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Abstract 

Fatigue damage for ships navigating in ice-covered waters can pose a threat to the safety 
of human life and ship hull, and cause pollutant to the environment. The estimation 
method of fatigue damage due to ice actions has not been established. To date, fatigue 
damage evaluation is carried out based on field measurements of limited ship types and 
ice conditions. However, the field measurements are usually incomplete. For that reason, 
it is difficult to provide guidance for the design of new structural components or new 
ship routes. In order to solve this problem, numerical simulation can be used to evaluate 
fatigue damage due to ice actions, instead of field measurements. In the present research, 
simulation methods are developed to obtain time histories of ice-induced loads for ships 
operating in level ice, pack ice and ridge ice, which are applied to estimate fatigue 
damage. The thesis is composed of the following chapters. 

Chapter 1 gives the literature review of ice loads and fatigue damage calculation 
methods for ice-going ships. Numerical methods to estimate time series of ice loads in 
level ice, ridge ice and pack ice, and fatigue evaluation method due to ice actions, have 
not been established. The objectives and significance of this study are shown. 

Chapter 2 concerns the solution of ship motions using a step-by-step numerical 
integration. The coupling problem between ship motions and excitation forces and 
moments is solved by weak coupled iteration. 

Chapter 3 deals with the numerical model for ship operating in level ice. The global and 
local loads on ship hulls are estimated by the proposed model, and statistic of ice-
induced stress is obtained. The numerical model is validated by comparing the 
simulated results against field measurement stress. Instead of field measurements, the 
proposed model makes it possible to estimate the statistical distribution of ice-induced 
loads in level ice for fatigue damage calculation, based on numerical simulations. 

Chapter 4 introduces a numerical method to predict the ice-induced loads on ice-going 
ships in ridged ice fields. Probabilistic ice fields are generated on the basis of field 
observation. A modified Rankine’s plasticity model is proposed to achieve the ice-
induced loads in ridge ice. The proposed numerical model has improved the earlier 
models of ship–ice interaction in ridge ice, which is only applicable to global ice loads. 
As a result, local ice loads, which is difficult to obtain by far, can be achieved. 

Chapter 5 relates to numerical model for ship navigating in pack ice. The ice floes are 
represented as hundreds of circular disks with random sizes. Ship–ice collisions and 
ice–ice contacts are modeled with discrete element method. Global and local ice loads 
are obtained by the proposed model in various ice conditions (ice thickness, floe radius, 
ice concentration), and statistic of ice-induced stress is analyzed. The numerical model 
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is validated by comparing the simulated stress against field results. The statistical 
distribution of ice loads in pack ice for fatigue damage calculation can be estimated 
based on the proposed numerical method, instead of field measurements. 

Chapter 6 conducts a case example of fatigue damage calculation based on the 
simulated ice loads obtained using the numerical models in Chapter 3 to Chapter 5. The 
long-term statistic of ice loads is approximated by the Weibull distribution. Fatigue 
stress between frames of plate structure at bow shoulder area due to distributed ice loads 
is found using structural beam theory. Ice loads in each stationary ice condition (level 
ice, ridge ice, and pack ice) are calculated. Fatigue damage is estimated based on the 
Palmgren–Miner cumulative damage rule. The fatigue damage result is validated by 
comparing with that calculated based on field measurements. As a result, it is clarified 
for the first time that fatigue damage of ship hull induced by ice loads can be estimated 
based on ice loads obtained from numerical simulations, instead of field data. 

Chapter 7 summarizes the conclusions of the main points in this study, and provides 
several recommendations for future work. 

 



3 
 

Contents 

Abstract ......................................................................................................................... 1 

Nomenclature ............................................................................................................... 6 

1 Introduction .......................................................................................................... 15 

1.1 Background and motivation ......................................................................... 15 

1.2 Literature review .......................................................................................... 16 

1.2.1 On numerical methods in level ice fields ........................................... 16 

1.2.2 On numerical methods in ridged ice fields ........................................ 17 

1.2.3 On numerical methods in pack ice fields ........................................... 18 

1.2.4 On fatigue damage calculation ........................................................... 18 

1.3 Thesis outline ............................................................................................... 19 

2 Solution of Motion Equations ............................................................................. 21 

2.1 Motion equations ......................................................................................... 21 

2.1.1 Reference frames ............................................................................... 21 

2.1.2 Newmark-beta method ....................................................................... 23 

2.2 Excitation forces .......................................................................................... 24 

2.2.1 Propeller and rudder forces ................................................................ 24 

2.2.2 Hydrodynamic forces ......................................................................... 25 

2.2.3 Euler forces ........................................................................................ 26 

2.2.4 Ice forces ............................................................................................ 27 

3 Numerical Model of Ship Operating in Level Ice fields ................................... 29 

3.1 Ship–ice interaction mechanics in level ice fields ....................................... 29 

3.1.1 Contact detection ............................................................................... 31 

3.1.2 Crushing force .................................................................................... 33 

3.1.2.1 Contact area ............................................................................. 33 

3.1.2.2 Pressure–area relation .............................................................. 37 



4 
 

3.1.3 Bending failure ................................................................................... 37 

3.1.3.1 Contact force analysis .............................................................. 37 

3.1.3.2 Bending failure criterion .......................................................... 39 

3.1.3.3 Geometry of ice wedge idealization ........................................ 41 

3.2 Numerical results of ice loads in level ice fields ......................................... 42 

3.2.1 Global ice loads and ship performance .............................................. 42 

3.2.2 Local ice-induced loads and statistical analysis ................................. 48 

3.2.2.1 Local ice-induced loads ........................................................... 48 

3.2.2.2 Statistical analysis .................................................................... 50 

3.3 Summary ...................................................................................................... 54 

4 Numerical Model of Ship Operating in Ridged Ice Fields ............................... 55 

4.1 Generating ridged ice fields ......................................................................... 55 

4.1.1 Geometry of sea ice ridges ................................................................. 55 

4.1.2 Distribution of sail heights and ridge spacings .................................. 56 

4.2 Ship–ice interaction mechanics in ridged ice fields ..................................... 58 

4.2.1 Theoretical formula of Keinonen ....................................................... 58 

4.2.2 Theoretical formula of Mellor ........................................................... 62 

4.2.3 Theoretical formula of Malmberg ...................................................... 64 

4.2.4 A modified Rankine model in the present study ................................ 65 

4.3 Numerical results of ice loads in ridged ice fields ....................................... 68 

4.3.1 Global ice loads and ship performance .............................................. 68 

4.3.2 Local ice-induced loads and statistical analysis ................................. 72 

4.3.2.1 Local ice-induced loads ........................................................... 72 

4.3.2.2 Statistical analysis .................................................................... 73 

4.4 Summary ...................................................................................................... 76 

5 Numerical Model of Ship Operating in Pack Ice Fields ................................... 77 

5.1 Ship–ice interaction mechanics in pack ice fields ....................................... 77 

5.1.1 Contact detection ............................................................................... 77 

5.1.2 Contact force ...................................................................................... 79 

5.1.2.1 Ice–ice contact ......................................................................... 79 



5 
 

5.1.2.2 Ship–ice contact ....................................................................... 81 

5.1.3 Motion of ice floes ............................................................................. 81 

5.2 Numerical results of ice loads in pack ice fields .......................................... 81 

5.2.1 Global ice loads and ship performance .............................................. 82 

5.2.2 Statistical analysis of local ice-induced loads .................................... 86 

5.3 Summary ...................................................................................................... 90 

6 Fatigue Damage Calculation ............................................................................... 91 

6.1 Fatigue damage calculation .......................................................................... 91 

6.1.1 Structural response ............................................................................. 91 

6.1.2 Impact frequency ............................................................................... 93 

6.1.3 Fatigue damage expression ................................................................ 94 

6.2 Case example ............................................................................................... 95 

6.2.1 Ice data ............................................................................................... 95 

6.2.2 Fatigue damage calculation ................................................................ 96 

6.2.2.1 Local ice-induced stress ........................................................... 96 

6.2.2.2 Calculation result of fatigue damage ..................................... 102 

6.3 Summary .................................................................................................... 106 

7 Conclusions and Future Work .......................................................................... 107 

7.1 Conclusions ................................................................................................ 107 

7.2 Future works .............................................................................................. 109 

ACKNOWLEDGEMENTS .................................................................................... 111 

REFERENCES ......................................................................................................... 112 

 



6 
 

Nomenclature 

Symbols 

A added mass matrix 

A projection of contact area on the water plane m2 

Ac critical area m2 

Acr contact area m2 

Af ice floe area m2 

Ar rudder area m2 

a side length of cells m 

B damping matrix 

B ship breadth m 

C restoring force matrix 

C ice concentration 

CD(x) drag coefficient for cross-flow at location x 

CD0 surface friction 

Cd drag coefficient of water 

Cd' rotational drag coefficient 

Cf empirical coefficient 

CL & CD lift and drag coefficient of the rudder 

Cl empirical parameter 

Cm additional mass coefficient 

Cp empirical parameter 

CQ resistance coefficient 

Cv empirical parameter 

c parameter for plotting position 

D total fatigue damage 
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D(x) sectional draught at location x m 

Dj fatigue damage in a stationary condition 

Dp empirical parameter 

d keep spacing m 

E the Young's modulus of ice MPa 

F excitation forces and moments 

Fbrk icebreaking force 

FEuler Euler force 

Fice forces arising from ice 

Fow forces arising from open water 

Fp forces arising from propeller and rudder 

FG buoyancy force kN 

FS shear friction resistance kN 

Fτ0 cohesion resistance kN 

FTOT force against the wall kN 

Fcr crushing force kN 

Fd & Md water drag force and rotational drag moment of ice floe 

f1 frictional force kN 

f⃗ external force kN 

h wall height m 

hc cut-off height t of sail heights m 

heq equivalent ice thickness m 

hi ice thickness m 

hk keel depth m 

hL ice thickness limit m 

hl load height m 

hr(x) ridge depth at location x m 

hs sail height m 

ht trapezium altitude m 
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I moment of inertia kgm2 

Ix & Iy integer cell numbers in the x and y directions 

ICELL cell number of the current disk 

K & m constants of S–N curve 

K0 coefficient of lateral stress 

Kne normal contact stiffness kN/m 

Knv normal contact viscosity kNs/m 

Kp passive pressure coefficient 

Kte tangential contact stiffness kN/m 

k shape parameter of loads distribution 

kpen a factor 

Lbow bow length m 

Lc crushing depth m 

LH length of trapezium base m 

Lh crushing width m 

Lpar length of parallel midship m 

LWL ship waterline length m 

l characteristic length of the ice m 

lbr length m 

lf frame span m 

M mass matrix 

Ma additional mass of ice floe kg 

m0 boundary condition 

mg mass kg 

mሬሬ⃗  external moment kNm 

N a factor 

N0 total number of stress amplitudes 

Ni number of amplitudes to failure for a constant stress Si 

NCELL number of cells  

nሬ⃗  & τ⃗  unit vectors of the normal axis and tangential axis respectively 
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ni number of stress amplitudes 

ns number of stress magnitudes 

Oi
ሶ  & Oj

ሶ  linear velocity for disks i and j m/s 

Pf bearing capacity kN 

Pice the ice load kN/m 

p porosity of ridges 

pav average crushing pressure MPa 

q & r shape parameter and scale parameter of stress distribution 

Rb
n rotation matrix for linear velocity 

R total horizontal force per unit width kN/m 

R' normal force for an indeterminate stress state  kN/m 

RB bending resistance kN 

Rb total resistance on ship bow kN 

RC crushing resistance kN 

Rf & Rl icebreaking radius at the first and last contact node m 

RI icebreaking radius m 

Ri and Rj radius of disks i and j m 

Rk total keel resistance kN 

Rlevel level ice resistance kN 

Rm midbody resistance kN 

Rmax maximum disk radius m 

Rn Reynolds number 

RpB bottom frictional resistance kN 

RpS side frictional resistance kN 

Rr total pure ridge resistance kN 

Rs submersion component kN 

Rγ1 upper shear plane force kN 

Rγ2 lower shear plane force kN 

Rε end shear plane force kN 
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r displacement vector 

Swet wetted surface area m2 

S ice-induced stress MPa 

s frame spacing m 

TΘ(Θnb) transformation matrix for angular velocity 

T ship draft m 

TB bollard pull t 

Tnet net thrust kN 

tk the kth time step 

U randomly generated number 

u forward velocity component m/s 

Vi and Vw velocity vectors of ice floe and water 

Vsub submerged area of the floe m2 

vb/n
b  velocity vector in the body-fixed frame m/s 

vb/n
n  velocity vector in the earth-fixed frame m/s 

v(x) transverse velocity component at location x m/s 

v1 relative velocity component on the contact surface m/s 

vf flow velocity m/s 

vow open water speed m/s 

vpen penetration velocity m/s 

xmin & xmax  coordinate of extreme points of the cell domain on the x axis 

xr rudder location m 

ymin & ymax coordinate of extreme points of the cell domain on the y axis 

Z section modulus cm3 

Z' ratio 

z depth m 

 

α normal frame angle of the ship hull deg. 

α' attack angle deg. 

αk keel angle deg. 
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αs sail angle deg. 

αstall stall angle deg. 

β waterline angle deg. 

βN parameter 

γ angle deg. 

γ' inclination angle of rupture plane deg. 

γw specific weight of water kN/m3 

∆ij distance between the two disk centers m 

δt time interval  s 

δn
i  normal indentation of overlap m 

δሶn
i
 relative velocity of the two disks at normal direction m/s 

δሶ t
i
 relative velocity of the two disks at tangential direction rad/s 

ε  scale parameter of loads distribution 

η stem angle deg. 

Θሶ
nb Euler rate vector rad/s 

θ, φ & ψ Euler angles of pitch, roll and yaw respectively rad 

' angle from x-axis to the vector nሬ⃗  deg. 

Λ aspect ratio 

λ shape factor of sail heights distribution 

λN parameter 

μ shape parameter of keel spacings distribution 

μi friction coefficient 

μt & σt mean value and standard deviation of ice thickness 

μc & σc mean value and standard deviation of ln(C) 

 Poisson's ratio 

d number of events per nautical mile 1/nm 

ξ convergence criterion 

ρice sea ice density kg/m3 
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ρw sea water density kg/m3 

ρ△ difference of the densities of sea water and ice kg/m3 

σ normal stress MPa 

σb bending strength MPa 

σcr crushing strength MPa 

σf flexural strength MPa 

σU flexural strength of ice in upward bending MPa 

τ actual shear strength MPa 

τ0 cohesion MPa 

ϕ opening angle of ice wedge deg. 

ϕ' internal friction angle deg. 

ω floe rotational velocity rad/s 

ωb/n
b  angular velocity vector in body-fixed frame  rad/s 

ωi & ωj angular velocities of disks i and j rad/s 

 

Acronyms 

2D two-dimensional 

3D three-dimensional 

CDF cumulative distribution function 

DOF degree of freedom 

DEM discrete element method 

FEM finite element method 

GEM GPU-Event-Mechanics 

PDF probability density function 

 

Subscript 

1-6 corresponding degree of freedom 

x, y, z in x-, y-, z-directions, respectively 
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m mean value 

sd standard deviation 

n, τ in normal and tangential directions, respectively 
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Chapter 1 

Introduction 

1.1 Background and motivation 

Recently, increasing ships such as oil tankers and LNG carriers are navigating through 
the ice-covered oceans, due to the expected growth of oil and gas related activity in the 
cold regions. Different from open waters, the presence of ice poses the greatest 
challenge to the design and operation of ice-going ships, which has led to extensive 
research on better understanding of ship–ice interaction, vessels' performance and hull 
damages in ice-covered waters. 

For ships navigating in ice-infested regions, ice loads represent the dominant loads. 
From the fatigue point of view, the sea ice and ship interact in a repetitive manner and 
ice-going ships are operating under cyclic impact loads caused by the ice. The ice 
loading potentially induces stress amplitudes that could give rise to micro-cracks. 
Damage can entail oil leakage or even catastrophic failure, threatening overall structural 
safety. The leakage of petroleum and natural gas would cause serious pollution to the 
environment in ice waters, because any contaminant decomposition process runs very 
slowly due to the extreme cold, extensive ice cover and reduced sunlight. 

As mentioned above, fatigue damage because of ice actions is an important issue for 
ships operating in the harsh environment of ice-covered waters. Nevertheless, research 
into fatigue damage caused by ice action has not been developed well compared with 
wave action. To date, most studies of fatigue damage caused by ice-induced loads have 
been conducted using field measurements. However, the field measurements are usually 
considerably limited and incomplete. For that reason, it is difficult to evaluate fatigue 
damage correctly and to provide guidance for the design of new structural components 
or new ship routes. Compared to field measurements, the ice conditions and ship hull 
can be easily varied in a numerical simulation, which is useful to complement the lack 
of ice load data in some regions, or to predict the fatigue life for new structures when 
only ice condition data are needed. The numerical method appears promising to 
evaluate fatigue damage. 

Ships navigating in ice-covered waters can encounter widely diverse ice conditions due 
to the possible operation over a large geographical area. Those ice conditions can 
include pack ice, level ice, ridged ice, etc. A typical sea ice field involving different ice 
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types is presented in Fig. 1.1. 

 

Fig. 1.1 A typical sea ice field including various ice types [1]. 

As a result, cases of fatigue damage calculation should also contain various ice 
conditions. Therefore, numerical programs for modeling ship–ice interaction process in 
different ice types are in demand in order to produce the required data for fatigue 
damage estimation. These numerical models should be developed as realistically as 
possible, and meantime, the computation efficiency needs to be considered as well. Ice-
induced fatigue stress is achievable based on numerical simulations, and statistical 
analysis of ice stress can be made. Furthermore, by applying the long term conditional 
statistics, the prediction of accumulated fatigue damage in the local components of a 
ship hull can be performed. 

1.2 Literature review 

1.2.1 On numerical methods in level ice fields 

It is challenging to predict the ice loads encountered by a ship transiting in an intact ice 
field. Early research on the level ice resistance was usually carried out based on break-
displace process and the superposition of several force components to the total 
resistance was widely accepted. These models can be found for example in Enkvist [2], 
Lewis et al. [3], Lindqvist [4] and Riska et al. [5]. 

In the past decades, efforts have been made to improve the numerical model of ice–hull 
interaction in level ice from a time domain point of view. For instance, Izumiyama et 
al. [6] developed a simulation method for an advancing level ice acting on a fixed conical 
structure based on the plastic limit theory, and the sizes of the broken ice floes were 
assumed to be random, following a normal distribution. Wang [7] employed a similar 
strategy, and presented a numerical procedure using geometric grid method to simulate 
the continuous ice–cone contact based on the mechanics of crushing-bending failure 
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model. This approach was then followed by many researchers, such as Nguyen et al. [8], 
Sawamura et al. [9], and Zhou et al. [10]. Su et al. [11] [12] established a simulation program 
to reproduce the observed icebreaking patterns and the continuous ice loading processes 
in a uniform level ice and the ice with randomly varying thickness and strength 
properties, partly based on the empirical data. This model was conducted involving the 
surge, sway and yaw motions. Tan et al. [13] extended Su’s planar model to a 6-degree-
of-freedom (DOF) model. The fully coupled motions of the ship were considered for 6 
DOFs together with the corresponding environmental forces. A further study on the 
effect of dynamic bending of level ice during ship–ice interaction was carried out with 
this 6-DOF model by Tan et al. [14]. Zhou and Peng [15] improved Su’s 3-DOF numerical 
model, by taking the ice plate flexural deflection into consideration, and an adjustment 
factor of contact surface was derived. 

Moreover, a numerical real-time simulator for ship–ice interaction was developed by 
Lubbad et al. [16]. In the presented model, level and broken ice features were studied. 
These updated state variables of ship model as well as the fragmenting ice are displayed 
by the Visual System. 

Recently, the discrete element method (DEM) has also been applied in the numerical 
models in level ice. Lau et al. [17] conducted a wide range of ice–structure and ice–ship 
interaction simulations using a commercial code DECICE. Compared with 
experimental data, the simulations were found satisfactory in terms of accuracy and 
real-time simulation capability. 

1.2.2 On numerical methods in ridged ice fields 

The methods of calculating the ice loads induced by ridge keels have been based largely 
on ideas borrowed from theories of soil mechanics such as Coulomb’s theory and 
Rankine’s theory. Keinonen [18] considered ridges as unconsolidated with a constant 
thickness and proposed an analytical method to calculate the pure ridge resistance based 
on Coulomb’s method. Mellor [19] employed Rankine’s theory to achieve the ship 
resistance in thick brash ice, which is similar to the unconsolidated ridge considered by 
Keinonen [18]. In addition, the resistance formula derived by Malmberg [20] is used 
extensively in ridged ice section of transit models, which simulates the ship's 
performance in various ice conditions along specific routes. These analytical methods 
are used widely to obtain the global ice loads caused by ridge keels. 

There have been a few studies of ridge interaction failure using the finite element 
method (FEM). For example, Sand and Horrigmoe [21] was devoted to the development 
of numerical simulation techniques by means of nonlinear finite element analysis to 
obtain ice ridge forces on upward and downward bending cones. The finite element 
spatial discretization procedure is adopted for the ice ridge and the surrounding ice sheet 
as well as the structure. 

Furthermore, DEM is applied to model the interaction between ships and ice ridge in 
recent studies. In fact, the method is useful to obtain both global and local ice loads. 
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Hisette et al. [22] and Gong et al. [23] simulated the ship–keel interaction using a three-
dimensional (3D) DEM with ice pieces represented by polyhedral particles, but such 
computations can be time consuming even for a single ice ridge. Based on the 
background presented above, it remains a very difficult task, both numerically and 
experimentally, to estimate the local ice load on ship hulls in ice fields containing 
multiple ridges. 

1.2.3 On numerical methods in pack ice fields 

DEM has attracted much attention in order to describe the interaction between ship hull 
and pack ice floes. For instance, Hansen and Løset [24] [25] proposed a two-dimensional 
(2D) DEM model for theoretical investigation of behavior of a mooring turret in broken 
ice. In the model, each ice floe is represented by a circular disk. Disk–disk or disk–
structure collisions are modelled as linear viscous-elastic, or as a Coulomb friction 
contact in case of relative tangential sliding. Analogous approaches were adopted by 
Karulin and Karulina [26] and Dai and Peng [27] as well. Ji et al. [28] improved the previous 
method and modelled the ice floes with 3D dilated disk elements, and the ship hull was 
modelled with 3D disks with overlaps. 

Daley et al. [29] [30] employed a GPU-Event-Mechanics (GEM) approach to assess vessel 
performance in pack ice, in which the ice floes were represented as 2D convex polygons 
and the vessel was treated as an auto pilot model with constant thrust. The parallel 
computing power of GPU enabled the computation of large scale system involving a 
large number of bodies. 

A commercial DEM software of DECICE has also been extensively used to address the 
interaction problems in pack ice. It uses discrete elements in an explicit time domain 
solver. Each element undergoes rigid body translation and rotation according to 
Newtonian mechanics. Zhan et al. [31] applied the DECICE code to investigate the 
problems of turning circle and Zig-Zag maneuvers in pack ice. Zhan and Molyneux [32] 
later extended the algorithm into a DECICE 3D model. 

Moreover, physics engines were used for simulation of the floater-ice interaction in 
broken ice. Physics engine generally means a software system to simulate the dynamics 
of generic multibody systems with contacts and friction. This approach was pioneered 
by Konno and Mizuki [33], which used the Open Dynamics Engine to simulate a model 
icebreaker in a broken-ice field. Metrikin et al. [34] adopted another physics engine Phys 
X to implement realistic, high fidelity 3D simulations of the ice-fluid-structure 
interaction process in broken ice. Metrikin et al. [35] further compared four publicly 
available physics engines (Ag X Multiphysics, Open Dynamics Engine, Phys X and 
Vortex) in terms of integration performance and contact detection accuracy. 

1.2.4 On fatigue damage calculation 

To date, fatigue damage of ship structure due to ice-induced loads has received 
relatively little attention. Only a few studies dealt with the fatigue damage evaluation 
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based on field measurement data. Zhang and Bridges [36] introduced a deterministic 
fatigue assessment procedure, the Ship Right FDA ICE Procedure, proposed by Lloyd's 
Register to assess fatigue damage of ship structure induced by ice loads. Two case 
studies of a LNG carrier and an oil tanker were presented. Suyuthi et al. [37] derived 
closed form expressions of the fatigue damage for several different statistical models 
of the stress amplitudes, i.e. the exponential, the Weibull, and the three-parameter 
exponential distributions. A particular example of fatigue damage calculation was 
presented, where data obtained from full scale measurement performed on board of the 
vessel KV Svalbard in the winter 2007 were utilized. Hwang et al. [38] analyzed fatigue 
damages and fatigue-life measurements on the side-shell in the bow thruster room of 
the Korean first icebreaking research vessel ARAON, based on the experiments during 
her actual voyages on August 2010 and August 2013. 

1.3 Thesis outline 

The primary aim of this thesis is to develop an evaluation method of fatigue damage 
for a ship navigating in ice-covered waters based on numerical simulations. To achieve 
this objective, numerical methods are developed to model ship–ice interaction in level 
ice, ridge ice and pack ice, respectively. Ice-induced loads of different ice conditions 
can be ascertained from a series of numerical simulations. The simulated results are 
validated preliminarily by comparison with published results of field measurements, 
model tests or empirical formulas. Statistical analysis is performed on ice stress, and 
with the knowledge of ice conditions data, an accumulated fatigue damage can be 
estimated based on Palmgren–Miner’s rule. Numerical models can be a good candidate, 
instead of field measurements, in order to produce the required data for fatigue damage 
calculation. 

The thesis is composed of the following chapters. 

Chapter 1 gives the general background, motivation, state-of-the-art, objectives and 
organization of the study. 

Chapter 2 concerns the solution of ship motions using a step-by-step numerical 
integration. Empirical calculation formulas for external forces and moments are 
introduced, and the coupling problem between ship motions and excitation forces is 
solved by iteration. 

Chapter 3 deals with the numerical model for ship operating in level ice. A semi-
empirical numerical procedure is developed to model the continuous-mode icebreaking 
process in level ice in 6 DOFs. The numerical global and local ice loads are discussed 
through results of a case study conducted in a series of different ice conditions. Ship 
performance and statistics of ice-induced frame loads are analyzed. 

Chapter 4 introduces a numerical method to predict the ice-induced loads on ice-going 
ships in ridged ice fields. Probabilistic ice fields are generated according to the 
statistical distributions of ridge heights and spacings. A modified Rankine’s plasticity 
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model is applied to achieve the keel loads. 

Chapter 5 relates to a 2D DEM numerical model developed for simulating the 
interaction between drifting ice floes and a moving ship. The ice floes are represented 
as hundreds of circular disks with random sizes and positions. Both the ship–ice 
collisions and ice–ice contacts are modeled, and a viscous-elastic rheology is applied 
at contacts. 

Chapter 6 conducts a case example of fatigue damage calculation. A Weibull statistical 
model is applied to represent the ice-induced stress process. The structural fatigue stress 
is found using structural beam theory. According to ice condition distribution (ice 
thickness, ice concentration, ridge properties, etc.) and a proper S-N curve, fatigue 
damage can be estimated based on the Palmgren–Miner cumulative damage rule. 

Chapter 7 summarizes the conclusions of the main points in this study, and provides 
several recommendations for future work. 
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Chapter 2 

Solution of Motion Equations 

For ships navigating in ice-infested waters, ice loads represent the dominant loads, 
whereas aside from ice loads, ship hulls are also subjected to other excitation forces and 
moments, such as propeller and rudder forces, hydrodynamic forces, and fictitious 
forces induced by a non-uniformly rotating frame relative to the inertial frame. Ship 
motions and excitation forces are dependent on each other, and thus the interaction 
between them need to be considered in the simulation program. In this chapter, 
calculation formulas of the external forces and moments are introduced. Motion 
equations are solved by numerical integration, and the coupling problem between 
excitation forces and ship motions is settled by iteration at each time step until the 
accuracy is acceptable, by which ship–ice interaction can be modeled using a step-by-
step procedure in time domain. 

2.1 Motion equations 

2.1.1 Reference frames 

In the numerical procedure, the ship is treated as a rigid body, and two right-handed 
Cartesian reference frames are applied to express motions and state variables of ship 
and ice in the model, which are the earth-fixed coordinate system O0–x0y0z0 and the 
body-fixed coordinate system G–xyz, as illustrated in Fig. 2.1. 

Earth-fixed reference frame: The coordinate plane, x0O0y0, coincides with the calm 
water plane, with the z0 axis pointing upwards. The trajectory of ship and edge geometry 
of ice sheet or locations of ice floes are expressed in this coordinate system. The top 
surface of ice is defined lying on the calm water plane for simplification. In fact, the 
top surface of ice is not consistent with the calm water because of the density difference 
between water and ice. However, the densities of sea ice and sea water are respectively 
set as 900 kg/m3 and 1025 kg/m3, consequently, the ratio of ice volume below the water 
to that above the water is about 9:1. The maximum ice thickness in the simulations is 
1 m, and thus the error caused by this assumption is small. 

Body-fixed reference frame: The hydrodynamic properties and inertial coefficients of 
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ship are constant with respect to this reference frame that is parallel to the principal 
axes of inertia of ship, and therefore, a body-fixed reference frame, xyz, is introduced 
in which the origin is aligned with the center of gravity G and the axes correspond to 
the longitudinal, transverse and vertical coordinates respectively. Linear and angular 
velocities and accelerations are expressed in this coordinate system. 

 

Fig. 2.1 Reference frames. 

For the above reasons, the equations of motion can be solved in the body-fixed 
reference frame. However, it is convenient to express the position vector of ship and 
ice with respect to the earth-fixed reference frame, and consequently, transformations 
from the body-fixed frame to earth-fixed frame are necessary for modeling ship–ice 
interaction. 

Linear velocity transformation can be written as 

 n n b
b/ n b b/ nv R v  (2.1) 

where vb/n
b  and vb/n

n  are the velocity vectors in the body-fixed and earth-fixed frames 
respectively, Rb

n represents the rotation matrix for linear velocity, which can be given 
by [39] 
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  

R   (2.2) 

Therein, θ, φ, ψ are the Euler angles of pitch, roll and yaw respectively. 

Angular velocity transformation can be expressed as 

 /( ) b
nb nb b n T   (2.3) 

In that equation, Θሶ
nb  denotes the Euler rate vector, ωb/n

b   stands for the body-fixed 
angular velocity vector, TΘ(Θnb)  signifies the transformation matrix for angular 
velocity, which is presented as [39] 
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2.1.2 Newmark-beta method 

Ship motions, i.e. the components of velocities, accelerations, displacements and 
excitation forces, relating the body-fixed reference frame are governed by a general 
matrix form of the linear coupled differential motion equations as shown below. 

 ( ) ( ) ( ) ( ) ( )t t t t   M A r Br Cr F   (2.5) 

where M, A, B, and C respectively represent the mass, added mass, damping and 
restoring force matrices, F represents the excitation forces and moments, and r is the 
displacement vector of ship. No damping term is included in this simulation, for ice 
load is regarded as the greatest source of energy consumption, i.e. the damping 
coefficient B is assumed to be zero. 

The excitation forces and moments can be decomposed into the following components 
as 

 
ice p ow Euler+  F F F F F  (2.6) 

where superscripts ‘ice’, ‘p’, ‘ow’, and ‘Euler’ respectively designated the forces 
arising from the ice, propeller and rudder, open water, and a fictitious force induced 
using a non-uniformly rotating body-fixed frame. 

A solution to equations of motion established above is obtained using a step-by-step 
numerical integration method. Newmark-beta method [40] is widely used to solve 
differential equations in numerical evaluation of the dynamic response of structures, 
based on an assumed variation of acceleration over a time step. The general integral 
equations are given by 

 1 1( ) ( ) (1 ) ( ) ( )k k N k N kt t t t t t       r r r r     (2.7) 

 2 2
1 1

1
( ) ( ) ( ) ( ) ( ) ( )

2k k k N k N kt t t t t t t t         r r r r r    (2.8) 

Therein, δt stands for the time interval of numerical integration, tk and tk+1 represent the 
kth and (k+1)th time step respectively, the parameters βN and λN are determined by the 
requirements related to stability and accuracy. Newmark [40] proposed that numerical 
damping might be introduced in the case of λN > 1/2, and instability can be caused in 
the case of λN < 1/2. Typically, the selection is λN = 1/2. In this study, the value of βN is 
chosen as 1/6, which means a linear acceleration is assumed within each time interval. 
By the assumption of linear acceleration, the continuity of motion and state variables 



24 
 

of ship can be ensured, and meantime, a relatively high accuracy is achieved. 

Substituting λN = 1/2 and βN = 1/6 into Eqs. (2.7) and (2.8), the equations can be 
translated into 

 1 1

1 1
( ) ( ) ( ) ( )

2 2k k k kt t t t t t   r r r r      (2.9) 

 2 2
1 1

1 1
( ) ( ) ( ) ( ) ( )

3 6k k k k kt t t t t t t t    r r r r r      (2.10) 

According to Eq. (2.5), the acceleration term 1( )kt r  at the (k+1)th time step can be 

expressed as below. 

 1
1 1 1( ) ( ) ( ( ) ( ))k k kt t t
    r M A F Cr  (2.11) 

Inserting Eq. (2.11) into Eqs. (2.9) and (2.10), yields 

 1
1 12 2
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(2.12) 

In Eq. (2.12), the external forces F(tk+1) at the (k+1)th time step cannot be determined 
at the kth time step because of the interdependence between ship motions and external 
forces. Therefore, iterations are performed at each time step until the accuracy is 
acceptable. The convergence criterion is based on the increment of forces and moments 
from iteration step i to iteration step i+1. 

 1 2 2

1,6 1,6

( )i i i
j j j

j j

F F F 

 

  （ ）  (2.13) 

where ξ is a small value, which is in the order of 10-3. 

By the Newmark’s method and iterations, the motion and state variables can be updated 
and used as initial values for the next time step. Finally, the equations of motion can be 
solved step by step in time domain. The time interval δt needs to meet requirement to 
guarantee the stability of numerical integration, but this requirement is not significant 
because a much smaller time step is required for accurate representation of excitation 
and response. 

2.2 Excitation forces 

Ice forces and moments can be obtained from numerical models of ship–ice interaction, 
which are presented in detail in the following chapters. In this section, semi-empirical 
approaches are employed to determine the forces and moments caused by the propeller, 
rudder and ambient water. Euler forces are also derived. 

2.2.1 Propeller and rudder forces 
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The evaluation of ship performance is usually quantified by determining the ship speed 
and energy consumed in transiting an ice-covered route. The basis for the calculation 
of ship speed for all route sections is the comparison of the net thrust available to the 
total ice resistance the ship encounters. In the navigation process, the net thrust 
available to overcome ice resistance can be estimated as [41] 
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 (2.14) 

where TB denote the bollard pull, u is the forward velocity component, vow stands for 
the open water speed. 

The forces and moments induced by the propeller and rudder can be written as [41] 
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Therein, CL and CD are the lift and drag coefficients of the rudder, ρw signifies the sea 
water density, vf denotes the flow velocity, Ar represents rudder area, xr is the location 
of the rudder. 

CL and CD can be determined in wind tunnel tests or computations. For angles of attack 
α' smaller than stall angle αstall (i.e. the angle of maximum CL), the force coefficients 
may be approximated by the following formulas: 
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where Λ stands for the aspect ratio, CQ denotes a resistance coefficient, CQ ≈ 1 may be 
used for rudders with a sharp upper and lower edge, CD0 approximates the surface 
friction, which can be given as 

  20
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n

D
R

C  (2.20) 

In that equation, Rn represents the Reynolds number. 

2.2.2 Hydrodynamic forces 
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The hydrodynamic forces because of ship motions relative to the ambient water are 
considered. According to Riska [5], since open water resistance is usually very small 
compared to ice resistance, the coupling between them can be neglected without 
causing significant error. Thus, the open water resistance and the pure ice resistance are 
separable. Moreover, the effect of ambient current is incorporated by using relative 
velocities, whereas the effect of waves is ignored because the ambient water is assumed 
to be totally covered by ice. 

The hydrodynamic forces can be calculated by the cross-flow theory presented in 
Faltinsen [42]. The drag force F1

c  on the ship in the longitudinal direction is mainly 
induced by frictional forces, which can be approximated by the following formula. 
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where Swet denotes the wetted surface of the ship. 

The transverse viscous current force F2
c and current yaw moment F6

c can be evaluated 
using the cross-flow principle, which assumes that the flow separates due to cross-flow 
past the ship, that the longitudinal current component cannot influence the transverse 
forces on a cross-section, and that the transverse force on a cross-section is mainly due 
to separated flow effects on the pressure distribution around the ship. This means that 
the transverse current force and the yaw moment can be calculated as 
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Therein, LWL stands for the ship waterline length, CD(x) signifies the drag coefficient 
for cross-flow past an infinitely long cylinder with the cross-sectional area of the ship 
at the longitudinal coordinate x, D(x) is the sectional draught, v(x) represents the 
transverse velocity component. 

2.2.3 Euler forces 

Newton’s second law can be expressed in terms of conservation of both linear 
momentum and angular momentum with respect to the inertial frame. For translational 
motions, the linear momentum conservation can be expressed as 

 / / / /( ) ( )
n b

g b n g b n g b n b n

d d
f m v m v m v
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where f⃗ stands for the external force, excluding Euler force, mg denotes the mass of 

ship, 
nd

dt
 and 

bd

dt
 represent time differentiation in the earth-fixed and body-fixed frame 
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respectively. 

The vectors can be expressed in the body-fixed reference frame such that the 
translational motion becomes 

 / / /( )b b b
g b n b n b nm   v v f  (2.25) 

It can be seen from Eq. (2.25) that, the forces induced by a non-uniformly rotating frame 

can be obtained as -mg(ωb/n
b ×vb/n

b ). 

Following a similar approach, for rotational motions, the angular momentum 
conservation can be expressed as 

 / / / /( ) ( ) ( )
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b n b n b n b n

d d
m I I I

dt dt
   
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In that equation, mሬሬ⃗  denotes the external moment, I signifies the moment of inertia. 

Eq. (2.26) can be written in the body-fixed reference frame as below. 

 / / /)b b b
b n b n b n     m  (2.27) 

From Eq. (2.27), we can observe that the moments caused by a non-uniformly rotating 
frame can be expressed as (Iωb/n

b )×ωb/n
b . 

2.2.4 Ice forces 

The ice forces and moments can be achieved from the numerical procedures in different 
ice types, whereas the ice forces induced by the displacing process, i.e. the turning, 
submerging and sliding process, can be calculated by the empirical formula proposed 
by Lindqvist [4]. The submergence resistance is caused by broken ice pieces passing 
beneath the ship, which is assumed to be distributed uniformly over the parallel 
midbody. The formulas are expressed as below. 
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where Rs is the submersion component of ice resistance, which is given by 
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Therein, ρice denotes the sea ice density, hi stands for ice thickness, B and T are the 
breadth and draft of ship respectively, μi signifies the friction coefficient, η represent 
the stem angle, β is the waterline angle, γ can be obtained by 
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  (2.31) 
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Chapter 3 

Numerical Model of Ship Operating in Level Ice fields 

In ice infested waters, ship can navigate in various ice regions, among which level ice 
is the simplest type of ice field to consider, as it is undeformed, characterized only by 
one parameter of ice thickness. It is important to estimate both global and local ice loads 
on ship hulls. The global ice load governs the ship overall performance in ice, whereas 
the local ice loads are useful to evaluate structural safety in relation to a local part of 
ship hull. In this chapter, a semi-empirical numerical procedure is developed to model 
the continuous-mode icebreaking process in level ice in 6 DOFs. The numerical global 
and local ice loads are discussed through results of a case study conducted in a series 
of different ice conditions. Ship performance and statistics of ice-induced frame loads 
are analyzed. Comparisons are made of the simulated results against published results 
of numerical models and field measurements or empirical formula in level ice. 

3.1 Ship–ice interaction mechanics in level ice fields 

Many semi-empirical methods were proposed to estimate the resistance of a ship 
navigating in ice, as stated in Chapter 1. In this study, it is assumed that the repeating 
cycles of contact, crushing, and bending constitute a continuous breaking process of an 
intact level ice by an advancing ice-going ship. When a ship advances into level ice 
fields, contacts can occur between the instantaneous ship waterline and the ice cover 
edge. The vertical force component increases as the ship continues to penetrate into the 
ice plate. When it exceeds the bearing capacity of the ice edge, bending failure will 
occur and a circular ice floe will be broken from the ice plate. The advance of ship 
forces the ice floes to turn on edge until parallel with the ship hull. Subsequently, a new 
ice edge develops and the icebreaking process cycle repeats as the ship travels further. 
The overall process is shown in Fig. 3.1. The ice loads over the contact-crushing-
bending period can be numerically computed, whereas the ice loads induced by the 
displacing process are calculated by the empirical formulas Eqs. (2.28) and (2.29). The 
global ice load is an integrated effect of local ice loads over the hull area. For a 
particular frame, the local line load [kN/m] is calculated by dividing the ice force on 
this frame by the frame spacing. The flow chart for the numerical implementation of 
the algorithm is illustrated in Fig. 3.2. 
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Fig. 3.1 The overall process of ship–ice interaction in level ice [43]. 

 

Fig. 3.2 Flow chart of numerical procedure. 
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3.1.1 Contact detection 

In order to determine contact zones, first, the ship hull and ice edge are discretized into 
a number of nodes in the simulation program, where the ship waterline is discretized as 
a closed polygon, and ice edge is discretized as broken lines, as portrayed in Fig. 3.3. 
For ship motions in 6 DOFs, the instantaneous ship waterline need to be updated at each 
time step, by searching for the intersection between the ship hull and the water plane 
based on the ship current position and orientation. 

Contact Zone

 

Fig. 3.3 Discretization of ice edge and ship waterline. 

Contact is the first step in icebreaking process, and thus to identify the contact zones 
precisely is an important issue for determining the icebreaking force. In this study, a 
point-in-polygon computer geometric method [44] is adopted to check whether an ice 
edge node is inside the waterline polygon. The detailed algorithm is presented as below. 

For a general polygon, the algorithm for determining if a point P is inside involves 
analyzing the intersections of the polygon and a ray whose origin is P and whose 
direction is (1,0). As a ray is traversed starting from P, each time an edge is transversely 
crossed, a switch is made from inside to outside or vice versa. An implementation keeps 
track of the parity of the crossings. Odd parity means P is inside, even parity means it 
is outside, which is illustrated in Fig. 3.4. 

 

Fig. 3.4 Point-in-polygon test by counting intersections of ray with polygon. 

Aside from the general case presented in Fig. 3.4, special cases that polygon edges are 



32 
 

coincident to the ray for P and that polygon vertices are on the ray can occur as well, 
as shown in Fig. 3.5. 

The problem at the polygon vertex 1 is that the ray transversely intersects the polygon 
boundary at that vertex, so the intersection should count as only one crossing. However, 
the two edges sharing the vertex are processed separately, each edge indicating that the 
crossing at the vertex is transverse. The result is that the vertex is counted twice as a 
crossing, incorrectly reversing the current parity for the intersection count. Vertex 2 has 
a slightly different problem. The ray is inside the polygon slightly to the left of the 
vertex and is inside the polygon slightly to the right. The crossing at vertex 2 should be 
ignored since the ray does not transversely cross the polygon boundary. Processing the 
edges separately leads to the correct result because both edges report a transverse 
crossing by the ray at the common vertex 2. 

The problem with the coincident polygon edge〈5,6〉is that it appears as if it is a single 
vertex, if vertex 5 were to be relocated at vertex 6, the inside/outside count would not 
change. Consider the coincident edge〈3,4〉, if vertex 3 were to be relocated at vertex 
4, the v-junction gets counted just like the one at vertex 2, so it is not a transverse 
crossing. 

 

Fig. 3.5 Special cases for point-in-polygon test. 

Preparata and Shamos [45] mention how to deal with these configurations. An edge is 
counted as a crossing of the ray with the polygon if one of the end points is strictly 
above the ray and the other end point is on or below the ray. Using this convention, 
coincident edges are not counted as crossing edges and can be ignored. Two edges 
above the ray that share a common vertex on the ray both count as crossings. If two 
edges below the ray share a common vertex on the ray, neither edge is counted. If one 
edge is above and one edge is below the ray, both sharing a vertex on the ray, the edge 
above is counted but the edge below is not. 

In terms of mathematical expression of the above algorithm, set the coordinates of two 
vertexes on a polygon edge as (x1, y1) and (x2, y2), and the coordinate of P is (xp, yp). If 
this edge is transversely crossed by the ray, the coordinates must satisfy either of the 
following equations. 
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As the point-in-polygon method discussed previously, ice edge nodes inside the 
instantaneous ship waterline can be checked on the basis of the parity for the 
intersection count. 

3.1.2 Crushing force 

As the hull contacts with ice edge in level ice sheet, local crushing occurs at the contact 
zones. In each contact zone, a crushing force Fcr acts on the ship hull, which is normal 
to the contact surface. In addition, Fcr can be determined as the product of average 
crushing pressure pav and contact area Acr. 

 
cr av crF p A  (3.3) 

3.1.2.1 Contact area 

In order to calculate the crushing force, the contact area needs to be obtained. According 
to the previous sub-section, the contact zones between ship hull and ice edge on the 
water plane can be ascertained, based on which the contact area can be determined. 
After a contact zone is found, interpolations are applied to identify the intersections of 
ship waterline and ice edge. The edge of a contact zone can be regarded as a closed 
polygon, which is comprised of ice nodes that enter ship waterline, hull nodes that enter 
ice plate and intersections, as shown in Fig. 3.6. The polygon area, i.e. the projection of 
contact area on the water plane can be calculated as [44] 
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where n denotes the total number of vertexes, (xi,yi) represents the coordinate of an 
arbitrary vertex of the closed polygon. 
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Fig. 3.6 A typical contact zone. 

Contact surface is assumed to remain flat during crushing, in order to calculate every 
contact area. As the ship advances against the ice sheet after initial contact, the contact 
surface is regarded as a triangle plane. When the minimum bending force required to 
create the bending failure has not been reached before the crushing height becomes 
equal to the ice thickness, the contact geometry changes from a triangle to a trapezium. 
We first calculate the projection of contact area on the water plane Ac, when the crushing 
height is as high as the ice thickness. The contact geometry can be then identified by 
comparing Ac against the area A given in Eq. (3.4). 

In this critical case, the crushing depth Lc and crushing width Lh are obtainable as 
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Therein, α denotes the normal frame angle of the ship hull, ϕ simplifies the opening 
angle of ice wedge. 

Then the contact area is calculatable as below. 
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Case 1: Ac is greater than A, which means the contact geometry is a triangle, and thus 
the contact area can be achieved based on the projection on the water plane. 
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Fig. 3.7 Case1: contact surface. 

Case 2: Ac is smaller than A, when further crushing happens after the crushing height 
has reached the ice thickness. The contact surface changes to a trapezium plane. The 
altitude of trapezium ht can be obtained by 
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The crushing depth Lc now is 
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The lengths of each base of the trapezium Lh and LH can be calculated as 
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Consequently, the contact area can be expressed as 
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     (3.13) 
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Fig. 3.8 Case2: contact surface. 

Case 3: since the slope angle of the parallel mid-body tends to be vertical, when the 
numerical model is conducted in 6DOFs, the mid-ship hull may contact the bottom 
surface of the ice sheet first due to roll motions. If the contact geometry is a trapezium, 
then the contact area is calculatable based on the projection area on the water plane, 
which is similar to the calculation process of case 2. 

 

Fig. 3.9 Case 3: contact surface. 

Case 4: if the mid-ship hull contacts the bottom surface first and the contact geometry 
is a triangle, then the contact zone cannot be found on the water plane, and the contact 
detection needs to be performed in 3 dimensions (3D), which is extremely complicated. 
In the present study, this case has not been considered in the simulation procedure. 

 

Fig. 3.10 Case 4: Contact surface. 
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3.1.2.2 Pressure–area relation 

To calculate the crushing force in Eq. (3.3), for simplicity, it is typically assumed that 
pav can be represented by the crushing strength σcr of sea ice. Nevertheless, the pressure 
during crushing may not be a constant due to the mechanical properties of ice. A large 
amount of in-service data demonstrates a decrease of average pressure with increasing 
contact area [46] [47]. A relationship between the pressure and the area has been 
determined as the following form. 

 pD

av p crp C A  (3.14) 

In that equation, Cp and Dp are empirical parameters, Cp is positive, Dp is negative. 

Palmer [48] proposed a simple mathematical model which quantified the p–a relation 
based on combination of fracture mechanics model of fragment breaking and fractal 
hierarchical distribution of fragment size. Palmer’s model took the values of Cp and Dp 
as 1.7 and -0.25 respectively, Eq. (3.14) can be then written as 

 -0.251.7av crp A  (3.15) 

Consequently, the crushing force is given by the pressure multiplied by the area, 

 0.751.7cr av cr crF p A A   (3.16) 

3.1.3 Bending failure 

3.1.3.1 Contact force analysis 

Aside from the local crushing force normal to the contact surface, the ship hull is also 
subjected to vertical and horizon tal frictional forces caused by the tangential relative 
motions. A local coordinate system, denoted as τnz, is introduced to transform the rigid 
body velocities to the hull nodal velocities, as shown in Fig. 3.11(a). Presumably, no 
vertical (bending) displacement of the ice wedge exists during crushing. Therefore, 
frictional forces f1 and Fτ are proportional to the relative velocity components, which 
can be calculated as 

 1
1 2 2

1

i cr

v
f F

v v


 

  (3.17) 

 
2 2
1

i cr

v
F F

v v









  (3.18) 

where v1 and vτ are the relative velocity components on the contact surface, as illustrated 
in Fig. 3.11(c). 
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On the A–A plane as shown in Fig. 3.11(b), v1 is obtainable as 

 1 ,1 ,1 cos sinn z n zv v v v v      (3.19) 

where vz is the velocity component on the z0 axis of the earth-fixed frame. 

The normal velocity component vn and tangential velocity component vτ can be 
calculated as below. 

 cos sinn x yv v v    (3.20) 

 sin cosx yv v v     (3.21) 

Therein, vx and vy are the velocity components on the x0 axis and y0 axis of the earth-
fixed frame, β represents the waterline angle at the current node. 

Based on the force analysis as presented in Fig. 3.11, the following components can be 
derived. 

 1sin cosn crF F f    (3.22) 

 1cos sinz crF F f    (3.23) 

 cos sinx nF F F     (3.24) 

 sin cosy nF F F     (3.25) 

where Fx, Fy and Fz are the icebreaking force components expressed in the earth-fixed 
frame. Nevertheless, the motion equations are solved in the body-fixed frame, and 
therefore these force components need to be transformed from the earth-fixed frame to 
the body-fixed frame by using the inverse of rotational matrix. 

 brk 1( )n
b nb

F FR   (3.26) 
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(a) Local coordinate system τnz 

       

(b) Local contact force on A–A plane 

 

(c) Local contact force on the contact surface 

Fig. 3.11 Contact force. 

3.1.3.2 Bending failure criterion 

Kashtelian [49] (see Kerr [50]) predicted the breaking load of edge-loaded sea ice plate 
with ship weight as the vertical load, based on the observation of the carrying capacity 
when the ice wedges initially break off, as presented in Fig. 3.12. The bearing capacity 
for an ideal wedge with an opening angle ϕ is calculable as below. 

 
2

2
f f f iP C h

 

   
 

 (3.27) 

In that equation, σf is the flexural strength of ice plate, Cf is an empirical coefficient, 
which is obtainable from some measurements. Kashtelian proposed that the constant Cf 
equals a small value, which is close to 1, whereas a value of 4.5 was used and validated 
by the empirical ice resistance formula in Nguyen [8]. Su [11] chose the value of 3.1 for 
Cf, which is adopted in the present study. 
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Fig. 3.12. An ice wedge subjected to a load P at its apex. [50]. 

Observation in the field indicate that, for an ice wedge with a large opening angle, 
several radial cracks form and propagate before the formation of a circumferential crack 
that causes final failure, as portrayed in Fig. 3.13. 

 

Fig. 3.13 Cracks for ice wedge with a large opening angle [7]. 

It is assumed that n is the number of radial cracks and that the n formed wedges are all 
of equal opening angle ϕn, i.e. ϕn = ϕ/n, and thus the failure load can be obtained as 
a summation of that for the n small wedges, which can be expressed as 

 2 2 2 21
( ) ( )f f f i f f iP nC h C h
n n

  
 

   (3.28) 

Form this equation, it can be seen that the bearing capacity Pf is inversely proportional 
to the number of radial cracks n, which means that more small ice wedges are assumed, 
then the failure load could become lower. From the perspective of structural safety, in 
this study, n = 2 is used when the opening angle is larger than 120°, in order to achieve 
a relatively conservative value of failure load, which can be calculated as 

 2 21
( )

2f f f iP C h
 


  (3.29) 

If the vertical component of the contact force between ice and hull Fz, given in Eq. 
(3.23) exceeds the bending failure load of ice cover Pf, the ice wedge would be broken 
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from the ice edge. Otherwise, only local crushing occurs on the contact surface. 

3.1.3.3 Geometry of ice wedge idealization 

The ice wedges formed in the icebreaking process are determined by bending cracks, 
which are idealized and described by a single parameter, namely the icebreaking radius. 
The geometrical idealization of the ice wedge in contact with the ship hull is illustrated 
in Fig. 3.14, where the bending crack is determined by the interpolation of the 
icebreaking radius at the first and last contact node (i.e. Rf and Rl). The icebreaking 
radius RI is derived from the expression given in Wang [7], on the basis of information 
from Enkvist [2] and Varsta [51]. 

 (1.0 )rel
I l v nR C l C v   (3.30) 

where vn
rel is the relative normal velocity between the ice and the hull node, Cl and Cv 

are two empirical parameters obtained from field measurements, Cl having a positive 
value 0.32 and Cv is a negative value -0.25 referring to Enkvist [2], l is the characteristic 
length of the ice, i.e. the distance between the point of load to the location where the 
crack deformation occurs at the ice plate, which can be formulated according to the thin 
plate theory as follows, 

 

1
3 4

212(1 )
i

i

Eh
l

g 
 

   
 (3.31) 

Therein, E represents the Young's modulus of ice,  stands for Poisson's ratio. 

 

Fig. 3.14 Geometrical idealization of the ice wedge. 

The radius obtained from the formula mentioned above is a deterministic crack size, 
however, cracks of various sizes are observed in an icebreaking run, as introduced in 
Su et al. [11]. Consequently, in this study, the crack size is defined by a random crack 
radius. In a numerical simulation of ice–cone interaction, Izumiyama et al. [6] assumed 
that the crack size followed a normal distribution. The size of the crack is defined by 
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the radius RI of the approximated circular arc and the ratio Z' of the crack radius to the 
length lbr, given by: 

 0.5( / )br U i wl h   (3.32) 

where σU is the flexural strength of ice in upward bending, γw is the specific weight of 
water. The distribution has a mean z'm of 0.94 and a standard deviation z'sd of 0.27, 
which were determined based on the observed crack pattern in the model test. 

There has been no reliable theory on the crack size distribution until now, whereas 
Izumiyama’ method seems a reasonable estimate based on the experimental data. 
Therefore, a normal distribution is used and the ratio between the standard deviation 
RIsd and the mean crack radius RIm is assumed to be the same as the value of z'sd/z'm 
mentioned above. Herein, the mean crack radius is calculated by the deterministic 
method Eq (3.30). A random crack radius can then be generated by using: 
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where F(R) is the cumulative distribution function (CDF) of the crack radius, F−1(U) is 
the inverse CDF, and U is a uniformly distributed random number between 0 and 1. 

3.2 Numerical results of ice loads in level ice fields 

3.2.1 Global ice loads and ship performance 

The numerical method introduced above is implemented to model a full-scale ship 
navigating in level ice. The continuous ice loading processes in transiting operation in 
a uniform level ice of different thickness are reproduced by the simulation program. 
The principal dimensions of the ship and the ice properties are listed in Tables 3.1 and 
3.2 respectively. 
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Table 3.1 Ship characteristics 

Length between perpendiculars 149.26 m 

Breadth 22.36 m 

Draught 8 m 

Displacement 21000 t 

Moment of inertia Ixx 1.39 ×108 kg m2 

Moment of inertia Iyy 2.44 ×109 kg m2 

Moment of inertia Izz 2.57 ×109 kg m2 

Waterline angle β 23.6° 

Stem angle η 21.8° 

 
Table 3.2 Ice properties 

Young's modulus E 3500 MPa 

Poisson ratio  0.3 

Flexural strength f 0.55 MPa 

Frictional coefficient i 0.15 

Density of sea water w 1025 kg/m3 

Density of sea ice i 900 kg/m3 

 

Fig. 3.15 and Fig.3.16 give the simulated time histories of global icebreaking loads 
which excludes ice submersion force, driven by constant thrust in level ice thicknesses 
of 0.2 m and 1.0 m respectively. The calculated ice loading process consists of 
numerous spike-like peaks. The magnitude of ice loads in 1.0 m thick ice is much higher 
than that in the ice of 0.2 m thickness. Moreover, from these two figures, it can be 
observed that in the case of 0.2 m ice thickness, the loading series shows relative 
regularity, whereas in the case of 1.0 m thick ice, the process seems more dynamic. It 
can be for the reason that the breaking force is considerably small compared to the 
propulsion power in thin ice, however, the ice loads are comparable to and sometimes 
even higher than the thrust in thick ice. Consequently, the ice loading history in 1.0 m 
thick ice is apparently irregular. 

The mean values in 0.2 m and 1.0 m ice thickness are 8.6465 KN and 477.28 KN 
respectively. Nevertheless, the peak value in 0.2 m thick ice can reach more than 200 
KN, and the load amplitude in 1.0 m thick ice is up to nearly 6000 KN, compared to 
which, the mean values are significantly small. It can be explained that in an 
icebreaking cycle, after the bending failure is initiated, ice wedges drop from the ice 
plate and a channel forms for the ship to transit. No contact occurs between ship and 
ice in the channel, and therefore the breaking force would decline to zero until 
subsequent contact, which causes low mean value. 
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Fig. 3.15 Simulated time histories of global icebreaking loads in 0.2 m thick ice. 
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Fig. 3.16 Simulated time histories of global icebreaking loads in 1.0 m thick ice. 

In order to validate the present numerical codes, the simulated results are compared to 
the ship performance data from numerical procedure in Su et al. [11]. Su carried out a 
numerical analysis of icebreaker AHTS/IB Tor Viking II, and verified the computed 
results by comparison with the ice trials. The peak value of ice loads in 0.5 m thick ice 
is close to 1400 KN with a constant ship speed of 5 m/s in Su’s model, and the mean 
value is 356 KN. By contrast, with the same ice thickness and ship speed, the peak loads 
by the present model can reach as high as 4000 KN, and the mean value is 1257 KN, 
which is much higher than those results of Su. It can be attributed to the different 
dimensions of ship models used in the two programs. The length of icebreaker 
AHTS/IB Tor Viking II is 75.2 m, whereas that of the present model is 149.26 m. 
Considering the larger scale of ship used in this study, the numerical result seems 
reasonable. 

The simulated speed time series in 0.2 m thick ice and 1.0 m thick ice are presented in 
Fig. 3.17 and Fig. 3.18 respectively. 
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Fig. 3.17 Simulated speed time series in 0.2 m thick ice. 
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Fig. 3.18 Simulated speed time series in 1.0 m thick ice. 

It can be seen that the speed achieved in 0.2 m thick ice is quite stable, varying in a 
small range from 6.30 m/s to 6.34 m/s, which corresponds to the regular loading process 
presented in Fig. 3.15. The speed in the case of 1.0 m ice thickness varies relatively 
obviously. During the period between 1100s and 1300s, the speed decreases and starts 
to oscillate around zero value, due to the high loads of this duration. We can see from 
Fig. 3.16 that the ship experiences continuous contact with the ice sheet in this period, 
which cause that the breaking force increase again before drop to zero. 

Ice resistance is defined as the time average of all longitudinal forces due to ice acting 
on the ship. Estimation of ice resistance is a significant issue because it is closely related 
to propulsion and determines the engine power of the ship. An empirical formula 
proposed by Lindqvist [4] based on the full scale tests in the Bay of Bothnia is a simple 
way to estimate the ice resistance, which consists of three resistance terms: crushing of 
ice at the bow, bending of ice at the bow, and submergence resistance along the parallel 
midbody. Each of these terms is multiplied by a speed dependent term to form the total 
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level ice resistance as below. 

 / /
level C B( )(1 1.4 ) 1 9.4

b b
b n b n

s

WL WL

v v
R R R R

gL gL

 
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 
 (3.34) 

Therein, Rs signifies the submergence resistance as stated in Chapter 2, RC denotes the 
resistance due to crushing at the bow, RB is the resistance induced by bending and 
breaking of ice at the bow. RC and RB are given as 

 2
C=0.5 (tan cos / cos )(1 sin / cos )b i i iR h          (3.35) 

 1.5
B=0.003 (tan cos / sin cos )(1 1/ cos )b i iR Bh         (3.36) 

where σb represents the bending strength of the ice. 

Verification of the simulation routine and Lindqvist ice resistance formulation with a 
constant ship speed of 5 m/s is presented in Fig. 3.19. In the cases of 0.2 m, 0.3 m, 0.4 
m and 0.8 m thick ice, the numerical results are quite consistent to Lindqvist resistance. 
In the cases of 0.5 m, 0.6 m and 0.7 m ice thickness, the numerical values are higher 
than Lindqvist results, whereas in 0.9 m and 1.0 m thick ice, the simulated resistance 
are lower. However, the fitted exponential curve of numerical results by the present 
model shows good agreement with that computed by the empirical formula. 

Furthermore, it can be observed that the ice resistance calculated by Lindqvist formula 
increases with ice thickness, but some deviations occur in the simulation results. It can 
be attributed to the different icebreaking pattern. Take the cases of 0.7 m and 0.8 m 
thickness as an example, the resistance value in 0.8 m thick ice is smaller, even if the 
ice plate is thicker. Fig. 3.20 and Fig. 3.21 show the breaking patterns in 0.7 m and 0.8 
m thick ice respectively. Compared with the case of 0.8 m thickness, some contact zones 
occur at the parallel midbody in 0.7 m thick ice, where the frame angle is nearly vertical, 
as portrayed in the boxes of Fig. 3.20, and consequently, the vertical component of 
contact force is not sufficient to induce a bending failure. The crushing area could 
progressively increase, which leads to severe icebreaking force. 
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Fig. 3.19 Simulated ice resistance in level ice and the Lindqvist's ice resistance. 
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Fig. 3.20 Icebreaking pattern in 0.7 thick ice. 
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Fig. 3.21 Icebreaking pattern in 0.8 thick ice. 

Ship performance is usually described by a plot of ice thickness versus the forward 
speed that can be attained at full propulsion power, i.e. the h–v curve. Fig. 3.22 
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illustrates the curves obtained in the present simulation and Su’s numerical program [11]. 
We can see that the attainable speeds of the present ship model are lower than those of 
Su’s model, due to the higher loads level caused by a larger scale. Nevertheless, the 
downward trend with ice thickness and the drop rate are quite consistent between the 
two models. 
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Fig. 3.22 The h–v curve. 

3.2.2 Local ice-induced loads and statistical analysis 

3.2.2.1 Local ice-induced loads 

Aside from global ice loads, the line load on a specified frame can be obtained from the 
numerical simulation. Because the ice sheet is crushed continuously by bow shoulders, 
the icebreaking forces become more severe at these areas. Therefore, a frame on the 
bow shoulder area is selected for this study. Its location is marked as presented in Fig. 
3.23. 

Contact Zone

Fr

 

Fig 3.23 The location of calculated frame at bow shoulder area. 

The local ice-induced loads with different ice thickness and initial ship speed are 
discussed in this study. Fig. 3.24 shows the frame loads in various thickness. It can be 
observed that the local loads level increase with the increasing thickness generally, and 
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the load values are sensitive to ice thickness, because the icebreaking pattern is heavily 
dependent on the factor of ice thickness. 
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(a) ice thickness = 0.2 m 
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(b) ice thickness = 0.3 m 
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Fig. 3.24 The calculated frame loads with different ice thickness. 

The frame loads in 0.2 m thick ice with various initial ship speeds are presented in Fig. 
3.25. The initial speeds are set around the attainable one at full propulsion power, and 
close to each other, as 6.29 m/s, 6.30 m/s and 6.31 m/s respectively. Although the global 
ice loads tend to be regular and stable, the simulated frame loads are sensitive to the 
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initial speed. Both the magnitude and frequency of local loads show some discrepancy 
among these cases. 
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(a) initial speed = 6.29 m/s 
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(b) initial speed = 6.30 m/s 
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Fig. 3.25 The calculated frame loads with different initial speed in 0.2 m thick ice. 

3.2.2.2 Statistical analysis 

Individual ice loads must be separated when studying ice load statistics. Before 
probability plotting, a Rayleigh separation is applied to identify load peak values x1, 
x2, …, xn, as introduced in Kujala et al. [52]. A proper value of the separator is chosen 
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initially. The Rayleigh separation method seeks the first peak value of the time history. 
The next peak value cannot be found until the time history signal decreases below the 
value of the Rayleigh separator chosen previously. If the time series signal does not 
decrease below this limit, but instead later increases above the first value, the first value 
is abandoned and a new value is selected as the first peak value. Fig. 3.26 shows how 
the Rayleigh method operates when the separator value is set as 1/4. In this figure, “+” 
and “-” signify the maximum and minimum respectively. Because the value at the point 
of “1-” is smaller than that at the point “1+” times the separator 1/4, the “1+” maximum 
is identified as a peak value. Similar cases also happen at the points of “3+”, “4+”, and 
“5+”. Nevertheless, the value at the point of “2-” is greater than that at the point “2+” 
times the separator 1/4, and the maximum at “3+” point is larger than that at “2+” point, 
thus the “2+” maximum is abandoned. Circles show the peak values of Rayleigh-
separated ice loads. 
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Fig. 3.26 Peak values according to Rayleigh method. 

Since the local loads are sensitive to initial conditions, and the specified frame is even 
never in contact with the ice plate during the icebreaking pattern in some cases, 
therefore, 10 numerical simulations of ice-induced frame load processes with different 
initial speeds for each ice condition are conducted and deal with Rayleigh separation. 
The order statistic of peak loads is x(1), x(2), …, x(n), where x(1)≤ x(2) … ≤ x(n), then 
the empirical CDF is generally defined as [53] 

 ( )

( )
( ) , for 0 1

2 1i

i c
F x c

n c


  

 
 (3.37) 

where c is a parameter for plotting position. 

Generally, the distribution of local ice load peaks might be described approximately 
using a Weibull distribution based on statistical analysis of field measurement data of 
ice loads [54] [55]. Its CDF can be expressed as 

 ( ) 1 exp ( )kx
F x


    
 

 (3.38) 
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where ε represents the scale parameter and k stands for the shape parameter of the ice 
load distribution. To ascertain the proper values for the parameters of the Weibull 
distribution underlying the ice load process, a probability paper can be employed. 
According to the empirical CDF, the parameters of Weibull distribution can be 
estimated by fitting using least squares method. 

Fig. 3.27 shows that the ice load peaks on a specified frame in various ice thickness are 
presented in the Weibull distribution. The cumulative distributions of ice load peak are 
shown as a function of the load level on the logarithmic axis [ln(x)] and cumulative 
occurrence probability on the twice logarithmic axis [-ln(-ln(1-F))]. The peak values 
are observed to form nearly a straight line, which means that the ice load peaks of the 
numerical simulation fit the Weibull distribution well. 

-2 0 2 4 6
-6

-4

-2

0

2 Y=1.1183X-4.0717

ln
(-

ln
(1

-F
))

ln(x)    
2 4

-4

-2

0

2

Y=0.9794X-3.9827

ln
(-

ln
(1

-F
))

ln(x)  

hi = 0.2 m                                     hi = 0.3 m 

0 2 4 6
-6

-4

-2

0

2 Y=1.1260X-5.6850

ln
(-

ln
(1

-F
))

ln(x)    
0 2 4 6

-6

-4

-2

0

2 Y=1.1725X-5.9236

ln
(-

ln
(1

-F
))

ln(x)  

hi = 0.4 m                                     hi = 0.5 m 



53 
 

-2 0 2 4 6
-8

-6

-4

-2

0

2 Y=1.0646X-5.5629

ln
(-

ln
(1

-F
))

ln(x)    
-6 -4 -2 0 2 4 6 8

-8

-6

-4

-2

0

2 Y=1.0142X-5.5080

ln
(-

ln
(1

-F
))

ln(x)  

hi = 0.6 m                                     hi = 0.7 m 

-6 -4 -2 0 2 4 6 8

-8

-6

-4

-2

0

2 Y=0.9783X-5.6247

ln
(-

ln
(1

-F
))

ln(x)    
-2 0 2 4 6 8

-6

-4

-2

0

2 Y=0.8629X-4.9654

ln
(-

ln
(1

-F
))

ln(x)  

hi = 0.8 m                                     hi = 0.9 m 

2 4 6 8

-4

-2

0

2

Y=0.9024X-5.7021

ln
(-

ln
(1

-F
))

ln(x)  

hi = 1.0 m 

Fig. 3.27 The calculated load peak distribution in level ice fields and fitted line of 
Weibull distribution in the ice thickness from 0.2 m to 1.0 m. 

The statistical distribution parameters of numerical load peaks in level ice fields are 
shown in Table 3.3 in different ice conditions. The shape parameters vary in the range 
0.8629 < k < 1.1725. From statistical analysis of field measurement data, the shape 
parameter is found to be generally 0.7 < k < 1.0 [55]. By comparison, considering the 
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different ship models used in the field measurements and numerical simulations, the 
shape parameter value of the simulated peak distribution, i.e. the slope of the fitted line, 
is reasonable. 

Table 3.3 Distribution parameters of the Weibull model for load peaks of various ice 
thicknesses in level ice fields 

hi Shape parameter k Scale parameter ε 

0.2 m 1.1183 38.1235 

0.3 m 0.9794 58.3409 

0.4 m 1.1620 133.2572 

0.5 m 1.1725 156.3743 

0.6 m 1.0646 185.9776 

0.7 m 1.0142 228.3294 

0.8 m 0.9783 314.1205 

0.9 m 0.8629 315.5513 

1.0 m 0.9024 554.8377 

3.3 Summary 

A semi-empirical numerical procedure for predicting ship performance in level ice is 
established. The icebreaking process can be well reproduced as cycles of contact, 
crushing, and bending. The global ice loads and ship performance tend to be stable as 
the ship travels deep into ice sheet, and not significantly affected by the initial 
conditions. The simulated ice resistance compares well with that calculated by 
Lindqvist empirical formula. The icebreaking pattern has a great effect on the ice loads, 
which might induce higher loads in thinner ice plate. The downward trend and drop rate 
of h–v curve by the present model are quite consistent with the published results of Su’s 
numerical model. The local ice loads are sensitive to ice thickness and initial conditions. 
The local load peaks can be modeled as a Weibull distribution. The shape parameters 
of the Weibull model representing numerical ice loads process agree well with statistical 
results of field measurement data. 
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Chapter 4 

Numerical Model of Ship Operating in Ridged Ice 

Fields 

Ice ridges are common ice features, appearing especially in dynamic ice conditions. Ice 
ridges constitute a significant obstacle and often control the design load levels for ships 
operating in ice-covered waters. Sometimes the ridge depth can exceed the ship draft. 
In such cases, much energy is consumed by displacing ice blocks. For that reason, it is 
important to predict the ice-induced loads on ice-going ships in ridged ice fields in 
terms of structural safety and overall operation. In this chapter, a numerical model is 
introduced to investigate both global and local ice-induced loads on ship hulls in ridge 
fields. Probabilistic ice fields are generated according to the statistical distributions of 
ridge heights and spacings. A modified Rankine’s plasticity model is applied to achieve 
the keel loads, and the simulated results are compared with model tests, field 
measurements and earlier numerical results in ridged ice fields. 

4.1 Generating ridged ice fields 

4.1.1 Geometry of sea ice ridges 

Ridges are complex structures with a wide variability in shape and size, which are 
formed when level ice floes are compressed and sheared by environmental driving 
forces such as wind and currents. Piling up of broken ice rubble occurs above and below 
the parent ice sheet. Sea ice ridges are generally formed of three parts, which are 
illustrated in Fig. 4.1. 

The ice pile-up on the surface is called the sail and it is composed of ice blocks that can 
be relatively unconsolidated, or partially refrozen together. The voids between blocks 
are filled with air or snow [56]. 

The underwater part of the ridge is called the keel and it is also comprised of a large 
number of ice blocks. The ice rubble above and below the waterline is in hydrostatic 
equilibrium, and consequently the dimension of the keel is substantially larger than that 
of the sail. The keel is usually 4–5 times thicker than the sail [57]. 
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Fig. 4.1 Typical illustration of a first-year sea ice ridge [58]. 

With aging water filling the pores between ice pieces often refreezes, forming a 
consolidated layer downward. Its growth rate is higher than that of the surrounding level 
ice. The consolidated layer has a varying thickness that is on average 1.5–1.7 times the 
surrounding level ice thickness [59]. 

Ice ridges are often modeled by triangles or trapezes and characterized by their 
thickness, widths and angles. In this study, ridges are modelled in the simplest form as 
having triangular sails and keels. The model characterizes a ridge with sail height hs, 
keel depth hk, slope angles for sail and keel, αs and αk respectively as well as porosity, 
p. An idealized ice ridge is presented in Fig. 4.2. Typical values for the keel slope angle 
are reported to be 25–30° [19]. Strub-Klein and Sudom [56] give the average ratio of keel 
depth to keel width to be 4.85, which leads to αk = 22° assuming a triangular cross 
section of the keel. Porosity of ridge keels varies between 0.25–0.4. 

 

Fig. 4.2 Illustration of an idealized ice ridge. 

4.1.2 Distribution of sail heights and ridge spacings 

A ridged ice field consists of ice ridges, separated by stretches of level ice sections. In 
transit simulations, two methods are usually used to generate the ridged ice fields. The 
method presented by La Prairie et al. [60] contains a random number of ridges which 
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corresponds to the input ridge density and the ice field can be modelled quite 
realistically. The method presented by Kotovirta [61] flattens ridges to cover the whole 
ice field, i.e., whole field consists of level ice and ridges with solved equivalent 
thickness and therefore is faster for simulations. In this study, the ice conditions are 
approximated as realistically as possible. A ridge generator presented by La Prairie et 
al. is used for modelling the ridge field. Input data for the generator is ridge density per 
kilometer and mean ridge thickness. As the description of the ridge field is stochastic, 
and therefore the Monte Carlo method is used in the routine to create the ridges along 
the ridged ice route section. 

Sail heights and keel depths of sea ice ridges can be modelled to be distributed 
according to the exponential distribution [62]. The probability density function (PDF) for 
ridge sail heights can be expressed as 

 ( ; , ) exp( ( ))s c s cp h h h h      (4.1) 

where hs represents sail heights, hc denotes a cut-off height of sail heights, λ stands for 
the shape factor of the distribution i.e. the inverse of mean height of sails higher than 
hc. The cut-off height is needed to distinguish ridges from the noise of the measurement 
system used to observe sail heights and keel depths for determination of λ. Presumably, 
the ridge keel depth is, on average, related to sail height. Therefore, the sail height 
distribution is useful to describe keel depths as well. As described herein, the ratio of 
keel depth to sail height is set as 5. 

Similarly, keel spacings, i.e. distance between two adjacent ridges can be modelled as 
an exponential distribution [63]. 

 ( ; ( )) ( )exp( ( ) )c c cp d h h h d     (4.2) 

Therein, μ is the shape parameter i.e. the expected number of keels per kilometer. 

To obtain estimates of ship performance in ridged ice conditions, several random 
realizations of ridge field geometries are generated for each ice condition, by drawing 
random samples of distributions of ridge keel depths and spacings. The first ridge starts 
at x = d, where d is a random distance distributed according to Eq. (4.2). If generated 
ridges overlap, then the union of the overlapping keels is the used geometry, for 
completely overlapping ridges, the smaller ridge is thus discarded. Ridges are generated 
until a pre-set length of ridge field is full. The output of two keel distributions in ridged 
ice fields for 1 km with the same input (λ-1 = 0.2 and μ = 11) is portrayed in Fig. 4.3. 
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Fig. 4.3 Two simulated ridged ice fields with same input parameters. 

4.2 Ship–ice interaction mechanics in ridged ice fields 

Most analytical models of ridge failure divide a ridge into three components as 
mentioned before: the sail, keel, and consolidated layer. Total loads are obtained as a 
summation of them because of each section of the ridge. In practical calculations, the 
effects of ridge sails on ship resistance are neglected because they are assumed to be 
much smaller than the forces related to breakage of the consolidated layer and 
displacement of the keel rubble. The consolidated layer sometimes exerts the greatest 
forces on structures during ridge–structure interaction. Timco et al. [1] reported that, 
during a ridge interaction, the consolidated layer is usually assumed to fail in a manner 
similar to a level ice sheet (i.e. the influence of the sail and keel on the behavior are 
ignored). Therefore, modelling of interaction between the ship and the consolidated 
layer resembles that in level ice discussed in Chapter 3. In the present study, the 
consolidated layer of ridges is assumed to be 1.5 times the thickness of the surrounding 
level ice. Keel loads include two components, friction at the midship and displacement 
of the ridge keel at the bow. The methods of calculating the ice loads induced by ridge 
keels have been based largely on ideas borrowed from soil mechanics theory such as 
Coulomb’s theory and Rankine’s theory. The details of models on the basis of soil 
mechanics are presented in subsections 4.2.1–4.2.3. Moreover, DEM is also applied to 
model the interaction between ships and ice ridges in some recent studies. Discrete 
models can provide a relatively realistic simulation of the interaction conditions 
between ice blocks. However, they need to use very large numbers of elements in order 
to deal with any problem of practical interest. The computation with DEM is quite time 
consuming. In this study, ice loads arising from ridge keels are calculated with a 
modified Rankine’s plasticity model as an integral of loads per unit width, taking 
account of the effects of ship movement and the inertial force of ice accumulation in 
front of the ship bow. 

4.2.1 Theoretical formula of Keinonen 
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Keinonen [18] proposed an analytical method to calculate the pure ridge resistance. 
Penetration of ridges by a ship is a complicated and extensive problem, if the whole 
process is considered, and therefore a number of simplifications and idealizations are 
made in Keinonen’s model. The ice mass in ridge keel is assumed to behave like soil 
under a passive pressure, which means that external pressure is applied on the mass. 
The consideration of ridge field is limited to a structurally homogeneous floating sheet 
of granular material with a constant thickness, i.e. a uniform ridge field. The ship is 
idealized with either a landing craft bow or a simple inclined wedge. 

Keinonen’s model employed Coulomb theory for analyzing the breaking forces in ship–
ice interaction in ice ridges. The method of Coulomb is based on an assumption of the 
breaking of the mass in a plane, when the mass is loaded with a wall. The breaking 
condition is solved by using a force balance calculation in possible breaking planes. 
The actual breaking plane where the breaking conditions are first reached is found by 
derivation. The method for a vertical frictionless wall is shown in Fig. 4.4. BC is the 
rupture plane with an inclination γ' from the horizon. Fτ0, FG, FTOT and FS represent 
cohesion resistance, buoyancy force, force against the wall and shear friction resistance 
respectively. In the figure it can be seen that the action lines of the forces pass through 
a single point, which lies in the rupture plane. The limit equilibrium equation for 
projections of the forces onto the L–L line normal to FS is 

 sin( ) cos cos( ) 0G TOTF F            
0τ

F  (4.3) 

where ϕ' stands for the internal friction angle of the mass. 

 

Fig. 4.4 Coulomb's method. 

Ridge material follows the Coulomb failure model with 

 tan     0  (4.4) 

Therein, τ0 is the cohesion (the shear strength at zero normal load) of the mass and σ is 
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the normal stress. τ is the actual shear strength. 

And for a wall with a height h, Fτ0 is determined as 

 / sinh  τF 0
 (4.5) 

Then the formula for FTOT per unit width can be obtained from Eqs. (4.3)–(4.5). 
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p gh
F h

   
   

    
 

   
 (4.6) 

where ρ△ denotes the difference of the densities of sea water and ice. 

When a minimum for this equation is searched for by varying γ' the breaking condition 
is determined. The minimum is found from the first derivative. For the vertical 
frictionless wall, the solution is γ' = (π/4-ϕ'/2). 

Keinonen’s model was developed with Coulomb's method, i.e. limit equilibrium 
analysis to calculate the resistance as stated previously, but the inclined wall and friction 
against the wall can cause one or several of the action lines of the forces to change. 
Initial resistance is divided into two cases, thin ridge when the thickness of the ridge 
may not reach below the ship draught, and thick ridge when the ridge height is larger 
than the draught. A–A plane is a cross section on the ship bow. In case of thin ridge, 
breaking occurs on one rupture plane, as depicted in Fig. 4.5. In contrast, an additional 
lower rupture plane is introduced in case of thick ridge, as portrayed in Fig. 4.6. This 
model also paid particular attention to the development of the ice rubble profile around 
the vessel. Fig. 4.7 shows the development for a landing craft bow. 

 

 

Fig. 4.5 Rupture plane when the ridge height is less than the draught. 
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Fig. 4.6 Rupture planes when the ridge height is larger than the draught. 

For both initial resistance and developed resistance, force geometry need to be analyzed 
in each condition. The total pure ridge resistance can be calculated as a summation of 
the following components, 

 r 1 2 pB pSR R R R R R        (4.7) 

In that equation, Rγ1, Rγ2, Rε, RpB and RpS represent upper shear plane force, lower shear 
plane force, end shear plane force, bottom frictional resistance and side frictional 
resistance respectively. The equations for each of the terms would be too long to present 
here. The details can be referred to in Keinonen [18]. 

 

Fig. 4.7 Development of ridge profile around a landing craft bow [18]. 
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4.2.2 Theoretical formula of Mellor 

Mellor [19] developed a formula to solve the ship resistance of Great Lakes bulk carriers 
in brash ice, which is taken to be a floating accumulation of reasonably equant 
fragments. The characteristics of brash ice is similar to that of the unconsolidated ridge 
considered by Keinonen [18]. 

Mellor’s model was built on the basis of Rankine theory, which considers the state of 
stress in ice rubble mass when the condition of plastic equilibrium has been reached. 
The effect of intrinsic cohesion between ice blocks is not likely to be significant, and 
thus ignored. Consider a smooth vertical plate pushing slowly against a uniform layer 
of cohesionless brash, as presented in Fig. 4.8, then there will be lateral compression of 
the ice mass and the horizontal stress σx will increase until a state of plastic equilibrium 
is reached. Consequently, all ice elements which are close to the plate are in the passive 
stress state. For this condition, σx is the major principal stress, and the vertical stress σz 
is then the minor principal stress. According to Mohr-Coulomb failure criterion [64], the 
angle of slip planes to the vertical is (π/4+ϕ'/2). 

 

Fig. 4.8 Illustration of slip lines for cohesionless brash ice pushed by a smooth, 
vertical and wide plate [19]. 

Since no external applied forces or displacements act on the mass, the vertical stress σz 
can be determined by the buoyancy of the fragments. 

 (1 ) ( )z kp g h z     (4.8) 

where z is the depth. 

Based on classical Rankine theory, the passive pressure coefficient Kp equals 
(1+sinϕ')/(1-sinϕ'), and therefore σx can be expressed as 
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 1 sin
( )
1 sinx p z zK

  



 
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 (4.9) 

Combining Eqs. (4.8) and (4.9) and integrating the passive stress σx with regard to the 
depth from z = 0 to z = hk, then the total horizontal force per unit width on the plate can 
be obtained by 

 21 1 sin
( )(1 )

2 1 sin
R p gh

 
 


 


 (4.10) 

Under the condition of cohesionless ice fragments, the force based on Rankine theory 
in Eq. (4.10) is actually the same to that obtained by Coulomb method in Eq. (4.6). 

The vessels of most concern in Mellor’s model are bulk carriers, the sides of which are 
essentially vertical near the water line, and the horizontal dimensions are much larger 
than the thickness of a typical brash layer, so Eq. (4.10) can be used to achieve the 
normal component of bow resistance. 

The ship bow is subjected to normal crushing force, coupled with tangential frictional 
force, as portrayed in Fig. 4.9. Taking the local bow angle β for any given vertical strip 
of width ds, the component of the normal force Rds in the x direction is (Rsinβds). If 
the normal distance from the ship centerline to the strip element is y, then sinβ = dy/ds 
and hence the forward force component can be expressed as Rdy. Similarly, the forward 
component of corresponding tangential friction force equals (μiRdx), where μi is the 
frictional coefficient. The total resistance on ship bow Rb is given by the sum of the 
forward components for the elementary strips along the bow section, 

 
/2

b 0 0
2 2 2

bowB L

i i bowR Rdy Rdx BR L R       (4.11) 

Therein, Lbow signifies the bow length. 

 

Fig. 4.9 Ship bow crushing resistance and frictional resistance. 

The midbody resistance Rm is assumed to consist only frictional resistance which is 
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tangential to the ship. 

 m 2 i parR L R   (4.12) 

where Lpar is the length of parallel midship, R' represents the normal force per unit width 
for an indeterminate stress state. The relationship between R' and R is regarded as linear, 

 R NR   (4.13) 

In that equation, N is a factor, with the value varying from 0.06 to 0.13. 

Combining Eqs. (4.11) and (4.12), the total keel resistance Rk can be calculated by 
summing up the bow resistance and the midbody resistance. 

 k b m 2 2i bow i parR R R BR L R L NR       (4.14) 

4.2.3 Theoretical formula of Malmberg 

Malmberg [20] applied Rankine’s plasticity model to study a ship displacing the ridge 
material as well. In Malmberg’s model, the normal force on ice pile in the passive state 
around the bow is considered, as shown in Fig. 4.10. The ridge resistance is a 
combination of resistance due to displacing the ridge keel at the bow, and frictional 
resistance on the parallel midbody sides and bottom. 

 

Fig. 4.10 Basic assumption in Malmberg’s model. 

The component of bow resistance, taken as a point force applied at ship shoulder, is 
calculated by 
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1 sin
(1 )( )(0.5 tan cos )( cos sin )

1 sink k iR gTh p B h
     
 
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  


 (4.15) 

The midship frictional resistance component arises with increasing penetration of the 
ship into the ridge, which is given by 

 m 0(1 ) ( ( 0.5) )
par

k
i kL

h
R gT p K h B dx

T
      (4.16) 

Therein, the factor (hk/T-0.5) is non-negative, i.e. taken as zero when hk < 0.5T, K0 is 
the coefficient of lateral stress, which can be calculated by the following equation 

 0 1 sinK    (4.17) 

4.2.4 A modified Rankine model in the present study 

Those analytical models presented in previous subsections are used widely to obtain 
the global ice loads caused by ridge keels. However, it is difficult to achieve the local 
ice loads by these methods. DEM is applicable to calculate the local loads, but such 
computations can be time consuming even for a single ice ridge. It would be more 
inefficient to estimate the local ice loads in ice fields containing multiple ridges. 
Furthermore, ridged ice fields in those previous models are assumed to be a uniform 
layer of broken fragments with a constant thickness, while in this study, the fields are 
modeled more realistically as having triangular keels. In order to tackle these problems, 
a modified Rankine model is proposed in this chapter to obtain both global ice loads 
and local ice loads on ship hulls in ridge fields. 

The midship component is achieved by the Malmberg’s resistance formula Eq. (4.16), 
which is useful to calculate global loads as an integral along the whole midship part, 
and to calculate the local loads as an integral on a specified frame at midship. Replacing 
the constant thickness hk in Eq. (4.16) with variable keel height, the following 
expression is obtainable. 

 m 0

( )
(1 ) ( ( ) ( 0.5) )

par

r
i rL

h x
R gT p K h x B dx

T
      (4.18) 

where hr(x) represents the ridge depth beneath a point along the midship at any moment. 

The bow component is calculated as an integral of loads per unit width with this model, 
including consideration of the effect of ship movement and inertia force of ice 
accumulation in front of ship bow. 

The Rankine model is limited to the conditions of a vertical pushing plate and a 
horizontal or semi-infinite sloping surface, like the model of bulk carriers in Mellor [19], 
for instance. However, 1) for this study, the keel opening angle and the waterline half-
angle are not large (keel angle αk = 22°, and waterline half-angle β = 23.6° are set in the 
simulation). Therefore, the slope angle of ridge surface normal to cross sections (A–A 
plane) is less than 10°. Consequently, it presumably does not introduce too much 
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inaccuracy to treat the ridge surface normal to A–A plane as horizontal. In addition, 2) 
undertaking the ship bow as a slender wedge, the ice will simply pile up against the 
plate until the resistance reaches the value for a vertical plate. Based on those two 
reasons above, it is reasonable to assume that Rankine’s plasticity model can be 
available for the interaction of each A–A plane and the ice ridge surface. 

As introduced in subsection 4.2.2, Mellor derived the bow resistance per unit width 
attributable to normal force as shown in Eq. (4.10) when the ridge height at a certain 
point is less than the draught. When the ridge height at a certain point is larger than the 
draught, a second lower rupture plane is introduced, as demonstrated by Keinonen [18], 
who applied Coulomb model, i.e. limit equilibrium analysis to calculate the resistance. 
Although the ridge height in contact with ship bow is the draught, from the perspective 
of Coulomb model, resistance results from the area of the ice wedge block, which is 
subjected to buoyancy and to forces from the ship bow and rupture planes. This area is 
approximately proportional to the draught and the ridge height. Therefore, for 
simplification, a modification is made on Eq. (4.10), by which the bow resistance 
because of normal force at a certain point with height greater than the draught can be 
translated into 

 
1 1 sin

(1 ) ( )
2 1 sin rR p g h x T





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
 (4.19) 

Aside from the normal crushing force, friction occurs as a result of the relative lateral 
motion of the ship hull and ice blocks. The friction runs tangential to the bow. The ridge 
keel is triangular. Therefore, the ridge height in contact with each A–A plane is varied 
gradually along the ship bow. Considering the tangential frictional force additionally, 
the global loads on the bow can be expressed as an integral along the ship bow. 

 b (tan ) / tan
bow

i k rL
R R dh     (4.20) 

Regarding local loads on a specified frame, for any point at depth z, the vertical 
component of normal stress is (1-p)ρ△g(hr-z). Therefore, according to Rankine theory, 
the horizontal stress can be ascertained as the coefficient of passive stress (1+sinϕ')/(1-
sinϕ') times the normal stress. The ice loads on the specified frame at A–A plane are 
calculable as an integral of horizontal stress along the contact height with ice ridge. The 
resultant local ice loads are an accumulation of the A–A plane along the frame spacing. 

Myland [65] performed the ridge ramming model tests of two ship models with 
systematically varied keel depths in HSVA’s large ice model basin, and reported that 
an increase of resistance with growing penetration velocity can be assumed to be 
proportional based on the model test results of ridge penetration, as presented in Fig. 
4.11. Therefore, the total keel loads can be expressed as shown below. 

 m _ max
k b m

b _ max

( )
( ) ( )

pen pen pen pen

r r

k v R k v
R R R

Rgh x gh x
   (4.21) 
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Therein, kpen is a factor that depends on the ship model’s ridge breaking capability and 
the number of ram repetitions necessary to break the ridge. It is 1.3–2.0; also, vpen is the 
penetration velocity. 

 

Fig. 4.11 Average ice resistance for varying keel depth vs. average penetration 
velocity [65]. 

The inertia force of ice accumulation in front of each A–A plane can be considered. 
Two parts of the ice blocks contribute to the total inertia force: the ice pile below ridge 
surface in front of A–A plane and the ice wedge block between A–A plane and rupture 
plane, as portrayed in Fig. 4.12. 

 

Fig. 4.12 Inertia force assumption. 

In fact, the ice pile acceleration is the same as the ship acceleration. For the ice wedge 
block, the acceleration varies at different points. A reasonable assumption of inertia 
distribution is required. Nevertheless, the ice pile shape is difficult to predict using 
analytical method. For that reason, a simplified ice pile edge parallel to the A–A plane 
is introduced in this study, by which the inertia force of the ice pile can be compensated 
with that of ice blocks between the rupture plane and the simplified ice pile edge. 
Moreover, the acceleration is assumed to vary linearly from zero at the edge in contact 
with the unmoved ridge to ship acceleration at the edge in contact with the A–A plane. 
The total global or local inertia force is calculable as an integral at each A–A plane 
along the ship bow or frame spacing. 
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4.3 Numerical results of ice loads in ridged ice fields 

4.3.1 Global ice loads and ship performance 

Numerical simulations are conducted in different ice conditions with level ice 
thicknesses of 0.2–1.0 m. The ridge porosity was 0.25–0.4. The internal friction angle 
varied: 47°–58°. For this study, 0.3 and 52.5° were used as the two parameters, as 
referred from a report by Kuuliala et al. [66]. In transit simulations, the values of cut-off 
height and the inverse of shape parameter of sails height distribution were set 
respectively as 0.4 and 0.2 [67]. The expected number of keels density per kilometer was 
set as 11 [62]. Characterized by the mean ridge keel depth, ridge density, and level ice 
thickness, random ridged ice fields can be modeled according to Eqs. (4.1) and (4.2). 
An example of ridged ice field for 1 km is portrayed in Fig. 4.13. Sea ice ridges are 
difficult impediments to navigation in ice. Ships are usually unable to pass through 
them in a continuous mode. If the ship stops in the ridge, then it backs out into its own 
broken channel and rams the ridge again until the ship has passed through the ridge. In 
such cases, keel loads along the mid-ship because of friction are the only resistance 
term considered. The main characteristics of the calculated ship and the material 
properties of level ice sections are identical to those in Chapter 3. 
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Fig. 4.13 A ridged ice field model. 

In numerical simulations, the ship model is driven by constant thrust. The initial 
velocity of a ship transiting through ridged ice fields is set as the mean velocity in level 
ice of equal thickness. Under the keel conditions shown in Fig. 4.13, simulated time 
histories of global ice loads in level ice thicknesses of 0.2 m and 1.0 m are shown 
respectively in Fig. 4.14 and Fig. 4.15. It is apparent that the ice-induced load resembles 
a sequence of spikes. For 0.2 m ice thickness, the pure ice ridge force dominates. For 
1.0 m ice thickness, the ice load induced by breaking the consolidated layer dominates. 
That result is explainable from two factors, 1) according to Eq. (3.27), the ice plate 
bearing capacity is proportional to the square of level ice thickness. Thus, the 
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consolidation loads in 1.0 m level ice thickness are much higher than those in 0.2 m 
thickness. 2) Based on Eq. (4.21), the keel loads are proportional to the penetration 
velocity. Because the transiting speed in lower ice thickness is higher, even in the same 
keel distribution, the keel loads in the case of 0.2 m ice thickness are larger than the 
other ones. This phenomenon has also been observed in field trials. Based on field 
measurement data, Keinenon [68] found that resistance attributable to consolidation 
might be the major resistance component for small ridges and for heavily consolidated 
ridges. 

 

Fig. 4.14 Simulated time histories of global ice loads in level ice thickness of 0.2 m. 

 

Fig. 4.15 Simulated time histories of global ice loads in level ice thickness of 1.0 m. 

Fig. 4.16 and Fig. 4.17 present the simulated speed time series in level ice thicknesses 
of 0.2 m and 1.0 m respectively, corresponding to the global ice loads in Fig. 4.14 and 
Fig. 4.15. The ship forward speed drops sharply from the initial velocity, i.e. the mean 
velocity in level ice of the same thickness, because of the high loads caused by the 
consolidated layer and ridge keels. In the case of 0.2 m ice thickness, the ship transits 
the ridged ice field continuously without ramming. By contrast, six rams must be used 
to pass through an ice field with 1 m level ice thickness, when the ship speed value 
turns negative. The value of the global ice loads during the ramming period in Fig. 4.15 
are nearly zero because the ship backs into level ice stretches that have already been 
broken. For that reason, no contact with the ice edge occurs. Only friction between the 
mid-ship and ice ridges might occur. Nine ridges exist in all in this realization of ridge 
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fields. The segment ends in Fig. 4.14–Fig. 4.17 represent time points at which the ship 
bow begins to penetrate into and has completely gone through each ridge. It is apparent 
that in the case of 1 m level ice thickness, rams are necessary for transiting the large 
ridges. Sometimes rams even happen in level ice sections such as that behind the third 
ridge or in small ridges such as the sixth ridge because the ship slows dramatically after 
passing through the previous large ridge. It cannot maintain forward speed. 

 

Fig. 4.16 Simulated speed time series in level ice thickness of 0.2 m. 

 

Fig. 4.17 Simulated speed time series in level ice thickness of 1.0 m 

To validate the numerical calculation method of ice loads in ridged ice fields presented 
in this chapter, simulations of transiting a single ice ridge were conducted and were 
compared to results of ridge ramming model tests with systematically varied keel 
depths performed in an earlier study using HSVA’s ice model basin by Myland [65]. 
Several ice conditions resembling model tests were simulated using a numerical model, 
for example, in the No. 3010 test run of Myland’s study, the keel depth scaled to full 
scale was 7.6 m. The level ice thickness of 0.05 m was tested with a scale factor equal 
to 22. A similar case of 7.6 m ridge keel depth and 1.1 m level ice thickness was set in 
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the numerical simulation, but other ice properties such as ice strength might be not 
exactly the same. The full scale maximum load value in the model test is 4.5 MN, 
whereas the numerical result is 6 MN. This slightly larger value in numerical simulation 
can be attributed to the larger scale of the numerical ship model (the length between 
perpendiculars of the ship model in the No. 3010 test run was 126.6 m). The numerical 
load values are of the same order of magnitude as the model test results. 

Ice resistance is also calculated for variable ice conditions, as shown in Fig. 4.18. 
Considering the random nature of ridged ice, 50 simulations were performed for each 
ice condition in this study. Fig. 4.18 presents the ice resistance increasing concomitantly 
with the increasing level ice thickness for constant ship speed of 5 m/s. The present 
resistance is higher and it increases faster than Lindqvist's ice resistance at the same 
speed because of the effects of keels and consolidated layers.  
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Fig. 4.18 Ice resistance in various ice thicknesses with a constant speed of 5m/s. 

Fig. 4.19 shows mean speeds obtained for variable ice conditions in the present study 
and in Kuuliala’s transit simulation model [66]. The ridge density is set the same in the 
two simulations as 11 per kilometer. The mean ridge thickness in Kuuliala’s model is 3 
m, whereas the same value of 3 m and a larger value of 6.67 m are used for this study 
for comparison with Kuuliala’s results. Consequently, an obviously lower mean speed 
is obtained with 6.67 m mean ridge depth in the same level ice thickness. For 0.3 m 
level ice thickness, the speed value with 3 m mean ridge depth in the present simulation 
closely approximates Kuuliala’s numerical value, but the mean speed decreases faster 
as the level ice thickness increases in this study. Kuuliala’s numerical results show that 
the expected values of mean speed decrease almost linearly with increasing ice 
thickness. An approximately linear relation between mean speeds and level ice 
thickness is also observed in cases of 6.67 m and 3 m mean ridge depth in this study. 
Moreover, the slopes of these two cases are quite consistent. They are larger than that 
in Kuuliala’s simulation. As a result, the present numerical results are comparable with 
those found from Kuuliala’s study, in spite of some slight differences. 
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Fig. 4.19 Simulated mean speeds in various ice thicknesses by constant thrust. 

4.3.2 Local ice-induced loads and statistical analysis 

4.3.2.1 Local ice-induced loads 

The same location of frame at the bow shoulder area is selected to calculate the local 
ice loads, as presented in Fig. 3.23. Fig. 4.20 and Fig. 4.21 show the simulated time 
histories of local ice loads on this frame with the keel distribution in Fig. 4.13 in level 
ice thickness of 0.2 m and 1.0 m respectively. The maximum numerical load peaks in 1 
m ice thickness can reach 1400 KN/m, which is comparable to measurements published 
in the final report of the ARCDEV project [69]. In this ARCDEV report, a duration of 10 
min time history when the ice tanker M/T Uikku went through an ice ridge is recorded 
during measurement No. 35. The level ice thickness samples consist of four tenths in 
the interval of 0.3 m–0.7 m, five tenths in the interval of 0.7 m–1.2 m, and one-tenth in 
the interval greater than 1.2 m. The ridge depth distribution is one-half in the range of 
1.0 m–1.5 m and another half in the range of 1.5 m–2.0 m. The scale of M/T Uikku is 
close to the numerical ship model, of which the length between perpendiculars is as 
long as 150 m. The maximum signal value from bow shoulder area is up to 1000 KN/m. 
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Fig. 4.20 Simulated time histories of local ice loads in level ice thickness of 0.2 m. 

 

Fig. 4.21 Simulated time histories of local ice loads in level ice thickness of 1.0 m. 

From Fig. 4.20 and Fig. 4.21, it is apparent that in the case of 0.2 m ice thickness, 
contacts between the frame and ice edge of level ice or consolidated layer rarely occur. 
The only occurrence is emphasized in the box. Compared to that, the impulse caused 
by the keel loads lasts for a longer duration required for a ship to pass through the 
present ridge. Load values of these two kinds are in the same level. However, for 1.0 m 
ice thickness, the frame loads caused by displacing keel blocks are much smaller than 
those because of the breaking level ice and the consolidated layer. That is true because 
that 1) the frame spacing is only 0.35 m in the simulations, less than one percent of the 
ship bow length, and ridge keels are treated as homogeneous and isotropic. Therefore, 
the frame keel loads account for a very small share of the global keel load. 2) ship–level 
ice or ship–consolidated layer interaction happens at local contact zones as presented 
in Fig. 3.3. Therefore, if contact occurs on the specified frame, it will cause a high local 
load. Consequently, even though both the keel loads and level/consolidation loads 
contribute greatly to global ice loads, the keel effect is not important for local frame 
loads. It can be ignored in high level ice thickness. In ARCDEV research, instantaneous 
impulses rising from the nearly zero value are dominant, which means that the local 
loads induced by keels are quite small and nearly negligible. 

4.3.2.2 Statistical analysis 
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The 50 numerical simulations of ice-induced frame load processes for each ice 
condition deal with Rayleigh separation, and then the peak loads are described using a 
Weibull model, as introduced in Chapter 3. Fig. 4.22 shows that the ice load peaks on 
a specified frame in different level ice thickness are presented in the Weibull 
distribution. With the high ice thickness of 1 m, peak values are observed to form nearly 
a straight line, which means that the ice load peaks of the numerical simulation fit the 
Weibull distribution well, whereas in the low ice thickness of 0.2 m, some deviations 
from the straight line occur in upper tail because in this case the loads attributable to 
the level ice section are low and the ridge keel effect might be more readily apparent, 
but it is still acceptable to model it using a Weibull distribution. 
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Fig. 4.22 The calculated load peak distribution in ridged ice fields and fitted line of 
Weibull distribution in the level ice thickness from 0.2 m to 1.0 m. 

The statistical distribution parameters of numerical load peaks are shown in Table 4.1 
in different ice conditions. Considering the different ship models used in the field 
measurements and numerical simulations, the shape parameter values of the simulated 
peaks are located in a reasonable range 0.7618 <k < 1.1826, compared to statistical 
analysis of field measurement data 0.7 < k < 1.0 [55]. 
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Table 4.1 Distribution parameters of the Weibull model for load peaks of various ice 
thicknesses in ridged ice fields 

hi Shape parameter k Scale parameter ε 

0.2 m 1.1826 22.2031 

0.3 m 0.8374 37.7919 

0.4 m 0.7618 117.6024 

0.5 m 0.8877 179.1001 

0.6 m 0.9144 244.3113 

0.7 m 1.0139 294.7143 

0.8 m 0.9948 338.8530 

0.9 m 0.8399 411.8340 

1.0 m 0.8748 475.7856 

4.4 Summary 

A numerical model is developed to calculate both global and local ice loads in ridged 
ice fields, in which a semi-empirical method is introduced to develop a numerical model 
of ship–ice interaction in level ice and the consolidated layer in ice ridges. A modified 
Rankine’s plasticity model is applied to calculate ice loads caused by ridge keels, 
considering effects of ship movement and inertia force of ice accumulation in front of 
the ship bow. Multiple simulations of ship transiting ridged ice in different ice 
conditions are conducted under randomly generated ridge-field profiles. Ship 
performance can be well reproduced using the numerical method. Computed results 
confirm that ice ridges can engender high loads levels, causing the ship speed to slow 
dramatically when sometimes rams might have to be required. Although the ridge keel 
factor contributes much to global ice loads, the keel effect is not great for local frame 
loads: in fact, it is negligible in cases of high level ice thickness. The simulated global 
and local ice-induced loads compare well with published results of model tests and field 
measurements in ridged ice fields. The local load peaks can be modeled as a Weibull 
distribution, although some deviations exist in cases of low ice thickness. The shape 
parameters of the Weibull model representing numerical ice loads process agree well 
with statistical results of field measurement data. This agreement makes it possible to 
apply the model for practical use for route planning in ice or for evaluating a ship’s 
operability and structural safety in given ice conditions. 
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Chapter 5 

Numerical Model of Ship Operating in Pack Ice Fields 

In managed ice fields and marginal ice zones, a continuous ice sheet has been broken 
into smaller ice floes by icebreakers or wave actions. These types of ice cover are 
discontinuous in nature and can be idealized as a composition of distinct ice pieces. In 
broken ice fields, occasional ship–ice collisions may occur, rather than continuous 
icebreaking process in level ice. In this chapter, a 2D DEM numerical model is 
developed for simulating the interaction between drifting ice floes and a moving ship. 
The ice floes are represented as hundreds of circular disks with random sizes and 
positions. Both the ship–ice collisions and ice–ice contacts are modeled, and a viscous-
elastic rheology is applied at contacts. The ice loads in different ice conditions (ice 
thickness and ice concentration) can be determined from a series of simulations. The 
numerical results are compared with published simulated results in pack ice fields. 

5.1 Ship–ice interaction mechanics in pack ice fields 

5.1.1 Contact detection 

Since a large number of ice floes are incorporated in a calculation domain, the DEM 
model requires an efficient computer algorithm to detect the ice–ice contacts and ship–
ice contacts, which is done by using a cell structure to identify neighboring disks. The 
cells are squares with their edges parallel to the global x and y coordinates, as shown in 
Fig. 5.1. The dimensions of the cell domain should slightly exceed those of the ice 
domain to enable inclusions of disks located on the boundary. 

In order to ensure that each cell contain only a few disks, the dimension of a cell should 
be larger than that of disks. Consequently, the side length of cells a and maximum disk 
radius Rmax in the ensemble are chosen to satisfy a ratio as 

 
max

1
2

a

R
  (5.1) 

In most cases, it is beneficial to choose the ratio slightly above 1. 
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The location of the current disk with center coordinates (xi, yi) is computed in two steps. 
First the integer cell numbers in the x and y directions are computed by 

 
min max minint[( ) / ( )] 1x x iI NCELL x x x x     (5.2) 

 min max minint[( ) / ( )] 1y y iI NCELL y y y y     (5.3) 

where xmin and xmax are the coordinates of extreme points of the cell domain on the x 
axis, NCELLx represents the number of cells in the x direction. The definitions of terms 
in y direction are analogous. 

 

Fig. 5.1 Cell structures in a computation domain [70]. 

The cell number of the current disk, ICELL, can be calculated as follows. 

 ( 1)y x xICELL I NCELL I    (5.4) 

The cell number of disk i is stored in an array CELLNO (i) and the disk number, i, is 
stored in the two-dimensional array DISCNO (ICELL, j), where j is the first vacant 
element of the actual row ICELL. The number of occupied elements in one row 
corresponds to the number of disks in the same cell. 

Ice–ice contacts are primarily defined by the distance between two disks. A solid 
contact can be logged when overlapping between ice floes occurs, as presented in Fig. 
5.2. The ship waterline is represented as a polygon, including nodes and line segments. 
In the simulation, each segment has to be checked for contact with the disks. A case of 
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collision between ship segments and ice floes is illustrated in Fig 5.3. 

 

Fig. 5.2 Collision between two circular ice floes. 

 

Fig. 5.3 Collision between ship and ice floe. 

With the cell structures, it is sufficient to scan only eight adjacent cells and the same 
cell to the current cell of a disk or hull segments when identifying possible ice–ice 
contacts and ship–ice contacts. The computation time can be significantly saved. 

5.1.2 Contact force 

5.1.2.1 Ice–ice contact 

The contact force is simple to analyze. Ice floes are modelled as soft particles with finite 
stiffness in this method. A local coordinate system, n−τ, which is associated along with 
each collision incident, is introduced, as portrayed in Fig. 5.2. n denotes the normal 
direction and τ represents the tangential direction. The ice motion information would 
be transformed into the n−τ reference frame. When the elements are interacting with 
each other, it is supposed that there are two components of contact force on the contact 
zone, i.e. the normal force and the tangential force. The n−τ coordinate system with the 
origin Oi is defined as below. 
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 (cos ,sin )i j

i j

O O
n

O O
   




 (5.5) 

 ( sin ,cos )    


 (5.6) 

where Oi and Oj are the centers of the two contact disks, nሬ⃗  and τ⃗ are the unit vectors 
of the normal axis and tangential axis respectively, ' is the angle from x-axis to the 
vector nሬ⃗ . 

The relative velocity at the point of contact is given by 

 ( )i j i j i i j jOO O O R R t 


   
    (5.7) 

In that equation, Oi
ሶ  and Ojሶ  stand for the linear velocity for the two disks, ωi and ωj 

are the angular velocities, Ri and Rj signify the radius of disks i and j, respectively. The 
relative displacement rate in normal and tangential directions can be obtained by 
projecting the relative velocity onto the n−t unit axial vectors. 

The normal force is represented as a sum of elastic and damping terms. These two 
components have a direction opposite to the penetration. Consequently, 

 n n n
i i i

ne nvF K K      (5.8) 

Therein, the superscript i denotes the current time step, Kne represents the normal 

contact stiffness, Knv stands for the normal contact viscosity, δሶn
i
 signifies the relative 

velocity of the two disks at normal direction, δn
i  is the normal indentation of overlap, 

which can be determined as 

 i
n i j ijR R     (5.9) 

where ∆ij is the distance between the two disk centers. 

The tangential force is treated as linear-elastic, i.e. the incremental change in the 
tangential force due to friction is proportional to the relative tangential velocity. 

 * 1
te t

i i iF F K t       (5.10) 

where the superscript i-1 denotes the previous time step, Kte stands for the tangential 

contact stiffness, δሶ t
i
 represents the relative velocity of the two disks at tangential 

direction. 

Nevertheless, based on the Coulomb friction law, the Coulomb friction limit is the 
upper limit of the tangential force, and thus the tangential force can be expressed as 

 * *
nmin( ,sign( ) )i i i i

iF F F F     (5.11) 



81 
 

5.1.2.2 Ship–ice contact 

For ship-ice collision, the calculation method of the contact force is similar to that of 
ice-ice collision. In this study, referring to Feng and Owen [71], the middle point of the 
contact line is identified as the reference contact point where the normal force should 
be applied, and the contact normal direction is defined as perpendicular to the line that 
passes through the two intersecting points between the ship waterline and ice floe, by 
which no directional jump occurs at the corner when the ice floe continuously moves 
from the left position to the right, as shown in Fig. 5.3. The total contact forces acting 
on ship hull and each ice floe are calculated as a sum of contact force induced by all the 
ship–ice collisions and ice–ice collisions. 

5.1.3 Motion of ice floes 

In Chapter 2, we addressed the solution of ship motions using a step-by-step integration 
method. In the cases of pack ice fields, ice floes could be driven to move by ship 
advancing and current forces. It is assumed that the disks do not rotate, and there is no 
layering. The disks only move translationally in horizontal plane. In each time step, the 
motion of each ice floe needs to be solved. The motions of ice floes follow the Newton’s 
second law, and can be solved by the assumption of linear acceleration as well. 

When an ice floe moves with an acceleration, its inertia force increases significantly 
and can be achieved with the additional mass method. The additional mass Ma is given 
by [28] 

 sub

( )i w
a m w

d
M C V

dt





V V
 (5.12) 

where Cm is the additional mass coefficient, Vsub represents the submerged area of the 
floe, Vi and Vw are the velocity vectors of ice floe and water respectively. 

Owing to the effect of current, sea ice is subjected to the water drag force, which can 
be expressed as [72] 

 
1

( )
2d d w f w i w iF C A v v v v    (5.13) 

 21
( )

2d d w fM C R A     (5.14) 

Therein, Fd and Md are the water drag force and rotational drag moment, Cd denotes the 
drag coefficient of water, Af stands for the ice floe area, Cd' represents the rotational 
drag coefficient, ω signifies the floe rotational velocity. 

5.2 Numerical results of ice loads in pack ice fields 
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5.2.1 Global ice loads and ship performance 

A rectangular simulation domain is used to model the pack ice field with a dimension 
of 600 m×250 m. The radius of ice floes is set to be in the range from 2 m to 10 m 
randomly, with a specified ice concentration. In this study, ship navigates with a 
constant thrust. Periodic boundary conditions are adopted, in this case, the disks leaving 
the ice domain will be reintroduced on the opposite boundary with their momentum 
unchanged, so as to ensure the ice concentration in the simulation domain to be constant. 
Some computational parameters about ice floe properties are presented in Table 5.1. 

Table 5.1 Ice floe properties 

Normal contact stiffness Kne 587 KN/m 

Tangential contact stiffness Kte 352 KN/m 

Normal contact viscosity Knv 5.87 KNs/m 

Added mass coefficient Cm 0.15 

Normal drag coefficient Cd
n 0.6 

Tangential drag coefficient 𝐶ௗ
ఛ 0.06 

Rotational drag coefficient Cd' 0.6 

 
Fig. 5.4 shows the ship runs into the ice field with ice concentration of 60% from the 
left side, and travels out from the right side. The navigation route seems nearly an 
inclined straight line, although the initial speed of ship is parallel to the x axis. This is 
due to the asymmetric distribution of ice floes on the starboard side and larboard side 
of ship model, which causes asymmetric forces on these two sides. 
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Fig. 5.4 Ship navigation process through ice floes domain. 

In order to verify the simulation procedure, two comparisons are made between the 
present numerical results and the earlier studies conducted by Ji et al. [28] and Daley et 
al. [30]. Ji et al. [28] performed the numerical simulation of ship operating with a constant 
speed of 4.0 m/s in 0.6 m thick ice under ice concentration of 60%. The obtained 
maximum and mean ice loads are 1479 kN and 440 kN, respectively. Fig. 5.5 presents 
the time history of ice loads with the same conditions, except the constant thrust. The 
numerical maximum and mean loads values are 1850 kN and 442 kN, which compare 
well with Ji’s results. 
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Fig. 5.5 Time history of ice loads calculated by the numerical simulation (Ice 
thickness = 0.6 m, Ice concentration = 60%). 

Daley et al. [30] adopted the GEM simulation approach to calculate the ice loads by a 
constant thrust in a series of various ice conditions. The numerical results in an 
individual run performed under 0.5 m thick ice and 40% ice coverage can be found in 
the list of result values. The maximum and mean ice loads are 1152 kN and 78 kN 
respectively. The calculated ice loads by the present numerical model are shown in Fig. 
5.6. The simulated maximum and mean values are 1303 kN and 279 kN. By comparison, 
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the maximum values are in the same order of magnitude, whereas, a higher mean value 
is found in this study. 
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Fig. 5.6 Time history of ice loads calculated by the numerical simulation (Ice 
thickness = 0.5 m, Ice concentration = 40%). 

The simulated speed time series under 0.2 m thick ice and 60% ice coverage is portrayed 
in Fig. 5.7. It can be observed that as the ship travels into the ice floes region, a nearly 
steady speed can be achieved, although still with fluctuations. The fluctuations can be 
attributed to the ice impulse loads. 
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Fig. 5.7 Simulated speed time series (Ice thickness = 0.2 m, Ice concentration = 60%). 

Ice thickness, ice concentration and floe size are important parameters affecting the ice 
loads significantly. The influences of these parameters on ice resistance are analyzed, 
which are illustrated in Figs. 5.8, 5.9 and 5.10 respectively. The figures show that the 
ice loads generally increase with the increasing ice thickness, however, some deviations 
can be observed even under the same ice floe distribution, such as the case in 0.4 m 
thick ice with 40% ice coverage. This might be because the collisions between ship and 
ice floes are very sensitive to the ice thickness. Also, the growth rate of ice resistance 
with the increase of ice thickness is not high. As for the influence of ice concentration, 
it is clear that ice resistance is greater under higher ice concentration. The different floe 
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sizes are modeled in the simulations, and the resistance increases with the increasing 
floe radius. It might be because the inertial force and drag force are greater of larger 
floes. 
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Fig. 5.8 Influence of ice thickness on ice resistance. 
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Fig. 5.9 Influence of ice concentration on ice resistance. 
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Fig. 5.10 Influence of ice floe size on ice resistance. 

5.2.2 Statistical analysis of local ice-induced loads 

Considering the random nature of pack ice fields, 10 simulations were performed for 
each ice condition (ice thickness and ice concentration). After Rayleigh separation, the 
ice load peaks on a specified frame in different ice conditions are plotted in the Weibull 
distribution. An example of plotting results of load peaks under 20% ice coverage is 
shown in Fig. 5.11. The peak values are observed to form nearly a straight line, which 
means that the ice load peaks of the numerical simulation fit the Weibull distribution 
well. 
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Fig. 5.11 The calculated load peak distribution and fitted line of Weibull distribution 
(Ice concentration = 20%). 

The statistical distribution parameters of numerical load peaks are shown in Table 5.2 
in different ice conditions. Considering the different ship models used in the field 
measurements and numerical simulations, the shape parameter values of the simulated 
peaks are located in a reasonable range, compared to statistical analysis of field 
measurement data [54], in which the shape parameter of 0.75 is used to fit the ice loads 
of MS Kemira during the winters 1987 and 1988 in different ice conditions, including 
level ice and deformed ice. 

Table 5.2 Distribution parameters of the Weibull model for load peaks of various ice 
thicknesses and concentration 

(1) 10% ice coverage 

hi Shape parameter k Scale parameter θ 

0.2 m 0.7918 9.4452 

0.3 m 0.7984 9.8150 

0.4 m 0.9991 11.5578 

0.5 m 0.7340 13.7408 

0.6 m 0.8141 15.1213 

0.7 m 0.8754 17.6305 

0.8 m 0.7748 19.2877 

0.9 m 0.5333 21.4010 

1.0 m 0.8261 23.7457 
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(2) 20% ice coverage 

hi Shape parameter k Scale parameter θ 

0.2 m 0.7239 13.5872 

0.3 m 0.7133 15.3001 

0.4 m 0.7746 16.5144 

0.5 m 0.8345 20.7616 

0.6 m 0.6430 24.1658 

0.7 m 0.8864 21.1347 

0.8 m 0.9189 23.9889 

0.9 m 0.8651 27.1232 

1.0 m 0.8053 21.9414 

 
(3) 30% ice coverage 

hi Shape parameter k Scale parameter θ 

0.2 m 0.9815 20.2858 

0.3 m 0.9053 20.4412 

0.4 m 0.9506 22.5106 

0.5 m 0.9460 22.4789 

0.6 m 0.8711 22.0377 

0.7 m 0.7841 25.7816 

0.8 m 0.8485 28.8845 

0.9 m 0.9741 31.0879 

1.0 m 0.9195 31.2612 

 
(4) 40% ice coverage 

hi Shape parameter k Scale parameter θ 

0.2 m 0.8768 27.4936 

0.3 m 0.8378 29.3960 

0.4 m 0.9344 36.6771 

0.5 m 0.8676 36.4964 

0.6 m 0.8553 33.6466 

0.7 m 0.8767 34.9945 

0.8 m 0.7868 33.0608 

0.9 m 0.9586 36.2195 

1.0 m 0.8431 38.2988 
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(5) 50% ice coverage 

hi Shape parameter k Scale parameter θ 

0.2 m 0.8069 46.5420 

0.3 m 0.8251 43.9443 

0.4 m 0.8186 41.8472 

0.5 m 0.9002 41.5944 

0.6 m 0.8496 40.1006 

0.7 m 0.8437 39.2490 

0.8 m 0.8924 39.3633 

0.9 m 0.8663 47.4892 

1.0 m 0.8566 41.8823 

 
(6) 60% ice coverage 

hi Shape parameter k Scale parameter θ 

0.2 m 0.7706 71.1344 

0.3 m 0.7518 75.2874 

0.4 m 0.8467 61.4169 

0.5 m 0.7818 68.8881 

0.6 m 0.7283 66.5824 

0.7 m 0.8859 56.9650 

0.8 m 0.7959 55.3336 

0.9 m 0.8755 60.5783 

1.0 m 0.8402 55.2167 

5.3 Summary 

A 2D DEM numerical model is developed for simulating the interaction between 
drifting ice floes and a moving ship. The ice floes are represented as hundreds of 
circular disks with random sizes and positions. The navigation process through pack 
ice can be well reproduced by this procedure. The numerical results are comparable to 
those simulated in earlier studies. Ship speed remains relatively steady during the 
transiting process. In general, ice resistance increases with the increasing ice thickness 
and concentration. The local frame loads can be modeled according to the Weibull 
distribution, and the shape parameters are consistent with those obtained based on field 
measurements. 
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Chapter 6 

Fatigue Damage Calculation 

Ice-going ships are operating under cyclic impact loads caused by the ice in the process 
of navigating through ice-covered waters. Micro-cracks due to repeated ice loads may 
lead to a fatigue failure, which can pose a threat to structural safety and contaminant to 
the environment. Therefore, fatigue assessment of ship hull attributable to ice action is 
essentially required. A ship can be expected to travel in widely diverse conditions of 
ice. Ice loads of different ice conditions can be ascertained from a series of numerical 
simulations as discussed in previous chapters. The structural fatigue stress is found 
using structural beam theory. A Weibull statistical model is applied to represent the ice-
induced stress process. According to ice condition distribution (ice thickness, ice 
concentration, ridge properties, etc.) and a proper S-N curve, fatigue damage can be 
estimated based on the Palmgren–Miner cumulative damage rule. An example of 
fatigue damage calculation is presented. The calculated fatigue damage results are 
compared with that by field measurements. 

6.1 Fatigue damage calculation 

Since a ship might encounter a range of different stationary conditions, the total fatigue 
damage D can be estimated by accumulating a number of fatigue damage contributions 
Dj in each stationary condition. A systematic procedure for fatigue damage assessment 
in relation to a local specified transverse frame extending between two decks would be 
outlined in the following sub-sections. The nominal stress in base metal of ordinary 
steel is used in the fatigue analysis based on modified Miner’s rule. The flow chart of 
fatigue damage calculation is presented in Fig. 6.1. 

6.1.1 Structural response 

As discussed in the previous chapters, the ice loads resemble an impulse in level ice, 
ridged ice and pack ice. Thus, the stress amplitude is a vital parameter for fatigue 
damage due to ice actions, rather than stress cycles in the fatigue analysis due to wave 
actions. According to Finnish Maritime Administration [73], a beam model can be 
employed to evaluate the applied stress for the transverse frame due to an ice-induced 
load. The conversion from the load into the stress is a linear transformation, which can 
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be written as follows. 

 
ice 3
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10fP sl
S

m Z
   (6.1) 

where Pice represents the ice load [kN/m], s expresses the frame spacing, lf is the frame 
span, and Z is the section modulus. 
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Therein, hl denotes the height of the load area [m], m0 incorporates boundary conditions. 
Values of m0 are in Table 6.1. In this study, the value of 5.0 is selected, because 
transverse frames extending between two decks are taken as the target for fatigue 
calculation. 

 

Fig. 6.1 Flow chart of fatigue damage calculation. 

With regard to the load height, its calculation is dependent on ice types. For the 
stationary cases in level ice and pack ice, ship hull is in contact with the sea ice of 
constant thickness, and the load height is assumed to be the ice thickness for 
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simplification, whereas for the cases in ridged ice, ice thickness might be varied along 
the specified local frame, and thus the load height is calculated as the total contact area 
on a frame divided by the load length. 

As presented in the previous chapters, the simulated ice-induced loads process can be 
modeled according to Weibull distribution. From the linear transformation between 
loads and stress, we infer that the ice-induced stress also follows the Weibull 
distribution. In fact, Suyuthi et al. [37] performed a probability plot for the ice-induced 
stress data obtained from full scale measurement, and it also seems that the Weibull 
distribution is still valid for representation of the ice-induced stress amplitudes. 

Table 6.1 Boundary conditions of the structural beam [73] 

Boundary Condition m0 Example 

 

7.0 
Frames in a bulk carrier with top wing 

tanks 

 

6.0 
Frames extending from the tank top to 

a single deck 

 

5.7 
Continuous frames between several 

decks or stringers 

 

5.0 
Frames extending between two decks 

only 

 

6.1.2 Impact frequency 

For each stationary traveling condition, the impact frequency usually varies from one 
realization to another. An approximate theoretical formulation can be applied, which 
provides an upper limit for the stress amplitude frequency based on the size of broken 
ice floe. 

Bridges et al. [74] presented that the impact frequency to the hull structure per unit 
traveling distance is related to the equivalent ice thickness. It is assumed that the length 
of floe broken in bending is dependent on the ship speed, as shown by Varsta [51] and 
this is utilized to develop a formula for determining the frequency that reflects the ice 
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conditions. 
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 (6.3) 

where d stands for the number of events per nautical mile, heq represents the equivalent 
ice thickness, hL is the ice thickness limit. 

Suyuthi et al. [37] derived the frequency of impact per unit distance based on the inverse 
of the characteristic length of the ice plate, which is presented in Eq. (3.31). Assuming 
a 100 % concentration of level ice and no effect from relative speed on the broken ice 
floe length, the impact frequency can be given as 

 3/4

1852

13.3617d
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   (6.4) 

Therefore, the total number of impacts in level ice can be determined from the impact 
frequency times sailed distance in ice, based on which the impact number in ridged ice 
and pack ice can be estimated. As the ship transits into an ice ridge, the keel loads on a 
frame increase continuously until reaching the maximum keel depth and then decrease 
gradually. For that reason, the number of ice impacts in ridged ice can be calculated 
roughly as that in level ice added to that in consolidated layer. The impact number in 
pack ice can be determined by the calculated number in level ice times the percentage 
of ice concentration. 

6.1.3 Fatigue damage expression 

The Palmgren–Miner’s linear damage hypothesis is applied for fatigue damage 
calculation in a particular stationary condition Dj as 
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sn
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where ni represents the number of stress amplitudes, Ni stands for the number of 
amplitudes to failure for a constant stress Si, and ns is the number of stress magnitudes. 

The probability of the stress magnitude Si can be written in the following two forms: 
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Therein, N0 stands for the total number of stress amplitudes in each stationary condition, 
f(S) represents the PDF of the Weibull distribution of stress amplitudes. 
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In that equation, q and r are the shape parameter and scale parameter of the Weibull 
distribution of stress amplitudes. 

Consequently, ni can be given as 

 0 ( )i in N f S S   (6.8) 

The relation between Si, and Ni is an S–N curve expressed as 

 
m
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where K and m are constants of S–N curve. 

Then, Ni can be expressed as 

 
m
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Inserting Eqs. (6.8) and (6.10) into Eq. (6.5), the fatigue damage contribution is 
obtainable as 
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Inserting Eq. (6.7) into Eq. (6.11), the fatigue damage in a particular stationary 
condition can be translated as 

 
0 (1 )m
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where Γ(•) is the gamma function. 

6.2 Case example 

6.2.1 Ice data 

In this case example, the contribution of the ice actions to the annual fatigue damage 
accumulation for a transverse frame of a ship hull is evaluated. The fatigue damage 
estimation requires knowledge of the ice conditions in the proposed area. Because of 
thermal and mechanical factors, the ice cover parameters of thickness and concentration 
vary greatly. The thermal factor is a continuous component and is related to changes in 
air temperature and snow cover above the ice surface. The mechanical factors are 
discrete components that are caused by the rafting, ridging, and opening of leads and 
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polynyas. 

Spatial and temporal variation of sea ice thickness has always been of concern. In earlier 
studies, the ice thickness has been assumed to follow normal, log-normal or gamma 
distributions. In the present work, presumably, ice thickness follows a normal 
distribution. The PDF for ice thickness can be expressed as 
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In that equation, δh equals 0.1 m in the calculation,μt denotes the mean value of ice 
thickness, σt is the standard deviation of ice thickness. The mean value and standard 
deviation are taken as 0.34 m and 0.109 m respectively, referring to Kujala [75]. 

The existing data of the ice concentration variations are very limited. An information 
of the mean value and standard deviation of ice concentration in Weddell region can be 
found in Worby et al. [76], however, the statistical model has not been provided. 
Numerical simulations in pack ice are conducted in the previous chapter with ice 
coverage from 10% to 60%. To enable most cases to be located in this range, herein, 
the distribution of ice concentration is assumed to follow a lognormal distribution. The 
mean value and standard deviation are respectively set as 38% and 36%. A random 
variable of ice concentration is denoted as C, which follows a lognormal distribution, 
then Y = ln(C) follows a normal distribution, i.e. Y~N(μc, σc). The relationship of the 
mean value and the variance between C and Y can be derived as 

 
2 /2( ) c cE C e   (6.14) 
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The logarithmic function is a monotonic one, and therefore the possibility of ice 
concentration P(c) equals to that of its logarithmic value, which can be determined by 
integration of the PDF of the normal distribution between ln(c-c/2) and ln(c+c/2). 
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where c equals 10% in the calculation. 

6.2.2 Fatigue damage calculation 

6.2.2.1 Local ice-induced stress 

Ice-induced loads in various ice conditions can be obtained by performing the 
numerical models presented in the previous chapters. Load peaks on a transverse frame 
can be transferred into stress amplitudes using structural beam model. In order to 
evaluate the fatigue damage, it is essential to define the distribution of stress amplitude 
for each stationary condition, which can be represented with a Weibull model. The 
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probability plot of ice-induced stress in level ice, ridge ice and pack ice against the 
Weibull fit are shown in Figs. 6.2, 6.3 and 6.4 respectively. 
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Fig. 6.2 Probability plot of ice-induced stress in level ice (ice thickness: 0.2 m–1.0 m). 
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Fig. 6.3 Probability plot of ice-induced stress in ridge ice (level ice thickness: 0.2 m–
1.0 m). 
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Fig. 6.4 Probability plot of ice-induced stress in pack ice of 20% ice coverage (ice 
thickness: 0.2 m–1.0 m). 

From these figures, it is clear that the discretized data points in different ice types form 
nearly a straight line, which means the stress amplitude is reasonable to be modeled 
with a Weibull distribution. The shape parameters of ice stress distributions in level ice 
and pack ice are identical to those of ice-induced loads, whereas different values are 
observed in ridge ice. It is for the reason that the load height can be assumed to be 
constant in level ice and pack ice, and consequently, according to Eq. (6.1) the shape 
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parameters of load and stress are of the same magnitude and the scale parameters are 
proportional to a certain factor. Nevertheless, the load height in ridge ice is time-varying, 
and thus these relationships cannot be found. 

6.2.2.2 Calculation result of fatigue damage 

In this study, the parameters of the S–N curve for base metal in the air or with cathodic 
protection [77] are used, given as m = 4.0, and K = 1.0E+15.117. Fatigue damage 
accumulates Dj of ice thickness from 0.2 m to 1.0 m in various ice types. The constants 
needed for the fatigue calculation are presented in Table 6.2. The travel distance per 
year is assumed to be 2500 nm. The calculation result of fatigue damage in level ice, 
ridge ice and pack ice are respectively presented in Tables 6.3, 6.4 and 6.5. 

Table 6.2 Fatigue calculation constants 

Frame Spacing s 0.35 m 

Span of Frame lf 1.5 m 

Section Modulus Z 267 cm3 

Boundary Condition m0 5.0 

S–N curve parameter, K 1.0E+15.117 

S–N curve parameter, m 4.0 

 

Table 6.3 Fatigue damage calculation in level ice 

hi P(hi) N0/year p q Dj 

0.2 0.164 189638 1.1183 13.5645 6.35040E-05 

0.3 0.332 283909 0.9794 19.6655 0.000883977 

0.4 0.307 211833 1.1620 42.4227 0.005628186 

0.5 0.129 75393 1.1725 46.8537 0.002857927 

0.6 0.025 12579 1.0646 52.2409 0.001199854 

0.7 2.143E-3 969 1.0142 59.8616 0.000209715 

0.8 8.302E-5 34 0.9783 76.4713 2.43908E-05 

0.9 1.431E-6 0.5367 0.8629 70.9104 6.76203E-07 

1.0 1.091E-8 3.79E-03 0.9024 114.2924 2.32053E-08 
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Table 6.4 Fatigue damage calculation in ridge ice 

hi P(hi) N0/year p q Dj 

0.2 0.164 173016 0.9775 3.2265 3.95234E-07 

0.3 0.332 258412 0.7072 6.7743 0.000158615 

0.4 0.307 192579 0.6976 26.0364 0.029729759 

0.5 0.129 68451 0.8526 39.2752 0.008899489 

0.6 0.025 11570 0.9016 54.3172 0.003635926 

0.7 2.143E-3 884 1.0242 64.8095 0.000248194 

0.8 8.302E-5 31 0.9829 75.8926 2.09405E-05 

0.9 1.431E-6 0.4886 0.8474 87.0297 1.60577E-06 

1.0 1.091E-8 3.44E-03 0.8805 92.3255 1.07156E-08 

 
Table 6.5 Fatigue damage calculation in pack ice 

(1) 10% ice coverage 

hi P(hi) N0/year p q Dj 

0.2 0.164 786 0.7918 3.3606 1.00440E-08 

0.3 0.332 1175 0.7984 3.3084 1.31305E-08 

0.4 0.307 877 0.9991 3.6794 2.96330E-09 

0.5 0.129 311 0.7340 4.1171 1.79739E-08 

0.6 0.025 53 0.8141 4.2476 1.35249E-09 

0.7 2.143E-3 4 0.8754 4.6222 8.19651E-11 

0.8 8.302E-5 0.1409 0.7748 4.6955 8.30705E-12 

0.9 1.431E-6 2.22E-03 0.5333 4.8092 1.27383E-11 

1.0 1.091E-8 1.57E-05 0.8261 4.8914 6.30746E-16 

 
(2) 20% ice coverage 

hi P(hi) N0/year p q Dj 

0.2 0.164 8197 0.7239 4.8344 1.03095E-06 

0.3 0.332 12257 0.7133 5.1573 2.31531E-06 

0.4 0.307 9147 0.7746 5.2574 8.49382E-07 

0.5 0.129 3245 0.8345 6.2207 3.14094E-07 

0.6 0.025 548 0.6430 6.7881 9.70347E-07 

0.7 2.143E-3 42 0.8864 5.5409 1.61103E-09 

0.8 8.302E-5 1.470 0.9189 5.8400 5.40737E-11 

0.9 1.431E-6 2.32E-02 0.8651 6.0951 1.56277E-12 

1.0 1.091E-8 1.64E-04 0.8053 4.5198 5.92351E-15 
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(3) 30% ice coverage 

hi P(hi) N0/year p q Dj 

0.2 0.164 15218 0.9815 7.2178 8.48720E-07 

0.3 0.332 22756 0.9053 6.8903 1.79983E-06 

0.4 0.307 16982 0.9506 7.1663 1.12822E-06 

0.5 0.129 6024 0.9460 6.7353 3.22438E-07 

0.6 0.025 1017 0.8711 6.1904 6.92764E-08 

0.7 2.143E-3 78 0.7841 6.7592 1.76908E-08 

0.8 8.302E-5 2.729 0.8485 7.0318 3.78316E-10 

0.9 1.431E-6 4.30E-02 0.9741 6.9861 2.20767E-12 

1.0 1.091E-8 3.04E-04 0.9195 6.4396 1.64552E-14 

 
(4) 40% ice coverage 

hi P(hi) N0/year p q Dj 

0.2 0.164 15132 0.8768 9.7824 6.12254E-06 

0.3 0.332 22627 0.8378 9.9088 1.36717E-05 

0.4 0.307 16885 0.9344 11.6762 8.85838E-06 

0.5 0.129 5990 0.8676 10.9352 4.09591E-06 

0.6 0.025 1011 0.8553 9.4513 4.30323E-07 

0.7 2.143E-3 77 0.8767 9.1746 2.42318E-08 

0.8 8.302E-5 2.713 0.7868 8.0485 1.20530E-09 

0.9 1.431E-6 4.28E-02 0.9586 8.1392 4.47835E-12 

1.0 1.091E-8 3.02E-04 0.8431 7.8893 6.98283E-14 

 
(5) 50% ice coverage 

hi P(hi) N0/year p q Dj 

0.2 0.164 11599 0.8069 16.5599 7.43184E-05 

0.3 0.332 17345 0.8251 14.8127 5.91460E-05 

0.4 0.307 12944 0.8186 13.3221 3.08308E-05 

0.5 0.129 4592 0.9002 12.4627 4.04526E-06 

0.6 0.025 775 0.8496 11.2642 7.00472E-07 

0.7 2.143E-3 59 0.8437 10.2900 3.93874E-08 

0.8 8.302E-5 2.080 0.8924 9.5828 6.81288E-10 

0.9 1.431E-6 3.28E-02 0.8663 10.6717 2.05763E-11 

1.0 1.091E-8 2.32E-04 0.8566 8.6274 6.76029E-14 
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(6) 60% ice coverage 

hi P(hi) N0/year p q Dj 

0.2 0.164 7880 0.7706 25.3100 0.000411969 

0.3 0.332 11784 0.7518 25.3778 0.000781076 

0.4 0.307 8794 0.8467 19.5522 7.41306E-05 

0.5 0.129 3119 0.7818 20.6406 6.33434E-05 

0.6 0.025 527 0.7283 18.7029 1.39788E-05 

0.7 2.143E-3 40 0.8859 14.9346 8.20436E-08 

0.8 8.302E-5 1.413 0.7959 13.4707 4.45733E-09 

0.9 1.431E-6 2.23E-02 0.8755 13.6131 3.41790E-11 

1.0 1.091E-8 1.57E-04 0.8402 11.3742 1.61393E-13 

 
The values of calculated annual fatigue damage in level ice, ridge ice and pack ice are 
1.08710-2, 4.27010-2, 1.55710-3 respectively. 

The accumulation value in ridge ice is greater than that in level ice, because of the high 
loads imparted by consolidated layer and ridge keels, although the ice impact number 
in ridge ice is slightly lower than that in level ice.  

The fatigue damage in pack ice is smaller than that in level ice. It might be attributed 
to two factors: firstly, in pack ice fields, the distribution of ice floes is quite scattered, 
which will result in a remarkable decrease in the impact number between ship and sea 
ice. Secondly, ice floes in pack ice fields can be pushed away when the ship navigates 
through, and thus the magnitude of ice-induced loads is relatively lower. 

Table 6.6 shows the comparison of fatigue calculation results based on numerical 
simulations against that based on field data by Suyuthi al et. [37]. The calculation result 
based on field measurements data is 5.82610-4 [37]. Compared with the case study, the 
fatigue damage in this study is rather bigger. It might be because the ship model used 
in the calculation are different, and the values of ice loads in this study are much larger, 
especially when the ice thickness is relatively high. 

Table 6.6 Comparison of numerical fatigue value with Suyuthi al et. [37] 

 Sea 
Ice 

condition 
Duration 

Ship 
model 

Fatigue 
damage 

Maximum 
local 
loads 

Suyuthi al 
et. [37] 

Arctic 
Sea 

Real sea 
ice 

1 year 
(2500 nm) 

KV 
Svalbard 

icebreaker 
5.83610-4 < 500 KN 

Present 
study 

Baltic 
Sea 

Level ice 
1 year 

(2500 nm) 
Xuelong 

icebreaker 1.08710-2 
1000-

2000 KN 
Present 
study 

Baltic 
Sea 

Ridge 
ice 

1 year 
(2500 nm) 

Xuelong 
icebreaker 4.27010-2 

1000-
2000 KN 

Present 
study 

Baltic 
Sea 

Pack ice 
1 year 

(2500 nm) 
Xuelong 

icebreaker 1.55710-3 
500-1000 

KN 
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With the knowledge of proportions that different ice types account for in an ice region, 
the total fatigue damage can be calculated as an accumulation of the fatigue contribution 
in a certain ice type times the corresponding proportion. 

 level level ridge ridge pack packD P D P D P D    (6.17) 

6.3 Summary 

A probabilistic fatigue damage assessment of a transverse frame due to ice actions has 
been elaborated. The conversion from ice loads into ice stress can be made using 
structural beam theory. A Weibull model is useful to represent the stress amplitudes in 
different ice conditions. The shape parameters are identical between loads and stress in 
level ice and pack ice, however, different values are observed in ridge ice. According 
to ice data and a proper S-N curve, fatigue damage can be estimated based on the 
Palmgren–Miner’s rule. The calculated fatigue value in level ice is lower than that in 
ridge ice, whereas higher than that in pack ice. To evaluate fatigue damage in an actual 
sea ice trial, numerical methods as combinations of simulation models, including level 
ice, ridge ice, pack ice, etc., can be adopted. 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

The present research deals with fatigue damage estimation based on numerical 
simulations in various ice conditions. In earlier studies, the evaluation of fatigue 
damage caused by ice-induced loads has been mostly conducted using field 
measurements, which are usually considerably limited and incomplete. Compared with 
the field measurements, ice conditions and ship hull can be easily varied in a numerical 
simulation. It is useful to complement the lack of ice load data in some regions, or to 
predict the fatigue life for new structural components or new ship routes. Ships 
navigating in ice-covered waters can encounter widely diverse ice conditions, that 
include pack ice, level ice, ridged ice, etc. The present thesis focuses on the numerical 
procedures developed to obtain the time history of ice-induced loads in these ice types, 
and estimates the fatigue damage based on the simulated results of ice loads. 

The main contributions of the present work are summarized for each chapter as follows: 

1) A general background on fatigue damage due to ice actions is addressed. As well, 
reviews of numerical models in level ice, ridge ice, pack ice and fatigue damage 
calculation cases are given respectively. Moreover, the objectives and organizations in 
relation to this study are discussed. 

2) Ship motions are solved using a step-by-step numerical integration method 
(Newmark-beta method). Calculation formulas for external forces and moments, such 
as propeller and rudder forces, hydrodynamic forces, fictitious Euler forces and ice 
submergence forces are introduced. What’s more, the coupling problem between ship 
motions and excitation forces is settled by iteration. 

3) A semi-empirical numerical procedure is developed to model the continuous-mode 
icebreaking process in level ice in 6 DOFs. The repeating cycles of contact, crushing, 
and bending are assumed to constitute a continuous breaking process. 

 Continuous ice loading processes can be well reproduced by the simulation 
program. Generally, ice loads in thicker ice conditions are higher, and show more 
irregularity. The mean values of ice loads are much lower than the peak values. 

 Taking account of the larger scale of ship model used in this study, the present 



108 
 

numerical global ice loads and h–v curve seem reasonable with comparison against 
the related numerical results published by Su. 

 The global ice loads and ship performance tend to be stable as the ship travels deep 
into ice sheet, and not significantly affected by the initial conditions. 

 The fitted line of simulated ice resistance shows good agreement with that 
computed by Lindqvist empirical formula. 

 Icebreaking pattern has a great effect on the ice loads, which might induce higher 
loads in thinner ice plate. 

 Local ice-induced loads are sensitive to ice thickness and initial speed. 

 The local load peaks can be modeled as a Weibull distribution. The shape 
parameters of the Weibull model representing numerical ice loads process agree 
well with statistical results of field measurement data. 

4) Probabilistic ice fields are generated according to the statistical distributions of ridge 
heights and spacings. A modified Rankine’s plasticity model is applied to achieve the 
keel loads, considering effects of ship movement and inertia force of ice accumulation 
in front of the ship bow. Modelling of interaction between ship and consolidated layer 
resembles that in level ice. 

 For low ice thickness, the pure ice ridge force dominates, whereas for high ice 
thickness, the ice load induced by breaking the consolidated layer dominates 

 Ice ridges can engender high loads levels, causing the ship speed to slow 
dramatically when sometimes rams might have to be required. 

 Considering the different dimensions of ship models, the numerical load values 
transiting into a single ice ridge are of the same order of magnitude as the model 
test results. 

 The present numerical values of mean speeds in various ice thickness agree well 
with those found from Kuuliala’s study. 

 The simulated local ice-induced loads are comparable to measurements published 
in the report of ARCDEV project. 

 Keel effect is not important for local frame loads, even though keel loads contribute 
greatly to global ice loads. 

 A Weibull model is useful to represent the local load peaks in ridge ice, although 
some deviations exist in cases of low ice thickness. The shape parameters are 
reasonable compared to field measurements. 

5) A 2D DEM numerical model is developed for simulating the interaction between 
drifting ice floes and a moving ship. The ice floes are represented as hundreds of 
circular disks with random sizes and positions. Both the ship–ice collisions and ice–ice 
contacts are modeled, and a viscous-elastic rheology is applied at contacts. 
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 Ship navigation process through pack ice can be well reproduced by this procedure, 
and the numerical results are comparable to those simulated in earlier studies of Ji 
and Daley. 

 A nearly steady speed can be achieved during transiting process, although still with 
fluctuations 

 Ice resistance generally increases with the increasing ice thickness and 
concentration, although deviation found in some cases. 

 The simulated local frame loads can be modeled according to the Weibull 
distribution, and the shape parameters are consistent with those obtained based on 
field measurements. 

6) A probabilistic fatigue damage assessment of a transverse frame due to ice actions 
has been elaborated. The structural fatigue stress is found using structural beam theory. 
According to ice condition data and a proper S-N curve, fatigue damage can be 
estimated based on the Palmgren–Miner’s rule. 

 Numerical stress amplitudes can be modeled according to Weibull distribution. The 
shape parameters are identical between loads and stress in level ice and pack ice, 
however, different values are observed in ridge ice. 

 The calculated fatigue value in level ice is lower than that in ridge ice, whereas 
higher than that in pack ice. 

 With the knowledge of proportions that different ice types account for in an ice 
region, the total fatigue damage can be calculated as an accumulation of the fatigue 
contribution in a certain ice type times the corresponding proportion. 

7.2 Future works 

The following interesting and important issues in relation to the topic of this thesis are 
identified as possible subjects for further studies. 

1) Although the proposed numerical model in level ice could address the ship motions 
in 6 DOFs, however, the contact detection between ship hull and ice plate is performed 
using a point-in-polygon computer geometric method. The case that the approximately 
vertical mid-ship hull contacts the bottom surface of ice sheet first due to the effect of 
roll movement, cannot be settled with this 2D method. Moreover, contact surface is 
assumed to remain flat during crushing, which cannot reflect the accurate contact area. 
Therefore, a 3D contact detection model should be developed in the future research, in 
order to incorporate all kinds of contact cases, and calculate the crushing force with 
higher accuracy. 

2) A modified Rankine plasticity model is applied to achieve the keel loads in ridged 
ice fields, which regards ship hull as vertical and ridge surface as horizontal. 
Nevertheless, in practice, the contacts between ship hull and ice ridge are extremely 
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complicated because of the inclined surface of both hull and ridge. A 3D model could 
be developed to account for the tilted ship–ridge interaction, and some geometric 
algorithms should be carried out to predict the moving process of ice blocks. Another 
attempt to estimate the ridge breaking ability of ships by 3D DEM simulations could 
also be performed. 

3) The developed numerical approach in pack ice fields is conducted by a simple 2D 
DEM model, in which ice floes are represented as simplest circular disks. A further 
realistic random polygons can be used to model the ice pieces in the future works. In 
addition, the 2D method in this study assumes the disks only move translationally in 
horizontal plane. Further studies should be carried out to investigate a 3D model, taking 
account of rotation and layering of ice floes. 

4) In this study, structural beam theory is adopted to evaluate the ice-induced fatigue 
stress, which is merely a sort of linear transformation from load into stress. In order to 
obtain more accurate stress, a structural analysis based on FEM could be done in the 
future studies. Furthermore, a spectral-based method could be attempted to access the 
fatigue life of structural components. Proper ice condition data and S–N data at low 
temperature are also necessary. 

5) Aside from level ice, ridge ice and pack ice, other ice types appear in ice-covered 
waters, such as channel ice and ice in wave, which should be involved in the fatigue 
damage calculation. Numerical models of ship operating in these ice conditions need to 
be developed in the future works. 
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