

Title	Study on the Effectiveness and Feasibility of a Newly Developed Tsunami Attenuation Method by Experimental and Numerical Approach
Author(s)	Thaw, Tar
Citation	大阪大学, 2018, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/70771
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (THAW TAR)

Title	Study on the Effectiveness and Feasibility of a Newly Developed Tsunami Attenuation Method by Experimental and Numerical Approach (実験的・数値解析的手法による新形式津波エネルギー減衰法の有効性および実現可能性に関する研究)
-------	---

Abstract of Thesis

Large-scale oil spills and fires occurred in Kesennuma City, Miyagi Prefecture, Japan during the 2011 Great East Japan Earthquake due to the large-scale earthquake and subsequent tsunami, mainly due to the drifting, tumbling and damage of oil and gas storage tanks in that area. If Tokai-Tonankai-Nankai earthquakes occur, similar large-scale disasters might occur. Thus, it is urgent to develop countermeasures against such tsunami induced disasters.

As a kind of countermeasure, a new tsunami attenuation method was developed using flexible structures called flexible pipes instead of traditional rigid sea-wall type countermeasures. Flexible pipes are fire-hose-like pipes at a significantly larger scale which can be folded and installed on the sea-bed in such a way that the pipes would not disturb the surrounding marine traffic. At the moment of tsunami occurrence, these pipes are to be injected with compressed air, forming vertical flexible structures which can reduce the momentum of tsunamis.

This thesis deals with evaluation of the performance of a new tsunami mitigation approach using flexible pipes in terms of effectiveness and feasibility, with the assumption of Osaka Bay as a target prevention area. This study was carried out in three parts:

1. Analysis on the effectiveness of flexible pipes based on material and orientation
2. Analysis on the effectiveness of flexible pipes under a quasi-2D flow
3. Study on the feasibility of flexible pipe implementation by structural analysis.

This thesis is composed of eight chapters:

Chapter 1 explains the needs of new types of tsunami countermeasures in order to prevent secondary disasters caused by tsunamis such as large-scale oil spills and fires. Then a brief preview of a newly developed countermeasure using flexible pipes is presented.

In Chapter 2, literature review of traditional and currently developed tsunami countermeasures are made. Moreover, current approaches to model tsunami flows and countermeasures in laboratory experiments are reviewed.

In Chapter 3, the overview and concept design of newly developed tsunami countermeasure utilizing flexible pipes are explained, including the working principle of pipe deployment mechanisms. Then the specifications of this type of countermeasure are proposed for effectiveness and feasibility analysis.

In Chapter 4, the experimental setup and equipment for the effectiveness analysis of experiments are explained in details including the calibration of sensors and choice of scale model pipes and tanks.

In Chapter 5, the dependency of flexible pipe performance on the material and orientation are experimentally investigated by comparing the reduction of wave force and flow velocities by three types of pipes with different bending stiffness values. Then, simulations were carried out to estimate the force reduction based on the orientation of the pipes arrangement.

Chapter 6 presents the effectiveness of flexible pipes under a quasi 2D flow, with the discussions on the reduction of momentum flux and reduction of wave forces acting on a cylindrical storage tank in semi-submerged condition, located on an earth-bank and with and without the presence of an artificial dyke wall.

Chapter 7 is divided into two parts. In the first part, the results of computations of inline and cross-flow behavior of flexible pipes as a two-way fluid structure interaction (FSI) problem are presented, including the lift and drag coefficients. In the second part, feasibility analysis of flexible pipes was carried out by conducting the structural analysis. The drag coefficients obtained from the first part were used in the structural analysis. From the full-scale rigid pipe simulations, the effectiveness of flexible pipes in full-scale was estimated. Simulation results suggested that flexible pipes were effective and thus, feasible for real-world implementation.

Chapter 8 summarizes the main conclusions, including the main contributions and results of this study. Possible future improvements for this work are also presented.

論文審査の結果の要旨及び担当者

氏 名 (THAW TAR)		
論文審査担当者	(職)	氏 名
	主査	准教授 鈴木 博善
	副査	教授 戸田 保幸
	副査	教授 青木 伸一

論文審査の結果の要旨

2011 年の東日本大震災の際、宮城県気仙沼市において、大規模地震とその後の津波により、主として石油・ガス貯蔵タンクの漂流、転倒などで生じた損傷に起因する大規模な油流出事故や火災が発生した。

東海・東南海・南海地震が発生すると、沿岸域に存在する石油コンビナートなどに、同様の大規模災害が発生する可能性がある。このような津波による災害に対する対応策の開発が急務である。

本研究では、従来の強固な防波堤ではない、フレキシブルパイプと呼ばれる柔軟構造を用いた新しい津波エネルギー減衰法を開発している。フレキシブルパイプは、平時、パイプの周囲の海上交通を妨げないように折り畳まれ、沿岸域の海底に設置することができる複数の大直径の消防ホースのようなパイプである。津波が発生した瞬間に、これらのパイプに圧縮空気を注入し、津波に対して、鉛直方向に柔軟な構造群を形成し、これらを津波に抵抗することで、津波エネルギーを減衰させることを目的としている。

本研究では、大阪湾を対象として、フレキシブルパイプを用いた津波エネルギー減衰法の性能評価に基づく有効性と実現可能性を明らかにするため、以下の 3 つの観点から研究を実施している。

1. 材料と配置に基づいたフレキシブルパイプの有効性に関する検討
2. 疑似 2 次元流れ下におけるフレキシブルパイプの有効性の検討
3. 数値解析によるフレキシブルパイプの実現可能性の検討

本論文は、以下の 8 章で構成されている。

第 1 章では、大規模な油流出や火災などの、津波による二次災害を防止するための新しい津波減災手法の必要性について説明している。次に、今回開発されたフレキシブルパイプによる津波エネルギー減衰法を紹介している。

第 2 章では、現存あるいは現在開発されている津波防災法の文献のレビューを行っている。さらに、現在の津波対策についてのアプローチ手法をレビューしている。

第 3 章では、展開メカニズムを含む、フレキシブルパイプを利用した新開発の津波エネルギー減衰法の概要とコンセプト設計について説明している。次に、有効性と実現可能性を解析するための、本津波エネルギー減衰法の仕様を提案している。

第 4 章では、センサの校正やスケールモデルのパイプやタンクの選択など、有効性を実証するための実験装置と使用模型について詳細に説明している。

第 5 章では、実験的手法に基づいて、波力と流速の減衰の観点から、フレキシブルパイプの材料と配置法が津波エネルギー減衰性能に及ぼす影響について調査している。さらに、数値流体力学 (CFD) 解析を用いて、あるパイプ配置での津波エネルギーの減衰を推定しており、これらより、フレキシブルパイプの津波エネルギー減衰に対する有効性を明らかにしている。

第 6 章では、これも実験的手法に基づき、実際の港湾で予想される津波流れに近い疑似 2 次元流れの下で、防波堤、防油壁の有無も含めたフレキシブルパイプの有効性を、運動量フラックスの低減と半没水状態の円筒形貯蔵タンク模型に対する流体力の低減の観点から検討している。この結果、防波堤・防油壁・フレキシブルパイプの組み合わせは、それぞれの単独での状態より、さらに津波エネルギー減衰に有効であることを明らかにしている。

第 7 章は、3 つの部分に分かれている。最初に、流体構造相互作用問題としてのフレキシブルパイプの変形とその周りの流れについての数値解析結果を示している。次に、この結果を基にしたフレキシブルパイプの実スケールでの構造解析を行っている。さらに第 5 章で検討したパイプ配置に関して、実スケールの CFD 解析を行っている。これらより、構造力学的および流体力学的観点からフレキシブルパイプによる津波エネルギー減衰法の実現可能性を明らかにしている。

第 8 章では、本研究の主な成果や成果を含む主な結論を要約している。さらに、将来の改善の可能性についても言及している。

以上のように、本論文は、フレキシブルパイプを用いた新形式の津波エネルギー減衰法が有効かつ実現可能であることを示しており、海洋工学的な観点および津波防災の観点から重要な論文であると評価できる。よって本論文は博士論文として価値あるものと認める。