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Abstract

Fatigue damage for ships navigating in ice-covered waters can pose a threat to the safety
of human life and ship hull, and cause pollutant to the environment. The estimation
method of fatigue damage due to ice actions has not been established. To date, fatigue
damage evaluation is carried out based on field measurements of limited ship types and
ice conditions. However, the field measurements are usually incomplete. For that reason,
it is difficult to provide guidance for the design of new structural components or new
ship routes. In order to solve this problem, numerical simulation can be used to evaluate
fatigue damage due to ice actions, instead of field measurements. In the present research,
simulation methods are developed to obtain time histories of ice-induced loads for ships
operating in level ice, pack ice and ridge ice, which are applied to estimate fatigue
damage. The thesis is composed of the following chapters.

Chapter 1 gives the literature review of ice loads and fatigue damage calculation
methods for ice-going ships. Numerical methods to estimate time series of ice loads in
level ice, ridge ice and pack ice, and fatigue evaluation method due to ice actions, have
not been established. The objectives and significance of this study are shown.

Chapter 2 concerns the solution of ship motions using a step-by-step numerical
integration. The coupling problem between ship motions and excitation forces and
moments is solved by weak coupled iteration.

Chapter 3 deals with the numerical model for ship operating in level ice. The global and
local loads on ship hulls are estimated by the proposed model, and statistic of ice-
induced stress is obtained. The numerical model is validated by comparing the
simulated results against field measurement stress. Instead of field measurements, the
proposed model makes it possible to estimate the statistical distribution of ice-induced
loads in level ice for fatigue damage calculation, based on numerical simulations.

Chapter 4 introduces a numerical method to predict the ice-induced loads on ice-going
ships in ridged ice fields. Probabilistic ice fields are generated on the basis of field
observation. A modified Rankine’s plasticity model is proposed to achieve the ice-
induced loads in ridge ice. The proposed numerical model has improved the earlier
models of ship—ice interaction in ridge ice, which is only applicable to global ice loads.
As a result, local ice loads, which is difficult to obtain by far, can be achieved.

Chapter 5 relates to numerical model for ship navigating in pack ice. The ice floes are
represented as hundreds of circular disks with random sizes. Ship—ice collisions and
ice—ice contacts are modeled with discrete element method. Global and local ice loads
are obtained by the proposed model in various ice conditions (ice thickness, floe radius,
ice concentration), and statistic of ice-induced stress is analyzed. The numerical model



is validated by comparing the simulated stress against field results. The statistical
distribution of ice loads in pack ice for fatigue damage calculation can be estimated
based on the proposed numerical method, instead of field measurements.

Chapter 6 conducts a case example of fatigue damage calculation based on the
simulated ice loads obtained using the numerical models in Chapter 3 to Chapter 5. The
long-term statistic of ice loads is approximated by the Weibull distribution. Fatigue
stress between frames of plate structure at bow shoulder area due to distributed ice loads
is found using structural beam theory. Ice loads in each stationary ice condition (level
ice, ridge ice, and pack ice) are calculated. Fatigue damage is estimated based on the
Palmgren—Miner cumulative damage rule. The fatigue damage result is validated by
comparing with that calculated based on field measurements. As a result, it is clarified
for the first time that fatigue damage of ship hull induced by ice loads can be estimated
based on ice loads obtained from numerical simulations, instead of field data.

Chapter 7 summarizes the conclusions of the main points in this study, and provides
several recommendations for future work.



Contents

ADSTIACT. ...ttt ettt e 1
NOMENCIATULE ......oiiiiiiiiiii ettt ettt et e s e e 6
1 INtroducCtion............cooiiiiiiiiiiiii e 15
1.1 Background and motivation ............ccccueruierieeiiieniieeieesie e 15

1.2 LAtETatUIE TEVIEW ..coutiiiiiiiiieiieeiee ettt ettt ettt et e sare e e e 16
1.2.1  On numerical methods in level ice fields..........cccoeoieniiniiiinniieen. 16

1.2.2  On numerical methods in ridged ice fields ...........cccevverciieiieniienn. 17

1.2.3  On numerical methods in pack ice fields..........ccoceeveriiniiiininnnnens 18

1.2.4  On fatigue damage calculation............ccceeveeeiienieeciienieeieeeecee e 18

1.3 ThesSisS OULHNE ...cc.eieiieiiieiie et 19

2 Solution of Motion EQUations ..............c.c.ooiiiiiiiiiiiiiieecceeccee e 21
2.1 MOtION ©QUATIONS ..uuvieuiieeiiieiieeieeiee et eiee st eteesieeeteesaeeebeesseeeseesaaeenseesnnas 21
2.1.1 Reference frames ........ccccoeeerviienieiiiinieiieeeeeee e 21

2.1.2  Newmark-beta method...........ccoeviiiiiiiiiiniii e 23

2.2 EXCItAtION fOTCES ...eouviiiiiiiiiiiieiieeitece et 24
2.2.1 Propeller and rudder fOrCes.........cerviiriiiniiiiiieniereeeeeie e 24

2.2.2  Hydrodynamic fOrCeS.......cccuirriiiriierieeiieiie i eiee e ere e eve e 25

2.2.3  BUler fOrCeS ...eoiueiiiiieiiieiieee et 26

2.24 10 fOTCES ettt 27

3 Numerical Model of Ship Operating in Level Ice fields .................................. 29
3.1 Ship—ice interaction mechanics in level ice fields.........c.cccocereevirenenene. 29
3.1.1  Contact deteCtioN ........ccueeruieeiieiiieieeiie ettt 31

3.1.2  Crushing fOrCe.......uuviiiiiiiiieiiieceeee ettt 33

3.1.2.1  CONtaACt Q€A ..cevuvveeiiiieiiiieiiie ettt ettt et 33

3.1.2.2  Pressure—area relation ..........coceveerierienienieniienieeee e 37



3.1.3 Bending failure.........coooieiiiiiiiiiieeee e 37

3.1.3.1 Contact force analysis........cccceeeueeerieeeriieeiieerieeeiee e 37

3.1.3.2 Bending failure Criterion..........cccceerueeieenieeniienieeiee e 39

3.1.3.3 Geometry of ice wedge idealization ............cccceeevververreeneennen. 41

3.2 Numerical results of ice loads in level ice fields ..........cocceeveiniiniiniinicnns 42
3.2.1 Global ice loads and ship performance..............cccceeevvrerreereenrennnnnne. 42
3.2.2 Local ice-induced loads and statistical analysis..........cccccecuerrueennnenne 48
3.2.2.1 Local ice-induced 10ads ..........cccceeviriiriininiinienecieeeeee 48

3.2.2.2  Statistical analysiS........ccoceeveriiriiririiinieeeeeee 50

3.3 SUIMIMATY .eeeiiieeiiieieieeetee ettt eie et e et e e eseaeeetaeeentaeesssaeessseeesnseeennseeennes 54
4 Numerical Model of Ship Operating in Ridged Ice Fields .............................. 55
4.1 Generating ridged 1Ce fieldS .......cccuiiiriiiiiiiiiiieee e 55
4.1.1 Geometry 0f $€a 1C€ TIAZES...c..vevveeruiriiniiieeienieeeieetese e 55
4.1.2 Distribution of sail heights and ridge spacings...........ccceceevuveeveennnne 56

4.2 Ship—ice interaction mechanics in ridged ice fields.........ccccoceniininiinnne. 58
4.2.1 Theoretical formula of Keinonen............ccceeeevenieniniiniencnieceene 58
4.2.2  Theoretical formula of Mellor ..........ccocieiiiiiiiiiiieeeeeee 62
4.2.3 Theoretical formula of Malmberg...........ccceeevieriieiieniieniieieeieeiee 64
4.2.4 A modified Rankine model in the present study..........cccceevierirnnnen. 65

4.3 Numerical results of ice loads in ridged ice fields..........ccocreeieriieniiennnnnne. 68
4.3.1 Global ice loads and ship performance..........c.ccoceevervieneencnueneennn 68
4.3.2 Local ice-induced loads and statistical analysis............c.ccceveruveennenne 72
4.3.2.1 Local ice-induced 10ads .........ccceeriieiiiniiiiiieiiieee e 72

4.3.2.2 Statistical analysiS.......cccccceeevuierieriiieiieeieeee e 73

4.4 SUINIMATY ..eoviiiiiiiieeieeie ettt ettt ettt et e e et e ereesane e 76
5 Numerical Model of Ship Operating in Pack Ice Fields................................... 77
5.1 Ship—ice interaction mechanics in pack ice fields ......c..ccccooveveriiniencnnenn. 77
S5.1.1  Contact dEtECION .....eeuvereeeeieiiieiieieeie sttt 77
5.1.2 CONAC TOTCE ... eeeutieiiieiieeiie ettt et 79
5.1.2.1  1C@—ICE CONLACT ..eniiiiieniiieiieeieeeeete ettt 79



5.1.2.2  Ship—1Ce CONTAC ....ccuiruiiiiiiiriieiteieete sttt 81

5.1.3  Motion Of 1C€ flOES .....couiiriiiiiiiiiiiieic e 81

5.2 Numerical results of ice loads in pack ice fields..........ccooeeeririiienininnenns 81
5.2.1 Global ice loads and ship performance............c.cccceeevvrerverieenreennnnnne. 82

5.2.2 Statistical analysis of local ice-induced loads..........c.cccoceeviinienennene. 86

5.3 SUIMIMATY .eeeeitiieiiiieeeiieeiee ettt ete et eesiteeeseaeestaeeesaaeesssneesnseeesnseeennseeennns 90

6 Fatigue Damage Calculation................c...cococooiiiiiiniiiii e 91
6.1 Fatigue damage calculation............cceeerieieiiiieiiieeieeeeeee e 91
6.1.1  Structural TESPONSE.......evveeruieiiriierienierieete ettt 91

6.1.2  IMPact fIEQUENCY ...eeeiiiieeiiieciie ettt en 93

6.1.3 Fatigue damage eXpreSSion .........ceecveeruieriieniieeieeniie e 94

6.2 Case EXAMPIE ....eeieiiiieiiiie e 95
6.2.1 e data..ceoiiieiiee e 95

6.2.2 Fatigue damage calculation............cccccueeeiiiiniieeniieeeieeeee e 96

6.2.2.1 Local ice-induced Stress........cccuerueerieriiienieeiieriieeiee e 96

6.2.2.2 Calculation result of fatigue damage ...........ccccceevevvenneeennnen. 102

6.3 SUMIMATY ...eeiiiiiiiiiiiieeeeeee ettt e 106

7 Conclusions and Future Work...............ccoooiiiiiiece 107
7.1 CONCIUSIONS ..ottt ettt ettt et 107

7.2 FULUIE WOTKS ..t 109
ACKNOWLEDGEMENTS ...ttt e 111
REFERENCES.........coiiiiiieee ettt s 112



Nomenclature

Symbols
added mass matrix
A projection of contact area on the water plane
Ac critical area
Aer contact area
Ay ice floe area
Ar rudder area
a side length of cells
B damping matrix
B ship breadth
C restoring force matrix
C ice concentration
Cb(x) drag coefficient for cross-flow at location x
Cpo surface friction
Ca drag coefficient of water
Cd rotational drag coefficient
Cr empirical coefficient

CL & Cp lift and drag coefficient of the rudder

Ci empirical parameter

Cnm additional mass coefficient

Gy empirical parameter

Co resistance coefficient

Cy empirical parameter

c parameter for plotting position
D total fatigue damage



Fbrk
FEuler
Fice

Fov

FP

Fc

Fs

Fro

Fror

Fer

Fa & Ma

fi

~

hr(X)
hs
hi

sectional draught at location x

fatigue damage in a stationary condition
empirical parameter

keep spacing

the Young's modulus of ice

excitation forces and moments
icebreaking force

Euler force

forces arising from ice

forces arising from open water

forces arising from propeller and rudder
buoyancy force

shear friction resistance

cohesion resistance

force against the wall

crushing force

water drag force and rotational drag moment of ice floe

frictional force

external force

wall height

cut-off height t of sail heights
equivalent ice thickness

ice thickness

keel depth

ice thickness limit

load height

ridge depth at location x

sail height

trapezium altitude

MPa

kN
kN
kN
kN
kN

kN

kN



L & Iy
ICELL
K&m
Ko

Khne
Kny

K te

kpen
Lbow
Le¢
Lu
L
Lpar

Lwi

lbr

moment of inertia

integer cell numbers in the x and y directions
cell number of the current disk
constants of S—N curve
coefficient of lateral stress
normal contact stiffness
normal contact viscosity
passive pressure coefficient
tangential contact stiffness
shape parameter of loads distribution
a factor

bow length

crushing depth

length of trapezium base
crushing width

length of parallel midship

ship waterline length
characteristic length of the ice
length

frame span

mass matrix

additional mass of ice floe
boundary condition

mass

external moment

a factor

total number of stress amplitudes

number of amplitudes to failure for a constant stress Si

number of cells

kgm

kN/m
kNs/m

kN/m

kNm

unit vectors of the normal axis and tangential axis respectively



Rs

Ry

Rc
Rr& Ri
R;
Riand R,
Rx
Rievel
Rm
Rmax
R

RpB
Rps

Rr

Rs

Ry1

R

number of stress amplitudes

number of stress magnitudes
linear velocity for disks i and j

bearing capacity
the ice load
porosity of ridges

average crushing pressure

shape parameter and scale parameter of stress distribution

rotation matrix for linear velocity

total horizontal force per unit width

normal force for an indeterminate stress state
bending resistance

total resistance on ship bow

crushing resistance

icebreaking radius at the first and last contact node
icebreaking radius

radius of disks i and j

total keel resistance

level ice resistance

midbody resistance

maximum disk radius

Reynolds number

bottom frictional resistance

side frictional resistance

total pure ridge resistance

submersion component

upper shear plane force

lower shear plane force

end shear plane force

kN
kN/m

MPa

kN/m

kN/m
kN

=]

kN
kN
kN

kN
kN
kN



Swet

S

s
To(0©,;)
T

Ts

Thet

tk

Viand Vi
Vsub

vz/n

vZ/n

v(x)

VI

vr

Vow

Vpen

Xmin & Xmax
Xr

Ymin & Ymax
Z

7'

Ok

displacement vector

wetted surface area

ice-induced stress

frame spacing

transformation matrix for angular velocity
ship draft

bollard pull

net thrust

the kth time step

randomly generated number

forward velocity component

velocity vectors of ice floe and water
submerged area of the floe

velocity vector in the body-fixed frame
velocity vector in the earth-fixed frame

transverse velocity component at location x

relative velocity component on the contact surface

flow velocity
open water speed

penetration velocity

MPa

coordinate of extreme points of the cell domain on the x axis

rudder location

m

coordinate of extreme points of the cell domain on the y axis

section modulus
ratio

depth

normal frame angle of the ship hull
attack angle

keel angle

10

cm’

deg.
deg.
deg.



Os

Ostall

AN

Ui
e & ot
e & oc

Ud

Pice

sail angle

stall angle

waterline angle

parameter

angle

inclination angle of rupture plane
specific weight of water

distance between the two disk centers
time interval

normal indentation of overlap

relative velocity of the two disks at normal direction

relative velocity of the two disks at tangential direction

scale parameter of loads distribution

stem angle

Euler rate vector

Euler angles of pitch, roll and yaw respectively
angle from x-axis to the vector 7

aspect ratio

shape factor of sail heights distribution
parameter

shape parameter of keel spacings distribution
friction coefficient

mean value and standard deviation of ice thickness
mean value and standard deviation of /n(C)
Poisson's ratio

number of events per nautical mile
convergence criterion

sea ice density

11

deg.
deg.
deg.

deg.

deg.
kN/m?

rad/s

deg.
rad/s
rad

deg.

1/nm

kg/m?



pa

Ob
Ocr
of

ouU

70

b
Oy,

wi & w;

Acronyms

2D
3D
CDF
DOF
DEM
FEM
GEM
PDF

Subscript

1-6

X, )V, Z

sea water density

difference of the densities of sea water and ice
normal stress

bending strength

crushing strength

flexural strength

flexural strength of ice in upward bending
actual shear strength

cohesion

opening angle of ice wedge

internal friction angle

floe rotational velocity

angular velocity vector in body-fixed frame

angular velocities of disks i and j

two-dimensional
three-dimensional

cumulative distribution function
degree of freedom

discrete element method

finite element method
GPU-Event-Mechanics

probability density function

corresponding degree of freedom

in x-, y-, z-directions, respectively

12

kg/m?
kg/m?
MPa
MPa
MPa
MPa
MPa
MPa
MPa
deg.
deg.
rad/s
rad/s
rad/s



mean value
standard deviation

in normal and tangential directions, respectively

13



14



Chapter 1

Introduction

1.1 Background and motivation

Recently, increasing ships such as oil tankers and LNG carriers are navigating through
the ice-covered oceans, due to the expected growth of oil and gas related activity in the
cold regions. Different from open waters, the presence of ice poses the greatest
challenge to the design and operation of ice-going ships, which has led to extensive
research on better understanding of ship—ice interaction, vessels' performance and hull
damages in ice-covered waters.

For ships navigating in ice-infested regions, ice loads represent the dominant loads.
From the fatigue point of view, the sea ice and ship interact in a repetitive manner and
ice-going ships are operating under cyclic impact loads caused by the ice. The ice
loading potentially induces stress amplitudes that could give rise to micro-cracks.
Damage can entail oil leakage or even catastrophic failure, threatening overall structural
safety. The leakage of petroleum and natural gas would cause serious pollution to the
environment in ice waters, because any contaminant decomposition process runs very
slowly due to the extreme cold, extensive ice cover and reduced sunlight.

As mentioned above, fatigue damage because of ice actions is an important issue for
ships operating in the harsh environment of ice-covered waters. Nevertheless, research
into fatigue damage caused by ice action has not been developed well compared with
wave action. To date, most studies of fatigue damage caused by ice-induced loads have
been conducted using field measurements. However, the field measurements are usually
considerably limited and incomplete. For that reason, it is difficult to evaluate fatigue
damage correctly and to provide guidance for the design of new structural components
or new ship routes. Compared to field measurements, the ice conditions and ship hull
can be easily varied in a numerical simulation, which is useful to complement the lack
of ice load data in some regions, or to predict the fatigue life for new structures when
only ice condition data are needed. The numerical method appears promising to
evaluate fatigue damage.

Ships navigating in ice-covered waters can encounter widely diverse ice conditions due
to the possible operation over a large geographical area. Those ice conditions can
include pack ice, level ice, ridged ice, etc. A typical sea ice field involving different ice
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types is presented in Fig. 1.1.

Fig. 1.1 A typical sea ice field including various ice types !,

As a result, cases of fatigue damage calculation should also contain various ice
conditions. Therefore, numerical programs for modeling ship—ice interaction process in
different ice types are in demand in order to produce the required data for fatigue
damage estimation. These numerical models should be developed as realistically as
possible, and meantime, the computation efficiency needs to be considered as well. Ice-
induced fatigue stress is achievable based on numerical simulations, and statistical
analysis of ice stress can be made. Furthermore, by applying the long term conditional
statistics, the prediction of accumulated fatigue damage in the local components of a
ship hull can be performed.

1.2 Literature review

1.2.1 On numerical methods in level ice fields

It is challenging to predict the ice loads encountered by a ship transiting in an intact ice
field. Early research on the level ice resistance was usually carried out based on break-
displace process and the superposition of several force components to the total
resistance was widely accepted. These models can be found for example in Enkvist (2],
Lewis et al.}], Lindqvist* and Riska et al. *!.

In the past decades, efforts have been made to improve the numerical model of ice—hull
interaction in level ice from a time domain point of view. For instance, [zumiyama et
al. ! developed a simulation method for an advancing level ice acting on a fixed conical
structure based on the plastic limit theory, and the sizes of the broken ice floes were
assumed to be random, following a normal distribution. Wang ! employed a similar
strategy, and presented a numerical procedure using geometric grid method to simulate
the continuous ice—cone contact based on the mechanics of crushing-bending failure
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model. This approach was then followed by many researchers, such as Nguyen et al. [¥,
Sawamura et al. ), and Zhou et al.['%!. Su et al. "1112] established a simulation program
to reproduce the observed icebreaking patterns and the continuous ice loading processes
in a uniform level ice and the ice with randomly varying thickness and strength
properties, partly based on the empirical data. This model was conducted involving the
surge, sway and yaw motions. Tan et al. '3l extended Su’s planar model to a 6-degree-
of-freedom (DOF) model. The fully coupled motions of the ship were considered for 6
DOFs together with the corresponding environmental forces. A further study on the
effect of dynamic bending of level ice during ship—ice interaction was carried out with
this 6-DOF model by Tan et al.['*. Zhou and Peng "> improved Su’s 3-DOF numerical
model, by taking the ice plate flexural deflection into consideration, and an adjustment
factor of contact surface was derived.

Moreover, a numerical real-time simulator for ship—ice interaction was developed by
Lubbad et al. '], In the presented model, level and broken ice features were studied.
These updated state variables of ship model as well as the fragmenting ice are displayed
by the Visual System.

Recently, the discrete element method (DEM) has also been applied in the numerical
models in level ice. Lau et al. ') conducted a wide range of ice—structure and ice—ship
interaction simulations using a commercial code DECICE. Compared with
experimental data, the simulations were found satisfactory in terms of accuracy and
real-time simulation capability.

1.2.2 On numerical methods in ridged ice fields

The methods of calculating the ice loads induced by ridge keels have been based largely
on ideas borrowed from theories of soil mechanics such as Coulomb’s theory and
Rankine’s theory. Keinonen ['8 considered ridges as unconsolidated with a constant
thickness and proposed an analytical method to calculate the pure ridge resistance based
on Coulomb’s method. Mellor ['”) employed Rankine’s theory to achieve the ship
resistance in thick brash ice, which is similar to the unconsolidated ridge considered by
Keinonen "8, In addition, the resistance formula derived by Malmberg % is used
extensively in ridged ice section of transit models, which simulates the ship's
performance in various ice conditions along specific routes. These analytical methods
are used widely to obtain the global ice loads caused by ridge keels.

There have been a few studies of ridge interaction failure using the finite element
method (FEM). For example, Sand and Horrigmoe [*!) was devoted to the development
of numerical simulation techniques by means of nonlinear finite element analysis to
obtain ice ridge forces on upward and downward bending cones. The finite element
spatial discretization procedure is adopted for the ice ridge and the surrounding ice sheet
as well as the structure.

Furthermore, DEM is applied to model the interaction between ships and ice ridge in
recent studies. In fact, the method is useful to obtain both global and local ice loads.
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Hisette et al. ?*) and Gong et al. [>¥ simulated the ship—keel interaction using a three-
dimensional (3D) DEM with ice pieces represented by polyhedral particles, but such
computations can be time consuming even for a single ice ridge. Based on the
background presented above, it remains a very difficult task, both numerically and
experimentally, to estimate the local ice load on ship hulls in ice fields containing
multiple ridges.

1.2.3 On numerical methods in pack ice fields

DEM has attracted much attention in order to describe the interaction between ship hull
and pack ice floes. For instance, Hansen and Leset 241125 proposed a two-dimensional
(2D) DEM model for theoretical investigation of behavior of a mooring turret in broken
ice. In the model, each ice floe is represented by a circular disk. Disk—disk or disk—
structure collisions are modelled as linear viscous-elastic, or as a Coulomb friction
contact in case of relative tangential sliding. Analogous approaches were adopted by
Karulin and Karulina?® and Dai and Peng?"! as well. Ji et al. 28] improved the previous
method and modelled the ice floes with 3D dilated disk elements, and the ship hull was
modelled with 3D disks with overlaps.

Daley et al. **!3% employed a GPU-Event-Mechanics (GEM) approach to assess vessel

performance in pack ice, in which the ice floes were represented as 2D convex polygons
and the vessel was treated as an auto pilot model with constant thrust. The parallel
computing power of GPU enabled the computation of large scale system involving a
large number of bodies.

A commercial DEM software of DECICE has also been extensively used to address the
interaction problems in pack ice. It uses discrete elements in an explicit time domain
solver. Each element undergoes rigid body translation and rotation according to
Newtonian mechanics. Zhan et al. [*!l applied the DECICE code to investigate the
problems of turning circle and Zig-Zag maneuvers in pack ice. Zhan and Molyneux *?!
later extended the algorithm into a DECICE 3D model.

Moreover, physics engines were used for simulation of the floater-ice interaction in
broken ice. Physics engine generally means a software system to simulate the dynamics
of generic multibody systems with contacts and friction. This approach was pioneered
by Konno and Mizuki [**), which used the Open Dynamics Engine to simulate a model
icebreaker in a broken-ice field. Metrikin et al. ** adopted another physics engine Phys
X to implement realistic, high fidelity 3D simulations of the ice-fluid-structure
interaction process in broken ice. Metrikin et al. **) further compared four publicly
available physics engines (Ag X Multiphysics, Open Dynamics Engine, Phys X and
Vortex) in terms of integration performance and contact detection accuracy.

1.2.4 On fatigue damage calculation

To date, fatigue damage of ship structure due to ice-induced loads has received
relatively little attention. Only a few studies dealt with the fatigue damage evaluation
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based on field measurement data. Zhang and Bridges *®) introduced a deterministic
fatigue assessment procedure, the Ship Right FDA ICE Procedure, proposed by Lloyd's
Register to assess fatigue damage of ship structure induced by ice loads. Two case
studies of a LNG carrier and an oil tanker were presented. Suyuthi et al. 7! derived
closed form expressions of the fatigue damage for several different statistical models
of the stress amplitudes, i.e. the exponential, the Weibull, and the three-parameter
exponential distributions. A particular example of fatigue damage calculation was
presented, where data obtained from full scale measurement performed on board of the
vessel KV Svalbard in the winter 2007 were utilized. Hwang et al. [*3) analyzed fatigue
damages and fatigue-life measurements on the side-shell in the bow thruster room of
the Korean first icebreaking research vessel ARAON, based on the experiments during
her actual voyages on August 2010 and August 2013.

1.3 Thesis outline

The primary aim of this thesis is to develop an evaluation method of fatigue damage
for a ship navigating in ice-covered waters based on numerical simulations. To achieve
this objective, numerical methods are developed to model ship—ice interaction in level
ice, ridge ice and pack ice, respectively. Ice-induced loads of different ice conditions
can be ascertained from a series of numerical simulations. The simulated results are
validated preliminarily by comparison with published results of field measurements,
model tests or empirical formulas. Statistical analysis is performed on ice stress, and
with the knowledge of ice conditions data, an accumulated fatigue damage can be
estimated based on Palmgren—Miner’s rule. Numerical models can be a good candidate,
instead of field measurements, in order to produce the required data for fatigue damage
calculation.

The thesis is composed of the following chapters.

Chapter 1 gives the general background, motivation, state-of-the-art, objectives and
organization of the study.

Chapter 2 concerns the solution of ship motions using a step-by-step numerical
integration. Empirical calculation formulas for external forces and moments are
introduced, and the coupling problem between ship motions and excitation forces is
solved by iteration.

Chapter 3 deals with the numerical model for ship operating in level ice. A semi-
empirical numerical procedure is developed to model the continuous-mode icebreaking
process in level ice in 6 DOFs. The numerical global and local ice loads are discussed
through results of a case study conducted in a series of different ice conditions. Ship
performance and statistics of ice-induced frame loads are analyzed.

Chapter 4 introduces a numerical method to predict the ice-induced loads on ice-going
ships in ridged ice fields. Probabilistic ice fields are generated according to the
statistical distributions of ridge heights and spacings. A modified Rankine’s plasticity
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model is applied to achieve the keel loads.

Chapter 5 relates to a 2D DEM numerical model developed for simulating the
interaction between drifting ice floes and a moving ship. The ice floes are represented
as hundreds of circular disks with random sizes and positions. Both the ship—ice
collisions and ice—ice contacts are modeled, and a viscous-elastic rheology is applied
at contacts.

Chapter 6 conducts a case example of fatigue damage calculation. A Weibull statistical
model is applied to represent the ice-induced stress process. The structural fatigue stress
is found using structural beam theory. According to ice condition distribution (ice
thickness, ice concentration, ridge properties, etc.) and a proper S-N curve, fatigue
damage can be estimated based on the Palmgren—Miner cumulative damage rule.

Chapter 7 summarizes the conclusions of the main points in this study, and provides
several recommendations for future work.
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Chapter 2

Solution of Motion Equations

For ships navigating in ice-infested waters, ice loads represent the dominant loads,
whereas aside from ice loads, ship hulls are also subjected to other excitation forces and
moments, such as propeller and rudder forces, hydrodynamic forces, and fictitious
forces induced by a non-uniformly rotating frame relative to the inertial frame. Ship
motions and excitation forces are dependent on each other, and thus the interaction
between them need to be considered in the simulation program. In this chapter,
calculation formulas of the external forces and moments are introduced. Motion
equations are solved by numerical integration, and the coupling problem between
excitation forces and ship motions is settled by iteration at each time step until the
accuracy is acceptable, by which ship—ice interaction can be modeled using a step-by-
step procedure in time domain.

2.1 Motion equations

2.1.1 Reference frames

In the numerical procedure, the ship is treated as a rigid body, and two right-handed
Cartesian reference frames are applied to express motions and state variables of ship
and ice in the model, which are the earth-fixed coordinate system Oy-xoyozo and the
body-fixed coordinate system G—xyz, as illustrated in Fig. 2.1.

Earth-fixed reference frame: The coordinate plane, xoOoyo, coincides with the calm
water plane, with the zo axis pointing upwards. The trajectory of ship and edge geometry
of ice sheet or locations of ice floes are expressed in this coordinate system. The top
surface of ice is defined lying on the calm water plane for simplification. In fact, the
top surface of ice is not consistent with the calm water because of the density difference
between water and ice. However, the densities of sea ice and sea water are respectively
set as 900 kg/m3 and 1025 kg/m3, consequently, the ratio of ice volume below the water
to that above the water is about 9:1. The maximum ice thickness in the simulations is
1 m, and thus the error caused by this assumption is small.

Body-fixed reference frame: The hydrodynamic properties and inertial coefficients of
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ship are constant with respect to this reference frame that is parallel to the principal
axes of inertia of ship, and therefore, a body-fixed reference frame, xyz, is introduced
in which the origin is aligned with the center of gravity G and the axes correspond to
the longitudinal, transverse and vertical coordinates respectively. Linear and angular
velocities and accelerations are expressed in this coordinate system.

L d

<0

Yo

, -
0, X,

Fig. 2.1 Reference frames.

For the above reasons, the equations of motion can be solved in the body-fixed
reference frame. However, it is convenient to express the position vector of ship and
ice with respect to the earth-fixed reference frame, and consequently, transformations
from the body-fixed frame to earth-fixed frame are necessary for modeling ship—ice
interaction.

Linear velocity transformation can be written as
n n_ b
Vo =RV, (2.1)

where v, and v}, are the velocity vectors in the body-fixed and earth-fixed frames
respectively, R} represents the rotation matrix for linear velocity, which can be given
by [39]

cosyycosf) —sinycosp+cosysindsing  sinyysing+cosycos gpsind
R (®,)=| sinycos@ cosycosp+singsindsiny  —cosysing+sin@dsinycos | (2.2)

—siné cos@sing cos@cos @

Therein, 6, ¢, y are the Euler angles of pitch, roll and yaw respectively.

Angular velocity transformation can be expressed as
0,=1,0, )a)zl;/n (2.3)
In that equation, ©,, denotes the Euler rate vector, %, stands for the body-fixed

angular velocity vector, Tg(0®,,) signifies the transformation matrix for angular
velocity, which is presented as [**]
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1 singtand cosgptand
T,©,)=|0 cosep —sing (2.4)
0 sing/cos@ cose/cosf

2.1.2 Newmark-beta method

Ship motions, i.e. the components of velocities, accelerations, displacements and
excitation forces, relating the body-fixed reference frame are governed by a general
matrix form of the linear coupled differential motion equations as shown below.

(M + A)¥(t) + Bi(t) + Cr(¢) = F(¢) (2.5)

where M, A, B, and C respectively represent the mass, added mass, damping and
restoring force matrices, F represents the excitation forces and moments, and r is the
displacement vector of ship. No damping term is included in this simulation, for ice
load is regarded as the greatest source of energy consumption, i.e. the damping
coefficient B is assumed to be zero.

The excitation forces and moments can be decomposed into the following components
as

F=F*+F +F"+F™"" (2.6)
where superscripts ‘ice’, ‘p’, ‘ow’, and ‘Euler’ respectively designated the forces
arising from the ice, propeller and rudder, open water, and a fictitious force induced
using a non-uniformly rotating body-fixed frame.

A solution to equations of motion established above is obtained using a step-by-step
numerical integration method. Newmark-beta method ! is widely used to solve
differential equations in numerical evaluation of the dynamic response of structures,
based on an assumed variation of acceleration over a time step. The general integral
equations are given by

(1) =)+ (1= 2)F(0)S1+ A4 (., ) 1)

r(t,,,)=r(t)+r(,)ot+ (% — BVE(, Ot + B ¥(t,,,)ot (2.8)

Therein, ot stands for the time interval of numerical integration, # and #+1 represent the
kth and (k+1)th time step respectively, the parameters fv and Av are determined by the
requirements related to stability and accuracy. Newmark ! proposed that numerical
damping might be introduced in the case of Av > 1/2, and instability can be caused in
the case of Av < 1/2. Typically, the selection is Ax = 1/2. In this study, the value of fv is
chosen as 1/6, which means a linear acceleration is assumed within each time interval.
By the assumption of linear acceleration, the continuity of motion and state variables
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of ship can be ensured, and meantime, a relatively high accuracy is achieved.
Substituting Ay = 1/2 and fnv = 1/6 into Egs. (2.7) and (2.8), the equations can be

translated into

f(r,m)=r(m+§f<rk)6r+§f<rk+l>5r 2.9)

r(t,.,)=r(t,)+r(t,)ot +%i‘(tk)5t2 +%f(tk+1 ot (2.10)

According to Eq. (2.5), the acceleration term F(f,,) at the (k+1)th time step can be
expressed as below.

r(t,,)=M+A)" (F(,.,)-Cr(,,,)) (2.11)
Inserting Eq. (2.11) into Egs. (2.9) and (2.10), yields
6 O 6 6 . .
r(t.,)=(M+A)+C) (F(t,,) +(M+A)(—r(t)+——r()+2r())) (2.12)
ot ot ot
In Eq. (2.12), the external forces F(¢#,.;) atthe (k+1)th time step cannot be determined
at the kth time step because of the interdependence between ship motions and external
forces. Therefore, iterations are performed at each time step until the accuracy is

acceptable. The convergence criterion is based on the increment of forces and moments
from iteration step i to iteration step i+1.

Z(F;+1—F;)2/\/Z<F;>2 <& (2.13)

j=1,6 Jj=1,6

where ¢ is a small value, which is in the order of 1073.

By the Newmark’s method and iterations, the motion and state variables can be updated
and used as initial values for the next time step. Finally, the equations of motion can be
solved step by step in time domain. The time interval d¢ needs to meet requirement to
guarantee the stability of numerical integration, but this requirement is not significant
because a much smaller time step is required for accurate representation of excitation
and response.

2.2 Excitation forces
Ice forces and moments can be obtained from numerical models of ship—ice interaction,
which are presented in detail in the following chapters. In this section, semi-empirical

approaches are employed to determine the forces and moments caused by the propeller,
rudder and ambient water. Euler forces are also derived.

2.2.1 Propeller and rudder forces
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The evaluation of ship performance is usually quantified by determining the ship speed
and energy consumed in transiting an ice-covered route. The basis for the calculation
of ship speed for all route sections is the comparison of the net thrust available to the
total ice resistance the ship encounters. In the navigation process, the net thrust
available to overcome ice resistance can be estimated as 4!l

2
1 u 2| u
T, =T,|1-———-=.| — 2.14
nei B 3 v 3 (V j ( )

ow ow

where 75 denote the bollard pull, u is the forward velocity component, vow stands for
the open water speed.

The forces and moments induced by the propeller and rudder can be written as 4!

F =T~ Cop.id, @.15)
Ff(t)= %CL pViA, (2.16)

1
F)=2Cupvid, x, (2.17)

Therein, C. and Cp are the lift and drag coefficients of the rudder, pw signifies the sea
water density, v denotes the flow velocity, 4 represents rudder area, x; is the location
of the rudder.

Cr and Cp can be determined in wind tunnel tests or computations. For angles of attack
o' smaller than stall angle aswau (i.e. the angle of maximum Cr), the force coefficients
may be approximated by the following formulas:

A-(A+07) o
CL:27z—2-sma+CQ-sma-|sma|-cosa (2.18)
(A+0.7)
C,= Ci +C -‘Sina‘3+C 2.19
N N 0 219

where A stands for the aspect ratio, Co denotes a resistance coefficient, Co = 1 may be
used for rudders with a sharp upper and lower edge, Cpo approximates the surface
friction, which can be given as

0.075

Cpy=25"—"=
oo (logR, —2)

(2.20)

In that equation, R» represents the Reynolds number.

2.2.2 Hydrodynamic forces
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The hydrodynamic forces because of ship motions relative to the ambient water are
considered. According to Riska [°], since open water resistance is usually very small
compared to ice resistance, the coupling between them can be neglected without
causing significant error. Thus, the open water resistance and the pure ice resistance are
separable. Moreover, the effect of ambient current is incorporated by using relative
velocities, whereas the effect of waves is ignored because the ambient water is assumed
to be totally covered by ice.

The hydrodynamic forces can be calculated by the cross-flow theory presented in
Faltinsen 2], The drag force Fjon the ship in the longitudinal direction is mainly
induced by frictional forces, which can be approximated by the following formula.

0B L, sl (221)
(loglo R, _2) 2

E(1)=

where Swer denotes the wetted surface of the ship.

The transverse viscous current force F5 and current yaw moment Fg can be evaluated
using the cross-flow principle, which assumes that the flow separates due to cross-flow
past the ship, that the longitudinal current component cannot influence the transverse
forces on a cross-section, and that the transverse force on a cross-section is mainly due
to separated flow effects on the pressure distribution around the ship. This means that
the transverse current force and the yaw moment can be calculated as

F (1) = % P, Col®) D) () ()l (2.22)

. 1
F, (t):E’DW-[LWL C, (x)D(x)v(x)‘v(x)‘xdx (2.23)
Therein, Lw. stands for the ship waterline length, Cp(x) signifies the drag coefficient
for cross-flow past an infinitely long cylinder with the cross-sectional area of the ship

at the longitudinal coordinate x, D(x) is the sectional draught, v(x) represents the
transverse velocity component.

2.2.3 Euler forces

Newton’s second law can be expressed in terms of conservation of both linear
momentum and angular momentum with respect to the inertial frame. For translational
motions, the linear momentum conservation can be expressed as

- "d d . I,
f= E (mgvb/n) = E (mth/n) +m,a@,, Xv,, (2.24)

where ]_)‘ stands for the external force, excluding Euler force, mg denotes the mass of

. &d . . e
ship, ” and - Tepresent time differentiation in the earth-fixed and body-fixed frame
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respectively.

The vectors can be expressed in the body-fixed reference frame such that the
translational motion becomes

m, (v, +@,, xv,,) = f (2.25)

It can be seen from Eq. (2.25) that, the forces induced by a non-uniformly rotating frame

- b b
can be obtained as -my (@}, *vp,).

Following a similar approach, for rotational motions, the angular momentum
conservation can be expressed as

_'d bd . - -
m :E(]a)b/n) :E(Ia)b/n)-i_a)b/n x(1@,,) (2.26)

In that equation, m denotes the external moment, [ signifies the moment of inertia.

Eq. (2.26) can be written in the body-fixed reference frame as below.
Io), -(lo),)) @], =m (2.27)

From Eq. (2.27), we can observe that the moments caused by a non-uniformly rotating
frame can be expressed as (I}, )xw},.

2.2.4 Ice forces

The ice forces and moments can be achieved from the numerical procedures in different
ice types, whereas the ice forces induced by the displacing process, i.e. the turning,
submerging and sliding process, can be calculated by the empirical formula proposed
by Lindqvist [*. The submergence resistance is caused by broken ice pieces passing
beneath the ship, which is assumed to be distributed uniformly over the parallel
midbody. The formulas are expressed as below.

b
F () =R [1+9.4— e |x 2 (2.28)
\[gLWL Vh/n
sbmg v:/n 4
Fy™ (1) = R | 14+9.4—2a_ |x (2.29)
\/gLWL Voin

where Rs is the submersion component of ice resistance, which is given by

R =(p,—pu) & h-B(T(T+B)/(B+2T)+

(2.30)
u,.(0.7L—T/tan77—B/4tan,6’+Tcosncosy/\/l/sinn2 +1/tan B ))
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Therein, pice denotes the sea ice density, /; stands for ice thickness, B and T are the
breadth and draft of ship respectively, u signifies the friction coefficient, # represent
the stem angle, f is the waterline angle, y can be obtained by

7=arctan(ﬂ) (2.31)
sin
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Chapter 3

Numerical Model of Ship Operating in Level Ice fields

In ice infested waters, ship can navigate in various ice regions, among which level ice
is the simplest type of ice field to consider, as it is undeformed, characterized only by
one parameter of ice thickness. It is important to estimate both global and local ice loads
on ship hulls. The global ice load governs the ship overall performance in ice, whereas
the local ice loads are useful to evaluate structural safety in relation to a local part of
ship hull. In this chapter, a semi-empirical numerical procedure is developed to model
the continuous-mode icebreaking process in level ice in 6 DOFs. The numerical global
and local ice loads are discussed through results of a case study conducted in a series
of different ice conditions. Ship performance and statistics of ice-induced frame loads
are analyzed. Comparisons are made of the simulated results against published results
of numerical models and field measurements or empirical formula in level ice.

3.1 Ship-ice interaction mechanics in level ice fields

Many semi-empirical methods were proposed to estimate the resistance of a ship
navigating in ice, as stated in Chapter 1. In this study, it is assumed that the repeating
cycles of contact, crushing, and bending constitute a continuous breaking process of an
intact level ice by an advancing ice-going ship. When a ship advances into level ice
fields, contacts can occur between the instantaneous ship waterline and the ice cover
edge. The vertical force component increases as the ship continues to penetrate into the
ice plate. When it exceeds the bearing capacity of the ice edge, bending failure will
occur and a circular ice floe will be broken from the ice plate. The advance of ship
forces the ice floes to turn on edge until parallel with the ship hull. Subsequently, a new
ice edge develops and the icebreaking process cycle repeats as the ship travels further.
The overall process is shown in Fig. 3.1. The ice loads over the contact-crushing-
bending period can be numerically computed, whereas the ice loads induced by the
displacing process are calculated by the empirical formulas Eqgs. (2.28) and (2.29). The
global ice load is an integrated effect of local ice loads over the hull area. For a
particular frame, the local line load [kN/m] is calculated by dividing the ice force on
this frame by the frame spacing. The flow chart for the numerical implementation of
the algorithm is illustrated in Fig. 3.2.
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Fig. 3.1 The overall process of ship—ice interaction in level ice !,
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Fig. 3.2 Flow chart of numerical procedure.
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3.1.1 Contact detection

In order to determine contact zones, first, the ship hull and ice edge are discretized into
a number of nodes in the simulation program, where the ship waterline is discretized as
a closed polygon, and ice edge is discretized as broken lines, as portrayed in Fig. 3.3.
For ship motions in 6 DOFs, the instantaneous ship waterline need to be updated at each
time step, by searching for the intersection between the ship hull and the water plane
based on the ship current position and orientation.

Contact Zone

Fig. 3.3 Discretization of ice edge and ship waterline.

Contact is the first step in icebreaking process, and thus to identify the contact zones
precisely is an important issue for determining the icebreaking force. In this study, a
point-in-polygon computer geometric method ¥ is adopted to check whether an ice
edge node is inside the waterline polygon. The detailed algorithm is presented as below.

For a general polygon, the algorithm for determining if a point P is inside involves
analyzing the intersections of the polygon and a ray whose origin is P and whose
direction is (1,0). As a ray is traversed starting from P, each time an edge is transversely
crossed, a switch is made from inside to outside or vice versa. An implementation keeps
track of the parity of the crossings. Odd parity means P is inside, even parity means it
is outside, which is illustrated in Fig. 3.4.

—

v

Fig. 3.4 Point-in-polygon test by counting intersections of ray with polygon.

Aside from the general case presented in Fig. 3.4, special cases that polygon edges are
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coincident to the ray for P and that polygon vertices are on the ray can occur as well,
as shown in Fig. 3.5.

The problem at the polygon vertex 1 is that the ray transversely intersects the polygon
boundary at that vertex, so the intersection should count as only one crossing. However,
the two edges sharing the vertex are processed separately, each edge indicating that the
crossing at the vertex is transverse. The result is that the vertex is counted twice as a
crossing, incorrectly reversing the current parity for the intersection count. Vertex 2 has
a slightly different problem. The ray is inside the polygon slightly to the left of the
vertex and is inside the polygon slightly to the right. The crossing at vertex 2 should be
ignored since the ray does not transversely cross the polygon boundary. Processing the
edges separately leads to the correct result because both edges report a transverse
crossing by the ray at the common vertex 2.

The problem with the coincident polygon edge (5,6) is that it appears as ifit is a single
vertex, if vertex 5 were to be relocated at vertex 6, the inside/outside count would not
change. Consider the coincident edge (3,4) , if vertex 3 were to be relocated at vertex
4, the v-junction gets counted just like the one at vertex 2, so it is not a transverse
crossing.

Fig. 3.5 Special cases for point-in-polygon test.

Preparata and Shamos [**) mention how to deal with these configurations. An edge is
counted as a crossing of the ray with the polygon if one of the end points is strictly
above the ray and the other end point is on or below the ray. Using this convention,
coincident edges are not counted as crossing edges and can be ignored. Two edges
above the ray that share a common vertex on the ray both count as crossings. If two
edges below the ray share a common vertex on the ray, neither edge is counted. If one
edge is above and one edge is below the ray, both sharing a vertex on the ray, the edge
above is counted but the edge below is not.

In terms of mathematical expression of the above algorithm, set the coordinates of two
vertexes on a polygon edge as (x1, y1) and (x2, )2), and the coordinate of P is (xp, yp). If
this edge is transversely crossed by the ray, the coordinates must satisfy either of the
following equations.
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N>y,2) G.1)
X, <'xl+(yp =% =)/ (v, =3) .
or
N>y, 2N
o (3.2)
X, <X +O’p =% =)/ (v, =3)

As the point-in-polygon method discussed previously, ice edge nodes inside the
instantaneous ship waterline can be checked on the basis of the parity for the
intersection count.

3.1.2 Crushing force

As the hull contacts with ice edge in level ice sheet, local crushing occurs at the contact
zones. In each contact zone, a crushing force Fer acts on the ship hull, which is normal
to the contact surface. In addition, Fer can be determined as the product of average
crushing pressure pav and contact area Acr.
F,=p,4 (3.3)

cr

3.1.2.1 Contact area

In order to calculate the crushing force, the contact area needs to be obtained. According
to the previous sub-section, the contact zones between ship hull and ice edge on the
water plane can be ascertained, based on which the contact area can be determined.
After a contact zone is found, interpolations are applied to identify the intersections of
ship waterline and ice edge. The edge of a contact zone can be regarded as a closed
polygon, which is comprised of ice nodes that enter ship waterline, hull nodes that enter
ice plate and intersections, as shown in Fig. 3.6. The polygon area, i.e. the projection of
contact area on the water plane can be calculated as [/

n—1

1
A= 5 z :(xiyi+1 _xi+1yi) (3.4)
i=0

where n denotes the total number of vertexes, (xi,yi) represents the coordinate of an
arbitrary vertex of the closed polygon.
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; Ship

Fig. 3.6 A typical contact zone.

Contact surface is assumed to remain flat during crushing, in order to calculate every
contact area. As the ship advances against the ice sheet after initial contact, the contact
surface is regarded as a triangle plane. When the minimum bending force required to
create the bending failure has not been reached before the crushing height becomes
equal to the ice thickness, the contact geometry changes from a triangle to a trapezium.
We first calculate the projection of contact area on the water plane Ac, when the crushing
height is as high as the ice thickness. The contact geometry can be then identified by
comparing 4. against the area 4 given in Eq. (3.4).

In this critical case, the crushing depth L. and crushing width L, are obtainable as

L = h (3.5
tan o
L,=2L, tan(g) (3.6)

Therein, a denotes the normal frame angle of the ship hull, ¢ simplifies the opening
angle of ice wedge.

Then the contact area is calculatable as below.

1 h p
A ==LL =(—)tan®
R (tana) (2

) (3.7)

Case 1: A is greater than 4, which means the contact geometry is a triangle, and thus
the contact area can be achieved based on the projection on the water plane.

R (3.8)
[ ORY24
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Fig. 3.7 Casel: contact surface.

Case 2: A is smaller than 4, when further crushing happens after the crushing height
has reached the ice thickness. The contact surface changes to a trapezium plane. The

altitude of trapezium /: can be obtained by

The crushing depth L: now is

The lengths of each base of the trapezium L» and Lx can be calculated as

L =2 /A tan(g)

L, =2(L, —L) tan(¢
tan @

E)

Consequently, the contact area can be expressed as

A, =2+ L, = @2 Atan@) — L tan @) L
2 2" tana 27 sina
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Fig. 3.8 Case2: contact surface.

Case 3: since the slope angle of the parallel mid-body tends to be vertical, when the
numerical model is conducted in 6DOFs, the mid-ship hull may contact the bottom
surface of the ice sheet first due to roll motions. If the contact geometry is a trapezium,
then the contact area is calculatable based on the projection area on the water plane,
which is similar to the calculation process of case 2.

Le
1
|
|
|

[

Fig. 3.9 Case 3: contact surface.

Case 4: if the mid-ship hull contacts the bottom surface first and the contact geometry
is a triangle, then the contact zone cannot be found on the water plane, and the contact
detection needs to be performed in 3 dimensions (3D), which is extremely complicated.
In the present study, this case has not been considered in the simulation procedure.

~ LA
<7

N
Fig. 3.10 Case 4: Contact surface.
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3.1.2.2 Pressure—area relation

To calculate the crushing force in Eq. (3.3), for simplicity, it is typically assumed that
pav can be represented by the crushing strength ocr of sea ice. Nevertheless, the pressure
during crushing may not be a constant due to the mechanical properties of ice. A large
amount of in-service data demonstrates a decrease of average pressure with increasing
contact area 61 471 A relationship between the pressure and the area has been
determined as the following form.

Pu=C, A4, (3.14)

In that equation, C, and D, are empirical parameters, Cy is positive, Dp is negative.

Palmer 8 proposed a simple mathematical model which quantified the p—a relation
based on combination of fracture mechanics model of fragment breaking and fractal
hierarchical distribution of fragment size. Palmer’s model took the values of Cy and D,
as 1.7 and -0.25 respectively, Eq. (3.14) can be then written as

Pa=174% (3.15)
Consequently, the crushing force is given by the pressure multiplied by the area,

F.=p, A4 =174" (3.16)

3.1.3 Bending failure

3.1.3.1 Contact force analysis

Aside from the local crushing force normal to the contact surface, the ship hull is also
subjected to vertical and horizon tal frictional forces caused by the tangential relative
motions. A local coordinate system, denoted as znz, is introduced to transform the rigid
body velocities to the hull nodal velocities, as shown in Fig. 3.11(a). Presumably, no
vertical (bending) displacement of the ice wedge exists during crushing. Therefore,
frictional forces fi and F: are proportional to the relative velocity components, which
can be calculated as

Vi

fi=uk, ——— (3.17)
N
A%
F =uF ——t (3.18)

cr 2 2
AV +V1

where v1 and v; are the relative velocity components on the contact surface, as illustrated
in Fig. 3.11(c).
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On the A—A plane as shown in Fig. 3.11(b), v1 is obtainable as
V=V, +Vv, =V, cosa+v,sina (3.19)

where v: is the velocity component on the zo axis of the earth-fixed frame.

The normal velocity component v, and tangential velocity component v: can be
calculated as below.

v, =v,cos f+v, sinf (3.20)

v, =v.sin f—v cos (3.21)
Therein, vx and vy are the velocity components on the xo axis and yo axis of the earth-
fixed frame, f represents the waterline angle at the current node.

Based on the force analysis as presented in Fig. 3.11, the following components can be
derived.

F =F sina+f cosa (3.22)
F =F cosa—fsina (3.23)
F =—F, cos f—F. sinf3 (3.24)
F,=F,sinf—F, cosf (3.25)

where F, Fy and F: are the icebreaking force components expressed in the earth-fixed
frame. Nevertheless, the motion equations are solved in the body-fixed frame, and
therefore these force components need to be transformed from the earth-fixed frame to
the body-fixed frame by using the inverse of rotational matrix.

F**=R'(®,)"'F (3.26)
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(b) Local contact force on A—A plane

A

< >V
il(.----!’ f
1

(c) Local contact force on the contact surface

Fig. 3.11 Contact force.
3.1.3.2 Bending failure criterion

Kashtelian ! (see Kerr %) predicted the breaking load of edge-loaded sea ice plate
with ship weight as the vertical load, based on the observation of the carrying capacity
when the ice wedges initially break off, as presented in Fig. 3.12. The bearing capacity
for an ideal wedge with an opening angle ¢ is calculable as below.

P, =C, (%) o h’ (3.27)

In that equation, oy is the flexural strength of ice plate, Cris an empirical coefficient,
which is obtainable from some measurements. Kashtelian proposed that the constant Cr
equals a small value, which is close to 1, whereas a value of 4.5 was used and validated
by the empirical ice resistance formula in Nguyen . Sul''l chose the value of 3.1 for
Cr, which is adopted in the present study.
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Fig. 3.12. An ice wedge subjected to a load P at its apex. %,

Observation in the field indicate that, for an ice wedge with a large opening angle,
several radial cracks form and propagate before the formation of a circumferential crack
that causes final failure, as portrayed in Fig. 3.13.
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Fig. 3.13 Cracks for ice wedge with a large opening angle 7).

It is assumed that » is the number of radial cracks and that the n formed wedges are all
of equal opening angle ¢ ,i.e. ¢ = ¢/n, and thus the failure load can be obtained as

a summation of that for the n small wedges, which can be expressed as

g:mx¢fqﬁ=%qﬁfqﬁ (3.28)

nrx /4

Form this equation, it can be seen that the bearing capacity Pris inversely proportional
to the number of radial cracks n, which means that more small ice wedges are assumed,
then the failure load could become lower. From the perspective of structural safety, in
this study, » = 2 is used when the opening angle is larger than 120°, in order to achieve
a relatively conservative value of failure load, which can be calculated as

[ AT
P, :ch(;) oh; (3.29)
If the vertical component of the contact force between ice and hull Fz, given in Eq.
(3.23) exceeds the bending failure load of ice cover Py, the ice wedge would be broken
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from the ice edge. Otherwise, only local crushing occurs on the contact surface.
3.1.3.3 Geometry of ice wedge idealization

The ice wedges formed in the icebreaking process are determined by bending cracks,
which are idealized and described by a single parameter, namely the icebreaking radius.
The geometrical idealization of the ice wedge in contact with the ship hull is illustrated
in Fig. 3.14, where the bending crack is determined by the interpolation of the
icebreaking radius at the first and last contact node (i.e. Ry and R;). The icebreaking
radius R; is derived from the expression given in Wang [7], on the basis of information
from Enkvist?) and Varsta [,

R, =Cl(1.0+Cy") (3.30)

where v/ is the relative normal velocity between the ice and the hull node, Cr and Cy
are two empirical parameters obtained from field measurements, C; having a positive
value 0.32 and C\ is a negative value -0.25 referring to Enkvist[?], / is the characteristic
length of the ice, i.e. the distance between the point of load to the location where the
crack deformation occurs at the ice plate, which can be formulated according to the thin

plate theory as follows,

;:[E—h;j“ (3.31)
12(1-v")pg

Therein, E represents the Young's modulus of ice, v stands for Poisson's ratio.
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Fig. 3.14 Geometrical idealization of the ice wedge.

The radius obtained from the formula mentioned above is a deterministic crack size,
however, cracks of various sizes are observed in an icebreaking run, as introduced in
Su et al. ['!l, Consequently, in this study, the crack size is defined by a random crack
radius. In a numerical simulation of ice—cone interaction, Izumiyama et al. ¢! assumed
that the crack size followed a normal distribution. The size of the crack is defined by
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the radius R; of the approximated circular arc and the ratio Z' of the crack radius to the
length /i, given by:

by, =(oyh 1 7,)” (3.32)

where ou is the flexural strength of ice in upward bending, yw is the specific weight of
water. The distribution has a mean z'» of 0.94 and a standard deviation z'ss of 0.27,
which were determined based on the observed crack pattern in the model test.

There has been no reliable theory on the crack size distribution until now, whereas
Izumiyama’ method seems a reasonable estimate based on the experimental data.
Therefore, a normal distribution is used and the ratio between the standard deviation
Risq and the mean crack radius Rim is assumed to be the same as the value of z'sa/z'm
mentioned above. Herein, the mean crack radius is calculated by the deterministic
method Eq (3.30). A random crack radius can then be generated by using:

R O L Gt 7
F(R,)= oo jo exp( 9 )ds
U~U(0,1) (3.33)
R, =F'(U)

where F(R) is the cumulative distribution function (CDF) of the crack radius, F(U) is
the inverse CDF, and U is a uniformly distributed random number between 0 and 1.

3.2 Numerical results of ice loads in level ice fields

3.2.1 Global ice loads and ship performance

The numerical method introduced above is implemented to model a full-scale ship
navigating in level ice. The continuous ice loading processes in transiting operation in
a uniform level ice of different thickness are reproduced by the simulation program.
The principal dimensions of the ship and the ice properties are listed in Tables 3.1 and
3.2 respectively.
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Table 3.1 Ship characteristics

Length between perpendiculars 149.26 m
Breadth 22.36 m
Draught 8 m
Displacement 21000 t
Moment of inertia fxx 1.39 x10® kg m?
Moment of inertia 2.44 x10° kg m?
Moment of inertia /-- 2.57 x10° kg m?
Waterline angle S 23.6°
Stem angle 7 21.8°

Table 3.2 Ice properties

Young's modulus £ 3500 MPa
Poisson ratio v 0.3
Flexural strength oy 0.55 MPa
Frictional coefficient z4 0.15
Density of sea water pw 1025 kg/m?
Density of sea ice pi 900 kg/m?

Fig. 3.15 and Fig.3.16 give the simulated time histories of global icebreaking loads
which excludes ice submersion force, driven by constant thrust in level ice thicknesses
of 0.2 m and 1.0 m respectively. The calculated ice loading process consists of
numerous spike-like peaks. The magnitude of ice loads in 1.0 m thick ice is much higher
than that in the ice of 0.2 m thickness. Moreover, from these two figures, it can be
observed that in the case of 0.2 m ice thickness, the loading series shows relative
regularity, whereas in the case of 1.0 m thick ice, the process seems more dynamic. It
can be for the reason that the breaking force is considerably small compared to the
propulsion power in thin ice, however, the ice loads are comparable to and sometimes
even higher than the thrust in thick ice. Consequently, the ice loading history in 1.0 m
thick ice is apparently irregular.

The mean values in 0.2 m and 1.0 m ice thickness are 8.6465 KN and 477.28 KN
respectively. Nevertheless, the peak value in 0.2 m thick ice can reach more than 200
KN, and the load amplitude in 1.0 m thick ice is up to nearly 6000 KN, compared to
which, the mean values are significantly small. It can be explained that in an
icebreaking cycle, after the bending failure is initiated, ice wedges drop from the ice
plate and a channel forms for the ship to transit. No contact occurs between ship and
ice in the channel, and therefore the breaking force would decline to zero until
subsequent contact, which causes low mean value.
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Fig. 3.15 Simulated time histories of global icebreaking loads in 0.2 m thick ice.
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Fig. 3.16 Simulated time histories of global icebreaking loads in 1.0 m thick ice.

In order to validate the present numerical codes, the simulated results are compared to
the ship performance data from numerical procedure in Su et al. '], Su carried out a
numerical analysis of icebreaker AHTS/IB Tor Viking II, and verified the computed
results by comparison with the ice trials. The peak value of ice loads in 0.5 m thick ice
is close to 1400 KN with a constant ship speed of 5 m/s in Su’s model, and the mean
value is 356 KN. By contrast, with the same ice thickness and ship speed, the peak loads
by the present model can reach as high as 4000 KN, and the mean value is 1257 KN,
which is much higher than those results of Su. It can be attributed to the different
dimensions of ship models used in the two programs. The length of icebreaker
AHTS/IB Tor Viking II is 75.2 m, whereas that of the present model is 149.26 m.
Considering the larger scale of ship used in this study, the numerical result seems
reasonable.

The simulated speed time series in 0.2 m thick ice and 1.0 m thick ice are presented in
Fig. 3.17 and Fig. 3.18 respectively.
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Fig. 3.17 Simulated speed time series in 0.2 m thick ice.
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Fig. 3.18 Simulated speed time series in 1.0 m thick ice.

It can be seen that the speed achieved in 0.2 m thick ice is quite stable, varying in a
small range from 6.30 m/s to 6.34 m/s, which corresponds to the regular loading process
presented in Fig. 3.15. The speed in the case of 1.0 m ice thickness varies relatively
obviously. During the period between 1100s and 1300s, the speed decreases and starts
to oscillate around zero value, due to the high loads of this duration. We can see from
Fig. 3.16 that the ship experiences continuous contact with the ice sheet in this period,
which cause that the breaking force increase again before drop to zero.

Ice resistance is defined as the time average of all longitudinal forces due to ice acting
on the ship. Estimation of ice resistance is a significant issue because it is closely related
to propulsion and determines the engine power of the ship. An empirical formula
proposed by Lindqvist ™ based on the full scale tests in the Bay of Bothnia is a simple
way to estimate the ice resistance, which consists of three resistance terms: crushing of
ice at the bow, bending of ice at the bow, and submergence resistance along the parallel
midbody. Each of these terms is multiplied by a speed dependent term to form the total
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level ice resistance as below.

b b
Ry =(R.+R)(1+1.4—2 ) 4+ R | 1494t (3.34)
NE2 gLy,

Therein, Rs signifies the submergence resistance as stated in Chapter 2, Rc denotes the
resistance due to crushing at the bow, Rs is the resistance induced by bending and
breaking of ice at the bow. Rc and Rg are given as

R.=0.50,h (tann + 11, cosn/ cos y)(1— . sinr / cos y) (3.35)

R,=0.0030, Bh > (tan y + . cos 77/ sin Bcos y)(1+1/ cos ) (3.36)

where o» represents the bending strength of the ice.

Verification of the simulation routine and Lindqvist ice resistance formulation with a
constant ship speed of 5 m/s is presented in Fig. 3.19. In the cases of 0.2 m, 0.3 m, 0.4
m and 0.8 m thick ice, the numerical results are quite consistent to Lindqvist resistance.
In the cases of 0.5 m, 0.6 m and 0.7 m ice thickness, the numerical values are higher
than Lindqvist results, whereas in 0.9 m and 1.0 m thick ice, the simulated resistance
are lower. However, the fitted exponential curve of numerical results by the present
model shows good agreement with that computed by the empirical formula.

Furthermore, it can be observed that the ice resistance calculated by Lindqvist formula
increases with ice thickness, but some deviations occur in the simulation results. It can
be attributed to the different icebreaking pattern. Take the cases of 0.7 m and 0.8 m
thickness as an example, the resistance value in 0.8 m thick ice is smaller, even if the
ice plate is thicker. Fig. 3.20 and Fig. 3.21 show the breaking patterns in 0.7 m and 0.8
m thick ice respectively. Compared with the case of 0.8 m thickness, some contact zones
occur at the parallel midbody in 0.7 m thick ice, where the frame angle is nearly vertical,
as portrayed in the boxes of Fig. 3.20, and consequently, the vertical component of
contact force is not sufficient to induce a bending failure. The crushing area could
progressively increase, which leads to severe icebreaking force.
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Fig. 3.19 Simulated ice resistance in level ice and the Lindqvist's ice resistance.
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Fig. 3.20 Icebreaking pattern in 0.7 thick ice.
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Fig. 3.21 Icebreaking pattern in 0.8 thick ice.

Ship performance is usually described by a plot of ice thickness versus the forward
speed that can be attained at full propulsion power, i.e. the A—v curve. Fig. 3.22
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illustrates the curves obtained in the present simulation and Su’s numerical program 1],
We can see that the attainable speeds of the present ship model are lower than those of
Su’s model, due to the higher loads level caused by a larger scale. Nevertheless, the
downward trend with ice thickness and the drop rate are quite consistent between the
two models.

¥ Present

7 + Su

. . , .
0.2 0.4 0.6 0.8 1.0
h(m)

Fig. 3.22 The h—v curve.

3.2.2 Local ice-induced loads and statistical analysis

3.2.2.1 Local ice-induced loads

Aside from global ice loads, the line load on a specified frame can be obtained from the
numerical simulation. Because the ice sheet is crushed continuously by bow shoulders,
the icebreaking forces become more severe at these areas. Therefore, a frame on the
bow shoulder area is selected for this study. Its location is marked as presented in Fig.
3.23.

Contact Zone

Fig 3.23 The location of calculated frame at bow shoulder area.

The local ice-induced loads with different ice thickness and initial ship speed are
discussed in this study. Fig. 3.24 shows the frame loads in various thickness. It can be
observed that the local loads level increase with the increasing thickness generally, and
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the load values are sensitive to ice thickness, because the icebreaking pattern is heavily

dependent on the factor of ice thickness.
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Fig. 3.24 The calculated frame loads with different ice thickness.

The frame loads in 0.2 m thick ice with various initial ship speeds are presented in Fig.
3.25. The initial speeds are set around the attainable one at full propulsion power, and
close to each other, as 6.29 m/s, 6.30 m/s and 6.31 m/s respectively. Although the global
ice loads tend to be regular and stable, the simulated frame loads are sensitive to the
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initial speed. Both the magnitude and frequency of local loads show some discrepancy

among these cases.
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Fig. 3.25 The calculated frame loads with different initial speed in 0.2 m thick ice.

3.2.2.2 Statistical analysis

Individual ice loads must be separated when studying ice load statistics. Before
probability plotting, a Rayleigh separation is applied to identify load peak values xi,
X2, ..., Xn, as introduced in Kujala et al. ®?1. A proper value of the separator is chosen
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initially. The Rayleigh separation method seeks the first peak value of the time history.
The next peak value cannot be found until the time history signal decreases below the
value of the Rayleigh separator chosen previously. If the time series signal does not
decrease below this limit, but instead later increases above the first value, the first value
is abandoned and a new value is selected as the first peak value. Fig. 3.26 shows how
the Rayleigh method operates when the separator value is set as 1/4. In this figure, “+”
and “-” signify the maximum and minimum respectively. Because the value at the point
of “1-” 1s smaller than that at the point “1+” times the separator 1/4, the “1+” maximum
is identified as a peak value. Similar cases also happen at the points of “3+”, “4+”, and
“5+”. Nevertheless, the value at the point of “2-” is greater than that at the point “2+”
times the separator 1/4, and the maximum at “3+” point is larger than that at “2+” point,
thus the “2+” maximum is abandoned. Circles show the peak values of Rayleigh-
separated ice loads.

Ice Loads

Fig. 3.26 Peak values according to Rayleigh method.

Since the local loads are sensitive to initial conditions, and the specified frame is even
never in contact with the ice plate during the icebreaking pattern in some cases,
therefore, 10 numerical simulations of ice-induced frame load processes with different
initial speeds for each ice condition are conducted and deal with Rayleigh separation.
The order statistic of peak loads is x(), x2), ..., Xm), where x()< x@2)... < X@), then

the empirical CDF is generally defined as 1%

i—c
F(x(l.))zn(z—ll,forOScSI (337)

where c is a parameter for plotting position.

Generally, the distribution of local ice load peaks might be described approximately
using a Weibull distribution based on statistical analysis of field measurement data of
ice loads P 15%], Tts CDF can be expressed as

F(x)=1—exp {(g)" } (3.38)
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where ¢ represents the scale parameter and & stands for the shape parameter of the ice
load distribution. To ascertain the proper values for the parameters of the Weibull
distribution underlying the ice load process, a probability paper can be employed.
According to the empirical CDF, the parameters of Weibull distribution can be
estimated by fitting using least squares method.

Fig. 3.27 shows that the ice load peaks on a specified frame in various ice thickness are
presented in the Weibull distribution. The cumulative distributions of ice load peak are
shown as a function of the load level on the logarithmic axis [/n(x)] and cumulative
occurrence probability on the twice logarithmic axis [-/n(-/n(1-F))]. The peak values
are observed to form nearly a straight line, which means that the ice load peaks of the
numerical simulation fit the Weibull distribution well.
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Fig. 3.27 The calculated load peak distribution in level ice fields and fitted line of
Weibull distribution in the ice thickness from 0.2 m to 1.0 m.

The statistical distribution parameters of numerical load peaks in level ice fields are
shown in Table 3.3 in different ice conditions. The shape parameters vary in the range
0.8629 < k < 1.1725. From statistical analysis of field measurement data, the shape
parameter is found to be generally 0.7 < k < 1.0 [**], By comparison, considering the
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different ship models used in the field measurements and numerical simulations, the
shape parameter value of the simulated peak distribution, i.e. the slope of the fitted line,
is reasonable.

Table 3.3 Distribution parameters of the Weibull model for load peaks of various ice
thicknesses in level ice fields

hi Shape parameter k& Scale parameter &
0.2m 1.1183 38.1235
0.3m 0.9794 58.3409
0.4 m 1.1620 133.2572
0.5m 1.1725 156.3743
0.6 m 1.0646 185.9776
0.7 m 1.0142 228.3294
0.8 m 0.9783 314.1205
0.9m 0.8629 315.5513
1.0m 0.9024 554.8377

3.3 Summary

A semi-empirical numerical procedure for predicting ship performance in level ice is
established. The icebreaking process can be well reproduced as cycles of contact,
crushing, and bending. The global ice loads and ship performance tend to be stable as
the ship travels deep into ice sheet, and not significantly affected by the initial
conditions. The simulated ice resistance compares well with that calculated by
Lindqvist empirical formula. The icebreaking pattern has a great effect on the ice loads,
which might induce higher loads in thinner ice plate. The downward trend and drop rate
of h—v curve by the present model are quite consistent with the published results of Su’s
numerical model. The local ice loads are sensitive to ice thickness and initial conditions.
The local load peaks can be modeled as a Weibull distribution. The shape parameters
of the Weibull model representing numerical ice loads process agree well with statistical
results of field measurement data.
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Chapter 4

Numerical Model of Ship Operating in Ridged Ice
Fields

Ice ridges are common ice features, appearing especially in dynamic ice conditions. Ice
ridges constitute a significant obstacle and often control the design load levels for ships
operating in ice-covered waters. Sometimes the ridge depth can exceed the ship draft.
In such cases, much energy is consumed by displacing ice blocks. For that reason, it is
important to predict the ice-induced loads on ice-going ships in ridged ice fields in
terms of structural safety and overall operation. In this chapter, a numerical model is
introduced to investigate both global and local ice-induced loads on ship hulls in ridge
fields. Probabilistic ice fields are generated according to the statistical distributions of
ridge heights and spacings. A modified Rankine’s plasticity model is applied to achieve
the keel loads, and the simulated results are compared with model tests, field
measurements and earlier numerical results in ridged ice fields.

4.1 Generating ridged ice fields

4.1.1 Geometry of sea ice ridges

Ridges are complex structures with a wide variability in shape and size, which are
formed when level ice floes are compressed and sheared by environmental driving
forces such as wind and currents. Piling up of broken ice rubble occurs above and below
the parent ice sheet. Sea ice ridges are generally formed of three parts, which are
illustrated in Fig. 4.1.

The ice pile-up on the surface is called the sail and it is composed of ice blocks that can
be relatively unconsolidated, or partially refrozen together. The voids between blocks

are filled with air or snow P,

The underwater part of the ridge is called the keel and it is also comprised of a large
number of ice blocks. The ice rubble above and below the waterline is in hydrostatic
equilibrium, and consequently the dimension of the keel is substantially larger than that
of the sail. The keel is usually 4-5 times thicker than the sail ",
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Air Sail blocks

Fig. 4.1 Typical illustration of a first-year sea ice ridge °*!.

With aging water filling the pores between ice pieces often refreezes, forming a
consolidated layer downward. Its growth rate is higher than that of the surrounding level
ice. The consolidated layer has a varying thickness that is on average 1.5—1.7 times the
surrounding level ice thickness [,

Ice ridges are often modeled by triangles or trapezes and characterized by their
thickness, widths and angles. In this study, ridges are modelled in the simplest form as
having triangular sails and keels. The model characterizes a ridge with sail height #s,
keel depth /i, slope angles for sail and keel, as and ax respectively as well as porosity,
p. An idealized ice ridge is presented in Fig. 4.2. Typical values for the keel slope angle
are reported to be 25-30° %1, Strub-Klein and Sudom °® give the average ratio of keel
depth to keel width to be 4.85, which leads to ax = 22° assuming a triangular cross
section of the keel. Porosity of ridge keels varies between 0.25-0.4.

o, [
AN h

Consolidated layer

Fig. 4.2 Illustration of an idealized ice ridge.
4.1.2 Distribution of sail heights and ridge spacings
A ridged ice field consists of ice ridges, separated by stretches of level ice sections. In
transit simulations, two methods are usually used to generate the ridged ice fields. The

method presented by La Prairie et al. [°! contains a random number of ridges which
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corresponds to the input ridge density and the ice field can be modelled quite
realistically. The method presented by Kotovirta [°! flattens ridges to cover the whole
ice field, i.e., whole field consists of level ice and ridges with solved equivalent
thickness and therefore is faster for simulations. In this study, the ice conditions are
approximated as realistically as possible. A ridge generator presented by La Prairie et
al. is used for modelling the ridge field. Input data for the generator is ridge density per
kilometer and mean ridge thickness. As the description of the ridge field is stochastic,
and therefore the Monte Carlo method is used in the routine to create the ridges along
the ridged ice route section.

Sail heights and keel depths of sea ice ridges can be modelled to be distributed
according to the exponential distribution [**]. The probability density function (PDF) for
ridge sail heights can be expressed as

plhh,, A) = Aexp(=Ah,—h,)) (4.1)

where /s represents sail heights, 4c denotes a cut-off height of sail heights, 4 stands for
the shape factor of the distribution i.e. the inverse of mean height of sails higher than
he. The cut-off height is needed to distinguish ridges from the noise of the measurement
system used to observe sail heights and keel depths for determination of 4. Presumably,
the ridge keel depth is, on average, related to sail height. Therefore, the sail height
distribution is useful to describe keel depths as well. As described herein, the ratio of
keel depth to sail height is set as 5.

Similarly, keel spacings, 1.e. distance between two adjacent ridges can be modelled as
an exponential distribution (¢,

p(d; (h,)) = pu(h,) exp(—p(h.)d) (4.2)

Therein, u is the shape parameter i.e. the expected number of keels per kilometer.

To obtain estimates of ship performance in ridged ice conditions, several random
realizations of ridge field geometries are generated for each ice condition, by drawing
random samples of distributions of ridge keel depths and spacings. The first ridge starts
at x = d, where d is a random distance distributed according to Eq. (4.2). If generated
ridges overlap, then the union of the overlapping keels is the used geometry, for
completely overlapping ridges, the smaller ridge is thus discarded. Ridges are generated
until a pre-set length of ridge field is full. The output of two keel distributions in ridged
ice fields for 1 km with the same input (A"' = 0.2 and u = 11) is portrayed in Fig. 4.3.
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Fig. 4.3 Two simulated ridged ice fields with same input parameters.

4.2 Ship—ice interaction mechanics in ridged ice fields

Most analytical models of ridge failure divide a ridge into three components as
mentioned before: the sail, keel, and consolidated layer. Total loads are obtained as a
summation of them because of each section of the ridge. In practical calculations, the
effects of ridge sails on ship resistance are neglected because they are assumed to be
much smaller than the forces related to breakage of the consolidated layer and
displacement of the keel rubble. The consolidated layer sometimes exerts the greatest
forces on structures during ridge—structure interaction. Timco et al. [!! reported that,
during a ridge interaction, the consolidated layer is usually assumed to fail in a manner
similar to a level ice sheet (i.e. the influence of the sail and keel on the behavior are
ignored). Therefore, modelling of interaction between the ship and the consolidated
layer resembles that in level ice discussed in Chapter 3. In the present study, the
consolidated layer of ridges is assumed to be 1.5 times the thickness of the surrounding
level ice. Keel loads include two components, friction at the midship and displacement
of the ridge keel at the bow. The methods of calculating the ice loads induced by ridge
keels have been based largely on ideas borrowed from soil mechanics theory such as
Coulomb’s theory and Rankine’s theory. The details of models on the basis of soil
mechanics are presented in subsections 4.2.1-4.2.3. Moreover, DEM is also applied to
model the interaction between ships and ice ridges in some recent studies. Discrete
models can provide a relatively realistic simulation of the interaction conditions
between ice blocks. However, they need to use very large numbers of elements in order
to deal with any problem of practical interest. The computation with DEM is quite time
consuming. In this study, ice loads arising from ridge keels are calculated with a
modified Rankine’s plasticity model as an integral of loads per unit width, taking
account of the effects of ship movement and the inertial force of ice accumulation in
front of the ship bow.

4.2.1 Theoretical formula of Keinonen
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Keinonen '8 proposed an analytical method to calculate the pure ridge resistance.
Penetration of ridges by a ship is a complicated and extensive problem, if the whole
process is considered, and therefore a number of simplifications and idealizations are
made in Keinonen’s model. The ice mass in ridge keel is assumed to behave like soil
under a passive pressure, which means that external pressure is applied on the mass.
The consideration of ridge field is limited to a structurally homogeneous floating sheet
of granular material with a constant thickness, i.e. a uniform ridge field. The ship is
idealized with either a landing craft bow or a simple inclined wedge.

Keinonen’s model employed Coulomb theory for analyzing the breaking forces in ship—
ice interaction in ice ridges. The method of Coulomb is based on an assumption of the
breaking of the mass in a plane, when the mass is loaded with a wall. The breaking
condition is solved by using a force balance calculation in possible breaking planes.
The actual breaking plane where the breaking conditions are first reached is found by
derivation. The method for a vertical frictionless wall is shown in Fig. 4.4. BC is the
rupture plane with an inclination y’ from the horizon. Fro, Fg, Fror and Fs represent
cohesion resistance, buoyancy force, force against the wall and shear friction resistance
respectively. In the figure it can be seen that the action lines of the forces pass through
a single point, which lies in the rupture plane. The limit equilibrium equation for
projections of the forces onto the L-L line normal to Fs is

Fysin(y' +¢))+ F, cos¢’'—Fp,, cos(y' +¢') =0 (4.3)

where ¢’ stands for the internal friction angle of the mass.
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Fig. 4.4 Coulomb's method.
Ridge material follows the Coulomb failure model with
T=1,+0tang’ (4.4)

Therein, 70 is the cohesion (the shear strength at zero normal load) of the mass and o is
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the normal stress. 7 is the actual shear strength.

And for a wall with a height 4, Fro is determined as

F =th/siny’ (4.5)

Do

Then the formula for Frror per unit width can be obtained from Eqgs. (4.3)—(4.5).

_ 2 ' ' '
2tany’ sin 7' cos(y'+¢")

where pa denotes the difference of the densities of sea water and ice.

When a minimum for this equation is searched for by varying y' the breaking condition
is determined. The minimum is found from the first derivative. For the vertical
frictionless wall, the solution is y' = (n/4-¢/2).

Keinonen’s model was developed with Coulomb's method, i.e. limit equilibrium
analysis to calculate the resistance as stated previously, but the inclined wall and friction
against the wall can cause one or several of the action lines of the forces to change.
Initial resistance is divided into two cases, thin ridge when the thickness of the ridge
may not reach below the ship draught, and thick ridge when the ridge height is larger
than the draught. A—A plane is a cross section on the ship bow. In case of thin ridge,
breaking occurs on one rupture plane, as depicted in Fig. 4.5. In contrast, an additional
lower rupture plane is introduced in case of thick ridge, as portrayed in Fig. 4.6. This
model also paid particular attention to the development of the ice rubble profile around
the vessel. Fig. 4.7 shows the development for a landing craft bow.

A-A

Ice wedge block
,\ rupture plane

7

A—A plane

Fig. 4.5 Rupture plane when the ridge height is less than the draught.
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Upper rupture
plane
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Lower rupture
plane

Fig. 4.6 Rupture planes when the ridge height is larger than the draught.

For both initial resistance and developed resistance, force geometry need to be analyzed
in each condition. The total pure ridge resistance can be calculated as a summation of
the following components,

R=R,+R,+R +R+R 4.7

In that equation, Ry1, Ry2, Re, Rps and Rps represent upper shear plane force, lower shear
plane force, end shear plane force, bottom frictional resistance and side frictional
resistance respectively. The equations for each of the terms would be too long to present
here. The details can be referred to in Keinonen %],
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Fig. 4.7 Development of ridge profile around a landing craft bow 8],
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4.2.2 Theoretical formula of Mellor

Mellor ! developed a formula to solve the ship resistance of Great Lakes bulk carriers
in brash ice, which is taken to be a floating accumulation of reasonably equant
fragments. The characteristics of brash ice is similar to that of the unconsolidated ridge
considered by Keinonen [!8],

Mellor’s model was built on the basis of Rankine theory, which considers the state of
stress in ice rubble mass when the condition of plastic equilibrium has been reached.
The effect of intrinsic cohesion between ice blocks is not likely to be significant, and
thus ignored. Consider a smooth vertical plate pushing slowly against a uniform layer
of cohesionless brash, as presented in Fig. 4.8, then there will be lateral compression of
the ice mass and the horizontal stress ox will increase until a state of plastic equilibrium
is reached. Consequently, all ice elements which are close to the plate are in the passive
stress state. For this condition, ox is the major principal stress, and the vertical stress o
is then the minor principal stress. According to Mohr-Coulomb failure criterion [*4), the
angle of slip planes to the vertical is (n/4+¢"/2).

/
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Fig. 4.8 Illustration of slip lines for cohesionless brash ice pushed by a smooth,
vertical and wide plate [,

Since no external applied forces or displacements act on the mass, the vertical stress o:
can be determined by the buoyancy of the fragments.

0. =(1-p)p\g(h,~2) (4.8)

where z is the depth.

Based on classical Rankine theory, the passive pressure coefficient K, equals
(1+sing’)/(1-sing’), and therefore ox can be expressed as

62



1 +sing’
o,=K,0.=(—"5)0.
1—sin¢

(4.9)

Combining Egs. (4.8) and (4.9) and integrating the passive stress ox with regard to the
depth from z = 0 to z = &, then the total horizontal force per unit width on the plate can
be obtained by

1 l+sing’

R = .
2 1-sing’

W1-p)p,gh’ (4.10)
Under the condition of cohesionless ice fragments, the force based on Rankine theory
in Eq. (4.10) is actually the same to that obtained by Coulomb method in Eq. (4.6).

The vessels of most concern in Mellor’s model are bulk carriers, the sides of which are
essentially vertical near the water line, and the horizontal dimensions are much larger
than the thickness of a typical brash layer, so Eq. (4.10) can be used to achieve the
normal component of bow resistance.

The ship bow is subjected to normal crushing force, coupled with tangential frictional
force, as portrayed in Fig. 4.9. Taking the local bow angle f for any given vertical strip
of width ds, the component of the normal force Rds in the x direction is (Rsinfds). If
the normal distance from the ship centerline to the strip element is y, then sinf = dy/ds
and hence the forward force component can be expressed as Rdy. Similarly, the forward
component of corresponding tangential friction force equals (u:Rdx), where w: is the
frictional coefficient. The total resistance on ship bow Rb is given by the sum of the
forward components for the elementary strips along the bow section,

B/2 Loow
R, =2 jo Rdy +2 jo uRdx=BR+2uL, R (4.11)
Therein, Lvow signifies the bow length.
‘ Lbow ‘
B X
y
R R

Fig. 4.9 Ship bow crushing resistance and frictional resistance.

The midbody resistance Rm is assumed to consist only frictional resistance which is
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tangential to the ship.
Rn = 2ll“linarR’ (412)

where Lpar is the length of parallel midship, R'represents the normal force per unit width
for an indeterminate stress state. The relationship between R'and R is regarded as linear,

R =NR (4.13)
In that equation, N is a factor, with the value varying from 0.06 to 0.13.

Combining Egs. (4.11) and (4.12), the total keel resistance Rk can be calculated by
summing up the bow resistance and the midbody resistance.

R =R +R =BR+2ul, R+2uL NR (4.14)

par

4.2.3 Theoretical formula of Malmberg

Malmberg 2 applied Rankine’s plasticity model to study a ship displacing the ridge
material as well. In Malmberg’s model, the normal force on ice pile in the passive state
around the bow is considered, as shown in Fig. 4.10. The ridge resistance is a
combination of resistance due to displacing the ridge keel at the bow, and frictional
resistance on the parallel midbody sides and bottom.

Area within the ice
in passive state

b

h

T r
9

Fig. 4.10 Basic assumption in Malmberg’s model.

The component of bow resistance, taken as a point force applied at ship shoulder, is
calculated by
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1+sing’

R,_p,gTh,(1- p)( )(0.5B + h, tan y cos B)(u, cosn +sin ) (4.15)

1—sing’
The midship frictional resistance component arises with increasing penetration of the
ship into the ridge, which is given by

h
Ry =pagT(=p)uf, (Kb +(E=05)B)dx (4.16)

Therein, the factor (4+/7-0.5) is non-negative, i.e. taken as zero when s < 0.57, Ko is
the coefficient of lateral stress, which can be calculated by the following equation

K, =1-sing (4.17)

4.2.4 A modified Rankine model in the present study

Those analytical models presented in previous subsections are used widely to obtain
the global ice loads caused by ridge keels. However, it is difficult to achieve the local
ice loads by these methods. DEM is applicable to calculate the local loads, but such
computations can be time consuming even for a single ice ridge. It would be more
inefficient to estimate the local ice loads in ice fields containing multiple ridges.
Furthermore, ridged ice fields in those previous models are assumed to be a uniform
layer of broken fragments with a constant thickness, while in this study, the fields are
modeled more realistically as having triangular keels. In order to tackle these problems,
a modified Rankine model is proposed in this chapter to obtain both global ice loads
and local ice loads on ship hulls in ridge fields.

The midship component is achieved by the Malmberg’s resistance formula Eq. (4.16),
which is useful to calculate global loads as an integral along the whole midship part,
and to calculate the local loads as an integral on a specified frame at midship. Replacing
the constant thickness /4x in Eq. (4.16) with variable keel height, the following
expression is obtainable.

h, (x)

Ry = pgT(=p)sf, (Ko (0)+(F==0.5)B)dx (4.18)

where //(x) represents the ridge depth beneath a point along the midship at any moment.

The bow component is calculated as an integral of loads per unit width with this model,
including consideration of the effect of ship movement and inertia force of ice
accumulation in front of ship bow.

The Rankine model is limited to the conditions of a vertical pushing plate and a
horizontal or semi-infinite sloping surface, like the model of bulk carriers in Mellor %),
for instance. However, 1) for this study, the keel opening angle and the waterline half-
angle are not large (keel angle ox = 22°, and waterline half-angle f = 23.6° are set in the
simulation). Therefore, the slope angle of ridge surface normal to cross sections (A—A
plane) is less than 10°. Consequently, it presumably does not introduce too much
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inaccuracy to treat the ridge surface normal to A—A plane as horizontal. In addition, 2)
undertaking the ship bow as a slender wedge, the ice will simply pile up against the
plate until the resistance reaches the value for a vertical plate. Based on those two
reasons above, it is reasonable to assume that Rankine’s plasticity model can be
available for the interaction of each A—A plane and the ice ridge surface.

As introduced in subsection 4.2.2, Mellor derived the bow resistance per unit width
attributable to normal force as shown in Eq. (4.10) when the ridge height at a certain
point is less than the draught. When the ridge height at a certain point is larger than the
draught, a second lower rupture plane is introduced, as demonstrated by Keinonen ],
who applied Coulomb model, i.e. limit equilibrium analysis to calculate the resistance.
Although the ridge height in contact with ship bow is the draught, from the perspective
of Coulomb model, resistance results from the area of the ice wedge block, which is
subjected to buoyancy and to forces from the ship bow and rupture planes. This area is
approximately proportional to the draught and the ridge height. Therefore, for
simplification, a modification is made on Eq. (4.10), by which the bow resistance
because of normal force at a certain point with height greater than the draught can be
translated into

1 1+sin¢@’
R=1(-p)p,gtsnd

4.19
2 1-sing’ h (T (4-19)

Aside from the normal crushing force, friction occurs as a result of the relative lateral
motion of the ship hull and ice blocks. The friction runs tangential to the bow. The ridge
keel is triangular. Therefore, the ridge height in contact with each A—A plane is varied
gradually along the ship bow. Considering the tangential frictional force additionally,
the global loads on the bow can be expressed as an integral along the ship bow.

R, =] . Rltanf+ )/ tana,dh, (4.20)

Regarding local loads on a specified frame, for any point at depth z, the vertical
component of normal stress is (1-p)pag(h-z). Therefore, according to Rankine theory,
the horizontal stress can be ascertained as the coefficient of passive stress (1+sing’)/(1-
sing’) times the normal stress. The ice loads on the specified frame at A—A plane are
calculable as an integral of horizontal stress along the contact height with ice ridge. The
resultant local ice loads are an accumulation of the A—A plane along the frame spacing.

Myland %3] performed the ridge ramming model tests of two ship models with
systematically varied keel depths in HSVA’s large ice model basin, and reported that
an increase of resistance with growing penetration velocity can be assumed to be
proportional based on the model test results of ridge penetration, as presented in Fig.
4.11. Therefore, the total keel loads can be expressed as shown below.

kv R kv
Rk: pen” pen Rb+( mimax) pen” pen R (421)

\&h (x) Ry o JEh(x) "
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Therein, kpen 1s a factor that depends on the ship model’s ridge breaking capability and
the number of ram repetitions necessary to break the ridge. It is 1.3-2.0; also, vpen is the
penetration velocity.
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Fig. 4.11 Average ice resistance for varying keel depth vs. average penetration
velocity (9,

The inertia force of ice accumulation in front of each A—A plane can be considered.
Two parts of the ice blocks contribute to the total inertia force: the ice pile below ridge
surface in front of A—A plane and the ice wedge block between A—A plane and rupture
plane, as portrayed in Fig. 4.12.

Ice wedge block
\ rupture plane

7

/
/= simplified
ice pile edge

Ice pile

Fig. 4.12 Inertia force assumption.

In fact, the ice pile acceleration is the same as the ship acceleration. For the ice wedge
block, the acceleration varies at different points. A reasonable assumption of inertia
distribution is required. Nevertheless, the ice pile shape is difficult to predict using
analytical method. For that reason, a simplified ice pile edge parallel to the A—A plane
is introduced in this study, by which the inertia force of the ice pile can be compensated
with that of ice blocks between the rupture plane and the simplified ice pile edge.
Moreover, the acceleration is assumed to vary linearly from zero at the edge in contact
with the unmoved ridge to ship acceleration at the edge in contact with the A—A plane.
The total global or local inertia force is calculable as an integral at each A—A plane
along the ship bow or frame spacing.
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4.3 Numerical results of ice loads in ridged ice fields

4.3.1 Global ice loads and ship performance

Numerical simulations are conducted in different ice conditions with level ice
thicknesses of 0.2—1.0 m. The ridge porosity was 0.25-0.4. The internal friction angle
varied: 47°-58°. For this study, 0.3 and 52.5° were used as the two parameters, as
referred from a report by Kuuliala et al. %], In transit simulations, the values of cut-off
height and the inverse of shape parameter of sails height distribution were set
respectively as 0.4 and 0.2 (7). The expected number of keels density per kilometer was
set as 11 1921, Characterized by the mean ridge keel depth, ridge density, and level ice
thickness, random ridged ice fields can be modeled according to Egs. (4.1) and (4.2).
An example of ridged ice field for 1 km is portrayed in Fig. 4.13. Sea ice ridges are
difficult impediments to navigation in ice. Ships are usually unable to pass through
them in a continuous mode. If the ship stops in the ridge, then it backs out into its own
broken channel and rams the ridge again until the ship has passed through the ridge. In
such cases, keel loads along the mid-ship because of friction are the only resistance
term considered. The main characteristics of the calculated ship and the material
properties of level ice sections are identical to those in Chapter 3.
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Fig. 4.13 A ridged ice field model.

In numerical simulations, the ship model is driven by constant thrust. The initial
velocity of a ship transiting through ridged ice fields is set as the mean velocity in level
ice of equal thickness. Under the keel conditions shown in Fig. 4.13, simulated time
histories of global ice loads in level ice thicknesses of 0.2 m and 1.0 m are shown
respectively in Fig. 4.14 and Fig. 4.15. It is apparent that the ice-induced load resembles
a sequence of spikes. For 0.2 m ice thickness, the pure ice ridge force dominates. For
1.0 m ice thickness, the ice load induced by breaking the consolidated layer dominates.
That result is explainable from two factors, 1) according to Eq. (3.27), the ice plate
bearing capacity is proportional to the square of level ice thickness. Thus, the
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consolidation loads in 1.0 m level ice thickness are much higher than those in 0.2 m
thickness. 2) Based on Eq. (4.21), the keel loads are proportional to the penetration
velocity. Because the transiting speed in lower ice thickness is higher, even in the same
keel distribution, the keel loads in the case of 0.2 m ice thickness are larger than the
other ones. This phenomenon has also been observed in field trials. Based on field
measurement data, Keinenon [®8! found that resistance attributable to consolidation
might be the major resistance component for small ridges and for heavily consolidated
ridges.
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Fig. 4.14 Simulated time histories of global ice loads in level ice thickness of 0.2 m.
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Fig. 4.15 Simulated time histories of global ice loads in level ice thickness of 1.0 m.

Fig. 4.16 and Fig. 4.17 present the simulated speed time series in level ice thicknesses
of 0.2 m and 1.0 m respectively, corresponding to the global ice loads in Fig. 4.14 and
Fig. 4.15. The ship forward speed drops sharply from the initial velocity, i.e. the mean
velocity in level ice of the same thickness, because of the high loads caused by the
consolidated layer and ridge keels. In the case of 0.2 m ice thickness, the ship transits
the ridged ice field continuously without ramming. By contrast, six rams must be used
to pass through an ice field with 1 m level ice thickness, when the ship speed value
turns negative. The value of the global ice loads during the ramming period in Fig. 4.15
are nearly zero because the ship backs into level ice stretches that have already been
broken. For that reason, no contact with the ice edge occurs. Only friction between the
mid-ship and ice ridges might occur. Nine ridges exist in all in this realization of ridge
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fields. The segment ends in Fig. 4.14-Fig. 4.17 represent time points at which the ship
bow begins to penetrate into and has completely gone through each ridge. It is apparent
that in the case of 1 m level ice thickness, rams are necessary for transiting the large
ridges. Sometimes rams even happen in level ice sections such as that behind the third
ridge or in small ridges such as the sixth ridge because the ship slows dramatically after
passing through the previous large ridge. It cannot maintain forward speed.
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Fig. 4.16 Simulated speed time series in level ice thickness of 0.2 m.
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Fig. 4.17 Simulated speed time series in level ice thickness of 1.0 m

To validate the numerical calculation method of ice loads in ridged ice fields presented
in this chapter, simulations of transiting a single ice ridge were conducted and were
compared to results of ridge ramming model tests with systematically varied keel
depths performed in an earlier study using HSVA’s ice model basin by Myland (],
Several ice conditions resembling model tests were simulated using a numerical model,
for example, in the No. 3010 test run of Myland’s study, the keel depth scaled to full
scale was 7.6 m. The level ice thickness of 0.05 m was tested with a scale factor equal
to 22. A similar case of 7.6 m ridge keel depth and 1.1 m level ice thickness was set in
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the numerical simulation, but other ice properties such as ice strength might be not
exactly the same. The full scale maximum load value in the model test is 4.5 MN,
whereas the numerical result is 6 MN. This slightly larger value in numerical simulation
can be attributed to the larger scale of the numerical ship model (the length between
perpendiculars of the ship model in the No. 3010 test run was 126.6 m). The numerical
load values are of the same order of magnitude as the model test results.

Ice resistance is also calculated for variable ice conditions, as shown in Fig. 4.18.
Considering the random nature of ridged ice, 50 simulations were performed for each
ice condition in this study. Fig. 4.18 presents the ice resistance increasing concomitantly
with the increasing level ice thickness for constant ship speed of 5 m/s. The present
resistance is higher and it increases faster than Lindqvist's ice resistance at the same
speed because of the effects of keels and consolidated layers.
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Fig. 4.18 Ice resistance in various ice thicknesses with a constant speed of Sm/s.

Fig. 4.19 shows mean speeds obtained for variable ice conditions in the present study
and in Kuuliala’s transit simulation model [®®). The ridge density is set the same in the
two simulations as 11 per kilometer. The mean ridge thickness in Kuuliala’s model is 3
m, whereas the same value of 3 m and a larger value of 6.67 m are used for this study
for comparison with Kuuliala’s results. Consequently, an obviously lower mean speed
is obtained with 6.67 m mean ridge depth in the same level ice thickness. For 0.3 m
level ice thickness, the speed value with 3 m mean ridge depth in the present simulation
closely approximates Kuuliala’s numerical value, but the mean speed decreases faster
as the level ice thickness increases in this study. Kuuliala’s numerical results show that
the expected values of mean speed decrease almost linearly with increasing ice
thickness. An approximately linear relation between mean speeds and level ice
thickness is also observed in cases of 6.67 m and 3 m mean ridge depth in this study.
Moreover, the slopes of these two cases are quite consistent. They are larger than that
in Kuuliala’s simulation. As a result, the present numerical results are comparable with
those found from Kuuliala’s study, in spite of some slight differences.
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Fig. 4.19 Simulated mean speeds in various ice thicknesses by constant thrust.

4.3.2 Local ice-induced loads and statistical analysis

4.3.2.1 Local ice-induced loads

The same location of frame at the bow shoulder area is selected to calculate the local
ice loads, as presented in Fig. 3.23. Fig. 4.20 and Fig. 4.21 show the simulated time
histories of local ice loads on this frame with the keel distribution in Fig. 4.13 in level
ice thickness of 0.2 m and 1.0 m respectively. The maximum numerical load peaks in 1
m ice thickness can reach 1400 KN/m, which is comparable to measurements published
in the final report of the ARCDEV project%°]. In this ARCDEYV report, a duration of 10
min time history when the ice tanker M/T Uikku went through an ice ridge is recorded
during measurement No. 35. The level ice thickness samples consist of four tenths in
the interval of 0.3 m—0.7 m, five tenths in the interval of 0.7 m—1.2 m, and one-tenth in
the interval greater than 1.2 m. The ridge depth distribution is one-half in the range of
1.0 m—1.5 m and another half in the range of 1.5 m—2.0 m. The scale of M/T Uikku is
close to the numerical ship model, of which the length between perpendiculars is as
long as 150 m. The maximum signal value from bow shoulder area is up to 1000 KN/m.
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Fig. 4.20 Simulated time histories of local ice loads in level ice thickness of 0.2 m.
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Fig. 4.21 Simulated time histories of local ice loads in level ice thickness of 1.0 m.

From Fig. 4.20 and Fig. 4.21, it is apparent that in the case of 0.2 m ice thickness,
contacts between the frame and ice edge of level ice or consolidated layer rarely occur.
The only occurrence is emphasized in the box. Compared to that, the impulse caused
by the keel loads lasts for a longer duration required for a ship to pass through the
present ridge. Load values of these two kinds are in the same level. However, for 1.0 m
ice thickness, the frame loads caused by displacing keel blocks are much smaller than
those because of the breaking level ice and the consolidated layer. That is true because
that 1) the frame spacing is only 0.35 m in the simulations, less than one percent of the
ship bow length, and ridge keels are treated as homogeneous and isotropic. Therefore,
the frame keel loads account for a very small share of the global keel load. 2) ship—level
ice or ship—consolidated layer interaction happens at local contact zones as presented
in Fig. 3.3. Therefore, if contact occurs on the specified frame, it will cause a high local
load. Consequently, even though both the keel loads and level/consolidation loads
contribute greatly to global ice loads, the keel effect is not important for local frame
loads. It can be ignored in high level ice thickness. In ARCDEYV research, instantaneous
impulses rising from the nearly zero value are dominant, which means that the local
loads induced by keels are quite small and nearly negligible.

4.3.2.2 Statistical analysis
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The 50 numerical simulations of ice-induced frame load processes for each ice
condition deal with Rayleigh separation, and then the peak loads are described using a
Weibull model, as introduced in Chapter 3. Fig. 4.22 shows that the ice load peaks on
a specified frame in different level ice thickness are presented in the Weibull
distribution. With the high ice thickness of 1 m, peak values are observed to form nearly
a straight line, which means that the ice load peaks of the numerical simulation fit the
Weibull distribution well, whereas in the low ice thickness of 0.2 m, some deviations
from the straight line occur in upper tail because in this case the loads attributable to
the level ice section are low and the ridge keel effect might be more readily apparent,
but it is still acceptable to model it using a Weibull distribution.
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Fig. 4.22 The calculated load peak distribution in ridged ice fields and fitted line of

Weibull distribution in the level ice thickness from 0.2 m to 1.0 m.

The statistical distribution parameters of numerical load peaks are shown in Table 4.1
in different ice conditions. Considering the different ship models used in the field
measurements and numerical simulations, the shape parameter values of the simulated
peaks are located in a reasonable range 0.7618 <k < 1.1826, compared to statistical
analysis of field measurement data 0.7 < k < 1.0 1,
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Table 4.1 Distribution parameters of the Weibull model for load peaks of various ice
thicknesses in ridged ice fields

hi Shape parameter k& Scale parameter ¢
0.2m 1.1826 22.2031
0.3m 0.8374 37.7919
0.4m 0.7618 117.6024
0.5m 0.8877 179.1001
0.6 m 0.9144 2443113
0.7 m 1.0139 294.7143
0.8 m 0.9948 338.8530
0.9m 0.8399 411.8340
1.0m 0.8748 475.7856

4.4 Summary

A numerical model is developed to calculate both global and local ice loads in ridged
ice fields, in which a semi-empirical method is introduced to develop a numerical model
of ship—ice interaction in level ice and the consolidated layer in ice ridges. A modified
Rankine’s plasticity model is applied to calculate ice loads caused by ridge keels,
considering effects of ship movement and inertia force of ice accumulation in front of
the ship bow. Multiple simulations of ship transiting ridged ice in different ice
conditions are conducted under randomly generated ridge-field profiles. Ship
performance can be well reproduced using the numerical method. Computed results
confirm that ice ridges can engender high loads levels, causing the ship speed to slow
dramatically when sometimes rams might have to be required. Although the ridge keel
factor contributes much to global ice loads, the keel effect is not great for local frame
loads: in fact, it is negligible in cases of high level ice thickness. The simulated global
and local ice-induced loads compare well with published results of model tests and field
measurements in ridged ice fields. The local load peaks can be modeled as a Weibull
distribution, although some deviations exist in cases of low ice thickness. The shape
parameters of the Weibull model representing numerical ice loads process agree well
with statistical results of field measurement data. This agreement makes it possible to
apply the model for practical use for route planning in ice or for evaluating a ship’s
operability and structural safety in given ice conditions.
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Chapter 5

Numerical Model of Ship Operating in Pack Ice Fields

In managed ice fields and marginal ice zones, a continuous ice sheet has been broken
into smaller ice floes by icebreakers or wave actions. These types of ice cover are
discontinuous in nature and can be idealized as a composition of distinct ice pieces. In
broken ice fields, occasional ship—ice collisions may occur, rather than continuous
icebreaking process in level ice. In this chapter, a 2D DEM numerical model is
developed for simulating the interaction between drifting ice floes and a moving ship.
The ice floes are represented as hundreds of circular disks with random sizes and
positions. Both the ship—ice collisions and ice—ice contacts are modeled, and a viscous-
elastic rheology is applied at contacts. The ice loads in different ice conditions (ice
thickness and ice concentration) can be determined from a series of simulations. The
numerical results are compared with published simulated results in pack ice fields.

5.1 Ship-ice interaction mechanics in pack ice fields

5.1.1 Contact detection

Since a large number of ice floes are incorporated in a calculation domain, the DEM
model requires an efficient computer algorithm to detect the ice—ice contacts and ship—
ice contacts, which is done by using a cell structure to identify neighboring disks. The
cells are squares with their edges parallel to the global x and y coordinates, as shown in
Fig. 5.1. The dimensions of the cell domain should slightly exceed those of the ice
domain to enable inclusions of disks located on the boundary.

In order to ensure that each cell contain only a few disks, the dimension of a cell should
be larger than that of disks. Consequently, the side length of cells @ and maximum disk
radius Rmax in the ensemble are chosen to satisfy a ratio as

2R >1 (5.1

In most cases, it is beneficial to choose the ratio slightly above 1.
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The location of the current disk with center coordinates (x;, y:) is computed in two steps.
First the integer cell numbers in the x and y directions are computed by

Ix = NCELLA .lnt[(‘xl - xmin) / (xmax - xmin )] + 1 (5'2)

I, = NCELL *int[(y; = Vo) / Ve = Vi )] H1 (5.3)

where xmin and xmax are the coordinates of extreme points of the cell domain on the x
axis, NCELL;x represents the number of cells in the x direction. The definitions of terms
in y direction are analogous.
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Fig. 5.1 Cell structures in a computation domain %),

The cell number of the current disk, /CELL, can be calculated as follows.
ICELL=(1 T~ 1)eNCELL +1 (5.4)

The cell number of disk i is stored in an array CELLNO (7) and the disk number, i, is
stored in the two-dimensional array DISCNO (ICELL, j), where j is the first vacant
element of the actual row ICELL. The number of occupied elements in one row
corresponds to the number of disks in the same cell.

Ice—ice contacts are primarily defined by the distance between two disks. A solid
contact can be logged when overlapping between ice floes occurs, as presented in Fig.
5.2. The ship waterline is represented as a polygon, including nodes and line segments.
In the simulation, each segment has to be checked for contact with the disks. A case of
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collision between ship segments and ice floes is illustrated in Fig 5.3.

Y 4

Cal

~
ra

Fig. 5.2 Collision between two circular ice floes.

SR

Fig. 5.3 Collision between ship and ice floe.

With the cell structures, it is sufficient to scan only eight adjacent cells and the same
cell to the current cell of a disk or hull segments when identifying possible ice—ice
contacts and ship—ice contacts. The computation time can be significantly saved.

5.1.2 Contact force

5.1.2.1 Ice—ice contact

The contact force is simple to analyze. Ice floes are modelled as soft particles with finite
stiffness in this method. A local coordinate system, n—z, which is associated along with
each collision incident, is introduced, as portrayed in Fig. 5.2. n denotes the normal
direction and 7 represents the tangential direction. The ice motion information would
be transformed into the n—7 reference frame. When the elements are interacting with
each other, it is supposed that there are two components of contact force on the contact
zone, i.e. the normal force and the tangential force. The n—7 coordinate system with the
origin O; is defined as below.
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i= 29 (cost.sind) (5.5)
n= =(cos @', sin .
00,

J

r=(-sin&,cos ) (5.6)

where O; and O are the centers of the two contact disks, 7 and 7 are the unit vectors
of the normal axis and tangential axis respectively, €' is the angle from x-axis to the
vector 7.

The relative velocity at the point of contact is given by

00,=0,-0,+(Rw +R o))t (5.7)

In that equation, O; and O/ stand for the linear velocity for the two disks, w: and w;
are the angular velocities, R; and R; signify the radius of disks i and j, respectively. The
relative displacement rate in normal and tangential directions can be obtained by
projecting the relative velocity onto the n— unit axial vectors.

The normal force is represented as a sum of elastic and damping terms. These two
components have a direction opposite to the penetration. Consequently,

F/=-K, 6. -K, 0 (5.8)

Therein, the superscript i denotes the current time step, Kne represents the normal

contact stiffness, Kn stands for the normal contact viscosity, 6; signifies the relative

velocity of the two disks at normal direction, J., is the normal indentation of overlap,
which can be determined as

S =R +R -A, (5.9)

where Aj is the distance between the two disk centers.

The tangential force is treated as linear-elastic, i.e. the incremental change in the
tangential force due to friction is proportional to the relative tangential velocity.

F'=F"-K/6t (5.10)

where the superscript i-1 denotes the previous time step, Kr stands for the tangential

contact stiffness, 5; represents the relative velocity of the two disks at tangential
direction.

Nevertheless, based on the Coulomb friction law, the Coulomb friction limit is the
upper limit of the tangential force, and thus the tangential force can be expressed as

F! =min(F,"sign(F ) F,) (5.11)
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5.1.2.2 Ship-ice contact

For ship-ice collision, the calculation method of the contact force is similar to that of
ice-ice collision. In this study, referring to Feng and Owen "), the middle point of the
contact line is identified as the reference contact point where the normal force should
be applied, and the contact normal direction is defined as perpendicular to the line that
passes through the two intersecting points between the ship waterline and ice floe, by
which no directional jump occurs at the corner when the ice floe continuously moves
from the left position to the right, as shown in Fig. 5.3. The total contact forces acting
on ship hull and each ice floe are calculated as a sum of contact force induced by all the
ship—ice collisions and ice—ice collisions.

5.1.3 Motion of ice floes

In Chapter 2, we addressed the solution of ship motions using a step-by-step integration
method. In the cases of pack ice fields, ice floes could be driven to move by ship
advancing and current forces. It is assumed that the disks do not rotate, and there is no
layering. The disks only move translationally in horizontal plane. In each time step, the
motion of each ice floe needs to be solved. The motions of ice floes follow the Newton’s
second law, and can be solved by the assumption of linear acceleration as well.

When an ice floe moves with an acceleration, its inertia force increases significantly
and can be achieved with the additional mass method. The additional mass M, is given
by [28]

M =CpV. M

5.12
sub dt ( )

where Cr is the additional mass coefficient, Vsub represents the submerged area of the
floe, Vi and Vw are the velocity vectors of ice floe and water respectively.

Owing to the effect of current, sea ice is subjected to the water drag force, which can
be expressed as [”?!

1

Fd:ECdprf(vw—vi) vw—vi| (5.13)
Lo

M, :—Eca,(ie)2 p,4,0|0| (5.14)

Therein, Fa and Ma are the water drag force and rotational drag moment, Ca denotes the
drag coefficient of water, Ar stands for the ice floe area, C4' represents the rotational
drag coefficient, w signifies the floe rotational velocity.

5.2 Numerical results of ice loads in pack ice fields
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5.2.1 Global ice loads and ship performance

A rectangular simulation domain is used to model the pack ice field with a dimension
of 600 m*250 m. The radius of ice floes is set to be in the range from 2 m to 10 m
randomly, with a specified ice concentration. In this study, ship navigates with a
constant thrust. Periodic boundary conditions are adopted, in this case, the disks leaving
the ice domain will be reintroduced on the opposite boundary with their momentum
unchanged, so as to ensure the ice concentration in the simulation domain to be constant.
Some computational parameters about ice floe properties are presented in Table 5.1.

Table 5.1 Ice floe properties

Normal contact stiffness Kne 587 KN/m
Tangential contact stiffness Kre 352 KN/m
Normal contact viscosity Knv 5.87 KN-s/m
Added mass coefficient Cn 0.15
Normal drag coefficient C}; 0.6
Tangential drag coefficient Cj 0.06
Rotational drag coefficient C4’ 0.6

Fig. 5.4 shows the ship runs into the ice field with ice concentration of 60% from the
left side, and travels out from the right side. The navigation route seems nearly an
inclined straight line, although the initial speed of ship is parallel to the x axis. This is
due to the asymmetric distribution of ice floes on the starboard side and larboard side
of ship model, which causes asymmetric forces on these two sides.
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Fig. 5.4 Ship navigation process through ice floes domain.

In order to verify the simulation procedure, two comparisons are made between the
present numerical results and the earlier studies conducted by Ji et al. ?®) and Daley et
al. Bl Ji et al. [28) performed the numerical simulation of ship operating with a constant
speed of 4.0 m/s in 0.6 m thick ice under ice concentration of 60%. The obtained
maximum and mean ice loads are 1479 kN and 440 kN, respectively. Fig. 5.5 presents
the time history of ice loads with the same conditions, except the constant thrust. The
numerical maximum and mean loads values are 1850 kN and 442 kN, which compare
well with Ji’s results.
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Ice Loads (KN)
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Fig. 5.5 Time history of ice loads calculated by the numerical simulation (Ice
thickness = 0.6 m, Ice concentration = 60%).

Daley et al. % adopted the GEM simulation approach to calculate the ice loads by a
constant thrust in a series of various ice conditions. The numerical results in an
individual run performed under 0.5 m thick ice and 40% ice coverage can be found in
the list of result values. The maximum and mean ice loads are 1152 kN and 78 kN
respectively. The calculated ice loads by the present numerical model are shown in Fig.
5.6. The simulated maximum and mean values are 1303 kN and 279 kN. By comparison,
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the maximum values are in the same order of magnitude, whereas, a higher mean value
is found in this study.
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Fig. 5.6 Time history of ice loads calculated by the numerical simulation (Ice
thickness = 0.5 m, Ice concentration = 40%).

The simulated speed time series under 0.2 m thick ice and 60% ice coverage is portrayed
in Fig. 5.7. It can be observed that as the ship travels into the ice floes region, a nearly
steady speed can be achieved, although still with fluctuations. The fluctuations can be
attributed to the ice impulse loads.
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Fig. 5.7 Simulated speed time series (Ice thickness = 0.2 m, Ice concentration = 60%).

Ice thickness, ice concentration and floe size are important parameters affecting the ice
loads significantly. The influences of these parameters on ice resistance are analyzed,
which are illustrated in Figs. 5.8, 5.9 and 5.10 respectively. The figures show that the
ice loads generally increase with the increasing ice thickness, however, some deviations
can be observed even under the same ice floe distribution, such as the case in 0.4 m
thick ice with 40% ice coverage. This might be because the collisions between ship and
ice floes are very sensitive to the ice thickness. Also, the growth rate of ice resistance
with the increase of ice thickness is not high. As for the influence of ice concentration,
it is clear that ice resistance is greater under higher ice concentration. The different floe
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sizes are modeled in the simulations, and the resistance increases with the increasing
floe radius. It might be because the inertial force and drag force are greater of larger

floes.

Tce resistance (KN)
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Fig. 5.8 Influence of ice thickness on ice resistance.
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Fig. 5.9 Influence of ice concentration on ice resistance.
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Fig. 5.10 Influence of ice floe size on ice resistance.

5.2.2 Statistical analysis of local ice-induced loads

Considering the random nature of pack ice fields, 10 simulations were performed for
each ice condition (ice thickness and ice concentration). After Rayleigh separation, the
ice load peaks on a specified frame in different ice conditions are plotted in the Weibull
distribution. An example of plotting results of load peaks under 20% ice coverage is
shown in Fig. 5.11. The peak values are observed to form nearly a straight line, which
means that the ice load peaks of the numerical simulation fit the Weibull distribution
well.
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Fig. 5.11 The calculated load peak distribution and fitted line of Weibull distribution
(Ice concentration = 20%).

The statistical distribution parameters of numerical load peaks are shown in Table 5.2
in different ice conditions. Considering the different ship models used in the field
measurements and numerical simulations, the shape parameter values of the simulated
peaks are located in a reasonable range, compared to statistical analysis of field
measurement data °%!, in which the shape parameter of 0.75 is used to fit the ice loads
of MS Kemira during the winters 1987 and 1988 in different ice conditions, including
level ice and deformed ice.

Table 5.2 Distribution parameters of the Weibull model for load peaks of various ice
thicknesses and concentration

(1) 10% ice coverage

hi Shape parameter k Scale parameter 6
0.2m 0.7918 9.4452
0.3 m 0.7984 9.8150
0.4m 0.9991 11.5578
0.5m 0.7340 13.7408
0.6 m 0.8141 15.1213
0.7 m 0.8754 17.6305
0.8 m 0.7748 19.2877
0.9m 0.5333 21.4010
1.0m 0.8261 23.7457
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(2) 20% ice coverage

hi Shape parameter k& Scale parameter 6
0.2m 0.7239 13.5872
0.3m 0.7133 15.3001
0.4 m 0.7746 16.5144
0.5m 0.8345 20.7616
0.6 m 0.6430 24.1658
0.7 m 0.8864 21.1347
0.8 m 0.9189 23.9889
0.9 m 0.8651 27.1232
1.0 m 0.8053 21.9414

(3) 30% ice coverage

hi Shape parameter k& Scale parameter 6
0.2m 0.9815 20.2858
0.3m 0.9053 20.4412
0.4 m 0.9506 22.5106
0.5m 0.9460 22.4789
0.6 m 0.8711 22.0377
0.7 m 0.7841 25.7816
0.8 m 0.8485 28.8845
0.9 m 0.9741 31.0879
1.0 m 0.9195 31.2612

(4) 40% ice coverage

hi Shape parameter k& Scale parameter 6
0.2m 0.8768 27.4936
0.3 m 0.8378 29.3960
0.4 m 0.9344 36.6771
0.5m 0.8676 36.4964
0.6 m 0.8553 33.6466
0.7 m 0.8767 34.9945
0.8 m 0.7868 33.0608
0.9 m 0.9586 36.2195
1.0 m 0.8431 38.2988
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(5) 50% ice coverage

hi Shape parameter k& Scale parameter 6
0.2m 0.8069 46.5420
0.3m 0.8251 43.9443
0.4m 0.8186 41.8472
0.5m 0.9002 41.5944
0.6 m 0.8496 40.1006
0.7 m 0.8437 39.2490
0.8 m 0.8924 39.3633
0.9m 0.8663 47.4892
1.0m 0.8566 41.8823

(6) 60% ice coverage

hi Shape parameter k& Scale parameter 6
0.2m 0.7706 71.1344
0.3m 0.7518 75.2874
0.4m 0.8467 61.4169
0.5m 0.7818 68.8881
0.6 m 0.7283 66.5824
0.7 m 0.8859 56.9650
0.8 m 0.7959 55.3336
0.9m 0.8755 60.5783
1.0m 0.8402 55.2167

5.3 Summary

A 2D DEM numerical model is developed for simulating the interaction between
drifting ice floes and a moving ship. The ice floes are represented as hundreds of
circular disks with random sizes and positions. The navigation process through pack
ice can be well reproduced by this procedure. The numerical results are comparable to
those simulated in earlier studies. Ship speed remains relatively steady during the
transiting process. In general, ice resistance increases with the increasing ice thickness
and concentration. The local frame loads can be modeled according to the Weibull
distribution, and the shape parameters are consistent with those obtained based on field
measurements.
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Chapter 6

Fatigue Damage Calculation

Ice-going ships are operating under cyclic impact loads caused by the ice in the process
of navigating through ice-covered waters. Micro-cracks due to repeated ice loads may
lead to a fatigue failure, which can pose a threat to structural safety and contaminant to
the environment. Therefore, fatigue assessment of ship hull attributable to ice action is
essentially required. A ship can be expected to travel in widely diverse conditions of
ice. Ice loads of different ice conditions can be ascertained from a series of numerical
simulations as discussed in previous chapters. The structural fatigue stress is found
using structural beam theory. A Weibull statistical model is applied to represent the ice-
induced stress process. According to ice condition distribution (ice thickness, ice
concentration, ridge properties, etc.) and a proper S-N curve, fatigue damage can be
estimated based on the Palmgren—Miner cumulative damage rule. An example of
fatigue damage calculation is presented. The calculated fatigue damage results are
compared with that by field measurements.

6.1 Fatigue damage calculation

Since a ship might encounter a range of different stationary conditions, the total fatigue
damage D can be estimated by accumulating a number of fatigue damage contributions
Dj in each stationary condition. A systematic procedure for fatigue damage assessment
in relation to a local specified transverse frame extending between two decks would be
outlined in the following sub-sections. The nominal stress in base metal of ordinary
steel is used in the fatigue analysis based on modified Miner’s rule. The flow chart of
fatigue damage calculation is presented in Fig. 6.1.

6.1.1 Structural response

As discussed in the previous chapters, the ice loads resemble an impulse in level ice,
ridged ice and pack ice. Thus, the stress amplitude is a vital parameter for fatigue
damage due to ice actions, rather than stress cycles in the fatigue analysis due to wave
actions. According to Finnish Maritime Administration [*], a beam model can be
employed to evaluate the applied stress for the transverse frame due to an ice-induced
load. The conversion from the load into the stress is a linear transformation, which can
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be written as follows.

PiceSlf 3
§=—1Lx10 (6.1)
mt

where Pice represents the ice load [kN/m], s expresses the frame spacing, Iris the frame
span, and Z is the section modulus.

mo=—""o (6.2)
Y 7-5h /1 '
Therein, /: denotes the height of the load area [m], mo incorporates boundary conditions.
Values of mo are in Table 6.1. In this study, the value of 5.0 is selected, because
transverse frames extending between two decks are taken as the target for fatigue

calculation.

Time history of ice loads of a stationary condition j

\V
Rayleigh separation

Vi

Identify ice load peaks
V.

Plot peak values in Weibull model
2
Structural beam theory
v
Determine ice stress distribution fg ;(S)

V7
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Calculate impact number of a stationary condition N ;

v

Select a proper S-N curve

V

'I\II Q. * L
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Vi

Jj=j+1 D=D+D;

Fig. 6.1 Flow chart of fatigue damage calculation.

With regard to the load height, its calculation is dependent on ice types. For the
stationary cases in level ice and pack ice, ship hull is in contact with the sea ice of
constant thickness, and the load height is assumed to be the ice thickness for
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simplification, whereas for the cases in ridged ice, ice thickness might be varied along
the specified local frame, and thus the load height is calculated as the total contact area
on a frame divided by the load length.

As presented in the previous chapters, the simulated ice-induced loads process can be
modeled according to Weibull distribution. From the linear transformation between
loads and stress, we infer that the ice-induced stress also follows the Weibull
distribution. In fact, Suyuthi et al. B performed a probability plot for the ice-induced
stress data obtained from full scale measurement, and it also seems that the Weibull
distribution is still valid for representation of the ice-induced stress amplitudes.

Table 6.1 Boundary conditions of the structural beam [7*]

Boundary Condition mo Example
-
T 70 Frames in a bulk carrier with top wing
! - tanks
L]
[
= 6.0 Frames extending from the tank top to
- = =
——! a single deck
LI -
'n
gl — Continuous frames between several
= = -‘:T 5'7 .
+o — decks or stringers
1
Tl
i Frames extending between two decks
~ = 5.0
— 1 only
1

6.1.2 Impact frequency

For each stationary traveling condition, the impact frequency usually varies from one
realization to another. An approximate theoretical formulation can be applied, which
provides an upper limit for the stress amplitude frequency based on the size of broken
ice floe.

Bridges et al. ¥ presented that the impact frequency to the hull structure per unit
traveling distance is related to the equivalent ice thickness. It is assumed that the length
of floe broken in bending is dependent on the ship speed, as shown by Varsta °!! and
this is utilized to develop a formula for determining the frequency that reflects the ice
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conditions.

. 1852
© 1048 -0.16v,, (b, / b, —1)

(6.3)

where vd stands for the number of events per nautical mile, /., represents the equivalent
ice thickness, 4. is the ice thickness limit.

Suyuthi et al. *7 derived the frequency of impact per unit distance based on the inverse
of the characteristic length of the ice plate, which is presented in Eq. (3.31). Assuming
a 100 % concentration of level ice and no effect from relative speed on the broken ice
floe length, the impact frequency can be given as

1852

K 13.36171 (64)
Therefore, the total number of impacts in level ice can be determined from the impact
frequency times sailed distance in ice, based on which the impact number in ridged ice
and pack ice can be estimated. As the ship transits into an ice ridge, the keel loads on a
frame increase continuously until reaching the maximum keel depth and then decrease
gradually. For that reason, the number of ice impacts in ridged ice can be calculated
roughly as that in level ice added to that in consolidated layer. The impact number in
pack ice can be determined by the calculated number in level ice times the percentage
of ice concentration.

6.1.3 Fatigue damage expression

The Palmgren—Miner’s linear damage hypothesis is applied for fatigue damage
calculation in a particular stationary condition D; as

Non
D => — 6.5
=2 N (6.5)

where n; represents the number of stress amplitudes, N: stands for the number of
amplitudes to failure for a constant stress Si, and #s is the number of stress magnitudes.

The probability of the stress magnitude Si can be written in the following two forms:

P(Si)=%=f(Si)AS (6.6)

Therein, No stands for the total number of stress amplitudes in each stationary condition,
A(S) represents the PDF of the Weibull distribution of stress amplitudes.
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In that equation, ¢ and r are the shape parameter and scale parameter of the Weibull
distribution of stress amplitudes.

Consequently, n: can be given as
n, =N, f(S)AS (6.8)
The relation between S;, and Ni 1s an S—N curve expressed as
NS"=K (6.9)

where K and m are constants of S—N curve.

Then, N; can be expressed as
N =KS™ (6.10)

Inserting Eqgs. (6.8) and (6.10) into Eq. (6.5), the fatigue damage contribution is
obtainable as

Ny 0 om
D,==t jo S” £(S)dS (6.11)
Inserting Eq. (6.7) into Eq. (6.11), the fatigue damage in a particular stationary

condition can be translated as

J

N, m

D, =—y"T(1+—) (6.12)
K q

where I'(*) is the gamma function.

6.2 Case example

6.2.1 Ice data

In this case example, the contribution of the ice actions to the annual fatigue damage
accumulation for a transverse frame of a ship hull is evaluated. The fatigue damage
estimation requires knowledge of the ice conditions in the proposed area. Because of
thermal and mechanical factors, the ice cover parameters of thickness and concentration
vary greatly. The thermal factor is a continuous component and is related to changes in
air temperature and snow cover above the ice surface. The mechanical factors are
discrete components that are caused by the rafting, ridging, and opening of leads and
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polynyas.

Spatial and temporal variation of sea ice thickness has always been of concern. In earlier
studies, the ice thickness has been assumed to follow normal, log-normal or gamma
distributions. In the present work, presumably, ice thickness follows a normal
distribution. The PDF for ice thickness can be expressed as

exp(— ( ) 220 yax (6.13)

P(h) = jth—b

In that equation, o4 equals 0.1 m in the calculation, u: denotes the mean value of ice
thickness, o; is the standard deviation of ice thickness. The mean value and standard
deviation are taken as 0.34 m and 0.109 m respectively, referring to Kujala !,

The existing data of the ice concentration variations are very limited. An information
of the mean value and standard deviation of ice concentration in Weddell region can be
found in Worby et al. 78], however, the statistical model has not been provided.
Numerical simulations in pack ice are conducted in the previous chapter with ice
coverage from 10% to 60%. To enable most cases to be located in this range, herein,
the distribution of ice concentration is assumed to follow a lognormal distribution. The
mean value and standard deviation are respectively set as 38% and 36%. A random
variable of ice concentration is denoted as C, which follows a lognormal distribution,
then Y = In(C) follows a normal distribution, i.e. Y~N(uc, oc). The relationship of the
mean value and the variance between C and Y can be derived as

E(C) =" (6.14)

D(C) = (€™ 1) (6.15)

The logarithmic function is a monotonic one, and therefore the possibility of ice
concentration P(c) equals to that of its logarithmic value, which can be determined by
integration of the PDF of the normal distribution between /n(c-Ac/2) and In(c+Ac/2).

Pc)= Pamo)j(+fJ—B_wm S (6.16)

where Ac equals 10% in the calculation.
6.2.2 Fatigue damage calculation

6.2.2.1 Local ice-induced stress

Ice-induced loads in various ice conditions can be obtained by performing the
numerical models presented in the previous chapters. Load peaks on a transverse frame
can be transferred into stress amplitudes using structural beam model. In order to
evaluate the fatigue damage, it is essential to define the distribution of stress amplitude
for each stationary condition, which can be represented with a Weibull model. The
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probability plot of ice-induced stress in level ice, ridge ice and pack ice against the
Weibull fit are shown in Figs. 6.2, 6.3 and 6.4 respectively.
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Fig. 6.2 Probability plot of ice-induced stress in level ice (ice thickness: 0.2 m—1.0 m).
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Fig. 6.3 Probability plot of ice-induced stress in ridge ice (level ice thickness: 0.2 m—
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Fig. 6.4 Probability plot of ice-induced stress in pack ice of 20% ice coverage (ice
thickness: 0.2 m—1.0 m).

From these figures, it is clear that the discretized data points in different ice types form
nearly a straight line, which means the stress amplitude is reasonable to be modeled
with a Weibull distribution. The shape parameters of ice stress distributions in level ice
and pack ice are identical to those of ice-induced loads, whereas different values are
observed in ridge ice. It is for the reason that the load height can be assumed to be
constant in level ice and pack ice, and consequently, according to Eq. (6.1) the shape
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parameters of load and stress are of the same magnitude and the scale parameters are
proportional to a certain factor. Nevertheless, the load height in ridge ice is time-varying,
and thus these relationships cannot be found.

6.2.2.2 Calculation result of fatigue damage

In this study, the parameters of the S—N curve for base metal in the air or with cathodic
protection "7 are used, given as m = 4.0, and K = 1.0E+15.117. Fatigue damage
accumulates D; of ice thickness from 0.2 m to 1.0 m in various ice types. The constants
needed for the fatigue calculation are presented in Table 6.2. The travel distance per
year is assumed to be 2500 nm. The calculation result of fatigue damage in level ice,
ridge ice and pack ice are respectively presented in Tables 6.3, 6.4 and 6.5.

Table 6.2 Fatigue calculation constants

Frame Spacing s 0.35m
Span of Frame Ir I.5m
Section Modulus Z 267 cm?

Boundary Condition mo 5.0
S—N curve parameter, K 1.0E+15.117
S—N curve parameter, m 4.0

Table 6.3 Fatigue damage calculation in level ice

hi P(hi) No/year )4 q Dj

0.2 0.164 189638 1.1183 13.5645 6.35040E-05
0.3 0.332 283909 0.9794 19.6655 0.000883977
0.4 0.307 211833 1.1620 42.4227 0.005628186
0.5 0.129 75393 1.1725 46.8537 0.002857927
0.6 0.025 12579 1.0646 52.2409 0.001199854
0.7 | 2.143E-3 969 1.0142 59.8616 0.000209715
0.8 | 8302E-5 34 0.9783 76.4713 2.43908E-05
0.9 1.431E-6 0.5367 0.8629 70.9104 6.76203E-07
1.0 1.091E-8 | 3.79E-03 0.9024 114.2924 2.32053E-08
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Table 6.4 Fatigue damage calculation in ridge ice

hi P(hi) No/year )4 q Dj

0.2 0.164 173016 0.9775 3.2265 3.95234E-07
0.3 0.332 258412 0.7072 6.7743 0.000158615
0.4 0.307 192579 0.6976 26.0364 0.029729759
0.5 0.129 68451 0.8526 39.2752 0.008899489
0.6 0.025 11570 0.9016 54.3172 0.003635926
0.7 | 2.143E-3 884 1.0242 64.8095 0.000248194
0.8 8.302E-5 31 0.9829 75.8926 2.09405E-05
0.9 1.431E-6 0.4886 0.8474 87.0297 1.60577E-06
1.0 1.091E-8 | 3.44E-03 0.8805 92.3255 1.07156E-08

Table 6.5 Fatigue damage calculation in pack ice
(1) 10% ice coverage

hi P(hi) No/year )4 q Dj

0.2 0.164 786 0.7918 3.3606 1.00440E-08
0.3 0.332 1175 0.7984 3.3084 1.31305E-08
0.4 0.307 877 0.9991 3.6794 2.96330E-09
0.5 0.129 311 0.7340 4.1171 1.79739E-08
0.6 0.025 53 0.8141 4.2476 1.35249E-09
0.7 | 2.143E-3 4 0.8754 4.6222 8.19651E-11
0.8 8.302E-5 0.1409 0.7748 4.6955 8.30705E-12
0.9 1.431E-6 | 2.22E-03 0.5333 4.8092 1.27383E-11
1.0 1.091E-8 1.57E-05 0.8261 4.8914 6.30746E-16

(2) 20% ice coverage

hi P(hi) No/year p q D;j

0.2 0.164 8197 0.7239 4.8344 1.03095E-06
0.3 0.332 12257 0.7133 5.1573 2.31531E-06
0.4 0.307 9147 0.7746 5.2574 8.49382E-07
0.5 0.129 3245 0.8345 6.2207 3.14094E-07
0.6 0.025 548 0.6430 6.7881 9.70347E-07
0.7 | 2.143E-3 42 0.8864 5.5409 1.61103E-09
0.8 8.302E-5 1.470 0.9189 5.8400 5.40737E-11
0.9 1.431E-6 | 2.32E-02 0.8651 6.0951 1.56277E-12
1.0 1.091E-8 1.64E-04 0.8053 4.5198 5.92351E-15

103




(3) 30% ice coverage

hi P(hi) No/year )4 q Dj

0.2 0.164 15218 0.9815 7.2178 8.48720E-07
0.3 0.332 22756 0.9053 6.8903 1.79983E-06
0.4 0.307 16982 0.9506 7.1663 1.12822E-06
0.5 0.129 6024 0.9460 6.7353 3.22438E-07
0.6 0.025 1017 0.8711 6.1904 6.92764E-08
0.7 | 2.143E-3 78 0.7841 6.7592 1.76908E-08
0.8 8.302E-5 2.729 0.8485 7.0318 3.78316E-10
0.9 1.431E-6 | 4.30E-02 0.9741 6.9861 2.20767E-12
1.0 1.091E-8 | 3.04E-04 0.9195 6.4396 1.64552E-14

(4) 40% ice coverage

hi P(hi) No/year p q D;j

0.2 0.164 15132 0.8768 9.7824 6.12254E-06
0.3 0.332 22627 0.8378 9.9088 1.36717E-05
0.4 0.307 16885 0.9344 11.6762 8.85838E-06
0.5 0.129 5990 0.8676 10.9352 4.09591E-06
0.6 0.025 1011 0.8553 9.4513 4.30323E-07
0.7 | 2.143E-3 77 0.8767 9.1746 2.42318E-08
0.8 8.302E-5 2.713 0.7868 8.0485 1.20530E-09
0.9 1.431E-6 | 4.28E-02 0.9586 8.1392 4.47835E-12
1.0 1.091E-8 | 3.02E-04 0.8431 7.8893 6.98283E-14

(5) 50% ice coverage

hi P(hi) No/year )4 q Dj

0.2 0.164 11599 0.8069 16.5599 7.43184E-05
0.3 0.332 17345 0.8251 14.8127 5.91460E-05
0.4 0.307 12944 0.8186 13.3221 3.08308E-05
0.5 0.129 4592 0.9002 12.4627 4.04526E-06
0.6 0.025 775 0.8496 11.2642 7.00472E-07
0.7 | 2.143E-3 59 0.8437 10.2900 3.93874E-08
0.8 8.302E-5 2.080 0.8924 9.5828 6.81288E-10
0.9 1.431E-6 | 3.28E-02 0.8663 10.6717 2.05763E-11
1.0 1.091E-8 | 2.32E-04 0.8566 8.6274 6.76029E-14
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(6) 60% ice coverage

hi P(hi) No/year )4 q Dj

0.2 0.164 7880 0.7706 25.3100 0.000411969
0.3 0.332 11784 0.7518 25.3778 0.000781076
0.4 0.307 8794 0.8467 19.5522 7.41306E-05
0.5 0.129 3119 0.7818 20.6406 6.33434E-05
0.6 0.025 527 0.7283 18.7029 1.39788E-05
0.7 | 2.143E-3 40 0.8859 14.9346 8.20436E-08
0.8 | 8.302E-5 1.413 0.7959 13.4707 4.45733E-09
0.9 1.431E-6 | 2.23E-02 0.8755 13.6131 3.41790E-11
1.0 1.091E-8 | 1.57E-04 0.8402 11.3742 1.61393E-13

The values of calculated annual fatigue damage in level ice, ridge ice and pack ice are
1.087x102, 4.270x1072, 1.557x107 respectively.

The accumulation value in ridge ice is greater than that in level ice, because of the high
loads imparted by consolidated layer and ridge keels, although the ice impact number
in ridge ice is slightly lower than that in level ice.

The fatigue damage in pack ice is smaller than that in level ice. It might be attributed
to two factors: firstly, in pack ice fields, the distribution of ice floes is quite scattered,
which will result in a remarkable decrease in the impact number between ship and sea
ice. Secondly, ice floes in pack ice fields can be pushed away when the ship navigates
through, and thus the magnitude of ice-induced loads is relatively lower.

Table 6.6 shows the comparison of fatigue calculation results based on numerical
simulations against that based on field data by Suyuthi al et. ®7). The calculation result
based on field measurements data is 5.826x10 7). Compared with the case study, the
fatigue damage in this study is rather bigger. It might be because the ship model used
in the calculation are different, and the values of ice loads in this study are much larger,

especially when the ice thickness is relatively high.

Table 6.6 Comparison of numerical fatigue value with Suyuthi al et. [

37]

Ice . Ship Fatigue Maximum
Sea o Duration local
condition model damage
loads
Suyuthi al | Arctic | Real sea 1 year KV
A : 4 Svalbard | 5.836x10 | <500 KN
et. Sea ice (2500 nm) | .
icebreaker
Present Baltic . 1 year Xuelong 2 1000-
study Sea Levelice (2500 nm) | icebreaker 108710 2000 KN
Present | Baltic Ridge 1 year Xuelong 4970%10°2 1000-
study Sea ice (2500 nm) | icebreaker | 2000 KN
Present | Baltic . 1 year Xuelong 3| 500-1000
study Sea Packice (2500 nm) | icebreaker 1.557x10 KN
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With the knowledge of proportions that different ice types account for in an ice region,
the total fatigue damage can be calculated as an accumulation of the fatigue contribution
in a certain ice type times the corresponding proportion.

D=~P, D, +P,.D...tP..D

— L level ridge™ ridge pack™ pack

(6.17)

6.3 Summary

A probabilistic fatigue damage assessment of a transverse frame due to ice actions has
been elaborated. The conversion from ice loads into ice stress can be made using
structural beam theory. A Weibull model is useful to represent the stress amplitudes in
different ice conditions. The shape parameters are identical between loads and stress in
level ice and pack ice, however, different values are observed in ridge ice. According
to ice data and a proper S-N curve, fatigue damage can be estimated based on the
Palmgren—Miner’s rule. The calculated fatigue value in level ice is lower than that in
ridge ice, whereas higher than that in pack ice. To evaluate fatigue damage in an actual
sea ice trial, numerical methods as combinations of simulation models, including level
ice, ridge ice, pack ice, etc., can be adopted.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The present research deals with fatigue damage estimation based on numerical
simulations in various ice conditions. In earlier studies, the evaluation of fatigue
damage caused by ice-induced loads has been mostly conducted using field
measurements, which are usually considerably limited and incomplete. Compared with
the field measurements, ice conditions and ship hull can be easily varied in a numerical
simulation. It is useful to complement the lack of ice load data in some regions, or to
predict the fatigue life for new structural components or new ship routes. Ships
navigating in ice-covered waters can encounter widely diverse ice conditions, that
include pack ice, level ice, ridged ice, etc. The present thesis focuses on the numerical
procedures developed to obtain the time history of ice-induced loads in these ice types,
and estimates the fatigue damage based on the simulated results of ice loads.

The main contributions of the present work are summarized for each chapter as follows:

1) A general background on fatigue damage due to ice actions is addressed. As well,
reviews of numerical models in level ice, ridge ice, pack ice and fatigue damage
calculation cases are given respectively. Moreover, the objectives and organizations in
relation to this study are discussed.

2) Ship motions are solved using a step-by-step numerical integration method
(Newmark-beta method). Calculation formulas for external forces and moments, such
as propeller and rudder forces, hydrodynamic forces, fictitious Euler forces and ice
submergence forces are introduced. What’s more, the coupling problem between ship
motions and excitation forces is settled by iteration.

3) A semi-empirical numerical procedure is developed to model the continuous-mode
icebreaking process in level ice in 6 DOFs. The repeating cycles of contact, crushing,
and bending are assumed to constitute a continuous breaking process.

e Continuous ice loading processes can be well reproduced by the simulation
program. Generally, ice loads in thicker ice conditions are higher, and show more
irregularity. The mean values of ice loads are much lower than the peak values.

e Taking account of the larger scale of ship model used in this study, the present
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numerical global ice loads and #—v curve seem reasonable with comparison against
the related numerical results published by Su.

The global ice loads and ship performance tend to be stable as the ship travels deep
into ice sheet, and not significantly affected by the initial conditions.

The fitted line of simulated ice resistance shows good agreement with that
computed by Lindqvist empirical formula.

Icebreaking pattern has a great effect on the ice loads, which might induce higher
loads in thinner ice plate.

Local ice-induced loads are sensitive to ice thickness and initial speed.

The local load peaks can be modeled as a Weibull distribution. The shape
parameters of the Weibull model representing numerical ice loads process agree
well with statistical results of field measurement data.

4) Probabilistic ice fields are generated according to the statistical distributions of ridge
heights and spacings. A modified Rankine’s plasticity model is applied to achieve the
keel loads, considering effects of ship movement and inertia force of ice accumulation
in front of the ship bow. Modelling of interaction between ship and consolidated layer
resembles that in level ice.

For low ice thickness, the pure ice ridge force dominates, whereas for high ice
thickness, the ice load induced by breaking the consolidated layer dominates

Ice ridges can engender high loads levels, causing the ship speed to slow
dramatically when sometimes rams might have to be required.

Considering the different dimensions of ship models, the numerical load values
transiting into a single ice ridge are of the same order of magnitude as the model
test results.

The present numerical values of mean speeds in various ice thickness agree well
with those found from Kuuliala’s study.

The simulated local ice-induced loads are comparable to measurements published
in the report of ARCDEYV project.

Keel effect is not important for local frame loads, even though keel loads contribute
greatly to global ice loads.

A Weibull model is useful to represent the local load peaks in ridge ice, although
some deviations exist in cases of low ice thickness. The shape parameters are
reasonable compared to field measurements.

5) A 2D DEM numerical model is developed for simulating the interaction between
drifting ice floes and a moving ship. The ice floes are represented as hundreds of
circular disks with random sizes and positions. Both the ship—ice collisions and ice—ice
contacts are modeled, and a viscous-elastic rheology is applied at contacts.
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o Ship navigation process through pack ice can be well reproduced by this procedure,
and the numerical results are comparable to those simulated in earlier studies of Ji
and Daley.

e Anecarly steady speed can be achieved during transiting process, although still with
fluctuations

e Ice resistance generally increases with the increasing ice thickness and
concentration, although deviation found in some cases.

e The simulated local frame loads can be modeled according to the Weibull
distribution, and the shape parameters are consistent with those obtained based on
field measurements.

6) A probabilistic fatigue damage assessment of a transverse frame due to ice actions
has been elaborated. The structural fatigue stress is found using structural beam theory.
According to ice condition data and a proper S-N curve, fatigue damage can be
estimated based on the Palmgren—Miner’s rule.

e Numerical stress amplitudes can be modeled according to Weibull distribution. The
shape parameters are identical between loads and stress in level ice and pack ice,
however, different values are observed in ridge ice.

e The calculated fatigue value in level ice is lower than that in ridge ice, whereas
higher than that in pack ice.

e With the knowledge of proportions that different ice types account for in an ice
region, the total fatigue damage can be calculated as an accumulation of the fatigue
contribution in a certain ice type times the corresponding proportion.

7.2 Future works

The following interesting and important issues in relation to the topic of this thesis are
identified as possible subjects for further studies.

1) Although the proposed numerical model in level ice could address the ship motions
in 6 DOFs, however, the contact detection between ship hull and ice plate is performed
using a point-in-polygon computer geometric method. The case that the approximately
vertical mid-ship hull contacts the bottom surface of ice sheet first due to the effect of
roll movement, cannot be settled with this 2D method. Moreover, contact surface is
assumed to remain flat during crushing, which cannot reflect the accurate contact area.
Therefore, a 3D contact detection model should be developed in the future research, in
order to incorporate all kinds of contact cases, and calculate the crushing force with
higher accuracy.

2) A modified Rankine plasticity model is applied to achieve the keel loads in ridged
ice fields, which regards ship hull as vertical and ridge surface as horizontal.
Nevertheless, in practice, the contacts between ship hull and ice ridge are extremely
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complicated because of the inclined surface of both hull and ridge. A 3D model could
be developed to account for the tilted ship—ridge interaction, and some geometric
algorithms should be carried out to predict the moving process of ice blocks. Another
attempt to estimate the ridge breaking ability of ships by 3D DEM simulations could
also be performed.

3) The developed numerical approach in pack ice fields is conducted by a simple 2D
DEM model, in which ice floes are represented as simplest circular disks. A further
realistic random polygons can be used to model the ice pieces in the future works. In
addition, the 2D method in this study assumes the disks only move translationally in
horizontal plane. Further studies should be carried out to investigate a 3D model, taking
account of rotation and layering of ice floes.

4) In this study, structural beam theory is adopted to evaluate the ice-induced fatigue
stress, which is merely a sort of linear transformation from load into stress. In order to
obtain more accurate stress, a structural analysis based on FEM could be done in the
future studies. Furthermore, a spectral-based method could be attempted to access the
fatigue life of structural components. Proper ice condition data and S—N data at low
temperature are also necessary.

5) Aside from level ice, ridge ice and pack ice, other ice types appear in ice-covered
waters, such as channel ice and ice in wave, which should be involved in the fatigue
damage calculation. Numerical models of ship operating in these ice conditions need to
be developed in the future works.
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