion is acquired as a result of prediction
for exteroceptive, proprioception, and interoceptive signals (i.e., embodiment signals).

state, emotion.
On the other hand, many engineering approaches to construct emotion models

have neglected considering the embodiment signals. Few studies have employed a

systems as embodiment signals for modeling emotion. Internal organs are not neces-

with external stimuli. We believe that such dynamics can be an essential key idea

etc. Additionally, considering similar embodiment to humans is also important to
truly understand emotion and emotional communication. As mentioned in the above
section, adopting generativemodels that canprocess spatiotemporal informationmay
enable us to challenge these issues.

The word "emotion" contains "motion". It is important to consider the motions and
actions of robots in emotion studies. In recent years, emotional studies in cognitive
science have considered that emotion is the evaluationmechanism of stimuli based on
one's own actions. Thismechanismallows humans to compare experiences of self and

121



others in a commondimension via emotion. It plays important roles in estimating and
sharing emotionswith others and leads to empathy. InChapter 6, themodel executed
active perception as the robot's action; however, it is necessary to take actions more

focusing on physical communication with humans and on the issues stated so far.
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