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Abstract

This dissertation demonstrates the potential benefits that dynamic line rating (DLR) of

overhead transmission lines can have on the utilization of intermittent renewable energy

(IRE) sources i.e. solar photovoltaic (PV) and wind power. In contrast to the traditional

static line rating (SLR) which is determined for worst-case conductor cooling conditions,

the DLR of an overhead conductor is calculated in real-time using short-term forecasts of

ambient weather conditions thereby almost always resulting in increased transmission line

loadability. DLR therefore allows for more flexibility in the operation of the transmission

system thereby reducing congestion that could impact power flow and optimal generation

schedules. Increased power generation by IRE sources in power systems increases uncer-

tainty in transmission line power flows and consequently increases the risk of violating

conductor thermal limits. It is demonstrated in this thesis that a DLR approach on lines

operated near their thermal limits could allow larger current/power fluctuations thereby

impacting on the levels of utilizable IRE generation.

This thesis covers several aspects of power system operation with IRE sources and

dynamic line ratings. First, a probabilistic model for solar PV power is presented. The

model simulates high-temporal resolution (1-minute) fluctuations in solar irradiation as

a Markov process. The empirically derived model can be used for probabilistic studies

and assessments of various risks in the power system. It is used in this thesis to gener-

ate scenarios of solar power fluctuations for transmission line overload risk assessment.

Secondly, a simple conductor temperature model that allows for fast estimation of the

thermal status of a transmission line is presented. The model reduces the computational

effort and computation time that would be required to include conductor temperature

calculations in the determination of optimal system operation. The model used in this

thesis explicitly incorporates conductor thermal dynamics in the solution of the optimal

power flow (OPF) problem in a system with significant IRE generation. Finally, a new

formulation of the optimal power flow problem is presented. The proposed formulation

uses explicit conductor temperature limits instead of the traditional maximum current

method and adds an uncertainty cost component to the objective function which offers a

means of handling increased uncertainty in power generation due to IRE sources. Simu-

lation results demonstrate the effect of the direct conductor temperature approach on the

obtained optimal power generation schedules.

In general, this thesis presents strong arguments for power system operators to im-

plement DLR of overhead transmission lines as a method of addressing the challenge of

increased line flow fluctuations due to increased integration of IRE sources.
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CHAPTER 1

Introduction

1.1 Background and motivation

The traditional sources of electricity generation i.e. hydro, nuclear, and fossil fuel (coal,

oil and natural gas), etc., are to a large extent, controllable i.e. the output of the gen-

erators driven by these sources can be regulated by the plant operator. Such electricity

generators are therefore referred to as being dispatchable. Intermittent renewable energy

(IRE) sources i.e. solar photovoltaic (PV) and wind power are however non-dispatchable

because, unlike the conventional sources of electricity generation, the input fuel i.e. solar

radiation and blowing wind cannot be stored [1, 2]. Intermittency means that the outputs

of these sources are variable and therefore uncertain. The amount of electricity that will

be generated by a solar PV or wind based power plant cannot be guaranteed with a 100%

accuracy. Even though forecasting models have improved over the years, the levels of

uncertainty with IRE sources is still significantly higher than typical in traditional large

power systems [3, 4]. In recent years, storage systems are becoming more economically vi-

able e.g. large scale batteries can provide higher IRE output control, but these options are

still relatively expensive [5]. The variability and uncertainty of IRE generation is thus a

relatively new challenge to power system operators who have to ensure a constant balance

between electric power demand and supply to ensure stability of the system [6, 7].

Recent literature on large scale integration of IRE sources in power networks provides

various options to address the challenge of supply-demand balance due to the variability

and uncertainty of IRE sources [8, 9, 10, 11, 12, 13]. The proposed options can broadly be

divided into two categories. The first category targets stricter operating reserve settings [8,

9, 10] i.e. either increasing the capacity of fast responding generating units in the system to

ensure that they can fully respond to the fluctuations in IRE output; or curtailing the IRE

outputs at certain levels determined by the available fast acting spinning reserves in the

system. Such operational rules are usually deterministically set from a conservative point-

of-view hence they tend to lead to relatively expensive operation. The second approach

is targeted at changes to system operational practices i.e. use less conservative rules in

operation [11, 12, 13]. This option has the advantage of being less expensive in general

but, on the flip side, many system operators are not comfortable with the higher levels of

risk in system operation.
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There are several options available to system operators in terms of changes to sys-

tem operation including increased interconnection with neighboring areas, demand side

management, and large-scale storage [14]. This dissertation focuses on a more dynamic

utilization of the transmission network in what is generally referred to in the industry as

dynamic line rating (DLR) [15, 16, 17]. The rating of overhead transmission lines can have

a significant impact on the power flows in the network and consequently on the utilizabil-

ity of IRE sources within the network. The traditional static line rating (SLR) is usually

a conservative1 value that could lead to network congestion and may necessitate IRE

curtailment [18, 19]. On the other hand, the less conservative DLR has several benefits

including leveling electricity prices, reduction of operational costs, and better contingency

management [20, 21, 22, 23]. In this thesis, several aspects of DLRs are studied with the

main focus being the effect on utilizability of IRE sources.

Given the background presented in the preceding paragraphs, the research detailed in

this thesis is motivated by the realization that DLR of overhead transmission lines has the

potential to increase the amount of utilizable IRE generation in power systems. Several

topics are addressed including modeling of physical phenomenon, determination of simple

safety factors for DLRs and finally the formulation and solution of a new optimal power

flow model with DLR and IRE generation.

1.2 Objective

The main objective of this research was:

to develop a methodology for directly incorporating dynamic line rating of overhead trans-

mission lines in optimal power system operation tools with the specific target of handling

uncertainty due to intermittent renewable energy sources thereby increasing their utiliz-

able capacity.

1.3 Thesis contributions

The main outputs of the research published as journal and conference papers (see appendix

A) are detailed as:

1. A probabilistic model for high temporal resolution solar radiation fluctuations is

developed [24]. The model uses Markov transition matrices to simulate the stochastic

transitions in 1-minute global solar irradiation data. The use of a Markov model

correctly captures the statistical characteristics of high temporal resolution solar

irradiation data as illustrated in the model validation section. The proposed model

is used to synthetically generate scenarios of solar PV power (extrapolated2 from

1A “conservative approach” to line rating refers to a situation in which the system operator targets as
much as possible to ensure that the probability of line overload is practically zero.

2Starting from the generated solar irradiation data (in W/m2), a multiplication factor that accounts
for the area of solar panels (in m2) and the system conversion efficiency (a dimensionless constant) is used
to get solar power in Watts.
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global solar radiation) in probabilistic studies with solar PV generation including

the assessment of fluctuations in conductor current and, by extension, conductor

temperature.

2. A simple mathematical model for estimating overhead conductor temperature under

varying weather conditions is proposed [25]. The proposed model is used to quickly

approximate the conductor temperature in both steady-state and transient-state con-

ditions for given conductor current and ambient weather conditions. Mathematical

and experimental validations of the proposed model are also detailed. The simplicity

of the proposed model reduces the computational effort when integrating conductor

thermal dynamics in the determination of optimal system operation i.e. optimal

schedules for both thermal and IRE generation.

3. A new formulation of the optimal power flow (OPF) problem incorporating the

thermal characteristics of overhead conductors for a system with significant IRE-

source generation is proposed [26]. The conductor thermal characteristics are calcu-

lated from monitored weather parameters using the simplified conductor temperature

model developed in [25] and described in point 2 above. The application of the pro-

posed formulation is demonstrated using simulations on a standard test system with

IRE generation. The simulations based on the proposed OPF formulation demon-

strates the potential of dynamic line ratings in accommodating more uncertainty in

the system due to IRE generation which translates to increased use of IRE sources.

1.4 Thesis outline

Chapter 2 gives an introductory description of the state of the art in power system op-

eration with regard to intermittent renewable energy (IRE), transmission line ratings,

and optimal scheduling. Recent trends in electric power generation by IRE sources and

the operational challenges due to their variability and uncertainty are described. Also,

a simple explanation in the difference between static line rating and dynamic line rat-

ing is given. Finally, the meaning of optimal system operation, specifically the optimal

power flow problem is described with an explanation of the differences introduced by IRE

generation and the application of dynamic line ratings.

Chapter 3 details a probabilistic model for high temporal resolution solar irradiation

data that is used for synthetic generation of fluctuating solar PV scenarios in probabilistic

assessment of various aspects of the power system. The probabilistic model uses a Markov

formulation and details of the formation of the transition matrices, model order selection,

and a methodology for synthetic generation of data from the model are given. The pro-

posed model is validated by comparing the model generated data with actual measured

solar irradiation data. The work presented here is a fundamental study on the probabilistic

modeling of solar irradiation using data measured at a single location. The methodology

can be extended to data from multiple locations so as to simulate the interaction of several

PV generators in a power system.

Chapter 4 presents a simple overhead conductor temperature evaluation model for use

Bonface Ngoko 3 Osaka University - July 2018



CHAPTER 1. INTRODUCTION

in dynamic line rating systems. First, the original electro-thermal model developed by

CIGRE is described followed by details of the simplifications of its various terms from

which the simplified model is derived. Numerical and experimental validations of the

simple model for both steady-state and transient-state conditions are also described. A

couple of application areas of the model are also described.

Chapter 5 discusses the general options available to system operators with respect to

the rating of overhead transmission lines. After a definition of the two types of ratings

currently in use i.e. the SLR and DLR, a new transient rating – referred to as the

dynamic electro-thermal rating (DETR) – is presented. The advantage that the DETR

in accommodating fluctuations due to IRE generation is illustrated. Also included in the

chapter is a methodology for determining safety factors to be applied to DLRs to ensure

a safe operation of overhead transmission lines. Using actual weather data, the nature of

the safety factors required to ensure various levels of line overload risks are illustrated.

Chapter 6 presents a new formulation of the optimal power flow (OPF) problem incor-

porating conductor thermal characteristics (i.e. DLR) while simultaneously considering

uncertainty due to IRE generation. The nature of costs due to IRE uncertainty, which

are included in the objective function, is detailed. Then, the optimization problem, which

includes a maximum conductor temperature constraint – replacing the traditional maxi-

mum conductor current constraint, is described. Numerical simulations carried out on a

standard test system illustrates the application of the proposed formulation and the effects

of various parameters on the obtained optimal solutions are discussed.

Chapter 7 summarizes the main conclusions from the work presented in this disserta-

tion.
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CHAPTER 2

Power system operation with
intermittent renewable energy

2.1 Introduction

This chapter describes the state of the art regarding the main themes of this dissertation

i.e. power generation by intermittent renewable energy (IRE) sources; transmission sys-

tem operation in terms of setting the capacity of transmission lines; and optimal system

operation in terms of minimizing operational costs. The relationship between IRE gener-

ation and transmission line ratings is established by the fact that, the maximum capacity

of a transmission line can dictate the usability of a given IRE source especially when the

line directly carries power from the IRE source. Therefore, a more flexible approach to

the utilization of the transmission lines could lead to increased utilization of IRE sources

within the power network. This chapter outlines recent trends in power generation by IRE

sources, approaches used by system operators in setting transmission line capacity, and

optimal system operation through the solution of the optimal power flow problem.

2.2 Intermittent renewable energy sources

2.2.1 Trends in power generation by IRE sources

Worldwide, the share of electric power supplied by intermittent renewable energy (IRE)

sources in power grids is steadily increasing. The REN21 2017 global status report states

that the world now adds more renewable power capacity annually than it adds (net) capacity

from all fossil fuels combined [1]. In 2016, renewables accounted for nearly 62% of net

additions to global power generating capacity and represented far higher shares of capacity

added in several countries around the world [1]. Figs. 2.1 and 2.2 show the trends in global

capacity and new additions in wind power and solar PV respectively over the past decade

[1]. The main drivers for the steadily increasing trend depicted in Figs. 2.1 and 2.2 are

mitigation of climate change, reduction of air pollution, concerns over energy security, and

improving cost-competitiveness of IRE technologies [1].

A look at the situation in Japan, a country that is making large strides towards ma-

jority power generation from renewables, the installed capacity of renewable energy (ex-
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Fig. 2.1: Wind power global capacity and annual additions, 2006-2016 [1].

Fig. 2.2: Solar PV global capacity and annual additions, 2006-2016 [1].

cluding large hydro) has increased more than five-fold over the last decade alone to stand

at 50 GW in 2016 as shown in Fig. 2.3 [2]. This capacity translates more than 7% of all

electric power generation in Japan and the rapid upward trend is expected to continue in

the years to come.

2.2.2 Operational challenges with IRE sources

While the advantages of power generation by IRE sources are numerous, their variable

and uncertain nature means that a large integration of these sources in electric power

networks introduces new operational challenges to power system operators [3, 4]. Fig. 2.4

illustrates the difference between the terms variability and uncertainty as pertaining to

IRE sources. Their effects on system operation are then described as:
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Fig. 2.3: Trends of renewable energy capacity in Japan excluding large hydro [2].
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Fig. 2.4: Illustration of IRE source uncertainty and variability.

◦ Variability : The output of IRE sources changes from time-to-time and, unlike tradi-

tional sources of power generation, cannot be controlled. The effect is that, in response

to the variation of IRE output, other power sources must be varied fast enough to en-

sure the balance between generation and load. Generally speaking, in terms of system

operation, IRE variability affects the reliability and stability of the power system.

◦ Uncertainty : The output of IRE sources cannot be forecasted with 100% accuracy. This

means that other fast-responding sources (reserves) must be made available to balance
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generation and load in case of a shortage [5]. Such reserves are typically relatively

expensive when compared to the cost of conventional generation. Therefore, while IRE

sources reduce the net system demand and hence costs of conventional generation, they

add costs related to extra reserves necessitated by their uncertain characteristic [6].

2.2.3 Handling increased variability and uncertainty due to IRE gener-

ation

Energy management in networks with significant proportions of generation from IRE

sources require mechanisms for handling the increased variability and uncertainty due

to the intermittency of these sources. Practically, this can be realized in two ways:

◦ Stricter reserve settings: Variability and uncertainty in IRE generation presents the

risk of not having enough reserves to cover for shortfalls due to overestimations of the

IRE output. The system operator could enforce stricter reserve requirements to ensure

generation adequacy in the event of large overestimations of IRE output [7, 8]. Such

reserve requirements can be set deterministically for worst-case forecasting conditions

or stochastically, considering the statistical distribution of the IRE forecasts [9]. This

approach adds extra conservativeness in system operation which translates to relatively

more expensive operation.

◦ Changes to system operation practices: An alternative to more conservative approach

to system operation is to alter system operation practices e.g. adjusting generation

scheduling to shorter periods so as to utilize more accurate IRE forecasts [10]. Such

operational changes require extra monitoring of the power system (e.g. in smart grid

applications) and typically more actions by the system operator in terms of affect-

ing power utilization. In general, this approach is cheaper at the expense of slightly

increased operational risks.

One of the areas which offers potential to handling IRE uncertainty is in the operation

of the transmission system. Usually, overly conservative transmission line limits leads

to a state termed to as transmission congestion where certain generation (including IRE

generation) may have to be constrained so as to enforce the loadability limit of particular

lines. However, transmission line loadability could be adjusted in real-time depending on

the ambient conductor cooling conditions thereby realizing more IRE power utilization.

2.3 Transmission line ratings

The thermal rating of an overhead transmission line is typically a limit on the magnitude

of line current aimed at restricting conductor temperature below a manufacturer-specified

maximum value [11, 12]. Usually, conductor temperature is restricted in order to limit

one or more of the following [13]:

◦ clearance between conductor and ground,

◦ clearance to other conductors,

◦ protection from loss of tensile strength or permanent conductor damage by heat.
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Fig. 2.5 illustrates the terms sag and clearance of an overhead transmission line [14].

Fig. 2.5: Illustration of sag (S) and clearance (C) of an overhead conductor in a level span
[14].

Increased power generation by IRE sources alters the line flows in a power system which

in turn increases the probability of violating the set thermal limits of the transmission

lines [15]. Technically speaking, the thermal limit of a conductor refers to the maximum

temperature that the conductor is allowed to reach as specified by the manufacturer. When

this value is exceeded, the conductor experiences excessive sag or suffers a significant loss

of strength [14]. However, in practice the temperature value is not used when setting

the thermal limit. Rather, an equivalent current value termed ampacity is used, which is

defined as the conductor current that would result in the maximum allowable conductor

temperature for a given set of weather conditions1 [11, 12]. Two types of thermal ratings

can be defined based on the method of calculation: the static line rating (SLR) and

dynamic line rating (DLR).

2.3.1 Static line rating

The static line rating (SLR) is defined as the conductor current that would result in

the conductor temperature reaching the maximum allowed temperature at steady-state

for worst-case weather conditions [11, 12, 16]. The SLR is therefore a very conservative

setting. The use of worst-case weather conditions in the calculation of the SLR ensures

that the probability of conductor temperatures reaching the maximum allowed values are

very low even if the conductor continuously carries the SLR current. This, coupled with

typical N-1 reliability criteria, means that overhead conductors are typically used well

below their actual thermal ratings. However, although the SLR is conservative, it is the

most reliable rating system for present power system operators, given the long experience

in many countries.

2.3.2 Dynamic line rating

The dynamic line rating (DLR) is defined as the conductor current that would result in

the conductor temperature reaching the maximum allowed temperature at steady-state

for the prevailing real-time weather conditions [12, 17, 18]. DLR can be achieved through

1The ampacity value can be easily converted to an active power or apparent power value depending on
the voltage level to give a maximum power limit.
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direct or indirect monitoring of conductor temperature [13, 19]. Direct monitoring could be

achieved through the direct measurement of the temperature, sag [20, 21], or tension [22],

while indirect monitoring requires measurements of the conductor current and weather

parameters along the line followed by using mathematical models that relate the conductor

temperature to the current and weather parameters to estimate the conductor temperature

[19]. Fig. 2.6 shows typical overhead transmission line monitoring for DLRs [23].

Fig. 2.6: Monitoring of overhead lines for real-time dynamic line ratings [23].

With DLR, the line rating is re-calculated after pre-set time durations, say every

30 minutes, varying the values of the weather parameters along the line as the ambient

weather changes. The use of real-time weather conditions relaxes the conservativeness

of the thermal constraints set by the SLR since prevailing weather conditions are usu-

ally considerably better at cooling the conductor than the worst-case conditions used to

calculate the SLR. DLRs therefore usually result in higher transmission line loadability

though there is a requirement of constant monitoring of weather conditions and a slight

increase in the risk of violating the thermal constraints of the transmission line. DLRs

could be particularly useful as current flowing in transmission lines become more variable

and uncertain due to increased power generation from IRE sources [24, 25].

2.4 Optimal power system operation

Electric power system operators are responsible for ensuring reliability and security of

electric power supply to consumers. However, this has to be done at a reasonable cost

and consequently, system operators usually seek the most economical way of meeting

the demand at all times while keeping high levels of reliability. This is done through a

combination of load forecasting and economic scheduling of available generation based on

the forecasted demand. One of the most important tools available to the system operator
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in the optimal scheduling of system resources is the optimal power flow (OPF) model.

2.4.1 The optimal power flow problem

Generally, the optimal power flow problem seeks to determine the optimal mix2 of power

generation levels from the various sources available to the system operator. Here, an

optimal mix would be the generation schedule that minimizes a given objective function

under various technical and physical constraints. The OPF problem is then presented

as a mathematical optimization problem with typical objectives being cost minimization

[26, 27] and active or reactive power loss minimization [28, 29, 30].

The problem decision variables include the active power outputs of various generators

and the voltage set-points of those units with voltage regulation capabilities. System state

variables would then be the reactive power outputs of the generators, voltage magnitudes

at non-voltage controlled buses, voltage angles at non-reference buses, and current (or

power) flow in the various system branches [31]. The OPF problem involves both equality

and inequality constraints. Equality constraints are usually the power flow equations –

mathematical equations describing the physical flow of both active and reactive power

within the transmission network. On the other hand, inequality constraints are usually

physical limits on various system variables including bus voltages, real and reactive power

generation and the current (or power) flowing through the various branches of the power

network. Reference [31] gives a thorough review of the state of the art in the various

formulations and solution algorithms of the OPF problem.

2.4.2 Effect of line flow limits on the OPF solution

One of the most important constraints in the OPF model is the branch flow limit i.e. the

amount of current (power) allowed to flow in a given branch3. The restriction of trans-

mission paths due to the branch flow constraint manifests in the OPF solution as active

branch flow constraints and leads to a situation referred to in industry as transmission

congestion [32]. The effects of transmission congestion include increased operational costs,

unbalanced electricity supply costs and even curtailment of IRE generation. The introduc-

tion of large amounts of IRE generation in power systems could further necessitate more

stringent branch flow constraints as the uncertainty in line flows increases. However, as

explained in Section 2.3, DLR of transmission lines based on real-time monitoring could be

used to allow increased transmission line loadability. The result could translate to a more

economical system operation i.e. better solution of the OPF problem or even a reduction

in necessary IRE power curtailment. However, in contrast to the mentioned benefits, DLR

is usually accompanied by an increase in the risk of violating the thermal constraints. The

line rating risk-benefit tradeoff is illustrated in Fig. 2.7.

2An electricity generation mix refers to the percentage of different energy sources (fossil fuels, nuclear,
hydro and other renewable energies) used to generate electricity at a given point in time.

3A branch is a connection between two system buses and could be a transmission line, transformer, or
even a power converter.
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Fig. 2.7: Illustration of risk-benefit trade-off with transmission line ratings.
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CHAPTER 3

Probabilistic modeling of solar
photovoltaic (PV) power generation

3.1 Introduction

This chapter presents a probabilistic model for high temporal resolution (1-minute) so-

lar radiation that can be applied in power system simulations. The model is used to

“synthetically” generate scenarios of solar PV power (from solar irradiation data) to sim-

ulate fluctuations in power generated by a solar PV source. As introduced in Chapter

2, IRE sources and DLRs introduce the concept of risk in system operation e.g. the risk

of violating the thermal constraint of a transmission line is defined as the probability of

the conductor temperature exceeding the maximum allowable limit. A risk based op-

eration of the power system necessitates a probabilistic assessment of the occurrence of

various eventualities. And, such probabilistic assessments require probabilistic models of

the underlying stochastic processes. In fact, one of the proposed changes in power system

operations proposed for handling increased IRE generation is to move from the traditional

deterministic rules in system operation to probabilistic rules [1, 2].

Probabilistic approaches rely on stochastic models of the various components of the

system to simulate the overall system. The correctness of the overall study therefore

heavily depends on how well these stochastic models represent the various components.

Methodologies used to reproduce the real world data should use models that as best as

possible represent the phenomena they model. The probabilistic model presented in this

chapter correctly captures very short-term fluctuations in solar PV power (up to 1-minute

temporal resolution).

3.1.1 Literature review

A number of probabilistic models for global solar radiation which can be used to simulate

solar PV generation have been proposed in literature. However, these studies have con-

centrated on models for daily [3, 4, 5] and hourly solar radiation values [6, 7, 8]. Models

for higher temporal resolution are rare not only because such recorded data are themselves

rare but also because the scope of most studies involving solar radiation concentrate on

concepts such as the total energy potential of particular locations and hence do not need
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high temporal resolution data. However, real-time operation of power systems requires

models for higher temporal resolutions – in the order of minutes.

The proposed solar PV models use either Autoregressive Moving Average (ARMA)

or Markov Transition Matrix (MTM) methods to model the clearness index i.e. the

ratio of the solar radiation recorded on the earth’s surface to the extraterrestrial solar

radiation. However, the statistical properties of the daily or hourly clearness index data

are significantly different from the statistical properties of 1-minute or even 5-minute

clearness index data [9, 10]. Both [9] and [10] report bimodal probability density functions

of 1-minute and 5-minute clearness index data; a feature significantly different from the

unimodal nature of the probability density functions of daily or even hourly clearness

index data. These differences imply that models for various temporal resolutions would

be different.

While most of the studies on probabilistic modeling and synthetic generation of solar

radiation data have been focused on daily and hourly data, there have been attempts at

modeling higher temporal resolution solar radiation data [11, 12]. Reference [11] models

the probability distribution and lag-1 autocorrelation of short term irradiance data (1- to

10-minute) and use these in a first order autoregressive model for the synthetic generation

of short term data. While the models achieve satisfactory results in reproducing the mod-

eled data, they utilize complex approximate equations of the probability density functions

and the errors introduced by these approximations are not quantified. The model also ig-

nores the dependence of clearness index on solar elevation angle as reported in [13]. Also,

by only considering the lag-1 autocorrelation, the model assumes little or no correlation

in the time series data to data at lags greater than 1.

Reference [12] uses a single first order Markov transition matrix to synthetically gen-

erate 1-min global solar radiation data. The model is a single part of a large integrated

model which also includes a household occupancy and power demand model. Though it

is quite simple, the use of a single transition matrix ignores the fact that different days

have different statistical properties. For example, it is expected that a transition matrix

modeling a clear day will be significantly different from one modeling a cloudy day.

The probabilistic model presented in this chapter utilizes a normalized form of the

clearness index which eliminates trends existing in measured data. Also, because different

days have different statistical characteristics, the days in the data set are first grouped

based on the daily clearness index value and parameters for the Markov models are then

extracted for each group. The autocorrelation characteristics of measured data is used to

arrive at the choice of a second order Markov model. The proposed model is validated

by comparing the statistical characteristics of synthetically generated data to those of the

observed data.

3.1.2 Probabilistic modeling fundamentals

A stochastic variable is subject to variations of randomness in the process generating it

[14]. Unlike deterministic variables, stochastic variables do not take a single value but

rather take one of a given set of values each with an associated probability. Generally, the
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modeling of a stochastic variable Xt involves the modeling of its expected value E [Xt] and

its random component αt. There are numerous methods for modeling stochastic variables

which mainly differ on the way they model E [Xt] and αt. Two of the more popular

methods are the Auto-Regressive Moving Average (ARMA) [14] and Markov Transition

Matrix (MTM) models [15, 16]. As a simple example, a first-order autoregressive (AR(1))

model is of the form:

Xt = φXt−1 + αt. (3.1)

where φ is the lag 1 autocorrelation.

This means that, given Xt−1 (the value of the random variable at time t − 1), the

expected value at time t will be E[Xt] = φXt−1. The random component to be added to

E[Xt] will be defined by the nature of the probability distribution of αt. In most cases, it

is assumed that αt is normally distributed with mean 0 and variance σ2.

In ARMA models, the nature of the random component is independent of the value

of the stochastic variable Xt. Markov models, on the other hand allow for the modeling

of stochastic variables in which the random component is dependent on the value of Xt.

For example, during periods of scattered clouds in the sky, the observed solar radiation

data exhibits large fluctuations which are not observed during clear or even heavily cloudy

periods. Hence, the nature of the random component in the probabilistic model has a

dependency on the level of the stochastic variable. Because of this characteristic of solar

radiation data, the stochastic variable in this thesis is modeled as a Markov process. A

more detailed description of Markov models follows in Section 3.1.3.

3.1.3 A general formulation of Markov models

Markov models provide a simple yet powerful way of modeling the dependence between

adjacent observations in a given time series [16]. They have consequently been used

extensively in the modeling of various stochastic variables including the modeling of wind

time series [17], rainfall patterns [18] and solar radiation data [3, 19].

A process is said to exhibit the Markov property if, given its present state, the future

is conditionally independent of the past and Markov models are mathematical represen-

tations of such stochastic processes [16]. A Markov process (Xt, t = 0, 1, 2, . . . ) with a set

of m allowed states (1, 2, . . . ,m) is said to be in state j at time t if Xt = j. In a first order

Markov process, given that the process is in state i at time t − 1, the probability that it

will be in state j at time t is given by a fixed probability Pij written mathematically as:

Pij = P (Xt = j|Xt−1 = i,Xt−2 = it−2, . . . X0 = i0)

= P (Xt = j|Xt−1 = i) . (3.2)

Pij , known as the transition probability from state i to j, is independent of the states of

the process at times t− 2, t− 3, . . .. Equation (3.2) describes a first order Markov process

- the conditional distribution of Xt given X0, X1, . . . Xt−1 depends only on Xt−1.

In an nth order Markov model, the probability that the process will be in a particular

state at time t depends not only on its state at time t− 1 but also on the states at times
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t− 2, t− 3, . . . , t−n. For example, in a second order Markov process, the probability that

the process will be in state k at time t given that it was in state j at time t − 1 and in

state i at time t− 2 is given by:

Pijk = P (Xt = k|Xt−1 = j,Xt−2 = i) . (3.3)

The transition matrix Pn holds the transition probabilities for the nth order Markov

process. The first order transition matrix would typically be represented as:

P1 =


P11 P12 . . . P1m

P21 P22 . . . P2m

...
...

. . .
...

Pm1 Pm2 . . . Pmm

 . (3.4)

While this is an m×m square matrix, the second order transition matrix:

P2 =



P111 P112 . . . P11m

P121 P122 . . . P12m

...
...

. . .
...

P211 P212 . . . P21m

P221 P222 . . . P22m

...
...

. . .
...

Pmm1 Pmm2 . . . Pmmm


(3.5)

is an m2×m matrix. Similarly, an nth order Markov model will have an mn×m transition

matrix.

From a given set of observations, the transition probability from state i to j can be

easily estimated by counting the number of times the states sequence ij is observed and

diving by the total number of times state i is observed. For the second order process, the

probability of moving to state k immediately after the observations of states i and j can

be estimated by counting the number of times the sequence ijk is observed and diving by

the total number of times the sequence ij is observed.

With sufficient data, solar radiation data can be discretized into radiation states from

which Markov transition matrices can be constructed forming Markov models. These

models can then be used to synthetically generate sets of solar radiation data for power

system simulations.

3.2 Solar radiation modeling with Markov models

3.2.1 Data used

Two sets of three-year solar radiation data taken at 1-minute intervals from two locations

in Japan were used in the development and validation of the probabilistic model presented

in this chapter. The coordinates and data collection periods for the two locations are given

in Table 3.1.

The 1-minute clearness index kt is defined as the ratio of the global solar irradiation
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Table 3.1: Solar radiation database

Location Latitude Longitude Period

Shinjuku, Tokyo 35.68◦ N 139.67◦ E Jan 2004 - Dec 2006

Suita, Osaka 34.82◦ N 135.52◦ E Sep 2007 - Aug 2010

that reaches the earth’s surface H, to the extraterrestrial solar radiation He during a

1-minute period. H and He are both given in W/m2. He can be calculated using the

solar geometry equations given in Appendix C. Using a model of the stochastic variable

kt, values of H can be obtained from:

H = ktHe

[
W/m2

]
. (3.6)

Fig. 3.1 shows a typical plot of measured 1-minute global solar radiation data and

calculated extraterrestrial solar radiation for a single day. Fig. 3.2 shows the corresponding

plot of kt. As seen from Fig. 3.2, the plot of kt exhibits a noticeable trend with durations

near noon having higher values of kt than durations near sunrise and sunset. This suggests

the need for de-trending the data before attempting to fit a stochastic model.

3.2.2 Trend removal

Reference [13] highlights the dependence of kt on the zenith angle and removes this depen-

dence by transforming kt to a new variable, the normalized clearness index k′t, through:

k′t =
kt

1.031 exp
[
−1.4

0.9+9.4/a

]
+ 0.1

. (3.7)

The denominator in (3.7) is the Kasten pyheliometric formula [20] whereby a is the relative

air mass given approximately as:

a =
1

cos z
(3.8)

where z is the zenith angle (see Appendix C). Fig. 3.3 shows the plot of k′t corresponding

to the plot of kt given in Fig. 3.2. It shows the de-trending of the data achieved by the

transformation of (3.7).

From a stochastic model of k′t, kt can be obtained from (3.7) with kt as the subject of

the formula. H can consequently be obtained using (3.6).

3.2.3 Model construction

The first consideration in the construction of a stochastic model for global solar radiation

is that different days have different statistical properties stemming from different weather

conditions. For example, the probability of getting a k′t value of 0.7 is much higher in a

clear day than in a cloudy day. The model construction is therefore started by grouping

the days in the data set based on the observed daily clearness index Kd values. Fifteen

groups are constructed using Kd bins of width 0.05 i.e. the first group holds all days with

Kd values between 0 and 0.05, the second group holds all days with Kd values between

0.05 and 0.10 and so on. The last group has Kd values between 0.70 and 0.75. The
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Fig. 3.1: Measured 1-min global and calculated extraterrestrial solar radiation.
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Fig. 3.2: Calculated 1-min clearness index (kt) from Fig. 3.1.
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Fig. 3.3: Normalized 1-min clearness index (k′t) from Fig. 3.2.
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highest observed value of Kd in the data set was 0.742. The bin width of 0.05 was chosen

empirically as a compromise between having days with as similar statistical characteristics

as possible in each group and having enough data in each bin.1 Markov transition matrices

(MTMs) are then constructed for each group as follows.

The first step in the construction of the MTMs is the conversion of observed k′t values

into states. 100 states of k′t are defined based on the k′t value with the first state holding k′t

values between 0 and 0.01; state 2 holds k′t values between 0.01 and 0.02, and so on. The k′t

sequence is therefore converted into a sequence of states Xt with Xt = 1 if 0 < k′t ≤ 0.01;

Xt = 2 if 0.01 < k′t ≤ 0.02; and so on. 100 discretization states were empirically chosen so

as to as best as possible represent the distribution functions in the transition matrices.2

If, in the data set, fij is the number of times state j is observed immediately after the

observation of state i, and if f∗i is the total number of times state i is observed, then the

probability of observing state j one time step after the observation of state i is given by:

Pij = fij/f
∗
i . (3.9)

The ith row of the first order MTM is therefore simply constructed by dividing the fre-

quency distribution of states observed immediately following the observation of state i

by the total number of times state i is observed. In this way, first order MTMs can be

constructed for each of the 15 groups of days. Higher order MTMs are constructed in

similar ways to the first order MTMs only that each row of the nth order MTMs describes

the probability of observations depending on the n previous observations. With 100 pos-

sible states, the first order MTMs are 100 × 100 matrices while the nth order MTMs are

100n × 100 matrices.

Tables 3.2 and 3.3 show some of the entries in the first and second order MTMs for

days with Kd values between 0.00 and 0.05. As seen from these tables, the generated

MTMs are typically very sparse matrices with most non zero values lying very near the

diagonal of the matrices. This shows a strong correlation between successive observations.

Also, in some cases, some rows of the MTMs add up to zero. For example, for days with

Kd values between 0.00 and 0.05, no values of k′t between 0.99 and 1.00 are observed.

Hence, the last rows of the MTMs shown in Tables 3.2 and 3.3 are made up entirely of

zeros. The test data was used to empirically construct transition matrices for each of the

fifteen groups of days.

The order of a Markov model determines how many previous observations are used in

generating the next state in a Markov process. The order of the model therefore plays a

crucial role in capturing the serial correlation characteristics of modeled data. The next

section therefore considers the selection of the order of the Markov model.

1Having bins of smaller width results in increased similarity in the statistical characteristics of days in
each bin. However, fewer days (less data) will be contained in each bin hence the extracted parameters
will be less accurate. Various bin widths were considered and the bin width of 0.05 was found to be most
suitable.

2Discretization essentially linearizes the probability density function (pdf) between certain points. For
example, a k′t value between 0.00 and 0.01 will be obtained by assuming that the pdf is linear between
the points k′t = 0.00 and k′t = 0.01. Hence, the more the number of discretization states, the better the
representation of the pdf. However, it also results in significantly larger transition matrices.

Bonface Ngoko 27 Osaka University - July 2018



CHAPTER 3. PROBABILISTIC MODELING OF SOLAR PHOTOVOLTAIC (PV) POWER
GENERATION

Table 3.2: First order MTM for days with Kd values between 0.00 and 0.05.

1 2 3 4 5 6 7 · · · 100

1 0.875 0.125 0.000 0.000 0.000 0.000 0.000 · · · 0.000

2 0.018 0.856 0.126 0.000 0.000 0.000 0.000 · · · 0.000

3 0.000 0.047 0.849 0.104 0.000 0.000 0.000 · · · 0.000

4 0.000 0.001 0.105 0.812 0.079 0.003 0.000 · · · 0.000

5 0.000 0.000 0.000 0.222 0.688 0.086 0.004 · · · 0.000

6 0.000 0.000 0.000 0.010 0.238 0.619 0.124 · · · 0.000

7 0.000 0.000 0.000 0.000 0.000 0.216 0.730 · · · 0.000

8 0.000 0.000 0.000 0.000 0.000 0.006 0.158 · · · 0.000
...

...
...

...
...

...
...

...
...

100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 · · · 0.000

Table 3.3: Second order MTM for days with Kd values between 0.00 and 0.05.

1 2 3 4 5 6 7 · · · 100

1 1 0.830 0.170 0.000 0.000 0.000 0.000 0.000 · · · 0.000

1 2 0.167 0.417 0.167 0.167 0.083 0.000 0.000 · · · 0.000

1 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 · · · 0.000
...

...
...

...
...

...
...

...
...

...

2 1 0.818 0.182 0.000 0.000 0.000 0.000 0.000 · · · 0.000

2 2 0.017 0.827 0.157 0.000 0.000 0.000 0.000 · · · 0.000

2 3 0.000 0.072 0.783 0.133 0.012 0.000 0.000 · · · 0.000
...

...
...

...
...

...
...

...
...

...

3 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 · · · 0.000

3 2 0.036 0.786 0.179 0.000 0.000 0.000 0.000 · · · 0.000

3 3 0.000 0.064 0.817 0.120 0.000 0.000 0.000 · · · 0.000
...

...
...

...
...

...
...

...
...

...

100 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 · · · 0.000
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Order Selection

A stochastic model should be able to replicate the statistical characteristics of the modeled

variable as best as possible but at the same time should remain as simple as possible.

For example, a second order Markov model would generally be better at modeling a

stochastic variable than a first order model. However, with m unique states, the second

order MTM will be m times the size of the first order MTM making the second order model

more complicated and more difficult to handle. Therefore, unless the second order model

represents a certain statistical characteristic of the modeled variable significantly better

than the first order model, the first order model should be chosen. The same argument

would apply when considering higher order models. The question of choosing the “best”

order of the Markov model is therefore an important one.

A number of statistical methods for order selection have been proposed in literature

[15, 21]. These methods are based on chi-square tests and involve the calculation of the

likelihood function [15]. For example, the method proposed in [21] involves the formation

of MTMs of various orders and calculation of Akaike information criterion (AIC ) value

given by:

AIC = (−2) logL+ 2k. (3.10)

where L is the maximum likelihood of the model and k is the number of independently

adjusted parameters within the model (degrees of freedom).

Denoting the transition probabilities of an nth order Markov chain by Pi−n,...,i−1,j and

the frequency of these transitions in the data set by fi−n,...,i−1,j , the log-likelihood function

would be given by:

logL =
∑

i−n,...,i−1,j

fi−n,...,i−1,j logPi−n,...,i−1,j (3.11)

where Pi−n,...,i−1,j = fi−n,...,i−1,j/fi−n,...,i−1 is the maximum likelihood estimate from the

sample data of the unknown transition probabilities of the population. As the order of

the Markov model increases, the term (−2) logL in (3.10) reduces while 2k increases. The

appropriate model is then the one that minimizes the AIC. However, if fi−n,...,i−1,j is equal

to zero, fi−n,...,i−1,j logPi−n,...,i−1,j is undefined. And as seen from Tables 3.2 and 3.3, the

MTMs are generally very sparse and have numerous zero values making the order selection

methods based on a calculation of the likelihood function impracticable.

In an nth order Markov model, the observation at time t is dependent only on the

observations at times t− 1, t− 2, . . . , t−n. It is assumed that the observation at time t is

statistically independent of the observations at times t− n− 1, t− n− 2, . . .. If, however,

for the given data set, the observation at time t has significant conditional dependence on

the observations at times t−n−1, t−n−2, . . ., then an nth order model wouldn’t be able

to correctly represent this characteristic. The order of the Markov model can therefore be

selected by checking the conditional dependency in the modeled data set between observa-

tions at various lags. This characteristic can be evaluated using the partial autocorrelation

function (PACF). The partial autocorrelation between k′t and k′t−h is the conditional cor-
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Fig. 3.4: Plots of k′t and corresponding partial autocorrelation plots.
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relation between k′t and k′t−h under the assumption that k′t−1, k
′
t−2, . . . , k

′
t−h−1 are known

and taken into account. A significant value in the partial correlation between k′t and k′t−h
suggests that the observation at time t is significantly dependent on the observation at

time t − h. It is for this reason that the PACF is usually used to select the order of an

Auto-Regressive (AR) model [14].

Fig. 3.4 shows typical plots of k′t for days with different Kd values and the correspond-

ing PACF plots. The PACF plots show significant lag-1 partial autocorrelations in all

cases. The lag-2 partial autocorrelation is also seen to be statistically significant though

less significant than the lag-1 partial autocorrelation. The partial autocorrelation values

for lags larger than 2 are generally very close to zero hence not statistically significant. It

should be noted that the five plots of Fig. 3.4 are only typical plots and there are as many

PACF plots of k′t as there are days in the data set. Therefore, the PACFs of k′t for each

day in the data set were calculated and Figs. 3.5(a) and 3.5(b) show the obtained plots

of the average lag-1, lag-2 and lag-3 PACFs for the various groups of days using the data

from Shinjuku and Suita, respectively. Figs. 3.5(a) and 3.5(b) show that the first two lags

are statistically significant especially for days with Kd values less than 0.3.

The statistical significance of lags 1 and 2 shown in Figs. 3.4 and 3.5 lead to the

selection of a second order Markov model. This is important so as to capture the cor-

relation characteristics especially in days with low Kd values. Second order MTMs were

empirically generated from the recorded solar radiation data and these MTMs are used in

the synthetic generation of 1-minute solar radiation data.

3.3 Model validation

The validity of the probabilistic model presented in this chapter is tested by comparing

the statistical properties of data synthetically generated using the model to the statistical

properties of the observed data. In this section, first, a methodology for synthetically

generating solar radiation data using the empirically derived MTMs is described. Then,

the synthetically generated data sets is grouped into 15 groups as was done with the

test data during the construction of the transition matrices (see Section 3.2.3). The

statistical properties of each of these groups were then compared to determine the validity

of the proposed Markov model. The statistical properties compared were the statistical

parameters (mean, standard deviation, skewness and kurtosis), probability distributions,

autocorrelation functions, and the minute-to-minute radiation fluctuations.

3.3.1 Methodology for synthetic generation of solar PV data

The main concept in the use of an nth order Markov model in the synthetic generation

of data is that the observation at a time instant t is dependent on the n previous ob-

servations. This means that a random variable is chosen from a probability distribution

that is dependent on the n previous observations. The probability distribution of kt (the

observation at time t) appears in the row in the MTM corresponding to the n previous

observations. This row is the probability distribution vector, P (t), of the observation at
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Fig. 3.5: Average lag-1, lag-2, and lag-3 partial autocorrelation coefficients of k′t against
daily clearness index (Kd) for (a) Shinjuku, Tokyo and (b) Suita, Osaka. Dashed lines
indicate the standard deviation of the estimates.
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time t. F (t) is the corresponding cumulative distribution vector if:

Fh (t) =
h∑
i=1

Pi (t) (3.12)

where Pi (t) is the ith entry in P (t) and Fh (t) is the hth entry in F (t). The subscript h

is used instead of n because n has been extensively used in this thesis to denote the order

of the Markov model.

The state Xt can therefore be generated by picking a random number r from a uniform

distribution [0,1] and mapping it onto F (t) i.e. if Fi−1 (t) < r ≤ Fi (t), then Xt = i.

By assuming that the cumulative distribution curve is linear between states i − 1 and

i, the synthetically generated normalized 1-min. clearness index is obtained using the

transformation:

k′ts =
1

m

{
(i− 1) +

r − Fi−1 (t)

Fi (t)− Fi−1 (t)

}
(3.13)

where m = 100 is the number of states. The subscript s is used to indicate that this is

a synthetically generated variable. For a given value of Kd, the appropriate transition

matrix is chosen and then using equations (3.12) and (3.13), sequences of k′ts data are

synthetically generated.

Methodology summary

In summary, starting from a set of Kd data, synthetic sets of k′t are generated for each day

through the following steps:

1, Using solar geometry equations (see Appendix C), the extraterrestrial solar radiation

He for each minute during the day is calculated. He is greater than 0 between sunrise

and sunset and equal to 0 otherwise.

2, Depending on the value of Kd, the appropriate second order MTM is selected. For

example, the MTM shown in part in Table 3.3 will be selected if the Kd value for the

day lies between 0.00 and 0.05.

3, The algorithm is initialized by setting k′1s and k′2s equal to Kd. In this way, the row

in the MTM selected in step 2 corresponding to the value of k′1s = k′2s = Kd is used

as the probability distribution vector for generating k′3s. k
′
1s, k

′
2s, ... correspond to the

values of the k′ts variable at 12:01am, 12:02am, .... Hence, a number of simulations of

k′ts data will be done before sunrise. This ensures a different value of k′ts at sunrise for

different simulation runs.

4, Using a random number picked from a uniform distribution [0, 1], k′3s is generated as

described by (3.13). The row in the MTM corresponding to the values of k′2s and k′3s
is used as the probability distribution vector for generating k′4s. Subsequent values k′5s,

k′6s, . . . , k
′
1440s are generated similarly.

5, The synthetically generated k′ts sequence is converted to kts using (3.7) and finally to

1-minute global solar radiation H data using (3.6).

6, From the H data, the synthetically generated value of the daily clearness index Kds
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is calculated. If |Kd − Kds|/Kd < δ, where δ is a previously selected tolerance, the

procedure is stopped. Otherwise it is restarted from step 3. It was observed that the

model requires an average of 4.2 iterations to generate a k′t sequence which gives a Kds

value that is within 2% of the initial Kd value.

Fig. 3.6 shows plots of observed and synthetically generated global solar radiation

data for five days with different Kd values3. An initial look at the plots of Fig. 3.6

shows similarities suggesting that the methodology is able to produce synthetic data sets

similar to observed data. The two plots for Kd = 0.09 (typical cloudy day) show smooth

profiles of low solar radiation values. Large fluctuations are generally absent. Clearer

days (Kd = 0.39 and Kd = 0.62) have more pronounced fluctuations due to the presence of

numerous scattered clouds in the sky. A very clear day (Kd = 0.71) has a generally smooth

profile with isolated large fluctuations - a consequence of the appearance of isolated clouds

along the sun’s path in the sky. The fluctuation characteristics being evident in both the

observed and synthetically generated data sets implies that the Markov model is capable

of generating data similar to observed data. Mathematically however, the validity of the

proposed methodology is tested by comparing the statistical properties of the synthetically

generated data with those of the test data. The statistical properties compared were

the statistical parameters (mean, standard deviation, skewness and kurtosis), probability

distributions, autocorrelation functions, and the minute-to-minute radiation fluctuations.

3.3.2 Statistical parameters

The plots in Fig. 3.7 compare the general statistical parameters (ordinary moments) ob-

tained from the synthetically generated normalized 1-min. clearness index data with those

obtained from the two sets of observed data. Equations for calculating the four statisti-

cal measures (mean, standard deviation, skewness and kurtosis) are given in appendix B.

The plots show a good agreement between the statistical properties of the observed and

synthetically generated data sets. The replication of the mean of k′t is mainly a result of

calibration and the use of the step 6 in the methodology (see Section 3.3.1) which ensures

that the synthetically generated plot produces a Kd value very close to the input daily

clearness index.

However, slight differences are observed in the plots of standard deviation. Generally,

for days with Kd greater than 0.3, the values of standard deviation obtained from Shinjuku

data are lower than the values obtained from Suita data. This is because the two locations

have different climatic characteristics. A lower value of standard deviation suggests that

the type of clouds found in an area are more uniform hence do not produce as many large

fluctuations in solar radiation. This shows that the nature of clouds has a significant

dependence on location. The overall model used in the methodology combined the two

sets of data hence the plot of standard deviation from the synthetically generated data

sets doesn’t deviate significantly from the standard deviation plots for either location. The

3Fig. 3.6 shows two plots for days with a Kd value of 0.39. These plots highlight the stochastic nature
of the data as it is possible to have two days with similar amounts of total daily irradiation but very
different in terms of inter-temporal fluctuations.
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Fig. 3.6: Solar radiation plots for days with different values of Kd: (a) observed, (b)
synthetically generated.
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Fig. 3.7: Comparison of general statistical parameters of the observed k′t and synthetic k′ts
data sets: (a) mean, (b) standard deviation, (c) skewness, (d) kurtosis.

slight differences in the skewness and kurtosis measures seen in Figs. 3.7(c) and 3.7(d)

can also be explained by the difference in location.

3.3.3 Probability density functions

Fig. 3.8 shows the probability density function (pdf) plots of the normalized 1-min clear-

ness index (k′t) data for each of the fifteen classes of days. The plots show a close agreement

between the pdf plots of the observed and synthetic data sets. An important observation

is that the synthetic data sets preserve the bimodal4 characteristic of the observed pdf

plots especially for classes of days with Kd values between 0.25 and 0.65. The lower modes

of the pdfs of k′t occur around k′t = 0.3 while the upper modes occur around k′t = 0.7.

References [9] and [11] have also highlighted this bimodality characteristic in the pdf plots

for high temporal resolution solar radiation data.

While generally a close agreement is observed between the various pdf plots, certain

differences are observed. In Fig. 3.8, the pdf plots for Shinjuku data have significantly

higher peaks than the pdf plots for Suita data for the groups of days with Kd values

ranging between 0.40 and 0.65. This suggests that the nature of the radiation data has

4A bimodal distribution is a probability distribution with two different modes which appear as distinct
peaks (local maxima) in the probability density function.
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Fig. 3.8: Probability distributions of k′t for observed and synthetically generated data sets
for different classes of days.
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Fig. 3.9: Probability distributions of K ′h for observed and synthetically generated data
sets for different classes of days.
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a dependence on the location from which it was taken due to differences in the nature

of clouds and/or atmospheric effects at the particular locations. This conclusion is a

confirmation of the differences in standard deviation plots shown in Fig. 3.7(b). While

the nature of the clouds and the atmosphere are quite complex and beyond the scope of

this thesis, in simple terms, the nature of clouds and the atmosphere at Suita result in

more scattering of incoming radiation compared to the scattering of radiation observed

at Shinjuku. Consequently, larger fluctuations are observed at Suita resulting in larger

values of standard deviation and consequently lower peaks in the pdf plots.

k′t is the normalized form of the 1-min clearness index (kt) which is defined as the ratio

of the global solar radiation reaching the earth’s surface H to the extraterrestrial solar

radiation He during a 1 minute period. The hourly clearness index (Kh) on the other

hand, is the ratio of H to He measured over a 1 hour period. Since the model presented in

this thesis generates 1-minute data, it is necessary to determine whether the synthetically

generated 1-min data reproduces the observed hourly clearness index values.

Fig. 3.9 shows the probability density function (pdf) plots of the normalized 1-hour

clearness index (K ′h) for each of the fifteen groups of days. These plots too show a close

agreement between the observed and synthetically generated pdfs. It is also observed that

the bimodal characteristic observed in the pdfs of k′t shown in Fig. 3.8 are not replicated

in the pdf plots of K ′h of Fig. 3.9. This is a significant difference between middle to

low temporal resolution solar radiation data such as 1-hour data and higher temporal

resolution data such as 1-min data.

3.3.4 Autocorrelation functions

Autocorrelation is a measure of the degree of similarity between a time series and a lagged

version of itself and is important in identifying periodicities in the time series. Mathemat-

ically, given a time series k′t with a mean µ and variance σ2, the autocorrelation at lag τ

is given by:

ρτ =
E
[
(k′t − µ)

(
k′t−τ − µ

)]
σ2

. (3.14)

Fig. 3.6 shows plots of observed and synthetically generated solar radiation data for

five representative days. The equivalent plots of k′t and k′ts obtained from these plots are

shown in Fig. 3.10(a) and the corresponding autocorrelation functions (ACFs) are shown

in Fig. 3.10(b). The ACF plots for the observed k′t and synthetically generated k′ts data

sets shown in Fig. 3.10(b) are generally similar in that they are gradually reducing with

no clear periodicities. The biggest difference is seen in the ACF plots for Kd = 0.09 where

the plot for the observed data is higher than that of the synthetically generated data.

This means that consecutive observations in the observed data have higher correlations

producing a radiation plot with fewer fluctuations compared to the synthetically generated

data.

The partial autocorrelation function (PACF) was used in Section 3.2.3 to select the

appropriate order of the Markov model. The PACF for each of the days in the synthetic

data set was calculated and Fig. 3.11 shows the obtained plots of the average lag-1, lag-2,
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Fig. 3.10: Plots of (a) observed k′t and synthetic k′ts, and (b) corresponding autocorrelation
plots.
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Fig. 3.11: Average lag-1, lag-2, and lag-3 partial autocorrelation coefficients of syntheti-
cally generated k′ts data. Dashed lines indicate the standard deviation of the estimates.

and lag-3 PACFs for the various groups of days. When compared to the plots of Fig.

3.10, it is seen that the lag-1 PACF plot is well reproduced in the synthetically generated

data set. However, lag-2 and lag-3 PACFs are generally smaller in magnitude than in the

observed data sets. This difference can be explained by the fact that the second order

Markov model is only an approximation of the process generating the observed data which

is actually infinitely complex. The serial correlation is therefore a complex phenomenon

that may not be exactly captured by the Markov model.

3.3.5 Minute-to-minute radiation fluctuations

The stochastic model presented in this thesis generates 1-minute solar radiation data.

One of the most important differences between such high temporal resolution data and

lower temporal resolution data such as hourly data is the presence of significantly large

fluctuations in the minute-to-minute transitions. Power system studies such as power

quality studies would use data generated from the model to investigate the effects of these

short duration fluctuations in solar radiation on the power quality. The model used in

generating synthetic data should therefore be able to reproduce these fluctuations and

this section compares the minute-to-minute radiation fluctuations in the observed and

synthetically generated data sets.

Three categories of minute-to-minute radiation fluctuations (∆Ht = |Ht −Ht−1|) are

defined as: small: ∆H ≤ 50W/m2; medium: 50W/m2 < ∆H ≤ 200W/m2; and large:

∆H ≥ 200W/m2. Fig. 3.12 compares the frequency of occurrence of these fluctuation

levels in the two sets of observed data and the synthetically generated data. Fig 3.12(a)

shows that; in both the observed and synthetically generated data sets, for all groups
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Fig. 3.12: Comparison of frequency of occurrence of minute-to-minute fluctuations in solar
radiation levels: (a) small, (b) medium, and (c) large fluctuations.
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of days, more than 85% of the minute-to-minute fluctuations are less than 50W/m2. A

comparison of the fluctuation levels show that the Markov model does well in reproducing

the fluctuations in observed data.

3.4 Summary

A probabilistic model for the synthetic generation of 1-minute solar radiation data has

been developed and presented in this chapter. The model is constructed by treating the

process generating a normalized form of the 1-minute clearness index (k′t) as a second

order Markov process. The main contributions presented in this work include:

1. A detailed description of the model construction including data trend removal (see

Section 3.2.2), model construction (see Section 3.2.3), and model order selection (see

Section 3.2.3). A second order Markov model is arrived at based on the autocorrelation

characteristics of the observed data.

2. The developed probabilistic model is used in a stochastic methodology described in

Section 3.3.1 to generate k′t data starting from the daily clearness index Kd value.

3. The model was validated by confirming that the statistical characteristics of the syn-

thetic and observed data sets have a good agreement. Specifically, the following points

are noted in the validation:

◦ the ordinary moments (mean, standard deviation, skewness and kurtosis) and

the probability distributions of the stochastic variable are well reproduced in the

synthetic data sets.

◦ Slight differences are however observed in the autocorrelation characteristics of

the observed and synthetic data sets especially for days with low Kd values.

◦ The minute-to-minute radiation fluctuations are also well reproduced in the syn-

thetic data sets.

The good agreement in the statistical characteristics of the observed and synthetic data

sets confirm the viability of the model in producing data sets similar to observed solar

radiation data. This data can be especially useful in probabilistic studies of the effects of

increased integration of photovoltaic generators in power systems.
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CHAPTER 4

Modeling transmission line conductor
temperature

4.1 Introduction

This chapter presents a simplified model for estimating the temperature of an overhead

transmission line operated under dynamic line ratings. The proposed model is based on

numerical approximations of the various components of the more complex International

Council on Large Electric Systems (CIGRE) physical model [1]. The resulting simple

equations can be used to directly estimate the conductor temperature without the need

for iterative calculations which are required in the full CIGRE model. A mathemati-

cal validation of the simplified model is carried out by comparing both steady-state and

transient-state temperature values obtained using the proposed model to values obtained

using the full CIGRE model. The reduction of the computational effort when calculating

the conductor temperatures using the simplified model is also illustrated. In addition to

the mathematical validation, an experimental validation is also presented. The measured

conductor temperature values (for both steady-state and transient-state conditions) are

compared with values estimated using the proposed simplified version of the CIGRE model

to confirm the validity of the proposed model.

The proposed model has several potential application areas including a fast calculation

and adjustment of thermal relay settings, load frequency control, and solutions to real-time

optimal power flow problems. In this thesis, the use of the simplified model is illustrated in

a transmission line overload risk analysis methodology (see Section 5.6) and in the solution

of the optimal power flow problem (see Chapter 6).

4.2 Literature review of overhead conductor temperature

estimation

As introduced in Chapter 2, the fluctuating nature of IRE sources leads to a number of new

technical challenges in grid operation [2, 3, 4]. One of the concerns is increased variability in

line power flows and possibly increased occurrences of violations of the thermal constraints

of lines as a result. Now, while the thermal limit of a transmission line is usually given

as a maximum current value, strictly speaking, the thermal limit refers to the maximum
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temperature that the conductor is allowed to reach. When this value is exceeded, the

conductor experiences excessive sag or suffers a significant loss of strength [5, 6]. However,

in practice the temperature value is not used when setting the thermal limit. Rather,

an equivalent current value termed “ampacity” is used, which is defined as the conductor

current that would result in the maximum allowable conductor temperature for a given

set of weather conditions [6, 7, 8]. The ampacity value can be easily converted to an active

power or apparent power value depending on the voltage level to give a maximum power

limit.

As introduced in Section 2.3, there are two types of thermal ratings are in use today:

static line rating (SLR) and dynamic line rating (DLR) [6, 7]. A static line rating is

employed in cases where the worst case weather assumptions are used to calculate the

ampacity, while the more flexible dynamic line rating is employed when real time weather

data is used instead [9, 10, 11, 12]. While the DLR relaxes the conservativeness of the

power flow constraints set by the SLR, the direct use of the conductor temperature in

setting the thermal limits results in a higher transmission line loadability [13, 14].

The direct use of transmission line temperature limits in system operation requires

either direct or indirect monitoring of the conductor temperatures [15]. Direct monitoring

could be achieved through the direct measurement of the temperature, sag [16, 17], or

tension [18], while indirect monitoring requires measurements of the conductor current

and weather parameters along the line followed by the use mathematical models that

relate the conductor temperature to the current and weather parameters to estimate the

conductor temperature [15].

Mathematical models that describe the thermal dynamics overhead conductors have

been empirically derived [1, 19] and can be used to estimate the conductor temperature

for a given set of current and ambient weather conditions. In Japan and in many other

countries, the CIGRE model [1] has been adopted for the calculation of conductor temper-

atures, and hence the ampacity. However, the model uses complicated implicit functions

which require iterative calculations in order to find a solution [1]. The nonlinear nature of

these models makes it difficult to explicitly incorporate the thermal characteristics of over-

head conductors in determining optimal operation of power systems e.g. in the solution

to the real-time optimal power flow (OPF) problem.

In this chapter, approximations for the various components of the CIGRE model are

presented. The result is a simplified model which reduces the computational effort when

using conductor temperature directly to set the thermal limits of transmission lines. The

simplified CIGRE model approximates the conductor temperature in steady-state as a

quadratic function of the square of the current in which the constants are determined

explicitly by the weather parameters. The equation is easily extended to the transient

state as a first-order ordinary differential equation (ODE) from which explicit equations

describing the conductor temperature as a function of time can be derived depending on

the change in conductor current.
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4.3 CIGRE model for determining the temperature of an

overhead conductor

The CIGRE conductor temperature model consists of sets of equations describing the

electro-thermal processes acting on an overhead conductor. The individual models are

then combined to calculate the temperature of the conductor [1]. The various processes

result in either conductor heat loss or conductor heat gain. The main thermal processes,

which are illustrated in Fig. 4.1, include heat loss due to radiative cooling; heat loss due

to convective cooling (mainly due to blowing wind); heat gain due to ohmic losses in the

conductor (Joule heat gain); and heat gain due to solar heating. Other processes whose

effects are not as significant and therefore ignored in the final model include heat loss due

to evaporative cooling; heat gain due to magnetic heating; and heat gain due to corona

discharge. The equations used to determine the various heat gain and heat loss terms are

described in the following subsections.

Convective 

Cooling   

PC

Radiative 

Cooling   

PR

Solar 

Heating 

PS

Joule 

Heating 

PJ

Fig. 4.1: Heating and cooling processes in an overhead conductor.

4.3.1 Modeling conductor heating and cooling processes

Radiative heat loss

The conductor heat gain by radiation PR [W/m] is calculated using the Stefan-Boltzmann

equation:

PR = πσBεD
[
(Tc + 273)4 − (Ta + 273)4

]
[W/m] (4.1)

where σB = 5.67×10−8 W ·m−2 ·◦ C−4 is the Stefan-Boltzmann constant, ε is the radiation

emissivity factor, and D [m] is the overall diameter of the conductor.

Convective heat loss

A collection of empirical equations, which have been independently validated by Japanese

utilities [20], is used to determine the convective heat loss PC [W/m] [1]. Generally, PC is

given as:

PC = πλfNu(Tc − Ta) [W/m] (4.2)
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where λf [W/(m ·◦ C)] is the thermal conductivity of air and Nu is the Nusselt number.

The term λf is determined by:

λf = 0.0242 + 0.000072Tf [W/m] (4.3)

where Tf = 0.5(Tc + Ta) [◦C] is the temperature of the air film. Two sets of equations

for Nu are provided that are dependent on the wind speed v [m/s]. At very low wind

speeds v ≈ 0 m/s, the natural convection equation is used, while at higher wind speeds,

the forced convection equation used.

In the case of natural convection, Nu is given by:

Nu = A1 (Gr · Pr)m (4.4)

where the Grashof number Gr and the Prandtl number Pr are:

Gr =
gD3Tx

(Tf + 273)ϑ2
f

(4.5)

and

Pr = 0.715 + 0.00025Tf (4.6)

where g = 9.81 m/s2 is the gravitational acceleration and ϑf
[
m2/s

]
is the kinematic

viscosity of air, and is given as:

ϑf = (1.32 + 0.0095Tf )× 10−5
[
m2/s

]
(4.7)

In (4.4), A1 and m are constants that depend on the product Gr · Pr, as follows:

A1 = 0.85 and m = 0.188 if 102 ≤ Gr · Pr ≤ 104

A1 = 0.48 and m = 0.250 if 104 ≤ Gr · Pr ≤ 106 (4.8)

In the case of forced convection:

Nu = KδB1(Re)n (4.9)

where Kδ is a factor that accounts for the wind direction δ1 and Re is the Reynolds

number. Kδ is given by:

Kδ =

0.42 + 0.68(sin δ)1.08, for 0 ◦ ≤ δ < 24 ◦

0.42 + 0.58(sin δ)0.90, for 24 ◦ ≤ δ ≤ 90 ◦
(4.10)

A plot of Kδ versus sin δ is shown in Fig. 4.2. In the figure, an almost linear relationship

between the two variables is seen. For low wind speeds (v < 0.5 m/s), there is no preferred

wind direction and the value Kδ = 0.55 is used.

The Reynold’s number Re is given as:

Re =
ρrvD

ϑf
(4.11)

where ρr is the relative air density and ρr = ρ/ρ0, where ρ
[
g/m3

]
is the air density at

height y [m] above the sea level and ρ0 is the air density at sea level (y = 0). An empirical

1The wind angle δ is measured as the acute angle between the wind direction and the conductor axis
so that δ = 0◦ for the wind direction parallel to the conductor axis and δ = 90◦ for the wind direction
perpendicular to the conductor axis.
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Fig. 4.2: Plot of the wind direction factor versus sin δ.

equation for ρr is given as:

ρr = exp
(
−1.16× 10−4y

)
(4.12)

In (4.9), B1 and n are constants that depend on Re and the conductor roughness Rf , as

follows:

B1 = 0.641 and n = 0.471, if Re ≤ 2650

B1 = 0.178 and n = 0.633, if Re > 2650 and Rf ≤ 0.05

B1 = 0.048 and n = 0.800, if Re > 2650 and Rf > 0.05 (4.13)

and Rf = 0.5 d/ (D − d), where d is the diameter of the outer layer wires for stranded

conductors.

For wind speeds less than 0.5 m/s, the larger value of Nu between the forced and

natural convection values is chosen, while for higher wind speeds, the forced convection

value is used.

Solar heating

The solar heat gain is calculated as:

PS = αsDS [W/m] (4.14)

where αs is the solar radiation absorptivity factor of the conductor and S [W/m] is the

global solar radiation. Typically, αs varies from 0.23 for bright conductors to 0.95 for

weathered conductors with a value of 0.5 proposed for general estimation purposes[1].

Joule heating

The equation for the Joule heat gain is given as:

PJ = I2
cRac [W/m] (4.15)

where Ic [A] is the ac current flowing through the conductor and Rac [Ω/m] is the ac

resistance. Rac is calculated as:

Rac = R0
ac [1 + α(Tc − Tref )] [Ω/m] (4.16)

Bonface Ngoko 51 Osaka University - July 2018



CHAPTER 4. MODELING TRANSMISSION LINE CONDUCTOR TEMPERATURE

where α [/◦C] is the temperature coefficient of resistance and R0
ac is the ac resistance at

the reference temperature Tref [◦C]. The term R0
ac is given by:

R0
ac = ksR

0
dc [Ω/m] (4.17)

where R0
dc is the per unit dc resistance at Tref , and ks is a factor that accounts for the

skin effect [1].

The CIGRE model uses a constant value ks = 1.0123 for non-ferrous conductors, and a

set of empirical equations to calculate ks that depend on the conductor size, current, and

construction for steel-cored conductors2. Typical ks curves are shown in Fig. 4.3, which

illustrate the non-linear relationship between ks and Ic, especially for small 1- or 2-layer

steel-cored conductors3.
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Fig. 4.3: Relationship between skin effect factor ks and conductor current Ic.

4.3.2 Steady-state and transient-state equations

Steady-state equation

Under steady-state conditions, the conductor is in thermal equilibrium and the conductor

heat gain equals the heat loss. The heat balance equation is thus written as:

PJ + PS = PC + PR [W/m] (4.18)

where PJ , PS , PC , and PR are as given in the preceding sections.

Since PR, PC , and PJ are implicit functions of Tc as seen in (4.1), (4.2), and (4.15),

respectively, it is not possible to write an explicit equation that can be used to solve

for Tc given the weather and loading conditions. Therefore, an iterative algorithm that

searches for the value of Tc that balances the heat gain and heat loss terms is required.

An implementation of such a scheme is illustrated in Algorithm 1. Starting from an initial

guess T initc , the value of the conductor temperature is iteratively updated using the Newton

formula until the change in conductor temperature is less than a pre-set tolerance Tmaxerr .

2Various models in the literature use varying empirical equations to calculate ks, depending on the
power frequency, conductor current, conductor size, and construction [1, 19, 21, 22].

3The equations relating ks to Ic for different conductor types and sizes can be found in [1].
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Algorithm 1 Calculate Conductor Temperature (CIGRE Model)

1: procedure CONDUCTORTEMPCALCCIGRE

2: Tl ← T init
l

3: while |Terr| > Tmax
err do

4: ∆P = PJ + PS − PC − PR

5: Terr ← ∆P
d∆P
dTl

6: Tl ← Tl + Terr

7: end while

8: return Tl

9: end procedure

Transient-state equation

Under non-steady-state conditions, the heat stored in the conductor equals the difference

between the heat gain and heat loss, i.e.:

mc
dTx
dt

= (PJ + PS)− (PC + PR) [W/m] (4.19)

where m [kg/m] is the conductor mass per unit length, c [W · s/ (kg ·◦ C)] is the specific

heat capacity of the conductor, and Tx = Tc − Ta [◦C] is the difference between the

conductor temperature Tc and the ambient temperature Ta. Again, similar to the steady-

state model, an explicit transient-state equation cannot be derived. Therefore, the value

of conductor temperature as either the current or weather parameters change can only be

computed using a discrete form of the transient state equation (4.19), given as:

Tc(t+ ∆t) = Tc(t) + ∆Tc(t) (4.20)

where

∆Tc(t) =
∆t

mc

(
PJ(t) + PS(t)− PC(t)− PR(t)

)
. (4.21)

4.4 Simplified conductor temperature model

As described in Section 4.3, the nonlinear nature of the CIGRE model increases the com-

putational burden when incorporating conductor temperature dynamics in determining

optimal system operation. In order to address this challenge, a simplified form of the

CIGRE model was derived and is described in the following subsections.

4.4.1 CIGRE model simplification

By defining Tx = Tc − Ta as the temperature difference between the conductor and sur-

rounding air, the various components of the conductor thermal equation described in

Section 4.3 are re-written as:

PR = hrTx [W/m] (4.22)

PC = hcTx [W/m] (4.23)

PJ = I2
cRac [W/m] (4.24)

PS = αsDS [W/m] (4.25)
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where hr [W/ (m ·◦ C)] and hc [W/ (m ·◦ C)] are the radiative and convective heat loss

coefficients, respectively. As can be deduced from the various models described in Sec-

tion 4.3, hr, hc, and Rac are dependent on the conductor temperature, which results in the

need for an iterative method to solve for Tc. This section presents approximate equations

of hr, hc and Rac that are independent of Tc, and therefore result in explicit equations for

determining Tc in both the steady and transient states.

Radiative cooling

The radiative cooling equation (4.1) is re-written as:

PR = πσBεD
(
T 3
x + 4T 2

xTA + 6TxT
2
A + 4T 3

A

)
Tx [W/m] (4.26)

where TA = Ta + 273. The radiative cooling coefficient hr can then be given by:

hr = πσBεDγr [W/ (m ·◦ C)] (4.27)

where

γr = T 3
x + 4T 2

xTA + 6TxT
2
A + 4T 3

A

[
(◦C)3

]
. (4.28)

γr is a cubic function of Tx with a minimum value of 4T 3
A at Tx = 0. As an approximation,

since TA >> Tx, the terms 4T 2
xTA and T 3

x in (4.28) can be ignored. An approximate

equation for the radiative cooling coefficient can thus be written as:

h′r = hr0 + pTx [W/ (m ·◦ C)] (4.29)

where hr0 = 4πσBεD(Ta + 273)3 and p = 6πσBεD(Ta + 273)2.

Finally, the radiative cooling equation can be approximated by:

P ′R = hr0Tx + pT 2
x [W/m] (4.30)

Convective Cooling

A general equation for the convective cooling coefficient hc is given as:

hc = K1Kδw
n [W/ (m ·◦ C)] (4.31)

where w = ρDv is the air flow rate across the conductor, Kδ is the wind direction factor,

and K1 and n depend on Ta and v.

In the case of forced convection, Kδ is given by (4.10) and plotted in Fig. 4.2, while

the factor K1 is given by:

K1 =
B1πλf
(ρ0ϑf )n

(4.32)

where the constants B1 and n vary according to (4.13). K1 is clearly a function of Tf

only since λf and ϑf are functions of Tf . The variation of K1 with Tf for different

values of Re and Rf are as plotted in Fig. 4.4, which shows that K1 is almost constant

over the operational range of Tf . This observation means that the convective cooling

coefficient for forced convection is essentially independent of either Tc or Ta. Therefore,

K1 is approximated by a constant in each of the three cases.

As an approximation, the values of K1 corresponding to a Tf value of 100 ◦C are used

in each case. This means that, at an ambient temperature of 40 ◦C, the conductor tem-
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Fig. 4.4: Plot of K1 against the film temperature Tf .

perature would be 160 ◦C, which is well above the maximum allowable temperature limits

of most conductors [23, 24, 25]. The result here is a slightly conservative approximation

of the convective cooling effect on the conductor under normal operating conditions. The

equations for approximating hc in the case of forced convection can then be given as:

For low wind speeds:

h′cfl = 8.74Kδw
0.471 (4.33)

and for high wind speeds:

h′cfh =

13.44Kδw
0.633 if Rf ≤ 0.05

20.89Kδw
0.800 if Rf > 0.05

(4.34)

In the case of natural convection, n = 0, Kδ = 1, and K1 is given by:

K1 = πλfA1 (Gr · Pr)m (4.35)

where A1 and m are dependent on the product Gr · Pr, as given by (4.8). The region

102 ≤ Gr · Pr ≤ 104 corresponds to low values of Tc. Considering the more significant

region 104 ≤ Gr · Pr ≤ 106, (4.35) is re-written as:

K1 = K2D
0.75 (4.36)

where

K2 = πgλfA1

(
gTxPr

(Tf + 273)ϑ2
f

)0.25

. (4.37)

Clearly, K2 is a function of Tx and Ta and the relationship is plotted in Fig. 4.5.

As seen in Fig. 4.5, the factor K2 increases as Tx increases, which shows that the

natural convection cooling effect increases as the difference between the conductor tem-

perature and ambient temperature increases. Then, as an approximation, the value of K2

that corresponds to a Tx value of 20 ◦C (Tc = 60 ◦C for Ta = 40 ◦C) is used. This value is

conservative for high values of Tc, which correspond to large currents and are the more sig-

nificant region in network operation. The approximate equation for the convection cooling
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coefficient under natural convection is thus:

h′cn = 8.1 D0.75 [W/ (m ·◦ C)] (4.38)

Finally, similar to the CIGRE model procedure [1], the approximated coefficient of

convection cooling is taken as the largest between h′cfl, h
′
cfh, and h′cn:

h′c = max(h′cfl, h
′
cfh, h

′
cn) [W/ (m ·◦ C)] (4.39)

and the convective cooling equation can thus be approximated by:

P ′C = h′cTx [W/m] . (4.40)

Solar Heating

As can be seen in (4.14), PS is independent of Tc and hence, because it is straightforward,

the solar heating equation needs no modification.

Joule Heating

The ac resistance Rac and hence the Joule heat gain is dependent on Tc. Furthermore,

the skin effect factor in (4.17) is dependent on Ic, which results in a highly non-linear

relationship between PJ and Ic. As an approximation, the skin effect factor in (4.17)

is approximated by a constant (ks0), which is its value at the static line rating of the

conductor. The ac resistance at the reference temperature Rrefac can then be given by:

Rrefac = ks0R
0
dc [Ω/m] . (4.41)

The ac resistance at the conductor temperature Tc can then be approximated by:

R′ac = Rrefac [1 + α(Tc − Tref )] . (4.42)

Now:

R′ac = Rrefac [1 + α(Tc − Ta + Ta − Tref )]

= Rrefac [1 + α(Ta − Tref )] + α(Tc − Ta)Rrefac
= R′ac(Ta) + αTxR

ref
ac (4.43)
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In (4.43) R′ac(Ta) represents the ac resistance at Tc = Ta (minimum conductor temper-

ature) while αTxR
ref
ac represents the increase in resistance as the conductor temperature

increases above Ta.

4.4.2 Steady-state and transient-state equations

On the basis of the simplified forms of the various components of the conductor thermal

equation given in the preceding subsections, a simplified version of the CIGRE model can

be derived for both the steady- and transient-state cases.

Steady-state equation

In steady-state, the heat gain and heat loss terms are equated, i.e.

hr0Tx + pT 2
x + h′cTx = αsDS +R′ac(Ta)I

2
c + αTxR

ref
ac I

2
c (4.44)

which on re-arrangement gives:

h′0Tx = αsDS +R′ac(Ta)I
2
c + αRrefac TxI

2
c − pT 2

x (4.45)

where h′0 = hr0 + h′c. The Tx variable on the right hand side of (4.45) can be eliminated

using an approximate relationship between Tx and I2
c as follows.

At high values of current, the R′ac(Ta)I
2
c term is much larger than the other terms on

the right hand side of (4.45) and an approximate steady-state equation is written as:

h′0Tx ≈ R′ac(Ta)I2
c . (4.46)

or:

Tx ≈
R′ac(Ta)

h′0
I2
c (4.47)

By substituting (4.47) into the right hand side of (4.45) and re-arranging, the following

equation for T ′c is arrived at:

T ′c = β0 + β1I
2
c + β2I

4
c [oC] , (4.48)

where:

β0 = Ta +
αsDS

h′0
[oC] , (4.49)

β1 =
R′ac(Ta)

h′0

[
oC/A2

]
, (4.50)

β2 =
β1

h′0

(
αRrefac − pβ1

) [
oC/A4

]
. (4.51)

Equation (4.48) is an approximate equation for determining the conductor temperature

in steady-state. It gives T ′c as a quadratic function of the square of the current using the

coefficients β0, β1, and β2, which can be explicitly determined using (4.49)-(4.51) for a

given set of weather parameters. Fig. 4.6 compares the procedures for calculating the

steady-state conductor temperature using the CIGRE and simplified models.

Transient-state equation

An imbalance between the heat gain and heat loss terms results in a change in conduc-

tor temperature, as described by the transient-state equation (4.19). From (4.45), the

Bonface Ngoko 57 Osaka University - July 2018



CHAPTER 4. MODELING TRANSMISSION LINE CONDUCTOR TEMPERATURE

Power flow calculation: 

current estimation

input data:

𝐷, 𝑑, 𝜖, 𝛼𝑠, 𝛼, 𝑇𝑎 , 𝑉, 𝛿, 𝑆, 𝜌

initial guess for conductor 

temperature 𝑇𝑙
0

calculate:

𝑃𝑅, 𝑃𝐶 , 𝑃𝑆, 𝑃𝐽

calculate:
𝑒𝑟𝑟 = 𝑃𝑆 + 𝑃𝐽 − 𝑃𝑅 + 𝑃𝐶

Store value of 𝑇𝑙

𝑒𝑟𝑟 <
𝑚𝑎𝑥𝑒𝑟𝑟?

update 𝑇𝑙 :
𝑇𝑙
𝑘+1

= 𝑇𝑙
𝑘 + 𝑒𝑟𝑟/

𝑑𝑃𝐽

𝑑𝑇𝑙
𝑘
𝑆

−
𝑑𝑃𝑅

𝑑𝑇𝑙
𝑘
−
𝑑𝑃𝐶

𝑑𝑇𝑙
𝑘

stop

start

NO

YES

(a)

Start

power flow calculation: 

current estimation

input data: 

𝐷, 𝑑, 𝜖, 𝛼𝑠, 𝛼, 𝑇𝑎 , 𝑉, 𝛿, 𝑆, 𝜌

determine model 

parameters to calculate 𝑇𝑙

Store value of 𝑇𝑙

Stop

(b)

Fig. 4.6: Algorithm flowcharts for calculating the steady-state conductor temperature (a)
using the CIGRE model and (b) using the simplified model.
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transient-state heat balance equation is written as:

mc
dTx
dt

= αsDS +R′ac(Ta)I
2
c + αTxR

ref
ac I

2
c − h′0Tx − pT 2

x (4.52)

which leads to:

dT ′c
dt

=
h′0
mc

(
β0 + β1I

2
c + β2I

4
c − T ′c

)
. (4.53)

Equation (4.53) is a first-order ODE from which explicit equations of T ′c can be derived,

depending on the nature of the change in the current or weather parameters.

4.5 Mathematical validation

In this section, in an effort to validate the approximations introduced in Section 4.4, the

values of the conductor temperature obtained using the approximate equations (T ′c) are

compared to those obtained using the CIGRE model (Tc). For comparison purposes, two

conductors typically used in the Japanese transmission network [22] are studied: the 160

mm2, 30/7 aluminum conductor steel-reinforced (ACSR) conductor and the 810 mm2, 45/7

thermal resistant aluminum-alloy conductor steel-reinforced (TACSR) conductor. The

conductor parameters are listed in Table 4.1. The ACSR conductor has two aluminum

layers made from hard-drawn aluminum while the TACSR conductor has three aluminum

layers made from aluminum alloy. The difference in the number of layers provides different

resistance characteristics, as illustrated in Fig. 4.3, while the ability of the TACSR to

operate at higher temperatures [24] allows for observation of the model characteristics

in higher temperature ranges. The base values for the ambient weather parameters used

in the calculations, which are also the values used to determine the static line rating, are

listed in Table 4.2. All calculations were performed on a laptop computer with a 2.40-GHz

Intel Core i7 processor running MATLAB 2010a.

Table 4.1: Conductor data [24]

Property [Units] 160 mm2 810 mm2

ACSR TACSR

number of aluminum layers 2 3

overall conductor diameter D [mm] 18.2 38.4

diameter of outer layer conductor d [mm] 2.6 4.8

ac resistance at ref. temp. Rref
ac [Ω/km] 0.1824 0.0373

Temp. coefficient of resistance α [per ◦C] 0.0040 0.0036

absorptivity factor αs 0.5 0.5

emissivity factor ε 0.5 0.5

maximum conductor temperaturea Tmax [◦C] 90 150

heat capacity mc [J/m-K] 525 2185

Static Line Ratingb [A] 471 1942

a These values of Tmax are typical for conductors in the Japanese network[22, 24].

b Ratings calculated using the base weather parameter values are shown in Table 4.2.
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Table 4.2: Base values for weather parameters

Parameter [Units] Value

Ambient temperature Ta [◦C] 40

Wind speed V [m/s] 0.5

Wind angle δ [◦] 45

Global solar radiation S [W/m2] 1000

Relative air density ρr 1.0

4.5.1 Steady-state temperature

Figure 4.7 compares the steady-state conductor temperature T ′c evaluated using (4.48) to

the values of Tc obtained using the CIGRE model for the 160 mm2 ACSR conductor.

The plots on the left show the closeness of fit between the two models while the plots

on the right show the corresponding magnitudes of approximation error (calculated as

error = Tc−T ′c). Algorithm 1 was used to calculate Tc (CIGRE model) with the simulation

parameters: T initc = Ta and Tmaxerr = 0.1 ◦C. In Figs. 4.7(a), 4.7(b), 4.7(c), and 4.7(d), the

values of the wind speed, ambient temperature, wind direction, and solar radiation were

varied, respectively. In all four cases, the values of the other weather parameters were as

given in Table 4.2. Similar plots for the 810 mm2 TACSR conductor are provided in Fig.

4.8. Generally, the plots show that the approximate equation yields values of T ′c that are

almost identical to the values of Tc obtained using the CIGRE model.

The error plots show that the difference in the magnitudes of conductor temperature

obtained using the two models is in the range of −10◦C to +3◦C over the normal opera-

tion ranges of the conductors. Points corresponding to the maximum allowed conductor

temperatures under the normal and emergency operating conditions are also indicated on

the error plots. In the case of the smaller 160mm2 conductor, the error is slightly greater

than zero for large currents. This is the result of an underestimation of the line resistance

from (4.43) which is illustrated in Fig. 4.9. In the case of the larger 810mm2 TACSR

conductor, the approximation errors are mainly negative implying a conservative approx-

imation. The magnitude of the error is less than 10◦C for conductor temperatures less

than the maximum allowed value of 150◦C. The error is larger (an even more conservative

approximation) for larger conductor temperatures. For both conductors, the case of zero

wind direction displays the largest errors. This is however an extremely special case rep-

resenting weather conditions worse than the worst-case scenario weather conditions used

in determining the static line rating.

The plots in Figs. 4.7 and 4.8 confirm that the steady-state conductor temperature

has an approximate quadratic relationship with the square of the conductor current, as in

(4.48). With zero heating (zero current and zero solar radiation), the conductor steady-

state temperature equals the ambient temperature. This is raised by approximately Ps/h
′
0

for some value of solar radiation, and the constant term β0 in the quadratic equation is

given by (4.49). As the current increases, T ′c increases almost linearly with I2
c with the
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Fig. 4.7: Comparison of the conductor steady-state temperatures and corresponding errors
as calculated using the CIGRE model and as estimated using (4.48) for the 160 mm2 ACSR
conductor while varying: (a) the wind speed; (b) ambient temperature; (c) wind direction;
and (d) solar radiation.
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Fig. 4.8: Comparison of the conductor steady-state temperatures and corresponding errors
as calculated using the CIGRE model and as estimated using (4.48) for the 810 mm2

TACSR conductor while varying: (a) the wind speed; (b) ambient temperature; (c) wind
direction; and (d) solar radiation.
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constant of proportionality approximated by β1, as given by (4.50). However, the increase

in the conductor temperature results in an increase in the resistance and also an increase

in the radiative cooling effect. These two effects are modeled by the two parts of (4.51), i.e.

the increased resistance increases T ′c while the increased radiative cooling effect reduces T ′c

somewhat. As seen in Figs. 4.7 and 4.8, these equations are valid for the typical normal

operational temperature range of the conductors.

The approximations result in the slight differences exhibited in the plots of Figs. 4.7

and 4.8. In order to clearly illustrate the source of the slight differences exhibited in

Figs. 4.7 and 4.8, a comparison of the values of ac resistance from the two models is

presented. Fig. 4.9 compares the ac resistance as calculated using the CIGRE model

and as estimated using (4.42) for both conductors. The plots show that (4.42) produces

larger values of resistance for current values less than the line rating (temperatures less

than maximum allowable temperature). The difference is significantly larger for the 160

mm2 ACSR conductor because the approximation of the reference temperature calculated
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Fig. 4.9: Comparison of the conductor resistance as calculated using the CIGRE model
and as estimated using (4.42) for (a) 160 mm2 ACSR and (b) 810 mm2 TACSR conductors.
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using (4.41) is rather conservative because the maximum value of the skin effect factor is

used. The variation in the skin effect factor is much larger for the two-layered steel-cored

conductor, as seen in Fig. 4.3. The results are shown in Fig. 4.9(a).

Typically, when using weather-based line ratings, a number of weather sensors will

be placed at various locations on a long transmission line and the collected weather data

together with the conductor current data would be fed back to a central energy manage-

ment system. These data would then be used to estimate conductor temperature and

determine the line ratings at the various locations [10]. The most restrictive of these line

ratings would then determine the rating of the entire line. A system that utilizes dy-

namic line ratings will therefore have a large number of monitoring points in the system

and the process of computation of conductor temperature and line ratings would be time

consuming.
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Fig. 4.10: Comparison of the time required to calculate the conductor temperature using
the two models for (a) the 160 mm2 ACSR conductor, and (b) the 810 mm2 TACSR
conductor.
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The main motivation for the model simplification presented in this chapter is thus to

reduce the computational effort in determining the temperatures of overhead conductors in

large networks so as make it easier to incorporate the thermal dynamics of the conductors

into the system operation. This would be especially useful in systems that apply dynamic

line ratings, which allow for higher conductor loadability and hence more efficient and

economic utilization of transmission networks [10, 11]. The time durations required to

run the simulations using the two models are compared in Fig. 4.10. As shown in the

figure, there is a significant reduction in the computation time when using the simplified

model. Note that a log-axis is used for the simulation time axis in Fig. 4.10, and thus, the

CIGRE model takes at least 4.5 times longer than that required by the simplified model

to compute conductor temperature.

4.5.2 Transient-state temperature

Based on (4.53), explicit equations for T ′c as a function of time can be written, depending on

the nature of the current and weather conditions. Assuming that the weather parameters

are constant in the duration t0 ≤ t ≤ t1, and that the conductor temperature at t0 is T 0
c ,

then for a step input current:

T ′c(t) = T ′l1 − (T ′l1 − T 0
c )e−t/τ (4.54)

where T ′l1 is the line temperature at steady-state calculated using (4.48) for the weather

conditions during t0 ≤ t ≤ t1, and τ is the time constant given by:

τ =
mc

h′0
(4.55)

Fig. 4.11(a) compares the 160 mm2 ACSR conductor temperature time response to

a step change in current from 300 A to 500 A as predicted by the CIGRE model given

by (4.20) and as obtained by (4.54). Fig. 4.11(b) shows a similar result for the 810 mm2

TACSR with current increasing from 1,600 A to 2,000 A. In both cases, it is assumed that

the conductor is in steady-state at t < 0 and that the weather conditions are constant

during the simulation period, as given in Table 4.2. The results show that (4.54) provides

a similar time response to that of the CIGRE model, and the approximation error is less

than 1 ◦C and 3 ◦C for the ACSR and TACSR conductors, respectively.

The time constants for the two conductors as calculated by (4.55) are 8.5 min and

20.8 min for the 160 mm2 ACSR and 810 mm2 TACSR conductors, respectively. The

time taken for the temperature increase to reach 63.2% of the maximum temperature rise

for the CIGRE model curves in Fig. 4.11 were 8.3 min and 21.5 min, respectively, which

confirms that the step response equation (4.54) effectively captures the transient response

(rate of temperature change) characteristics of the conductors.

It is noted that discretization of the CIGRE model is required to obtain the CIGRE

plots of Fig. 4.11 as seen from (4.20). Starting from an initial value for the conductor

temperature, Tc is iteratively re-evaluated after every time step to determine the tempera-

ture. The chosen time step must be small (1 s was used in the plots of Fig. 4.11) to obtain

accurate results. However, in the case of the simple model, (4.54) is an explicit equation
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Fig. 4.11: Conductor temperature time response to a step change in the current (a) from
250 A to 450 A for the 160 mm2 ACSR conductor, and (b) from 1,500 A to 1,900 A for
the 810 mm2 TACSR conductor.

of time, which requires only the determination of the constants to directly determine the

temporal evolution of T ′c.

4.6 Experimental validation

In addition to the mathematical validation of the proposed simplified conductor temper-

ature model detailed in Section 4.5, a laboratory based experimental validation was also

carried out and the details are discussed in this section. The temperature of an overhead

conductor typically used in the Japanese network (e.g. at the 66 kV level) was measured

in a wind tunnel environment under different magnitudes of conductor current and am-

bient wind speeds. As discussed here, a comparison of measured conductor temperature

values (for both steady-state and transient-state conditions) with values estimated using

the proposed simplified version of the CIGRE model confirms the validity of the proposed

simplified model.
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4.6.1 Experimental set up

The experiment was carried out in a wind tunnel experiment equipment at a Sumitomo

Electric Industries Limited laboratory in Hitachi City, Ibaraki, Japan. A 160 mm2 ACSR

conductor (about 2.5 meters in length) was placed in the wind tunnel as shown in Figs.

4.12 and 4.13. The conductor temperature was recorded under different magnitudes of

current and wind speeds.

Fig. 4.12: Experimental set-up in wind tunnel

The current was supplied through a 50 Hz transformer and measured with a 500:1

current transformer. A photo of the voltage transformer and the current transformer is

shown in Fig. 4.14(a). The current regulator equipment is shown in Fig. 4.14(b). The

wind speeds applied to the conductor were 0.5 m/s, 2 m/s, and 5 m/s. Wind speed and

ambient air temperature was monitored using a portable thermal anemometer and logged

every 5 seconds. The CT and conductor current was also logged at 5 second intervals.

The conductor temperature was monitored by attaching thermocouples at three points

along the conductor surface. Conductor temperature and room temperature was logged

at 10 second intervals. The conductor was placed at an angle of 45◦ to the wind direction

throughout the experiment as shown in Fig. 4.12. The conductor placement in the wind

tunnel outlet is shown in Fig. 4.15.

4.6.2 Experimental results

Conductor temperature (both steady-state and transient-state) was monitored for various

current and weather conditions. The measured conductor thermal responses were then

compared to calculated values using both the CIGRE and simplified models. The results,

plotted in Fig. 4.16, show that the measured transient response of conductor temperature

is well matched to the response calculated from both the CIGRE model and the simplified

model.

Fig. 4.17 shows the measured steady-state conductor temperature against current and
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Fig. 4.13: Photograph of experimental set-up inside wind tunnel

(a) (b)

Fig. 4.14: Experimental equipment: (a) voltage transformer and current transformer and
(b) current regulator
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Fig. 4.15: Conductor placement in wind tunnel outlet

the values calculated from the full CIGRE model and the simplified model. Fig. 4.17 shows

a good correlation between measured and calculated values though the measured values

are slightly higher for low wind speeds (0.5 m/s and 2.0 m/s) which is also noted in Fig.

4.16. This difference could be explained by both model and experimental errors. Reference

[15] reports errors between measured and calculated values of similar magnitudes. Though

the experimental errors could be due to errors in the original CIGRE model from which

the simplified model is derived, they may also be due to the radiative heating effect of the

electric stove that is not captured by the mathematical models. The heat balance equation

(4.18) implies that, at low wind speeds, radiative cooling has a significant effect on the

steady-state temperature since it is comparable in magnitude to the convective cooling

effect. Heating by the electric stove introduces an opposite radiative heating which has

the effect of raising the conductor temperature thereby explaining why the measured

steady-state conductor temperature values shown in Fig. 4.17 are higher than the model

calculated values. At higher wind speeds (e.g. 5 m/s in Fig. 4.17), the convective cooling

effect is much larger than the radiative cooling effect hence the effect of conductor heating

by the electric stove is negligible. The measured and calculated values of steady-state

temperature are therefore very well matched.

Table 4.3 compares the average values of thermal time constants for the transient

response measured during transition from one set of experimental settings to the next.

For the measurements and the full CIGRE model, the thermal time constant is estimated

as the duration taken for the conductor temperature to change 63.1% from one steady-

state value to the next. Table. 4.3 shows that the proposed simplified model gives lower
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Fig. 4.16: Conductor temperature thermal transient response curves for various current
and weather conditions: (a) 0.5 m/s wind speed, (b) 2.0 m/s wind speed, and (c) 5.0 m/s
wind speed.
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Fig. 4.17: Comparison of measured and calculated steady-state conductor temperature

Table 4.3: Comparison of thermal response time constants

Wind Speed Time constant (minutes)

m/s Measurement CIGRE model Simplified model

0.5 12.4 9.4 8.7

2.0 7.2 5.3 4.9

5.0 4.3 3.1 2.6

thermal time constants. This is because the simplified model was developed from a slightly

conservative point of view resulting in faster conductor temperature rise values during

current transients [26].

4.7 Model application areas

Dynamic line ratings are premised on the idea that, by monitoring ambient weather con-

ditions around a conductor, it is possible to relax the conservative approach taken when

a static line rating is applied. The information on the degree of conductor heating and

cooling obtained from the monitored ambient weather conditions can be used to increase

the loadability of the line thus effectively extending the usage capability. This is especially

so during favorable weather conditions such as periods of high prevailing wind speeds.

The mathematical model presented in this chapter provides a simple way of integrating

conductor thermal dynamics in networks that apply DLR systems. The model simplifies

the conductor thermal equation hence providing a method of estimating overhead conduc-

tor temperature without the need of iterative calculations. It gives a fast and relatively

accurate way of estimating the thermal status of overhead conductors using monitored

ambient weather conditions as inputs. Two specific possible application areas described

next:
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Extension of the optimal power flow (OPF) formulation with explicit conductor

temperature limits

The OPF problem is typically formulated with maximum line current or power limits which

are typically SLR values. In a network that applies DLRs, the conductor thermal equation

could replace the traditional flow limits in the OPF formulation – using a maximum

conductor temperature limit rather than maximum current/power. Instead of using the

full CIGRE model, the proposed model which gives a simple equation relating conductor

current to conductor temperature can be applied. The result is that the complexity of the

OPF problem is not significantly altered.

The proposed steady-state equation is easily differentiable meaning that an extension

of traditional OPF formulation is simple. The convex quadratic equations also alleviate

any convergence issues that may result from the nonlinear CIGRE model equations. The

proposed model therefore allows for computation time savings in the OPF solution during

the determination of conductor temperature using monitored ambient weather data as

inputs.

Application in system security analysis

With DLRs, an overload during a contingency is defined as a conductor having its temper-

ature exceed the maximum allowable temperature after the occurrence of the contingency.

However, because of the conductor thermal inertia effect illustrated by the transient re-

sponse characteristics shown in Fig. 4.16, it takes a few minutes for the conductor tem-

perature to rise from its initial value after an increase in conductor current. The system

operator therefore has a few minutes to alter the system operating points so as to address

the effects of the contingency giving a form of post-contingency corrective control.

The time available for the application of corrective measures could be defined using a

time-to-overload index [27] that would correlate with the severity of the contingency and

form a basis for contingency ranking. In a system with hundreds or thousands of lines,

the proposed model provides a very fast method of carrying out such security analysis and

subsequently developing algorithms for contingency response plans.

4.8 Summary

A simple mathematical model that can be used to estimate the temperature of an over-

head conductor from the current flowing through the conductor and the ambient weather

conditions has been presented in this chapter. The simplified model is derived from approx-

imations of the various components of the CIGRE model for calculating the temperature

[1]. The main contributions of this chapter can be summarized as follows:

1. A step-by-step description of the derivation of the simplified model is given. The

result is an explicit equation that gives the steady-state conductor temperature as a

quadratic function of the square of the current with the polynomial constants depen-

dent on ambient weather conditions and conductor resistance. In the transient-state,

a first-order ODE was derived from which equations describing the conductor tem-
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perature as functions of time can be derived depending on changes in the conductor

current and/or weather parameters.

2. The validity of the simplified model was tested mathematically using two conductors

typically used in the Japanese transmission network. Simulations for the two con-

ductors show that the approximation errors in the simplified model are within 3 ◦C

of the values obtained from the full CIGRE model in both the steady and transient

states. The approximated values of the conductor resistance and transient response

time constant are also very close to those obtained by the full CIGRE model.

3. An experimental validation of the proposed model is also carried out. Results of

the experiments carried out in a wind tunnel environment show a good agreement

between measured and calculated values of conductor temperature in both steady-

state and transient-state.

4. The simplified model is shown to significantly reduce computational effort and com-

putation time in the estimation of conductor temperature. The time required to

arrive at a solution for a single calculation using the CIGRE model is found to be

at least 4.5 times longer than the time required by the simplified model.

The model presented in this chapter is intended to simplify the explicit use of the thermal

characteristics of the overhead conductors in network management systems, such as in

the solutions to real-time optimal power flow problems, system security analysis, and

development of post contingency corrective control algorithms.
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CHAPTER 5

Thermal rating of overhead transmission
lines

5.1 Introduction

This chapter discusses various concepts concerning the thermal rating of overhead trans-

mission lines. The rating of a transmission line (current or power carrying capacity)

can have a considerable effect on power flow within a transmission network. And, with

increased uncertainty and variability in line flows due to IRE sources, a more flexible oper-

ation of the transmission line with respect to the line rating can have a positive impact on

IRE power utilization. Conversely, a conservative approach towards line rating can have

negative impacts including excessive IRE output curtailment or increased operational costs

to cover for the increased uncertainty [1, 2].

In this chapter, first, the concept of a steady-state thermal rating is discussed. These

are the traditional and conservative static line rating (SLR) and the more flexible dynamic

line rating (DLR) [3]. Then, two extensions to the two ratings are proposed. The first

extension, presented in [4], is a short-term transient rating termed the dynamic electro-

thermal rating (DETR) which incorporates both the conductor thermal dynamics and

changes in ambient weather conditions in its calculation. In this way, DETR is able to

include the conductor’s thermal inertia characteristics in the determination of maximum

allowable current and consequently result in loadability limits that are less conservative

than both the DLR and SLR. Simulation results are presented which show that the DETR

would allow for higher fluctuations in conductor current as compared to the DLR and can

therefore be especially useful for conductors that experience large power fluctuations due

to increased IRE sources in the network.

In the second extension, a methodology for the determination of safety factors to

be applied in the calculation of DLR in order to ensure safe operation of transmission

lines is proposed [5]. While DLR results in increased loadability of transmission lines

during weather conditions that are favorable for conductor cooling, there are concerns

over perceived increased risk of violating thermal limits if prevailing ambient weather

conditions are worse than the forecasted values used to calculate the DLR in real-time.

Therefore, it may be necessary to add extra caution on the DLR value in the form of a
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safety factor so that the security of the system is guaranteed. Analyses done using real-

time weather data show significant increases in line loadability even with the application

of the safety factors.

Finally, an assessment of line overload risk in a system with significant IRE genera-

tion is illustrated. The risk assessment methodology uses probabilistic models of ambient

weather conditions around the transmission lines to determine the probability of violating

the maximum conductor temperature limit rather than the traditional maximum con-

ductor current limit. The simplified conductor temperature model detailed in Chapter

4 is used in the risk assessment procedure which results in significant computation time

savings.

5.2 Literature review of transmission line thermal ratings

The thermal rating of an overhead conductor refers to the maximum current that the

conductor can carry without its temperature exceeding a maximum allowable limit. Here,

the maximum allowable limit refers to the conductor temperature that would result either

in excessive sag or in significant loss of the conductor’s tensile strength [6, 7]. For a

given maximum allowable temperature, a conductor’s thermal rating is calculated using

equations that model the electro-thermal processes of the conductor [8, 9] as described in

Chapter 4.

As introduced in Chapter 2, two types of thermal ratings are usually employed for

normal operating conditions i.e. the static line rating (SLR) and the dynamic line rating

(DLR). The DLR is usually re-calculated after pre-set time durations, say every 30 min-

utes, varying the values of the weather parameters along the line as the weather changes.

DLR usually results in significantly higher line loadability and potentially more economical

utilization of transmission networks [7, 10]. This is because prevailing weather conditions

are usually considerably better at cooling the conductor than the weather conditions used

to calculate the SLR. DLR could be particularly useful as networks become more stressed

with increased generation from IRE sources, which increase uncertainties in power network

line flows [2, 7, 11].

An aspect of the conductor thermal dynamics that is not captured in the calculation

of either the SLR or the DLR is the conductor thermal inertia [12, 13, 14]. This is

the characteristic that conductor temperature transients are slower than variations in

current. Because changes in conductor temperature are relatively slower than changes in

current, large fluctuations in conductor current may not necessarily result in conductor

temperatures exceeding maximum temperature limits if the fluctuations last for a short

duration of time as could be the case in networks with large amounts of IRE sources,

especially where the IRE sources are concentrated over small geographical areas.

The conservativeness in conductor cooling with which SLRs are calculated ensures that

the risk of violating thermal limits is reduced to values below certain risk standards set

by the system operator. This, coupled with typical N-1 reliability criteria, means that

overhead conductors are typically used well below their actual thermal ratings. However,
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although the SLR is conservative, it is the most reliable rating system for present power

system operators, given its long use in many countries.

The main counterargument against DLRs is that there is a perceived increased risk

of violating thermal limits, which is particularly worrisome where line loadability limits

are set by minimum ground clearances [15]. The increased risk from DLRs is because

meteorological parameters have significant levels of uncertainty, which, if not properly

accounted for in determination of the DLR, could result in calculated ampacity values

higher than the actual line limits [7]. The use of probabilistic methods to forecast DLRs

has been explored by several researchers [16, 17, 18] with such studies focusing mainly

on the forecasting of ambient weather conditions across the transmission lines in weather

based DLR systems.

5.3 Steady-state transmission line ratings

5.3.1 Static and dynamic line ratings

Referring to the steady-state heat balance equation (4.18), by making current Ic the sub-

ject of the formula, the steady-state current rating of a transmission line Issmax is obtained

from:

Issmax =

√
PC(Tl,max) + PR(Tl,max)− PS

Rac(Tl,max)
[A] (5.1)

where Tl,max is the maximum allowable conductor temperature.

Issmax will be referred to as the static line rating (SLR) if a set of conservative, worst-

case weather conditions are used to calculate the line rating. The conservative approach

ensures that the probability of conductor temperatures reaching the maximum allowed

values are very low even if the conductor continuously carries the SLR current. The

standard values of weather parameters used to calculate the SLR in Japan were given in

Table 4.2.

If, on the other hand, the prevailing real-time weather conditions are used to calculate

the line rating, then Issmax will be the dynamic line rating (DLR). The DLR is re-calculated

after pre-set time durations, say every 30 minutes, varying the values of the weather

parameters along the line as the weather changes. The DLR is therefore more flexible and

usually less conservative than the SLR though it requires constant monitoring of weather

conditions at regular time intervals.

5.3.2 Influence of weather parameters on line rating

Since the components on the RHS of (5.1) are heavily dependent on prevailing weather

conditions, the steady-state line rating varies widely depending on the values of the weather

parameters. To illustrate the dependence of ampacity on weather parameters, a 160mm2,

30/7 ACSR conductor whose parameters were given in Table 4.1 is used. Fig. 5.1 shows

how the value of ampacity varies with the various weather parameters. For each plot,

other than the parameter whose sensitivity is being illustrated, the other parameters are

kept constant at their reference values of Table 4.2. Ampacity increases from the static
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rating of 471 A for a wind speed of 0.5 m/s to 932 A for a wind speed of 6 m/s (a 98%

increase). Ambient temperature and wind angle of attack also have significant effects on

ampacity while the effect of global solar radiation is comparatively lower. The influence

of each weather parameter on line loadability is summarized in Table 5.1.
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Fig. 5.1: Variation of conductor ampacity with different weather parameters

Table 5.1: Line rating sensitivity to changes in ambient weather conditions

Parameter Range Line rating sensitivity

per unit maximum effect

ambient temperature +40◦C to −20◦C +0.8% per −1◦C 48%

solar radiation 1 kW/m2 to 0 kW/m2 +0.8% per −0.1 kW/m2 8%

wind speed 0 m/s to 15 m/s +14% per +1m/s 210%

wind direction 0◦ to 90◦ +0.5% per +1◦ 45%

5.4 Dynamic electrothermal rating

One way of incorporating conductor thermal inertia in determining loadability is to use

temperature explicitly to set line flow limits as proposed in [12, 13]. Alternatively, the

thermal inertia effect could be directly included in the determination of ampacity. In this

section, the latter approach is illustrated by introducing a short-term dynamic thermal

rating, referred to as the dynamic electro-thermal rating (DETR), that would incorporate

the conductor thermal inertia characteristic in its calculation.
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5.4.1 Concept of transient-state rating

Both the SLR and DLR are calculated for steady-state conditions. However, in conductors

which experience large fluctuations in current, conductor temperature may not necessar-

ily reach the steady-state values predicted by the current for short-duration fluctuations

because of the thermal inertia effect. Fig. 5.2 shows the conductor temperature time

response to a step change in current from 400 A to 600 A as determined by the CIGRE

model for the weather conditions: Ta = 25◦C, V = 0.5 m/s, δ = 45◦, S = 1 kW/m2, and

ρr = 1. The value of 25◦C for ambient temperature is more realistic than the 40◦C used

to calculate the SLR. This is also the value that is typically used to set the SLR during

winter in Japan.
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Fig. 5.2: Conductor temperature thermal response to a step change in current from 400
A to 600 A

The DLR corresponding to the simulation conditions in Fig. 5.2 is 544 A. The final

conductor temperature of 600 A in Fig. 5.2 is therefore higher than the DLR. However,

it takes 10 minutes for conductor temperature to rise and surpass the maximum set value

of 90◦C. Therefore, if the 600 A current was sustained for less than 10 minutes, there

would be no danger of the conductor temperature exceeding the set thermal rating –

an illustration of the conductor thermal inertia effect. The overhead conductor thermal

inertia effect can be used to allow for loading levels higher than those set by traditional

ampacity settings – whether static or dynamic.

Therefore, a short-term ampacity setting, hereinafter referred to as the dynamic electro-

thermal rating (DETR), is proposed. DETR is defined as the current that, if sustained for

a given duration td on a conductor initially carrying a current I0 at steady-state, results

in the conductor temperature rising to the maximum allowable value at the end of the

specified duration. A step increase in current due to fluctuation in the output of IRE

sources represents the worst case scenario in terms of the effect on increase in conductor

temperature. Thus, if the DETR is defined based on a step-change in current, then it

would in effect be able to cater for any other less severe types of variation in conductor

current.
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Once again, consider the conductor whose characteristics are specified in Table 4.1

initially carrying 300 A at steady-state with the weather conditions given as: Ta = 25◦C,

V = 0.5 m/s, δ = 45◦, S = 1 kW/m2, and ρr = 1. The initial conductor temperature

is then calculated as 49◦C. A step change in current would result in the time responses

shown in Fig. 5.3 depending on the magnitude of the final current. From this result it is

seen that a step current of 746 A results in the temperature increasing to the maximum

setting (90◦C) after 5 minutes. The 5-min DETR for this conductor would then be 746 A.

For these weather conditions, the DLR is calculated as 544 A. The 5-min DETR is thus

37% higher than the DLR. Both values are obviously significantly higher than the SLR of

453 A.
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Fig. 5.3: Conductor temperature step-response to different values of current over a 5-min
period.

Using the CIGRE model for conductor temperature [8], an iterative algorithm is used

to determine the DETR (Idetrmax). The algorithm, which takes the weather conditions, initial

current I0, and DETR time-step td as inputs, is technically a line search on the magnitude

of step current that results in conductor temperature reaching the maximum allowed

temperature in a given duration td. The value of the DETR obviously depends on the

duration considered. Fig. 5.4 shows the 5-min DETR, 10-min DETR, and 15-min DETR

as a function of I0 for different wind speeds (the most important factor in determining

ampacity). As seen from the figure, DETR approaches the DLR as the DETR duration

increases i.e. approaching steady-state.

Increase of IRE sources in power networks has led to increased fluctuations in current

flowing in the network conductors. The magnitude and frequency of fluctuations increase

with increase in the share of IRE sources. Because of these fluctuations, short-duration

increases in current could be picked up by power system protection equipment as overloads

and could cause unnecessary tripping of lines. While these short-lived increases in current

could result in current increasing above set ampacity limits, because they might last for

a short duration (up to a few minutes), they may not necessarily result in conductor

temperature increasing above the thermal limits. The DETR would allow for a better

accommodation of such fluctuations.
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Fig. 5.4: DETRs for different values of wind speed.

5.4.2 Simulation with fluctuating PV generation

The application of DETR in allowing for higher current fluctuations in power lines is

illustrated using the simple two-bus system shown in Fig. 5.5.

G1 PV

LOAD

21

Fig. 5.5: Two bus system with a PV generator at the load bus.
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The load at bus 2 is fed by a locally connected large-scale PV system with the deficit

supplied from the sending end bus. For simplicity, the load is assumed constant while

actual monitored 1-minute global solar irradiation data is used to simulate the power

output of the PV system. As the PV system output fluctuates with input irradiation,

conductor current also fluctuates. The conductor characteristics are given in Table 4.1

and the weather conditions for the simulation period are assumed constant as: Ta = 25◦C,

V = 0.5 m/s, δ = 45◦, S = 1 kW/m2, and ρr = 1.

The conductor current profile, shown in Fig. 5.6, shows gradually increasing conductor

current with three major fluctuations around 14:12, 14:30, and 14:50. Other than the

traditional SLR and DLR limits, Fig. 5.6 also shows three DETR limits (5-min DETR,

10-min DETR, and 15-min DETR). The simulation results show that during all three

spikes, conductor current exceeds the DLR and in practice would require partial load

curtailment to keep the line current within the thermal limits. However, the DETR limits

totally or partially allow the current spikes. In the case of the the 5-min DETR, current

curtailment would only be required for the third current spike. Generally it is concluded

that DETR allows for more fluctuations in current.

The explanation on why DETR allows for the fluctuations is reinforced by the cor-
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Fig. 5.6: Fluctuating conductor current with various thermal limits.
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Fig. 5.7: Evolution of conductor temperature for the current fluctuations in Fig. 5.6.
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responding plot of conductor temperature shown in Fig. 5.7. The plot shows that, for

the first two spikes in current, despite the current magnitude momentarily surpassing the

DLR, conductor temperature remains safely below the 90◦C limit because of the thermal

inertia effect. However, during the third spike, conductor temperature is very close to the

limit and hence the DETRs will be essentially equal to the DLR. The necessary current

curtailment for the different thermal limits is shown in Fig. 5.8.
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Fig. 5.8: Necessary current curtailment with different thermal limits.

In conclusion, the dynamic electro-thermal rating (DETR) is a short-term thermal

rating that incorporates the overhead conductor thermal inertia characteristic in its cal-

culation. Simulation results show that DETR gives higher ratings than the traditional

DLR especially when applied for short durations such as 5 or 10 minutes. For this reason,

DETR could be especially useful in allowing short duration fluctuations in current as a

result of increased integration of IRE sources in power networks.

5.5 Secure transmission line operation with dynamic line

ratings

An approach that incorporates DLR-type uncertainties into the conventional SLR criteria

can take advantage of the economic benefits of DLRs without increasing the risk of violat-

ing thermal limits. Uncertainties can be handled by applying safety factors to forecasted

values of real-time DLRs to ensure levels of rating violation risk similar to those achieved

by the application of SLR.

In this section, a methodology for the determination of such safety factors based on an

analysis of line rating forecasting errors for both steady-state and transient-state ratings

is presented. The value of the safety factor applied depends on the certainty with which

ambient weather conditions can be forecasted. Simulation results show that a quantitative

determination of safety factors based on allowed risk levels can guarantee safe operation of

overhead lines while achieving the significant increases in conductor loadability associated

with DLRs.
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5.5.1 Illustration of operational risk with line ratings

The nature of the operational risks introduced by dynamic line ratings is illustrated here

using conductor rating calculations for a typical transmission level conductor and using

actual monitored weather data. The characteristics of the 160mm2 ACSR conductor

are given in Table 4.1. The weather data obtained from the Japanese Meteorological

Agency (JMA) consists of ambient temperature, wind speed, and solar irradiation data

at a temporal resolution of 1 minute for the year 2010. The measurement site is in

Osaka, Japan (latitude 34◦40.9′N; longitude 135◦31.1′E). Fig 5.9 shows one-year profiles

of ambient temperature, solar radiation, and wind speed, at a temporal resolution of 5

minutes, averaged from the 1-minute data. In the calculations, a constant wind direction1

of 45◦ is assumed. This is because wind direction is a highly variable parameter that is also

rather difficult to measure accurately. Also, wind direction meters give only the horizontal

direction component, yet wind direction is a three-dimensional vector. In Fig. 5.9, values

of the weather parameters used to calculate the SLR are also shown as dotted lines. The

SLR is usually a very conservative value intended to ensure a very low probability of

violating thermal ratings even if the conductor continuously carries the rated current.

Fig. 5.10 shows the evolution of conductor temperature while continuously carrying

the SLR current. It is deduced that, even when continuously carrying the SLR current, the

probability of conductor temperature reaching the maximum allowable value (in this case

90◦C) is very low. For this data set, there are only 3 instances out of 105,120 (0.0029%)

in which the conductor temperature is greater than maximum allowed value, and all of

them occur during summer when ambient air temperature and global solar radiation are

relatively high.

The less conservative DLR is calculated using prevailing (real-time) weather param-

eters, which results in higher line loadability during favorable weather conditions and

thus a more economical use of the transmission system, especially if implemented on lines

operating very near their thermal limits [6].

Using the values of weather parameters and conductor temperature shown in Figs. 5.9

and 5.10, the conductor’s DLR is calculated for the entire year and is shown in Fig. 5.11.

The SLR current is also shown in Fig. 5.11, which demonstrates that the real-time rating

could be up to 3.5 times the SLR. The higher ratings as a result of DLR mean that the

conductor could be more heavily loaded during the periods of higher ratings. This could

present economic benefits in system operation, including better contingency management

and increased utilization of renewable energy sources [7].

5.5.2 Determining safety factors to minimize overload risk

Forecasting of weather conditions

The real-time line rating is calculated ahead of time and the values so obtained are used

to determine the operation schedule of the transmission system. However, it is impossible

to know the weather conditions ahead of time. The line rating is therefore calculated

1Wind direction refers to the acute angle between the direction of the wind and the conductor axis.
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Fig. 5.9: Year-long profiles of: (a) ambient temperature; (b) solar radiation; and (c) wind
speed (5-minute temporal resolution).
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Fig. 5.10: Year-long profile of conductor temperature when continuously carrying the SLR
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Fig. 5.11: Year-long profile of conductor thermal ratings when continuously carrying the
SLR current.
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using forecasted values of weather parameters [7]. If it were possible to perfectly forecast

ambient weather conditions, the actual line rating as depicted in Fig. 5.11 could be used.

However, even very short-term forecasts have a degree of uncertainty.

A very simple model [19] for forecasting the value of a given weather parameter X is

adopted here as:

E [X(t)] =
1

∆t

t0∑
tx=t0−∆t

X(tx), t0 < t < t0 + ∆t (5.2)

Equation (5.2) means that the expected value of weather parameter X during the fore-

casting horizon (set as ∆t minutes from the last observation) is the average value of X

measured over the last ∆t minutes. For example, if the average wind speed over the past 5

minutes was 2 m/s, this value is used to calculate the line rating over the next 5 minutes.

Similarly, if the average wind speed over the past 30 minutes was 2 m/s, this value is used

to calculate the line rating over the next 30 minutes. The rating obtained using forecasted

values of weather parameters is termed the forecasted conductor rating, Ifmax, and will

be different from the actual conductor rating, Imax, if the actual values of the weather

parameters are different from the forecasted values.

Note that more complicated forecasting models [16, 17, 18, 19] can be used here to

achieve better forecasts especially for longer-term forecasting horizons. Such models would

include not only temporal fluctuations but also spatial extrapolations when the weather

station is located far from the transmission line.

Safety factors for real-time ratings

If the prevailing weather conditions are worse (in terms of conductor cooling) than the

forecasted weather conditions, then the forecasted rating will be higher than the actual

line rating, and vice versa. A case in which Imax is higher than Ifmax represents a safe

operation of the line, while the case in which Imax is lower than Ifmax represents a risky

operation of the line since it would mean that the actual weather conditions are worse than

the forecasted conditions. Hence, if the line current is equal to Ifmax during the forecasted

period, the conductor temperature will be higher than the maximum allowed temperature.

Figs. 5.12 (a) and (b) show plots of forecasted line ratings against actual line ratings for

5-minute and 30-minute ratings, respectively2. The plots also show the line Ifmax = Imax.

Points below the line Ifmax = Imax represent safe operation of the line while points above

represent risky operation of the line.

A normalized thermal rating forecasting error κ is defined as:

κ =
Imax − Ifmax

Imax
(5.3)

A negative value of κ indicates a risky operation of the line, as the actual line rating is

lower than the forecasted line rating, while a positive value of κ suggests a safe operation

2The thermal time constant of the study conductor ranges from about 2 minutes at high wind speeds
to 14 minutes at lower wind speeds so that the 5-minute rating is essentially a transient rating while the
30-minute rating is a steady-state rating. The thermal response characteristics will vary depending on the
size and type of conductor.
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Fig. 5.12: Forecasted line rating against actual line rating for: (a) 5-minute DLR; and (b)
30-minute DLR.

of the line. The normalized thermal rating forecasting error was calculated for the entire

year (for both 5-minute and 30-minute forecasts), and Figs. 5.13(a) and (b) show the

probability distributions of κ for the two cases. In Fig. 5.13(a), the 0.1 percentile3 value

of κ for the 5-minute DLR is indicated as κ.1% = −0.164. This implies that, for the data

set, 99.9% of the time, the normalized rating error is greater than −0.164. This value can

be used to determine a safety factor that would ensure that the applied real-time rating

is lower than the actual rating 99.9% of the time. The 0.1 percentile value of κ for the

30-minute DLR is indicated in Fig. 5.13(b) as κ.1% = −0.325.

For safe operation of the line, the following formula is used to calculate the real-time

line rating IRTmax:

IRTmax = max
(
ISLR , γI

f
max

)
(5.4)

where γ is the real-time rating safety factor. From (5.4), if Ifmax is lower than ISLR/γ,

3The 0.1 percentile value is used here to illustrate a very conservative approach to setting the line
rating. Applicable risk levels will depend on the standards adopted by the system operator.
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Fig. 5.13: Probability distribution of normalized rating forecasting error for: (a) 5-minute
DLR; and (b) 30-minute DLR.

then the static line rating should be used as the real-time rating; otherwise, the forecasted

rating should be multiplied byγ to give IRTmax.

In the case where the forecasting errors have been analyzed as depicted in Figs. 5.12

and 5.13, an applicable safety factor is determined by:

γ =
1

1− κβ%
(5.5)

where κβ% is the β percentile value of the normalized rating forecasting error. As an

example, using the κ.1% value indicated in Fig. 5.13(a), γ = 1/1.164 = 0.86. For the

30-minute DLR, γ = 1/1.325 = 0.75.

5.5.3 Illustrative example

Fig. 5.14 illustrates the application of real-time dynamic line ratings using safety factors.

Fig. 5.14(a) shows the evolution of the ambient weather conditions for a 24-hour period

(at 5-minute temporal resolution). 5-minute and 30-minute DLRs are calculated using

(5.4) and (5.5) updated every 5 minutes. Fig. 5.14(b) shows the two DLRs calculated

Bonface Ngoko 90 Osaka University - July 2018



5.5. SECURE TRANSMISSION LINE OPERATION WITH DYNAMIC LINE RATINGS

0 2 4 6 8 10 12 14 16 18 20 22 24
10

15

20

25

T
a [o C

]

0 2 4 6 8 10 12 14 16 18 20 22 24
0

3

6

9

V
 [m

/s
]

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.4

0.8

1.2

S
 [k

W
/m

2 ]

Time of Day

DATE: 15 MAY 2010

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24

1.0

1.5

2.0

2.5

3.0

Li
ne

 R
at

in
g 

[fr
ac

tio
n 

of
 S

LR
]

Time of Day

 

 
actual line rating
5−min DLR
30−min DLR
SLR

(b)

Fig. 5.14: Illustration of: (a) weather conditions and (b) line ratings for a 24-hour period.
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Fig. 5.15: Line rating duration curves showing extra line capacity from DLR.
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while applying the safety factor γ = 0.86 for the 5-minute DLR and γ = 0.75 for the

30-minute DLR. The actual line rating and the static line ratings are also shown.

The plots of Fig. 5.14 show that application of the safety factors reduces the chances

of using a real-time line rating that is higher than the actual line rating. However, the

applied line rating is still, in most cases, higher than the static line rating. It is also noted

that the 5-minute rating (transient rating) is significantly higher than the 30-minute rating

(steady-state rating). This is because of the conductor’s thermal inertia, which allows for

relatively larger fluctuations in line current.

The extra line capacity resulting from the DLR is quantified for the whole year, and

Fig. 5.15 shows the rating duration curves for both the 5-minute and 30-minute DLRs.

The area between the DLR and the SLR curves represent the extra available line capacity

(EALC) due to DLR. For the data set used in these simulation, the 5-minute DLR results

in a 77% increase in line capacity while the 30-minute DLR results in a 33% increase in

line capacity at a 0.1% risk level.

5.5.4 Consideration of forecasting uncertainties

The values of the safety factors obtained from (5.5) are a consequence of the uncertainties

in the forecasts of weather parameters. The results discussed in this section describe un-

certainties due to temporal variations in weather conditions. However, such uncertainties

could also be due to [7]:

◦ spatial variations between the location of the weather station and the relevant trans-

mission line

◦ errors in measurements of weather parameters and conductor current

◦ errors in the mathematical model used to estimate conductor temperature.

It is thus noted that an implementation of real-time dynamic line ratings would require a

thorough assessment of these uncertainties and relatively accurate monitoring systems so

as to minimize any risks that may result from application of such ratings.

5.6 Transmission line overload risk assessment based on a

simplified conductor temperature model

The fluctuations inherent in IRE generation leads to increased fluctuations in power flowing

through the transmission system. This increased variability increases the risk of trans-

mission line overload i.e. the probability of violating the transmission line’s thermal rat-

ings. In this section, an assessment of line overload risk in a system with significant IRE

generation is illustrated. The risk assessment methodology uses probabilistic models of

ambient weather conditions around the transmission lines to determine the probability of

violating the maximum conductor temperature limit rather than the traditional maximum

conductor current limit. The application of the simplified conductor temperature model

presented in Section 4 in the risk assessment procedure results in significant computation

time savings.
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CONDUCTOR TEMPERATURE MODEL

5.6.1 Line overload risk assessment procedure

Usually, the transmission line rating is specified as a maximum current (ampacity) value

calculated as the steady-state current that would result in the maximum conductor tem-

perature for given ambient weather conditions. The static line rating (SLR) is calculated

for worst-case weather conditions while the dynamic line rating (DLR) is calculated for

real-time (short-term forecasts) weather conditions [6]. The transmission line overload

would then refer to an occurrence in which the conductor current exceeds the pre-defined

ampacity. However, conductor manufacturers define the conductor thermal limit as a max-

imum operating temperature limit rather than an ampacity value. If the ambient weather

conditions in which a conductor is operating are monitored, then it is possible to estimate

the conductor temperature and therefore determine line overload directly from the tem-

perature value rather than from the current value. Therefore, the risk of transmission line

overload is defined here as the probability of the conductor temperature exceeding the

maximum allowed value.

This is achieved through Monte Carlo simulations of current flowing through a trans-

mission line with varying ambient weather conditions. Conductor temperature is then

calculated for each scenario. The probability distribution of conductor temperature is

obtained from the results and the risk of transmission line overload is determined as the

percentage of all scenarios in which the conductor temperature exceeds the maximum

allowed value.

5.6.2 Illustrative example

The simple two-generator, two-bus test system shown in Fig. 5.16 is used to illustrate the

line overload risk assessment. A 230 kV transmission line connects the two buses. The

line is constructed using an 810 mm2 TACSR conductor that is commonly used in the

Japanese transmission network. The conductor parameters are shown in Table 4.1.

G1 G2

PV

LOAD

230 kV

$20/MWh $30/MWh

900 MW
0.9 lag power factor

200 MWp

1 2

Fig. 5.16: Two-generator, two-bus test system with load and PV generator.

As shown in Fig. 5.16, in addition to the two thermal generators at the two buses, a

PV source is also connected to bus 1. The fluctuations in PV output are assumed to be

covered by the more expensive thermal generator at bus 2 so that the PV power output

fluctuations propagate as power flow fluctuations in the transmission line.

The solar radiation probabilistic model presented in Chapter 3 and [20] was used

to generate fluctuations in PV generation. Similarly, probabilistic models for ambient
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temperature and wind speed were developed4 and assumed for the weather conditions

around the transmission line. Fig. 5.17 shows the probability distributions of 15-minute

ahead forecasted weather conditions where the expected values of ambient temperature,

wind speed, and solar radiation are 25◦C, 1.2 m/s and 704 W/m2 respectively. Under

these weather conditions, the line DLR is 2433 A (25% higher than the SLR of 1942 A).
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Fig. 5.17: Probability distributions of 15-minute ahead forecasted weather conditions.

The line overload risk assessment is started from a deterministic optimal power flow

(DOPF) solution. Two DOPF solutions are considered: i) using the SLR and 2) using

the DLR. With the SLR, the lower line ampacity means that the cheaper generator G1

is restricted to 632 MW while G2 is scheduled at 162 MW. However, with the DLR G1

is scheduled to supply the entire system net load (plus losses) of 813 MW while G2 is

scheduled at 0 MW i.e. G2 is used only for reserve purposes. The line overload risk

assessment is then carried out by Monte Carlo simulations – running 20,000 scenarios of

PV generation and ambient weather conditions around the conductor.

Two power flow models and two conductor temperature models are considered. For

the power flow models, either the full ac power flow model or a linear power flow model

is used. In the linear power flow case, the nonlinear power flow equations are linearized

around the original DOPF solution. For the conductor temperature model, either the full

CIGRE model [8] or the simplified model [21] is used.

Figs. 5.18(a) and (b) show the obtained conductor temperature probability distribu-

tions under the SLR and DLR respectively. As expected, the plots show that the conductor

temperatures are higher with the DLR. All four simulation models give relatively similar

probability distribution curves. Table 5.2 shows that the risk of line overload is higher with

the DLR as compared to the SLR. The simplified model however gives slightly higher over-

load risk values because the simplified model is constructed from a slightly conservative

point-of-view [21]. Table 5.3, compares the risk assessment computation time for each of

the four simulation cases and shows significant computation time savings when the linear

power flow model and the simplified conductor temperature models are used.

The relationship between line rating and line overload risk is illustrated by running

4The probabilistic models were developed using actual single geographical point data taken from a
weather station located in Osaka, Japan
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(a)

(b)

Fig. 5.18: Probability distributions of conductor temperature without generation re-
dispatch for (a) SLR and (b) DLR.

Table 5.2: Probability of transmission line overload

Simulation AC power flow Linearized power flow

conditions CIGRE model Simplified model CIGRE model Simplified model

SLR < 0.01% 0.02% < 0.01% 0.02%

DLR 9.11% 10.50% 9.09% 10.44%

Table 5.3: Comparison of computation time (in seconds)

Simulation AC power flow Linearized power flow

conditions CIGRE model Simplified model CIGRE model Simplified model

SLR 109.8 80.2 34.6 5.8

DLR 107.9 81.8 35.2 6.2
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the risk assessment procedure for different values of line rating. An effective line rating

Ieff
max is defined as:

Ieff
max = ISLR

max + γ

(
IDLR

max − ISLR
max

)
(5.6)

where ISLR
max and IDLR

max are the SLR and the DLR respectively, and γ is the line rating

safety factor. By varying γ between 0 and 1, Ieff
max varies between the SLR and the DLR.

The variation of line overload risk with line rating is shown in Fig. 5.19. Also shown in

Fig. 5.19 is the expected thermal generation costs illustrating the trade-off between line

overload risk and operational costs. Fig. 5.19 suggests that, using an acceptable value of

line overload risk, the system operator can vary the system power generation costs.
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Fig. 5.19: Variation of line overload risk and thermal generation cost with line rating.

5.7 Summary

Several concepts concerning the thermal ratings of an overhead transmission line are dis-

cussed in this chapter. These can be summarized as follows:

1. A short-term dynamic thermal rating termed the dynamic electro-thermal rating

(DETR) that incorporates the overhead conductor thermal inertia characteristic

is presented. Simulation results show that DETR gives higher ratings than the

traditional DLR especially when applied for short durations such as 5 or 10 minutes.

DETR could therefore be especially useful in allowing short duration fluctuations in

current as a result of increased integration of IRE sources in power networks.

2. A methodology for determining DLR safety factors to ensure that forecasted line

ampacity is not higher than actual line ampacity is presented. Simulation results

show that even with the application of such safety factors, real-time ratings (DLR)

still result in significant increases in line loadability. However, care should be taken

to ensure that all sources of uncertainty are included in the determination of DLR

safety factors.

3. A methodology for assessment of the risk of overhead transmission line overload

is illustrated. The application of a simplified conductor temperature model and a

linear power flow model in the risk assessment procedure gives significant savings
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in computation time. The methodology is proposed for application in a fast risk

assessment algorithm within a probabilistic optimal power flow environment.

Each of the above approaches are intended to provide a new way of setting thermal ratings

of overhead transmission lines. The main conclusions are that real-time ratings of overhead

conductors based on real-time monitoring of ambient weather conditions can result in

significant benefits and, as seen in Fig. 5.19, the risk of line overload can be regulated by

varying the line rating.
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CHAPTER 6

Optimal system operation with dynamic
line ratings and intermittent renewable
generation

6.1 Introduction

This chapter presents a new formulation of the optimal power flow (OPF) problem consid-

ering uncertainty costs due to the IRE sources and explicit conductor temperature limits

calculated from monitored ambient weather conditions. The thermal characteristics of

monitored overhead conductors are incorporated into the OPF formulation using the sim-

plified conductor temperature model presented in Chapter 4. A key difference with the

classical OPF formulations is that the proposed formulation considers not only the cost of

conventional generation, but also the costs due to uncertainty of IRE sources in the power

system. A detailed analysis and discussion of the effects of monitored weather conditions

on generation scheduling and related costs is also presented.

6.2 Literature review of optimal power system operation

with IRE and DLR

As outlined in Chapter 2, environmental concerns, government support, and advances in

technology render intermittent renewable energy (IRE) sources economically viable, re-

sulting in steady increases in their proportions in electric power networks [1]. While the

advantages of these green energy sources are numerous, one of the main operational chal-

lenges is the high uncertainty in their output. Forecasts of the power available from the

IRE sources used for establishing the system-generation schedules are generally character-

ized by uncertainty levels that are higher than typical in traditional load and generation

forecasts [2]. This increased uncertainty in the available generation necessitates the op-

eration of relatively more expensive, fast-acting spinning reserves to substitute for the

generation shortages in real time, which result from the overestimation of the available

IRE power in the system [3, 4].

Energy management, i.e., economic dispatch (ED), unit commitment (UC), and op-

timal power flow (OPF) in networks with significant proportions of generation from IRE
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sources require mechanisms for handling the increased uncertainty owing to the intermit-

tency of these sources. Practically, this can be realized in two ways: The first approach

involves the application of stricter reserve requirements to ensure generation adequacy,

even with large overestimations of the IRE output [5, 6]. The reserve requirements can

be set deterministically for worst-case forecasting conditions or stochastically, considering

the statistical distribution of the IRE forecasts [7]. Alternatively, a risk-based approach,

which adds an IRE-output uncertainty-related cost in the problem objective function, can

be adopted. Several risk-based energy management approaches have been proposed in lit-

erature, utilizing stochastic programing techniques [8, 9], chance-constrained approaches

[10, 11, 12], and robust optimization [13, 14]. While the underlying formulations and so-

lution approaches may differ, the IRE uncertainty (risk) cost increases with the increase

in the scheduled IRE output; the cost curve being dependent on the IRE source statis-

tical characteristics (expected value and variance of the IRE output; and the statistical

distribution of the forecasting error).

In addition to affecting the operational costs, increased IRE generation alters the line

flows in a power system, which in turn increase the probability of violating the thermal

limits of the transmission lines [15]; this mostly occurs in networks where the IRE sources

are concentrated at particular locations in the system. Traditionally, highly conservative

approaches are used in setting the line-flow limits; the maximum conductor current (or

power) is calculated assuming poor cooling conditions (low wind speeds and high ambient

temperature) [16, 17]. The resultant rating, referred to as the static line rating (SLR),

can be expensive because it may restrict the use of certain transmission paths carrying

power from cheaper generation sources. Additionally, this may impact the scheduled IRE

generation, which is characterized by near-zero fuel costs.

Ambient weather conditions around overhead transmission lines have a significant im-

pact on conductor cooling and consequently, on their thermal limits [18, 19, 20]. Therefore,

the conservativeness enforced by the SLR approach can be relaxed by monitoring the am-

bient weather conditions around the conductor and by utilizing this data to estimate the

conductor temperature and loadability. An approach in which line rating (in terms of

power or current carrying capacity) is continuously varied based on monitoring of prevail-

ing weather conditions is referred to as dynamic line rating (DLR) [16, 21].

It has been variously demonstrated that the less conservative approach of setting trans-

mission line loadability based on conductor monitoring can results in benefits for both sys-

tem operators and electricity consumers. Reference [22] shows that DLR could increase

area-to-area transmission capacity thereby impacting electricity prices and benefiting elec-

tricity consumers. Reference [23] demonstrates reductions in the optimal system operating

costs based on a solution of the conventional UC problem with DLR. Reference [21] il-

lustrates an increase in the utilization of wind power owing to increased loadability of

a transmission line connected to a wind farm. Similar results are reported by [24] who

demonstrate that more wind power can be integrated into the grid with reduced load

and IRE generation curtailments. The explicit incorporation of the overhead-conductor

thermal characteristics in power system energy management tools is illustrated in [25],
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under the concept of electro-thermal coupling (ETC). The authors extend their work by

illustrating possible practical applications of ETC in [26].

While the potential benefits are clearly apparent, a challenge exists in the direct use

of the conductor temperature limits in the solution of the OPF and UC problems because

of the complex, nonlinear nature of the equations that model the heat transfer processes

acting on the conductor. In [27] the problem complexity is reduced by ignoring the varia-

tions of conductor heating and cooling rates with temperature. Similarly, in [25] and [26]

constant conductor heating and cooling rates are assumed resulting in an over-simplified

formulation though the simulations illustrate the benefits of DLR. Additionally, formula-

tions that study the link between IRE integration and relaxed transmission line ratings

such as [24] assume perfect IRE forecasts thereby neglecting costs due to the uncertainty

of the IRE sources.

This chapter deals with the formulation and solution of the OPF problem considering

uncertainty costs due to the IRE sources and explicit conductor temperature limits calcu-

lated from monitored ambient weather conditions. The simplified conductor temperature

model described in detail in Chapter 4 is used to simplify the integration of the conductor

thermal characteristics in the traditional OPF model. Numerical simulations conducted on

a typical test system demonstrate the effects of the IRE uncertainty costs and the economic

benefits of conductor-temperature monitoring, based on the OPF solutions. In addition,

sensitivity analyses illustrate the dependence of the obtained generation schedules on the

IRE uncertainty costs and the monitored conductor temperature.

6.3 Conductor temperature calculation

The simplified conductor temperature model described in Chapter 4 and in reference [28]

is used to simplify the calculation of conductor temperature within the OPF calculations.

The steady state equation is re-written here as:

Tc = β0 + β1I
2
c + β2I

4
c , (6.1)

where Tc is the conductor temperature, Ic is the conductor current, and β0, β1, and β2 are

model constants [28].

Equation (6.1) expresses Tc as an explicit quadratic function of the square of the

current, where the model constants β0, β1, and β2 are dependent only on the weather

parameters and the electrical and physical characteristics of the conductor. The validity

of the approximate model in approximating the conductor temperature is discussed in

detail in [28].

6.4 OPF problem formulation with IRE sources and con-

ductor temperature limits

The traditional OPF problem formulation aims to minimize the thermal generation cost

in a power system, while meeting the operational constraints, including the generator-

output limits, bus-voltage magnitudes, and line flows in terms of the maximum current

Bonface Ngoko 103 Osaka University - July 2018



CHAPTER 6. OPTIMAL SYSTEM OPERATION WITH DYNAMIC LINE RATINGS AND
INTERMITTENT RENEWABLE GENERATION

(or equivalent maximum power) [29, 30]. In this chapter, the traditional OPF problem

formulation is extended to include the costs accounting for the IRE output uncertainty and

an explicit use of the maximum conductor temperature, where the conductor temperature

is estimated using the monitored ambient weather data and the current magnitudes. The

determination of the IRE uncertainty costs is outlined, followed by its integration into the

OPF formulation.

6.4.1 Costing uncertainty due to intermittent renewable energy sources

In terms of power generation costs, IRE sources operate at nearly zero variable costs

because the operating fuel (solar/wind energy) is free. Owing to the low marginal costs

of the IRE sources compared to those of the thermal generators, any optimal solution

based on the operating costs will schedule the IRE sources at the maximum possible

value; the usual practice being to schedule the forecasted (expected) value. The main

operating cost relating to IRE sources then arises from the fact that the available IRE

power may be less than scheduled due to unpredictability. The uncertainty of the IRE

sources has to be covered by reserve generation that is typically more expensive than the

conventional generation. In a manner similar to the fuel costs of thermal generators, the

cost of covering for IRE uncertainty can be used to decide on an optimal value for the

scheduled IRE generation.

The approach proposed in [31] is used here to model the IRE uncertainty costs. Let

f(pr) be the probability distribution of the actual output pr of an IRE source and Pr

be the scheduled value. If the actual IRE generation is lower than the scheduled value

(pr < Pr), generation reserves have to be operated to cover for the shortfall due to the

overestimation which will incur an associated IRE overestimation cost. On the other

hand, if at the time of operation, actual IRE generation is higher than the scheduled value

(pr > Pr), the system operator may have to either curtail the extra IRE power due to

underestimation, or by fast re-dispatch reduce the amount of power bought from thermal

generation incurring a penalty cost for loss of revenue for generation companies. These

actions can be modeled by an IRE underestimation cost [31].

If a constant unit cost for IRE overestimation κo [$/MWh] is assumed and similarly,

a constant unit cost for IRE underestimation κu [$/MWh] is assumed, then the expected

cost due to IRE uncertainty Cr will be given by:

Cr (Pr) = κopro + κupru [$/h] (6.2)

where pro [MW] and pru [MW] are the expected values of the IRE overestimate and

underestimate respectively and are dependent on Pr i.e.:

pro =

Pr∫
0

(Pr − pr) f (pr) dpr

Pr∫
0

f (pr) dpr

(6.3)
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and

pru =

Pmax
r∫
Pr

(Pr − pr) f (pr) dpr

Pmax
r∫
Pr

f (pr) dpr

(6.4)

Consider an IRE resource whose probability distribution is as shown in Fig. 6.1. The

values of pro and pru for a scheduled value Pr will be as shown. The variation of IRE

uncertainty costs with scheduled IRE generation for different values of the mean IRE

forecast and forecast error standard deviation will be as shown in Fig. 6.2. The IRE

uncertainty cost curves depend on the cost coefficients κo and κu as shown in [31].
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Fig. 6.2: IRE uncertainty cost curves (κo = 1 and κu = 0.1).

Fig. 6.2 shows that the IRE uncertainty cost increases as the scheduled IRE output

increases with the cost coefficients κo and κu dictating the nature of the curve. However,

as the magnitude of the scheduled IRE-source output increases, the portion of the system

load accounted for by conventional generators decreases, resulting in a reduction in the

conventional generation costs.
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6.4.2 Problem formulation and solution methodology

The AC OPF problem with IRE sources and conductor temperature constraints is formu-

lated as

min
Pgi, Prj

∑
i∈G

Cgi (Pgi) +
∑
j∈R

Crj (Prj) . (6.5)

Subject to:

Pgi + Pri − Pdi =
∑
j∈Ωi

YijViVj cos (θij − δi + δj) , ∀i ∈ N (6.6)

Qgi −Qdi =
∑
j∈Ωi

YijViVj sin (θij − δi + δj) , ∀i ∈ N (6.7)

I2
ij =

V 2
i + V 2

j − 2ViVj (cos δi − cos δj)

R2
ij +X2

ij

, ∀i, j ∈ N (6.8)

Tc,ij = β0,ij + β1,ijI
2
ij + β2,ijI

4
ij , ∀ij ∈ L (6.9)

Pmingi ≤ Pgi ≤ Pmaxgi , ∀i ∈ G (6.10)

0 ≤ Pri ≤ Pmaxri , ∀i ∈ R (6.11)

V min
i ≤ Vi ≤ V max

i , ∀i ∈ N (6.12)

Ta,ij ≤ Tc,ij ≤ Tmaxc,ij , ∀ij ∈ L. (6.13)

In (6.5)–(6.13), i and j are the bus indices, N is the set of indices of all the buses, G and

R are the sets of bus indices with connected thermal and IRE generators, respectively and

Ωi is the set of bus indices for the buses connected to bus, i. ij is a network-branch index

for a branch connecting buses i and j, and L is the set of all transmission-line indices.

Pdi and Qdi are the real and reactive power demands, respectively, at bus i; Pgi and Qgi

are the scheduled real and reactive power outputs, respectively, of the thermal generator

at bus, i; Pri is the scheduled power output of the IRE source connected to bus, i. V min
i

and V max
i are the minimum and maximum voltage magnitudes, respectively, at bus, i; Rij

and Xij are the resistance and reactance, respectively, of the network branch connecting

buses i and j; Yij and θij are the magnitude and angle, respectively, of the impedance

of the branch connecting buses i and j; Vi and δi are the voltage magnitude and angle,

respectively, at bus, i, and Ic,ij is the magnitude of the current flowing between buses i

and j.

The objective function (6.5) is a sum of the generation cost of the conventional genera-

tors and the total uncertainty cost owing to the IRE sources. The IRE-source uncertainty

cost for a generator at bus i is given by (6.2), while a quadratic cost function is assumed

for the thermal generators, as follows:

Cgi (Pgi) = a0i + a1iPgi + a2iP
2
gi, (6.14)

where a0i, a1i, and a2i are the cost function coefficients for the thermal generator connected

to bus, i.
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Constraints (6.6) and (6.7) represent the active and reactive power balances at bus

i, respectively. The square of the magnitude of the current flowing through the branch

connecting buses i and j is obtained from (6.8), which is used in (6.9) to determine the

temperature of the conductor connecting buses i and j. Constraints (6.10)–(6.13) represent

the physical limits for each of the decision variables.

It is to be noted that a constant conductor resistance value, Rij , is used in the determi-

nation of I2
c,ij in (6.8). Although the resistance of the conductor varies with the conductor

temperature, since the reactance, Xij , is generally much larger than Rij , the effect of the

variation in resistance with temperature can be neglected.

6.5 Numerical simulations

In this section, the performance of the OPF formulation with IRE sources and explicit

conductor-temperature limits is investigated using a modified version of the IEEE 30-bus

benchmark system [32, 33]. The bus and branch data for the system is given in Appendix

D. The nonlinear optimization problem described by (6.5)–(6.13) is solved using the MAT-

LAB interior point solver (MIPS) available in the MATPOWER package [34]. The solution

approach leverages the existing architecture in MATPOWER, which is generally used for

solving power-flow and optimal-power-flow problems, with extensions to deal with the ex-

tra decision variables (scheduled outputs of the IRE sources) and the conversion of the

branch flow constraints from maximum current/power to maximum temperature, using

the simplified version of the heat balance equation described in Chapter 4. The interior

point solver MIPS requires the first and second derivatives of the objective function in the

solution algorithm [34].

6.5.1 Test system

The configuration of the modified IEEE 30-bus test system in Fig. 6.3 shows that the

system has 41 branches, i.e., 36 transmission lines and 5 transformers. The transmission

network is operated at two nominal voltage levels: 132kV on the upper- side of the three

main transformers and 33kV on the lower side. All the conductors are assumed to be

160mm2 ACSR overhead conductors; their data are listed in Table 6.1. The maximum

conductor temperature of 90◦C corresponds to an SLR of 471A (107MVA for the 132kV

lines and 27MVA for the 33kV lines). Six conventional generators are located at buses

1, 2, 13, 22, 23, and 27, as shown in Fig. 6.3, with the generator data as given in Table

6.2. The generator cost coefficients are scaled from the 1997 data given in [33] to give

more realistic energy costs and the maximum generator limits are increased by 50% to

enable the simulation of a more heavily loaded system. Similarly, load levels 50% higher

Table 6.1: 160 mm2 ACSR conductor data [35]

Property D [mm] R20◦C
ac [Ω/km] α [/◦C] Tmax

c [◦C] SLR [A]

Value 18.2 0.1711 0.004 90 471
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Fig. 6.3: Modified IEEE 30-bus test system.
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Fig. 6.4: IRE source probability density functions.

Table 6.2: Conventional generator data

Bus Cost Coefficients Generator Limits

# a0 [$/h] a1 [$/MWh] a2 [$/MW2h] Pmin
g [MW] Pmax

g [MW]

1 0 10.00 0.1000 0 120

2 0 8.75 0.0875 0 120

13 0 15.00 0.1250 0 60

22 0 5.00 0.3125 0 75

23 0 15.00 0.1000 0 45

27 0 16.25 0.0417 0 80
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than the magnitudes given in [32] are applied. In addition to the conventional generators,

three IRE sources are introduced, which are located at buses 5, 14, and 24. The random

IRE-source outputs are assumed to follow a Weibull distribution [36] with probability

distributions as shown in Fig. 6.4. Using an assumption of no cost for IRE curtailment, the

underestimation cost coefficient κu is set to zero while the overestimation cost coefficient

κo is set to $80/MWh in the base case simulation, for each of the three IRE sources. Since

κu = 0, the rest of the discussion refers to κo simply as the uncertainty cost coefficient.

6.5.2 Simulation cases

The OPF problem with IRE sources and explicit conductor-temperature limits for the

described test system is solved for three simulation cases.

Case A The conventional OPF problem, which uses worst-case weather conditions to

set the conductor thermal limits and neglects the IRE uncertainty costs in the problem

formulation, is solved. In this case, the IRE sources are scheduled at their forecasted

(expected) outputs and the corresponding IRE uncertainty costs are determined from the

OPF solution. The use of the worst-case weather conditions to calculate the conductor

temperature is equivalent to the use of SLRs.

Case B In this case, the IRE uncertainty costs are considered, i.e., the outputs of the

IRE sources are optimization decision variables. When compared to Case A, these results

demonstrate the effect of including the IRE uncertainty costs on the scheduling decisions.

As with Case A, worst-case weather conditions are assumed for all the overhead conduc-

tors.

Case C This case is similar to Case B but it is assumed that the ambient weather condi-

tions on line 21–22 are monitored. A wind speed value of 2m/s and an ambient temper-

ature of 25◦C are used in the simulations. This case shows the effect of using monitored

weather conditions on the scheduling of both conventional generation and IRE sources.

6.5.3 Simulation results

The OPF problem was solved for the three cases and the obtained optimal solutions are

presented in Tables 6.3, 6.4, and 6.5, and Fig. 6.5. Table 6.3 compares the obtained

optimal objective function values for the three simulation cases, whereas Table 6.4 lists

the corresponding generation schedules for both conventional generators and IRE sources.

The transmission line connecting buses 21 and 22 is the only conductor operated at its

temperature limit in all the three cases; Table 6.5 compares the current, power flow,

conductor temperature, and congestion shadow price (CSP) corresponding to line 21-22.

Fig. 6.5 shows the locational marginal prices (LMPs) at each of the system’s 30 buses.

The CSP, µij , associated with the line connecting buses i and j, is the ratio of the

incremental change in the objective function value to that in the constraint limit. In this

case, the maximum conductor temperature is the limiting constraint; hence, the unit is

$/h·◦C. If the constraint is binding, µij has a non-negative value; else, it is zero. Then,
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Table 6.3: OPF solution - objective function values [$/h]

Case A Case B Case C
Difference

B−A C− B

Gen. Cost 4356.68 4551.43 4365.09 +194.75 −186.35

IRE Cost 589.34 350.15 419.33 −239.19 +69.17

Obj. Fcn. Value 4946.02 4901.59 4784.41 −44.43 −117.17

Table 6.4: OPF solution - generation schedules [MW]

Case A Case B Case C
Difference

B−A C− B

Pg1 63.94 63.68 55.49 −0.26 −8.19

Pg2 80.92 81.40 71.72 +0.48 −9.68

Pg13 32.42 33.04 27.51 +0.62 −5.53

Pg22 11.59 14.74 27.41 +3.15 +12.67

Pg23 19.29 21.82 25.82 +2.53 +3.99

Pg27 52.80 56.76 57.64 +3.96 +0.88

Total Pg 260.95 271.44 265.58 +10.49 −5.86

Pr5 5.00 4.22 3.84 −0.78 −0.38

Pr14 10.00 8.29 7.84 −1.71 −0.44

Pr24 15.00 7.01 11.56 −7.99 +4.56

Total Pr 30.00 19.52 23.24 −10.48 +3.72

Table 6.5: OPF solution - operating condition of line 21–22

Case A Case B Case C
Difference

B−A C− B

Current [A] 469.3 469.3 717.3 0 +248.0

Power [MVA] 25.8 25.8 42.7 0 +16.9

Tc [◦C] 90.0 90.0 86.8 0 −3.2

CSP [$/h·◦C] 3.72 3.14 0 −0.58 −3.14
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Fig. 6.5: Comparison of the LMPs at all the buses for the three simulation cases.

the marginal cost at bus, i, due to the congestion on line, ij, is given by

MCcongestion,iji = µij
∂Tc,ij
∂Pdi

, (6.15)

where ∂Tc,ij/∂Pdi is the incremental change in the temperature of conductor, ij, due to

an additional unit of power demanded at bus, i. µij is a system congestion metric and

has the effect of increasing the system cost because a non-zero value of µij indicates that

the objective function value would be reduced, if the corresponding congestion constraint

was not binding. The LMP at bus i is the marginal cost of supplying the next increment

of electric power demanded at a given bus, without violating any operational constraint.

MCcongestion,iji is a component of the LMP.

Effect of the IRE uncertainty costs

A comparison of the values corresponding to Cases A and B in Tables 6.3 and 6.4 shows

that the inclusion of the IRE uncertainty costs in the objective function alters the genera-

tion schedules and the corresponding costs. This result can be obtained from the column

corresponding to the differences between Cases B and A (5th column). Here, the scheduled

IRE generation is reduced in Case B, thereby reducing the associated uncertainty costs.

Although the scheduled outputs of the thermal units are subsequently increased, the net

result is a 0.9% (44.43 MW) reduction in the objective function value of the optimal

solution in Case B.

Although the scheduled outputs of all the three IRE sources are reduced in Case B,

compared to Case A, it is seen that the reduction is relatively larger at bus 24, compared

to buses 5 and 14. The percentage reductions in the scheduled IRE generation are 15.4%,

17.2%, and 53.3% at buses 5, 14, and 24, respectively. This is attributed to the differences
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in the LMPs at the three buses. As seen from Fig. 6.5, the LMPs at buses 5 and 14

(approximately $23/MWh) are higher than that at bus 24 (approximately $17/MWh).

Thus, the unit IRE uncertainty cost of $80/MWh is 4.7 times higher than the electricity

cost at bus 24; however, it is only 3.5 times higher than the costs at buses 5 and 14,

rendering it relatively cheaper to operate IRE sources at buses 5 and 14, compared to bus

24. Hence, the reduction in the scheduled IRE generation at bus 24 is higher than those

at the other two buses.

A comparison of the temperature of the monitored conductor (line 21-22) in Table 6.5

shows that despite the differing schedules in Table 6.4, the line is operated at its maximum

allowable temperature in both Cases A and B, carrying the SLR current1. However, there

is a reduction in the CSP from $3.72/h ·◦ C in Case A to $3.14/h ·◦ C in Case B. This

reduction implies that the marginal cost of increasing the system demand is lower in Case

B than in Case A, translating to a reduction in the objective function value observed in

Table 6.3.

Effect of conductor-temperature monitoring

A comparison of the results of Cases B and C in Table 6.5 demonstrates that favorable

conductor-cooling conditions (higher wind speed and lower ambient temperature) reduce

the conductor temperature, enabling more power to flow through the conductor, before

the maximum permitted conductor temperature is attained. As seen from Table 6.5,

although line 21-22 carries 65% more power in Case C than that in Case B, it operates

at a temperature (86.8◦C) that is lower than the maximum permissible value. Therefore,

better conductor-cooling conditions have an effect of reducing the conservativeness of the

maximum conductor-temperature constraint enforced on the line in the solutions of Cases

A and B. As the maximum conductor-temperature limit constraint is not binding in Case

C (the temperature of line 21-22 is lower than the maximum 90◦C), the CSP corresponding

to this case is zero.

The effect of the relaxation of the conductor thermal-limit constraint on the OPF

problem optimal solution and generation schedules is observed in Tables 6.3 and 6.4. The

reduced congestion in line 21-22 enables increased generation from the relatively cheaper

thermal generators at buses 22, 23, and 27, and reductions in the scheduled outputs of

the more expensive generators at buses 1, 2, and 13. Similarly, the scheduled output

of the IRE source at bus 24 is increased, whereas those at buses 5 and 14 are reduced.

The variation in the scheduled IRE sources at different buses results in an increase in the

scheduled IRE generation in the system, which increases the associated IRE risk costs, as

observed in Table 6.3. However, this is compensated by a reduction in the conventional

generation and the net result is an overall 2.4% (117.17 MW) reduction in the objective

function value. This reduction is a measure of the benefit of monitoring the temperature

of the constrained line.

1The current of 469.3 A, corresponding to the maximum conductor temperature in Table 6.5 is
marginally lower than the SLR of 471.1 A (Table 6.1) because the simplified conductor temperature model
used in the OPF formulation is slightly conservative with respect to the original CIGRE model.
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6.5.4 Sensitivity analysis

The simulation results described above are dependent on the values of the various parame-

ters used in the calculations. In this section, we analyze the OPF-solution sensitivity with

respect to the IRE-uncertainty-cost coefficient and the values of the monitored ambient

weather conditions (ambient temperature and wind speed).

Effect of the IRE Uncertainty cost coefficient

The OPF problem was solved again, varying the IRE uncertainty cost coefficient from

$30/MWh–$150/MWh; the effect on the scheduled IRE generation and objective function

value is shown in Figs. 6.6(a) and 6.6(b), respectively. From Fig. 6.6(a), it can be

observed that the scheduled IRE generation reduces as the value of κo increases. This

is expected because an increase in κo increases the risk costs associated with the IRE

sources, indicating a more conservative approach in the scheduling of the IRE sources.

For κo values greater than $120/MWh, zero IRE generation is scheduled. Fig. 6.6(a) also

demonstrates that the scheduled IRE generation in Case B is more than that in Case C
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Fig. 6.6: Effect of the IRE-source uncertainty cost coefficient on the scheduled IRE gen-
eration and OPF objective function value.
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for the IRE source at bus 24, whereas the converse is true for buses 5 and 14. This is

because the LMP at bus 24 is increased by the relaxation of the thermal constraint on line

21-22 in Case C, whereas the LMPs at buses 5 and 14 are reduced, rendering the relative

cost of IRE generation lower at bus 24, and higher at buses 5 and 14.

Fig. 6.6(b) shows the effect of κo on the obtained objective function value. In Case A,

as the IRE generation is scheduled at the expected value, the IRE uncertainty costs in-

crease linearly with κo, whereas the thermal generation costs remain constant. Therefore,

the objective function value also increases linearly with κo. In Cases B and C, the sched-

uled IRE generation reduces as κo increases. The resulting increase in thermal generation

is greater than the reduction in the IRE uncertainty costs; hence, the objective function

values increase steadily to a maximum value, corresponding to the point of zero scheduled

IRE generation. The curve corresponding to Case C is lower than that corresponding to

Case B, indicating the effect of relaxing the maximum conductor temperature constraint

on line 21-22.

Effect of the monitored ambient weather conditions

The effect of the ambient weather conditions (ambient temperature and wind speed) on

the OPF problem solution was analyzed by the OPF problem again, for various values of
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Fig. 6.7: Effect of the measured ambient temperature around line 21-22 on the scheduled
IRE generation and OPF objective function value.
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Fig. 6.8: Effect of the measured ambient wind speed across line 21-22 on the scheduled
IRE generation and OPF objective function value.
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the ambient temperature and wind speed across line 21-22. The effect of the monitored

ambient temperature on the scheduled IRE generation is shown in Fig. 6.7(a). The plot

shows that the scheduled IRE generation at bus 24 is more significantly affected by the

value of the ambient temperature, compared to the schedules at buses 5 and 14. At bus

24, the scheduled IRE generation increases as the ambient temperature reduces, whereas

the converse is true at buses 5 and 14 to a lesser degree. As observed from Fig. 6.7(b), the

overall effect on the objective function value is a reduction, as the ambient temperature

decreases. As seen from Fig. 6.8, similar results are obtained with the variation in wind

speed. The scheduled IRE generation at bus 24 increases with the increase in wind speed

across the monitored conductor; the effect is inverse on the IRE generation at buses 5

and 14. The objective function value reduces as the wind speed increases up to the point,

where the maximum conductor temperature constraint is no longer binding.

The operational cost owing to the congestion of line 21-22 is measured by the value

of its CSP, µ21−22. Fig. 6.9 shows the variation in µ21−22 with the monitored ambient

weather conditions, i.e., the ambient temperature, Ta and the wind speed, υ. Fig. 6.9

shows that the CSP and hence, the system congestion costs due to the congestion on this

line reduce as the conductor cooling conditions improve (Ta reduces and υ increases). At

Ta = 40◦C, µ21−22 reduces from $3.14/h·◦C at SLR weather conditions to zero, for wind

speeds higher than 3.0 m/s. The wind speeds corresponding to the zero congestion costs

are even lower, as the ambient temperature decreases.

Computational performance and problem scalability

When compared to the classical OPF solution [34], the problem formulation proposed

in this chapter adds extra decision variables in the form of scheduled IRE generation at

various buses. In terms of operational constraints, line flow limits for transmission lines

whose ambient cooling conditions are monitored require an extra computation of conductor

temperature based on ambient weather conditions. Other than the system size (number

of buses, conventional generators etc) these extensions add to the problem complexity. An

analysis of the complexity in terms of computation time, simulation Case C was run for

different number of IRE sources and monitored lines. Table 6.6 shows the average time

taken by a single iteration of the interior point algorithm used to solve the optimization

problem. As deduced from Table 6.6, simulation time increases as the number of IRE

Table 6.6: Average iteration computation time for different number of IRE sources and
monitored transmission lines (×10−2 sec)

No. of
monitored lines

No. of IRE sources

3 6 9 12

5 1.41 2.36 3.60 4.31

10 1.45 2.41 3.74 4.63

15 1.58 2.60 3.92 4.89

20 1.64 2.76 4.11 5.18
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sources and monitored transmission lines increase. The number of IRE sources has a

larger influence on the simulation time because the numerical evaluations of the integrals

and derivatives takes a longer time. Also, the simplified line temperature model makes

evaluations related to the line temperature constraints much faster. The average time

taken to run an iteration is shown since different operating conditions converge after

different number of iterations. Typically, the simulations whose results are shown in Table

6.6 converged in 10 to 15 iterations.

The scalability of the proposed OPF model to larger systems was tested by running

simulations for larger systems i.e. modified versions of the IEEE 118-bus and the PEGASE

1354-bus test systems [37]. In the simulations, IRE sources are introduced in 10% of the

buses and the 5% most heavily loaded lines are monitored. The simulation times are

shown in Table 6.7. As expected, computation time increases as the network size increases.

However, even the PEGASE 1354-bus test system with 1,991 branches takes only about

30 seconds to converge. All calculations were performed on a laptop computer with a

2.40-GHz Intel Core i7 processor running MATLAB 2010a.

Table 6.7: Computation time for systems of different sizes

Test System
No. of

conventional
generators

No. of
IRE

sources

No. of
monitored

transmission
lines

No. of
iterations

Computation
time per

iteration [sec]

IEEE 30− bus 6 3 2 12 0.014

IEEE 118− bus 54 12 9 16 0.116

PEGASE 1354− bus 260 135 100 38 0.835

6.6 Remarks on scheduling with conductor temperature con-

straints

6.6.1 Influence of conductor resistance - temperature dependence

In the problem formulation proposed in this chapter, a constant value of conductor resis-

tance is used in the power flow equations (6.8) even though the resistance of a conductor

is dependent on its temperature. In the simulations, the resistance value corresponding

to the SLR current is used as a conservative approach. A constant value of Rij is used

in (6.8) because current is only slightly dependent on resistance – and hence only slightly

dependent on conductor temperature – since Xij is typically much greater than Rij . The

effect of this approximation is quantified by re-solving the OPF problem (Case C ) while

incorporating the conductor resistance–temperature dependence in the simulations. This

is done using an algorithm that iteratively updates the values of conductor resistance af-

ter each OPF solution until the largest change in conductor temperature after successive

iterations is less than a pre-defined threshold (set at 0.1◦C). Table 6.8 shows the objec-

tive function values and simulation times for the cases with and without the conductor
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resistance-temperature dependence. As seen from the results, the incorporation of conduc-

tor resistance-temperature dependence in the problem formulation considerably increases

the simulation time without significantly altering the objective function values.

Table 6.8: Effect of conductor resistance-temperature dependence on OPF solution

Simulation Case C
Constant

resistance in
power flow

Resistance−
temperature

dependence in
power flow

Difference (%)

Gen. Cost [$/h] 4365.09 4360.32 −0.11%

IRE Cost [$/h] 419.33 416.01 −0.79%

Obj. Fcn. Value [$/h] 4784.41 4776.33 −0.17%

Simulation Time [sec.] 0.172 0.850 +394.2%

6.6.2 Use of forecasted ambient weather conditions

In the simulations presented in this chapter, conductor temperature calculations are done

using fixed values of wind speed, wind direction, ambient temperature, and solar radiation.

Since OPF calculations are run prior to operation, such values will be forecasted values

which – in a manner similar to generation by IRE sources – will exhibit uncertainties.

The use of expected values of ambient weather parameters could therefore yield overly

optimistic results meaning that care has to be taken with these values. Generally speaking,

such uncertainties can be handled in one of two ways: i) safety factors could be applied on

the values of the weather parameters used to give a slightly more conservative approach but

not as conservative as the use of the SLR. The values of such safety factors would require

a prior quantification based on an analysis of the forecast errors; ii) the OPF problem

formulation could be modified to a risk based formulation where the risk of transmission

line overload is either added as a penalty to the objective function or as a risk constraint.

6.6.3 Problem complexity in extended formulations

The OPF problem formulation presented in this chapter is for a single period OPF problem

– typically solved in the short-term (e.g. hour-ahead time period) – whereby the committed

generation units are known and IRE forecasts errors are relatively small. An extension of

the problem formulation to a multi-period framework that introduces generator ramping

limits and binary turn-on and turn-off variables will render the problem non-convex and

more difficult to solve. Other newer electricity market characteristics such as combined

energy and reserve market clearing, multi-period pricing, and flexible ramping units would

add to the problem non-convexity.

Bonface Ngoko 118 Osaka University - July 2018



6.7. SUMMARY

6.7 Summary

A new OPF formulation incorporating power generation from IRE sources and explicit

maximum conductor-temperature limits was developed and is presented in this chapter.

The simplified conductor temperature–current model presented in Chapter 4 was used to

easily incorporate the conductor thermal characteristics in the OPF problem formulation.

Numerical simulations on standard test systems demonstrated that the IRE sources uncer-

tainty costs and ambient weather conditions across critical conductors significantly affect

the optimal schedules obtained from the solution of the OPF problem. In general, the

main contributions can be summarized as follows:

1. The thermal characteristics of monitored overhead conductors are incorporated using

a simplified version of the heat balance equation (HBE) that retains the dependence

of conductor temperature on ambient weather conditions. The simplicity of the

HBE model reduces the computational effort and computation time needed for the

solution of the difficult OPF problem.

2. The proposed formulation considers not only the cost of conventional generation but

also the costs due to uncertainty of IRE sources in the power system. This approach

allows a form of control on the levels of uncertainty due to IRE sources that are

accepted into the power system.

3. A detailed analysis and discussion of the effects of monitored weather conditions on

generation scheduling and related costs is also presented. The scheduled IRE source

generation could be higher or lower than the expected value depending on the IRE

uncertainty cost coefficient. Also, the location of the IRE source in the system

influences its optimal schedule especially in cases where there are large variations in

the system LMPs.

In conclusion, conductor-temperature monitoring, through real-time monitoring of the

ambient weather conditions around the lines operated at or near their thermal limits, can

have significant effects on the resulting generation schedules. The relaxation of the con-

ductor thermal constraints during periods of ambient conditions favorable to conductor

cooling allows for use of cheaper transmission network paths and hence a reduction in

thermal generation costs. The savings from the reduced system congestion can be used to

accommodate more uncertainty in power generation due to IRE sources i.e. a reduction in

thermal generation costs allows for an increase in IRE uncertainty costs. This result trans-

lates into an increase in IRE utilization. Clearly, the potential operational-cost savings

and increased IRE utilization justify the application of conductor-temperature monitoring

in power systems.
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CHAPTER 7

Conclusions

This dissertation focuses on the optimal operation of the power system with a target of

increasing the utilization of intermittent renewable energy (IRE) sources i.e. solar PV

and wind in the power system. More specifically, a less conservative approach to setting

transmission line ratings – referred to as dynamic line rating (DLR) – is studied.

Recent trends in electric power generation point to an increase in power supply by

IRE sources. The motivations for this trend include environmental concerns and more

cost competitiveness of these sources due to improvements in technology. While there are

strong motivations for increased power generation by IRE sources, their fluctuating nature

introduces new challenges to the system operator. Traditional power systems are generally

relatively predictable as years of operation mean that load forecasting tools are generally

very accurate and economic generation scheduling including reserve allocation is simple

enough. However, the intermittency of IRE sources increases variability and uncertainty

not only in power generation within the network, but also in power flows within various

system branches including transmission lines. As a result, there is an increased need for

power system researches to propose ways of handling the new operational challenges.

Overall conclusion

The work carried out in this dissertation shows that dynamic line rating of overhead trans-

mission lines – carried out through real-time temperature monitoring of the conductors

(either directly or indirectly) – can lead to a more economic operation of a power system

that has significant power generation from intermittent renewable energy sources. Sim-

ulations carried out on a test power system shows a 2.4% reduction in operational costs

realized by relaxing the conservativeness of the traditional static line rating on heavily

loaded transmission lines. Moreover, the reduced thermal generation costs resulting from

less transmission congestion in the system allows for increased “uncertainty costs” due to

fluctuating IRE sources. Allowing more uncertainty in the system increases the utilizable

IRE generation. Simulations show a 19.1% increase in scheduled IRE generation for the

chosen test system.



CHAPTER 7. CONCLUSIONS

Itemized conclusions

The main work carried out in this thesis can be categorized into three main topics: (1)

probabilistic modeling of IRE generation, specifically PV generation, for synthetically

generating solar PV scenarios in probabilistic studies of the power system; (2) proposing a

simplified overhead conductor temperature model for integration in system operation tools

using DLRs; and (3) developing a new optimal power flow model with explicit conductor

temperature limits with the specific target of handling the uncertainty due to IRE sources.

The conclusions from these three main topics can be summarized as follows:

1. Probabilistic model for solar PV power (Chapter 3)

An empirical probabilistic model for high temporal resolution (1-minute) solar radiation

data which can be used to simulate fluctuations in solar PV generation is developed.

The model is constructed by treating the process generating a normalized form of the

1-minute clearness index as a second-order Markov process. Model construction details

including data trend removal and model order selection are discussed in the text.

Conclusions drawn from a comparison of data synthetically generated using the pro-

posed model and actual 1-minute solar irradiation data include:

– The ordinary moments i.e. mean, standard deviation, skewness, and kurtosis are

well reproduced by the proposed Markov model.

– The probability distribution plots are also well matched. Significantly, the pro-

posed model reproduces the bimodal distribution characteristic of the 1-minute

irradiation data that would not be reproduced by a typical ARMA model.

– The autocorrelation characteristics of the observed and synthetic data sets are well

matched including the significant lag-2 partial autocorrelation for cloudy days i.e.

days with a clearness index less than 0.3.

– The minute-to-minute fluctuations in solar irradiation are also well reproduced.

The highest percentage of large fluctuations (defined as 1-minute fluctuations

larger than 200 W/m2) is found to be about 3% and occurs on moderately cloudy

days i.e. days with a clearness index between 0.45 and 0.6.

The proposed model can be a fundamental tool for probabilistic studies of the power

system specifically regarding the effects of increased integration of PV power generation.

2. Simplified overhead conductor temperature model (Chapter 4)

A simple mathematical model for estimating the temperature of an overhead conductor

under varying weather conditions is developed and verified. The model is developed

by proposing approximations to various components of the more complex CIGRE con-

ductor temperature model. The proposed model is verified by both numerical and

experimental methods.

A comparison of measured conductor temperature with values calculated using both

the original CIGRE model and the simplified version lead to the following conclusions:
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– Approximation errors in conductor temperature determination using the simplified

model when compared to the full CIGRE model are within 3◦C in both steady

state and transient state.

– Measured conductor temperature values are well matched with the model values

at high wind speeds. However, the measurements were slightly higher for low wind

speeds.

– Since the simplified model is developed from a slightly conservative point of view,

it gives lower time constants than both the CIGRE model and lab measured values.

– The simplified model reduces the computation effort in conductor temperature

calculation and realizes significant computation time savings when compared with

the full CIGRE model. Simulations showed that the CIGRE model takes on

average 4.5 times longer than the simplified model to complete a single conductor

temperature calculation.

The proposed model is applied in a new optimal power flow (OPF) formulation and

improves the tractability of the OPF solution algorithm.

3. Optimal power flow with DLR and IRE generation (Chapter 6)

A new formulation of the optimal power flow (OPF) problem incorporating the thermal

characteristics of overhead conductors for a system with significant IRE-source gener-

ation is proposed. One of the main extensions proposed in the new OPF formulation

is the incorporation of costs due to IRE uncertainty modeled as a function of expected

IRE power overestimation. Also, instead of the traditional conductor current limits,

conductor temperature limits are applied explicitly in the OPF problem formulation

whereby conductor temperature is calculated using a simplified conductor temperature

model based on monitored weather conditions.

The following conclusions are drawn from numerical simulations carried out on a mod-

ified version of the standard IEEE 30-bus test system with IRE generation at several

buses:

– Monitoring of ambient weather conditions around lines operated at or near their

thermal limits significantly improves the OPF solution. In the simulations, there

is a 2.4% reduction in the objective function value (power supply costs) when

assumed actual weather parameters are used as compared to the conventional

static line rating.

– The use of monitored weather parameters (i.e. DLR) allows for increased uncer-

tainty in power supply which results in increased utilization of IRE generation.

In the simulations, the relaxation of the line thermal limits results in a 19.1%

increase in scheduled generation by IRE sources.

– Various sensitivity analyses carried out show that the monitored weather condi-

tions and the unit cost of IRE uncertainty have a significant effect on the OPF

solutions.
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– The application of the simplified conductor temperature model significantly re-

duces the OPF problem solution time.

Apart from these main topics, other applications of more flexibility in transmission

line ratings were also carried out. The conclusions from these are summarized as:

i. A real-time transmission line rating for handling IRE fluctuations (Section

5.4)

A short-term transient rating which incorporates both conductor thermal dynamics and

changes in ambient weather conditions is proposed. The rating, referred to as dynamic

electro-thermal rating (DETR), gives line loadability limits that are less conservative

than the classic DLR.

Simulation results show that the DETR would allow for higher fluctuations in conductor

current as compared to the steady-state DLR and can therefore be especially useful for

conductors that experience large power fluctuations due to increased IRE generation.

Simulations on a simple two-bus system shows a 37% reduction in current curtailment

when a 15-min DETR is used when compared to the DLR. The reduction in current

curtailment increases to 91% when the much faster 5-min DETR is used.

ii. Secure operation of transmission lines with DLRs (Section 5.5)

A methodology for determining DLR safety factors that ensure a safe operation of

transmission lines is illustrated. A risky operation of the transmission line is defined

as having a forecasted value of line rating that may be higher than the actual line

rating due to uncertainties in ambient weather forecasts. In order to avoid such risky

operations, DLR safety factors are estimated.

Numerical simulations using actual weather data result in safety factor values of around

0.86 for 5-minute (transient-state) ratings and 0.75 for 30-minute (steady-state) ratings

corresponding to 0.1% risk levels. However, even with these safety factors there is still

a 33% increase in line loadability for the 30-minute DLR and a 77% increase in line

loadability for the 5-minute DLR.

iii. Transmission line overload risk assessment with DLRs (Section 5.6)

An assessment of line overload risk in a system with significant IRE generation is illus-

trated. The risk assessment methodology uses probabilistic models of ambient weather

conditions around the transmission lines to determine the probability of violating the

maximum conductor temperature limit rather than the traditional maximum conductor

current limit.

Simulations carried out on a simple two-bus test system shows the possible trade-off

between thermal generation costs and line overload risk. For example, a 1% increase

in line overload risk would produce a 3% reduction in thermal generation costs. The

application of the simplified conductor temperature model coupled with a linear power

flow model in the risk assessment procedure results in significant computation time

savings.
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APPENDIX B

Calculation of statistical moments

The following formulae are used to calculate the mean, standard deviation, skewness and

kurtosis of k′t.

1. Mean

The mean µ of k′t is given by:

µ =

N∑
t=1

k′t

N
(B.1)

where N is the number of observations.

2. Standard Deviation

The standard deviation σ of k′t is given by:

σ =

√√√√ 1

N

N∑
t=1

(k′t − µ)2 (B.2)

3. Skewness

The skewness γ1 of k′t is given by:

γ1 =
m3

m
3/2
2

=

1
N

N∑
t=1

(k′t − µ)3

(
1
N

N∑
t=1

(k′t − µ)2

)3/2
(B.3)

where m3 is the third central moment and m2 is the variance
(
σ2
)
.

4. Kurtosis

The kurtosis γ2 of k′t is given by:

γ2 =
m4

m2
2

− 3 =

1
N

N∑
t=1

(k′t − µ)4

(
1
N

N∑
t=1

(k′t − µ)2

)2 − 3 (B.4)

where m4 is the fourth central moment and m2 is the variance
(
σ2
)
. The −3 at the

end of the formula is a correction used to make the kurtosis of the normal distribution

equal to zero.



APPENDIX C

Solar geometry fundamentals

The instantaneous solar radiation intensity outside the earth’s atmosphere also known as

the instantaneous extraterrestrial solar radiation intensity He in W/m2 directly above a

given location on the earth at a given time instant is given by:

He = REsc sinhs

[
W/m2

]
. (C.1)

where R is the sun-earth correction factor, Esc = 1367 W/m2 is the solar constant, and

hs is the solar elevation angle.

• R is given by:

R =
(r0

r

)2
(C.2)

where r/r0 is the earth-sun distance approximated by:

r

r0
=

[
1 + 0.034 cos

(
360dn
365

)]−1/2

(C.3)

where dn is the day number (dJan1 = 1, dFeb1 = 32, . . . ).

• Esc is the average solar radiation intensity falling on an imaginary surface perpendicular

to the sun’s rays and at the edge of the earth’s atmosphere. An approximate value of

1367 W/m2 is normally used.

• hs is given by:

hs = sin−1
(

cosω cos δ cos θ + sin δ sin θ
)

(C.4)

where ω is the hour angle, δ is the declination angle, and θ is the local latitude.

◦ ω is 0◦ at solar noon i.e. when the sun is directly above the local longitude. The

hour angles before the solar noon are negative while those after the solar noon are

positive.

The solar time differs from the local clock time by ∆t minutes:

∆t = 4× (Λloc − Λstd) (C.5)

where Λloc is the local longitude and Λstd is the standard longitude from which

the clocks are set.



Also, the solar time changes slightly with respect to local standard time. This

time difference is called the equation of time (EOT ) approximated by:

EOT = 9.87 sin 2x− 7.53 cosx− 1.5 sinx (C.6)

where x = 2π(dn − 81)/364.

Therefore the solar time (in hours) is given by:

Ts = Tl + (∆t + EOT ) /60 (C.7)

and ω (in radians) is then given by:

ω = π (Ts − 12) /12 (C.8)

◦ δ is approximated by:

δ = 0.40928 sin

(
2π (dn − 81)

365

)
(C.9)

The zenith angle is obtained from the solar elevation angles by:

z = π/2− hs (C.10)

Fig. C.1 depicts the solar elevation angle and the zenith angle.

Vertical 
(Zenith)

Zenith 
angle, 

(z)

Solar elevation
angle, (�

�

)

Horizontal plane

Fig. C.1: Solar elevation and zenith angles.
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APPENDIX D

Test system data

Table D.1: IEEE 30-bus test system: Bus and load data

Bus no. bus type∗ Pd (MW) Qd (MVAr) Vmax (p.u.) Vmin (p.u.)

1 3 0.0 0.0 1.05 0.95

2 2 21.7 12.7 1.10 0.95

3 1 2.4 1.2 1.05 0.95

4 1 7.6 1.6 1.05 0.95

5 1 0.0 0.0 1.05 0.95

6 1 0.0 0.0 1.05 0.95

7 1 22.8 10.9 1.05 0.95

8 1 30.0 30.0 1.05 0.95

9 1 0.0 0.0 1.05 0.95

10 1 5.8 2.0 1.05 0.95

11 1 0.0 0.0 1.05 0.95

12 1 11.2 7.5 1.05 0.95

13 2 0.0 0.0 1.10 0.95

14 1 6.2 1.6 1.05 0.95

15 1 8.2 2.5 1.05 0.95

16 1 3.5 1.8 1.05 0.95

17 1 9.0 5.8 1.05 0.95

18 1 3.2 0.9 1.05 0.95

19 1 9.5 3.4 1.05 0.95

20 1 2.2 0.7 1.05 0.95

21 1 17.5 11.2 1.05 0.95

22 2 0.0 0.0 1.10 0.95

23 2 3.2 1.6 1.10 0.95

24 1 8.7 6.7 1.05 0.95

25 1 0.0 0.0 1.05 0.95

26 1 3.5 2.3 1.05 0.95

27 2 0.0 0.0 1.10 0.95

28 1 0.0 0.0 1.05 0.95

29 1 2.4 0.9 1.05 0.95

30 1 10.6 1.9 1.05 0.95

∗for the bus types: 1 - load bus; 2 - PV (generator) bus; and 3 - slack

(reference) bus



Table D.2: IEEE 30-bus test system: Branch data

Line no. from bus to bus series impedance half charging
succeptance

(p.u.)R (p.u.) X (p.u.)

1 1 2 0.02 0.06 0.03

2 1 3 0.05 0.19 0.02

3 2 4 0.06 0.17 0.02

4 3 4 0.01 0.04 0.00

5 2 5 0.05 0.20 0.02

6 2 6 0.06 0.18 0.02

7 4 6 0.01 0.04 0.00

8 5 7 0.05 0.12 0.01

9 6 7 0.03 0.08 0.01

10 6 8 0.01 0.04 0.00

11 6 9 0.00 0.21 0.00

12 6 10 0.00 0.56 0.00

13 9 11 0.00 0.21 0.00

14 9 10 0.00 0.11 0.00

15 4 12 0.00 0.26 0.00

16 12 13 0.00 0.14 0.00

17 12 14 0.12 0.26 0.00

18 12 15 0.07 0.13 0.00

19 12 16 0.09 0.20 0.00

20 14 15 0.22 0.20 0.00

21 16 17 0.08 0.19 0.00

22 15 18 0.11 0.22 0.00

23 18 19 0.06 0.13 0.00

24 19 20 0.03 0.07 0.00

25 10 20 0.09 0.21 0.00

26 10 17 0.03 0.08 0.00

27 10 21 0.03 0.07 0.00

28 10 22 0.07 0.15 0.00

29 21 22 0.01 0.02 0.00

30 15 23 0.10 0.20 0.00

31 22 24 0.12 0.18 0.00

32 23 24 0.13 0.27 0.00

33 24 25 0.19 0.33 0.00

34 25 26 0.25 0.38 0.00

35 25 27 0.11 0.21 0.00

36 28 27 0.00 0.40 0.00

37 27 29 0.22 0.42 0.00

38 27 30 0.32 0.60 0.00

39 29 30 0.24 0.45 0.00

40 8 28 0.06 0.20 0.02

41 6 28 0.02 0.06 0.01
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