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Chapter 1

Introduction

A convex polytope is the convex hull of finitely many points in a Euclidean space (see
the books [28] and [98]). Convex polytopes are fundamental objects in mathematics,
and they are currently in an extremely active area of research. A lattice polytope or
an integral polytope is a convex polytope all of whose vertices have integer coordi-
nates. Lattice polytopes are interesting objects arising in many different branches of
pure mathematics and applied mathematics such as number theory, commutative alge-
bra, combinatorics, toric geometry, optimization and mirror symmetry. They possess
rich structures arising from the interaction of algebraic, geometric, analytic and combi-
natorial properties, and lattice polytopes are useful combinatorial objects to understand
these fields. On the other hand, we can realize properties of lattice polytopes from the
theories of closely related areas. In fact, there are several results on lattice polytopes
which are proven by using methods of commutative algebra and algebraic geometry.
Moreover, no combinatorial proofs of some of these results are known.

In this thesis, we pick up properties of lattice polytopes which are closely related with
combinatorics, algebraic geometry and commutative algebra. The keywords are Ehrhart
theory and reflexive polytopes. In particular, we focus on the following two topics:
classification problems on lattice polytopes and constrictions of new classes of reflexive
polytopes.

Classification problems on lattice polytopes

One of the final, but, unreachable goals of the study on lattice polytopes is to classify
all of the lattice polytopes, up to unimodular equivalence. Recently, many authors have
studied classifications of lattice polytopes from several viewpoints. We recall some re-
sults on classifications of lattice polytopes. From a viewpoint of counting lattice points,
the following classes of lattice polytopes are classified:



o 3-dimensional lattice polytopes with at most 6 lattice points ([14, 15]);
e 3-dimensional lattice polytopes with one interior lattice point ([58]);
e 3-dimensional lattice polytopes with two interior lattice points ([3]).

Meanwhile, from a viewpoint of toric geometry, there are several classifications of lat-
tice polytopes. In particular, the following classes of lattice polytopes correspond to an
important class of toric varieties, which are called toric Fano varieties:

Centrally symmetric smooth Fano polytopes [95];

Pseudo-symmetric smooth Fano polytopes [26, 95];

Smooth Fano polytopes up to dimension 9 [61, 68].

Pseudo-symmetric simplicial reflexive polytopes [65];

Reflexive polytopes up to dimension 4 [59, 60].

Additionally, there exist other classifications of smooth Fano polytopes and reflexive
polytopes (e.g. [1, 19, 69]).

To work towards classification problems of lattice polytopes, we focus on the theory of
Ehrhart polynomials and 8-polynomials, which is called Ehrhart theory. Ehrhart dis-
covered that the function which counts the number of lattice points in dilations of a
lattice polytope is a polynomial. The polynomial is called the Ehrhart polynomial of a
lattice polytope, and some of its coefficients have combinatorial interpretations (see the
books [13] and [37]). In particular, we can know the volume of a lattice polytope from
its Ehrhart polynomial, and Ehrhart theory can be seen as a higher-dimensional gener-
alization of Pick’s theorem. On the other hand, the d-polynomial of a lattice polytope
is an equivalent invariant to the Ehrhart polynomial. It is known that the coefficients of
the §-polynomial are nonnegative integers and they have combinatorial interpretations
(see [30]). One of the most important problems of Ehrhart theory is to characterize 8-
polynomials. However, this is also a hard problem. Thus, we focus on d-polynomials
that have especially simple forms. The restrictions enable us to characterize them and
to classify all lattice polytopes with these §-polynomials. Moreover, such results help
to learn what to expect in more general situations. In this thesis, we will characterize J-
polynomials which satisfy some reasonable conditions and classify all lattice polytopes
with these J-polynomials.

Constructions of new classes of reflexive polytopes

A reflexive polytope is one of the keywords belonging to the current trends in the re-
search of lattice polytopes. Many authors have studied reflexive polytopes from the
viewpoints of combinatorics, commutative algebra and algebraic geometry. In fact, it is
known that reflexive polytopes correspond to Gorenstein toric Fano varieties, and they
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are related to mirror symmetry (see, e.g., [4, 21]). Since a Gorenstein toric Fano va-
riety is defined from a reflexive polytope completely, it has a lot of information of a
Gorenstein toric Fano variety. Thus, from a viewpoint of algebraic geometry, reflexive
polytopes are useful combinatorial objects to understand Gorenstein toric Fano vari-
eties. Please refer to [64] for the details of Gorenstein toric Fano varieties. On the
other hand, reflexive polytopes give crucial examples in commutative algebra. In fact,
the semigroup algebra associated to the cone over a reflexive polytope is a Gorenstein
algebra of a-invariant —1. Equivalently, a reflexive polytope is a lattice polytope hav-
ing a unique interior lattice point and a palindromic d-polynomial. As above, reflexive
polytopes have many important properties in combinatorics, commutative algebra, toric
geometry and other areas.

One of the most precious properties of reflexive polytopes is that in each dimension,
there exist only finitely many reflexive polytopes up to unimodular equivalence ([62]).
This fact motivates us to classify reflexive polytopes up to unimodular equivalence. So
far, all of them are known up to dimension 4 ([59, 60]). However, it is too hard to clas-
sify higher-dimensional reflexive polytopes. Therefore, in order to understand reflexive
polytopes, finding new classes of reflexive polytopes is an important problem. In this
thesis, we will give several new classes of reflexive polytopes arising from combinato-
rial objects.

Structure of this thesis

The organization of this thesis is as follows. We divide this thesis into two parts. Each
part includes the author’s results on each topic.

e Part I is devoted to the studies on classification problems of lattice polytopes.
There are six chapters in Part I. In Chapter 2, we will recall the notations of
lattice polytopes and introduce Ehrhart theory. In Chapters 3 and 4, we will try
to classify the lattice polytopes with small volumes. In Chapters 5, 6 and 7, we
will discuss a classification problem of a special class of lattice polytopes, which
are called Gorenstein polytopes. In particular, we focus on Gorenstein simplices.
Part I contains the results of [48, 52, 54, 91, 93].

e Part I is devoted to the studies on constructions of new classes of reflexive poly-
topes. There are six chapters in Part II. In Chapter 8, we will recall the notations
of toric ideals and introduce Grobner bases. By using the theory of Grobner
bases, we will construct several classes of reflexive polytopes. In Chapters 9,
10, 11 and 12, we will give new large classes of reflexive polytopes arising from
other combinatorial objects and investigate the combinatorial properties of these
reflexive polytopes. Finally, in Chapter 13, we will discuss constructions of self
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dual reflexive polytopes. This property is an extremely rare property in reflexive
polytopes. Part II contains the results of [45, 46, 47, 49, 50, 51, 63, 90, 92].
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Chapter 2

Introduction to Ehrhart theory

For a lattice polytopes 2, let aff(2?) be the affine span of & and dim(.%?) the dimen-
sion of &2. We say that two lattice polytopes & C R? and 2 C R¢ are unimodularly
equivalent if there exists an affine map aff(2?) — aff(2) that maps Z¢ N aff(2?) bijec-
tively onto Z¢ Naff(2), and which maps & to 2.

One of the most important problems on lattice polytopes is to classify all of the lattice
polytopes, up to unimodular equivalence. In this part, we will classify some classes of
lattice polytopes from a viewpoint of Ehrhart theory. Ehrhart theory is the theory of
Ehrhart polynomials and §-polynomials. These polynomials often appear in the area
of enumerative combinatorics and they are important combinatorial invariants of lattice
polytopes. In this chapter, we will recall the definitions of Ehrhart polynomials and
0-polynomials, and some related facts.

2.1 Ehrhart polynomials and 6-polynomials

Let 2 C RY be a lattice polytope of dimension d. Given a positive integer k, we define
Ly(k) = k2 NZY),

where k7 = {kx :x € &} and |X| is the cardinality of a finite set X. The study on
L (k) originated in Ehrhart [24] who proved that L4 (k) is a polynomial in k of degree
d with the constant term 1. We say that L 5 (k) is the Ehrhart polynomial of 2.

The generating function of the lattice point enumerator, i.e., the formal power series

Bhro(t) = 1+ Y Loy (k)t*
i=1
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is called the Ehrhart series of 2. It is well known that it can be expressed as a rational

function of the form .,
0o+ 61t + -+ - + Oyt
Ehrgz(t): (l—t)d‘H

The sequence of the coefficients of the polynomial in the numerator

0(Z)=1(80,01,...,04)

is called the &-vector (or the h*-vector) of &7 and the polynomial
S(P,t) =8+ it +---+ 8¢

is called the 0-polynomial (or the h*-polynomial) of &. The degree of the polynomial
0(Z,1) is called the degree of &, denoted by deg(2?).

For a general lattice polytope &7, we can extract the Ehrhart polynomial of & from its
O-vector:

Proposition 2.1. Let &2 C RY be a lattice polytope of dimension d with its §-vector
0(Z)=(60,61,...,64). Then one has

Ly(k):§5i(k+j_i).

The following properties of §(Z?) are known:

e =18 =|2NZN|—(d+1) and §; = |int(2?) N Z"|, where int(Z) is the
relative interior of &2. Hence one has 8; > 0,;

e &, > 0 for each i ([80]);

e When 0; # 0, one has §; > &) for 1 <i<d—1([38]);

e When & is full-dimensional, namely, N = d. then Z?:o 0;/d! coincides with the
usual volume of & ([84, Proposition 4.6.30]). In general, the positive integer
Y&, §; is said to be the normalized volume of 2, denoted by Vol(2).

Moreover, there are two well-known inequalities on §-vectors. Set s = deg(%?). In
[82], Stanley proved that

So+01+ - +6< S+ 81+ 406, 0<i<|s/2], (2.1)
while in [38], Hibi proved that
Sa1+85 0+ +8 i <&H+&++8, 1<i<[(d-1)/2]. (2.2)

17



Recently, more general results of inequalities on 6-vectors are in [85, 86].

Finally, we recall that the §-vector of a lattice polytope has a monotonicity property:

Lemma 2.2 ([83, Theorem 3.3]). Let &2 C RN be a lattice polytope of dimension d
with the §-vector (80(2),01(2),...,84(Z)) and 2 C R" a lattice subpolytope of &
with the 8-vector (80(2),01(2),...,04(2)). Then one has §;(Z) > §;(2) for any
0<i<d.

Refer the reader to [13] and [37, Part II] for the detailed information about Ehrhart
polynomials and d-polynomials.

2.2 Lattice pyramids and Cayley polytopes

In this section, we recall well-known constructions of lattice polytopes. For a positive

integer N, let egN), e ,ej(\j,v) denote the canonical unit vectors of RY and Oy denote the
origin of RV, If RY is clear from the context, we will write ef,...,ey and 0.

Let conv(S) be the convex hull of a subset S C RY. For a lattice polytope &2 C R of
dimension d, the lattice pyramid over &7 is defined by

conv({Z x {0} ,ey.1}) C RVTL

Let Pyr(Z?) denote this polytope. We often use lattice pyramid shortly for a lattice
polytope that has been obtained by successively taking lattice pyramids. Note that the
0-polynomial does not change under lattice pyramids:

Lemma 2.3 ([13, Theorem 2.4.]). Let & C RY be a lattice polytope. Then one has

§(2.1) = 8(Pyr(P).1).

Moreover, it is known that there are only finitely many lattice polytopes of fixed degree
s and fixed volume V' up to unimodular equivalence and lattice pyramid constructions
([67, Corollary 1.4]). Therefore, it is essential that we classify lattice polytopes which
are not lattice pyramids over any lower-dimensional lattice polytope. Now, we recall a
sufficient condition that a lattice polytope is a lattice pyramid:

Lemma 2.4 ([67, Theorem 7]). Let & C RN be a lattice polytope of dimension d with
d + c+ 1 vertices and s the degree of the d-polynomial of Z. Ifd > ¢(2s+ 1) +4s—1,
then & is a lattice pyramid.

We also define a lattice polytope &2 to be a Cayley polytope of 2,..., P, C RN if 2
is unimodularly equivalent to the lattice polytope

conv({{e!"} x 2,,... {e{"} x 2,}) CR" xRN =R"*V,
18



see e.g. [9]. We denote this by ) x« & x---x F,. Note that a lattice pyramid of a
lattice polytope is unimodularly equivalent to a Cayley polytope.

2.3 Spanning Polytopes

In this section, we introduce an important class of lattice polytopes. A full-dimensional
lattice polytope & C R is called spanning if any lattice point in Z¢ is an affine integer
combination of the lattice points in <. This is equivalent to that any lattice point in
7Z*1 is a linear integer combination of the lattice points in & x {1}. A spanning
polytope is also called a primitive polytope.

For the d-polynomial of a spanning polytope, the following result is known:

Lemma 2.5 ([56, Theorem 1.3]). Let &2 C R? be a lattice polytope of dimension d
whose 6-polynomial equals &y + 01t + - - - + &st°, where &; # 0. If & is spanning, then
one has 6; > 1 forany 0 <i <s.

Recently, there is a more general result of the d-polynomials of spanning polytopes in
[55].

2.4 Reflexive polytopes and Gorenstein polytopes

In this section, we introduce reflexive polytopes and Gorenstein polytopes. A full-
dimensional lattice polytope & C R? is called reflexive if the origin of R? is a unique
lattice point belonging to the interior of & and its dual polytope

PV ={yeR?: (x,y) <1forallx € Z}

is also a lattice polytope, where (x,y) is the usual inner product of R?. It is known that
reflexive polytopes correspond to Gorenstein toric Fano varieties, and they are related
with mirror symmetry (see, e.g., [4, 21]). It is known from the work of Lagarias and
Ziegler ([62]) that there are only finitely many reflexive polytopes (up to unimodular
equivalence) in each dimension, with one reflexive polytope in dimension one, 16 in
dimension two, 4319 in dimension three, and 473800776 in dimension four according
to computations by Kreuzer and Skarke ([59, 60]). Moreover, every lattice polytope is
unimodularly equivalent to a face of some reflexive polytope ([29]). We say that a lattice
polytope & is Gorenstein of index r where r € Z~ if r<? is unimodularly equivalent
to a reflexive polytope ([23]). Equivalently, the semigroup algebra associated to the
cone over & is a Gorenstein algebra of a-invariant —r. Gorenstein polytopes are of
interest in combinatorial commutative algebra, mirror symmetry, and tropical geometry
(we refer to [8, 10, 57]).
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A polynomial }; a;it’ (with ag # 0) is palindromic, if a; = as_; for i = 0,...,s. From
a viewpoint of Ehrhart theory, we can characterize reflexive polytopes and Gorenstein
polytopes by the following:

Lemma 2.6. Let &2 C R? be a lattice polytope of dimension d with the §-polynomial
0(P,t) =8y + 01t + - -+ O5t*, where &5 # 0. Then the following conditions are equiv-
alent:

o 7 is Gorenstein of index r;

o r=d—s+1and 6(Z,t) is palindromic.

In particular, & is unimodularly equivalent to a reflexive polytope if and only if s = d
and 6(2,t) is palindromic.

By Lemmas 2.3 and 2.6, it follows that & is Gorenstein of index r if and only if Pyr(%?)
is Gorenstein of index r 4 1. Hence, if we construct all Gorenstein polytopes which are
not lattice pyramids, we can obtain all Gorenstein polytopes.

Finally, we give a characterization of reflexive polytopes in terms of their facets:

Lemma 2.7 ([37, Corollary 35.6]). Let & C RY be a lattice polytope of dimension d
containing the origin in its interior. Then a point a € R? is a vertex of 2" if and only
if NP is afacet of &, where F is the hyperplane

{XERd:(a,x) = 1}

in R4,

2.5 The associated abelian groups of lattice simplices

In this section, we introduce the associated finite abelian groups of lattice simplices,
which are very useful tools for a classification of lattice simplices. For a lattice simplex
A C RV of dimension d whose vertices are v, ...,v; € ZV, set

A ={(Ao,..., Ag) € (R/Z)4T": Zd‘,ﬂti(v,-, 1) e ZNT1}.

i=0

The collection Ap forms a finite abelian group with addition defined as follows: For
(A0y--- s Aq) € (R/Z)*H! and (A,...,A)) € (R/Z)4TY, (Roy.. ha) + (A, A)) =
Ao+ A5, Aa+A}) € (R/Z)4F!. We denote the unit of Ap by 0, and the inverse of A
by —A, and the order of A by ord(A), and also denote A +---+ A by jA for an integer
\—.’_J
j
20



Jj>0and A € Aj. Note thate.g. —(1/3,2/3) =(2/3,1/3). For A = (Ao, ...,Ay) € Aa,
where each 4; is taken with 0 < A; < 1, we set ht(4) = Zflzo Ai € Z.

In [7], it is shown that there is a bijection between unimodular equivalence classes
of d-dimensional lattice simplices with a chosen ordering of their vertices and finite
subgroups of (R/Z)%*! such that the sum of all entries of each element is an integer. In
particular, two lattice simplices A and A’ are unimodularly equivalent if and only if there
exists an ordering of their vertices such that Ay = Ay,. Moreover, we can characterize
lattice pyramids in terms of the associated finite abelian groups by using the following
lemma:

Lemma 2.8 ([67, Lemma 12]). Let A C RY be a lattice simplex of dimension d. Then
A is a lattice pyramid if and only if there is i € {0,...,d} such that A; = 0 for all
()L'Ow"aa’d) € Aa.

It is well known that the d-polynomial of the lattice simplex A can be computed as
follows:

Lemma 2.9 ([9, Proposition 2.6]). Let A be a lattice simplex of dimension d whose
8-polynomial equals & + &1t + --- + 8;t%. Then for each i, we have & = |{A € Ay :
ht(A) =i}|. In particular, one has Vol(A) = |Aal.

2.6 Characterizations of 6-polynomials

In this section, we recall some results on characterizations of the J-polynomials of
lattice polytopes.

Small dimension

Let us describe what is known about d-polynomials of small-dimensional lattice poly-
topes. In dimension d = 1, for a given lattice segment of length a + 1, we know that the
O-polynomial is 1+ at. In dimension 2, the §-polynomials of lattice polygons have been
classified by Scott [78]. It holds that 1 +ar + bt> with a,b € Z> is the 6-polynomial of
a lattice polygon &7 if and only if

e b =0 (i.e., & has no interior lattice points), or

e b=1anda=7 (here, & is unimodularly equivalent to conv({(0,0), (3,0),(0,3)})),
or

e b>land b <a<3b+3.
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We refer to [32] for a thorough discussion.

In dimension 3 there are currently only partial results. The arguably most significant
one is White’s theorem [97]: a three-dimensional lattice simplex is empty (i.e., 6; = 0)
if and only if it is the Cayley polytope of two empty line segments in R?. Recently, all
three-dimensional lattice polytopes with at most 6 lattice points (i.e., 0; < 2) have been
classified [14, 15].

Small degree

It is natural to take the degree of the d-polynomial as a measure of complexity. We
recall what is known about d-polynomial of small degrees. Any degree zero lattice
polytope is a unimodular simplex (i.e., the convex hull of affine lattice basis). Lattice
polytopes of degree one are completely classified [9]:

e Lattice pyramids over conv({(0,0),(2,0),(0,2)}), or

e Cayley polytopes of line segments in R'.
Lattice polytopes of degree two are not yet classified. However, their d-polynomials
are completely known [34, 89]. A polynomial 1+ at 4 bt?> with a,b € Z> is the §-
polynomial of a lattice polytope & (in some dimension) if and only if

e h=0,o0r

e b=1and a =7 (here, & is unimodularly equivalent to a lattice pyramid over
conv({(0,0),(3,0),(0,3)})), or

e b>1anda <3b+3.

Note how close this is to the characterization in dimension two above. It follows from
the proof in [34] that any such polynomial can be given by the d-polynomial of a lattice
polytope in dimension three. Most recently, Balletti and Higashitani [2] improved the
result further to any lattice polytope whose §-polynomial satisfies 93 = 0.

Small number of monomials

An even more general problem is to consider the number of terms in the d-polynomial.
Batyrev and Hofscheier [6, 7] have recently classified all lattice polytopes whose &-
polynomials are binomials, i.e., of the form 1+ atf. Let & be a d-dimensional lattice
polytopes with such a binomial d-polynomial. Since the degree one case k = 1 is known,
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let k > 2. Hence, 8; = 0 implies that &7 is an empty simplex. It can be observed [7,
Prop.1.5] that d > 2k — 1. Let d = 2k — 1. In this case, it is proven in [6] that & has
8-polynomial 1+ at* (with @ > 1) if and only if & is a Cayley polytope of k empty
line segments in R¥. Note that for d = 3 and k = 2 this recovers White’s theorem. In
particular, one sees from [7, Example 2.2] that any a € Z>; and k € Z> is possible
for an §-polynomial of the form 1+ ar*. The reader might notice the analogy with the
degree one case above.

For d > 2k, we are in an exceptional situation. Let us consider only J-polynomials
of lattice polytopes that are not lattice pyramids (otherwise, by what we’ve just seen,
any 14 ar® can appear). Note that since A is a simplex, it follows from Lemma 2.4
that d < 4k —2. Now, the following characterization can be deduced from the results
in [7]: 1+ atk (with a € Z>1) is the 8-polynomial of a d-dimensional lattice polytope
& with d > 2k where & is not a lattice pyramid if and only if a = % —1
m is a power of a prime p. It is not hard to see that this implies p <k,
in particular, Vol(#?) = a+ 1 < 2k?. Hence, there are only finitely many non-lattice-

and

pyramid lattice polytopes with binomial d-polynomials for given k and arbitrary d > 2k.
They are completely classified by Batyrev and Hofscheier [7]. It turns out that they are
uniquely determined by their d-polynomial.

Palindromic 6-polynomials

By Lemma 2.6, palindromic d-polynomials correspond to Gorenstein polytopes. From
a complete classification of reflexive polytopes up to dimension 4, we can characterize
the palindromic §-polynomials of lattice polytopes whose dimensions are at most 4.
Moreover, for fixed degree, there exist only finitely many Gorenstein polytopes that are
not lattice pyramids [31]. They have been completely classified by Batyrev and Juny up
to degree two [8]. In particular, their results imply that a polynomial 1+ (m —2)t + 12
with m € Z~; is the 0-polynomial of a d-dimensional lattice polytope that is not a lattice
pyramid if and only if

e d=2and3<m<9, or
e d=3and2<m<8, or
e d=4and3<m<6,or

e d=5andm=4.
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Small volumes

We recall a complete characterization of the d-polynomials of lattice polytopes whose
normalized volumes are at most 4. In [41, Theorem 0.1], the possible d-polynomials
with 8y + - - - + 9; < 3 are completely classified by the inequalities (2.1) and (2.2). How-
ever, this is not true for 8y + - - -+ 8; = 4. In [40, Theorem 5.1], the complete classifi-
cation of the possible §-polynomials with 8y + - - -+ J; = 4 is given.

Theorem 2.10 ([40, 41] ). Let 2 <V < 4 be a positive integer and 1 N A
a polynomial with 1 <i; < --- <iy_; < d. Then there exists a lattice polytope of
dimension d whose 8-polynomial equals 1+t + --- +tV-1 if and only if one of the
followings is satisfies:

() V=2andi, < |(d+1)/2];

2)V=32i>iandip < \_(d—l—l)/ZJ,’

B V=4 i<i1+i, 1+i3<d+1and iy < |(d+1)/2], and the additional
condition
20 <ij+izorip+iz<d—+1.

We remark that when &y + - - - + 8; < 4, all the possible §-polynomials can be obtained
by simplices. However, when &y + - - - + 4 = 5, this is not true ([40, Remark 5.3]).

The structure of the rest of Part I

The organization of the rest of this part is as follows. In Chapter 3, we will classify
the lattice polytopes whose normalized volumes are at most 4. In Chapter 4, we will
characterize the §-polynomials of lattice polytopes whose normalized volumes equal 5.
In Chapter 5, to work towards a classification of the Gorenstein simplices, we will dis-
cuss a characterization of Gorenstein simplices in terms of their associated finite abelian
groups. In Chapter 6, we consider Gorenstein simplices with a given d-polynomial. Fi-
nally, in Chapter 7, we will finish the compete classification of the lattice polytopes that
are not lattice pyramids and whose 8-polynomials are palindromic and have precisely
three terms.
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Chapter 3

Classification of lattice polytopes with
small volumes

Taking into consideration the fact that a complete characterization of the d-polynomials
of lattice polytopes whose normalized volumes are at most 4 is known ([40, 41]), it is
reasonable to classify the lattice polytopes whose normalized volumes are at most 4. In
fact, in this chapter, this job will be done.

In the frame of a classification of general square systems of polynomial equations solv-
able by radicals, Esterov and Gusev [25] succeeded in classifying all lattice spanning
polytopes & whose normalized volumes are at most 4. However, the condition of span-
ning lattice polytopes is rather strong for achieving a classification of lattice polytopes.
For example, no empty simplex does enjoy the property and, in addition, there exists a
lattice non-simplex whose normalized volume is 4 and which lacks the property. Com-
bining our work with Esterov and Gusev [25] will establish a complete classification of
lattice polytopes whose normalized volumes are at most 4. Moreover, our classification
work will be making steady progress by means of §-polynomials.

In this chapter, we will classify, up to unimodular equivalence and lattice pyramid con-
structions, the lattice polytopes whose normalized volumes are at most 4. The complete
classification of the lattice polytopes whose normalized volumes are at most 4 up to uni-
modular equivalence consists of these polytopes and lattice pyramids over them. Note
that every lattice simplex of dimension d with Vol(&?) = 1 is unimodularly equivalent
to the standard simplex of dimension d. In order to do this job, we divide into the
following three cases:

(1) Lattice simplices A C R? with Vol(A) < 4;
(2) Spanning lattice non-simplices &2 C R? with Vol(2) < 4;
(3) Non-spanning lattice non-simplices &2 C R¢ with Vol(2?) < 4.
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The complete classification of the case (2) can be obtained from [25]. Therefore, we
will show the cases (1) and (3).

First, the complete classification of the lattice simplices A C R? with Vol(A) < 4 can be
obtained from the following:

Theorem 3.1 ([48, Theorem 1.2]). Let A C R? be a lattice simplex of dimension d whose
8-polynomial equals 1+t +--- 4+ tV-1 with 2 <V < 4, where (iy,...,iy_1) satisfies
the conditions in Theorem 2.10. Assume that A is not a lattice pyramid. Then there
exist, up to unimodular equivalence, exactly the following 5 possibilities for A:

(1) V=2:A2;

2)Vv=3: A(3);

G V=4:AY 1<i<3

i

The conditions and vertices of A are presented in TABLE 3.1.

conditions vertices
A d=2i1—1 0,ef,....e5_1,e1+---+es_1+2ey
0.e e
(3) — - 7€l €41,
A d=ir+i—1 i1 42ir—1 d—1
2 )Y e+ Y e+3e
i=1,i#d i=—i142ip
i <ip<is, 0,e1,....e4-1,
A(4) i1 —2in+i3 2i—iy d—1
Ui +1i3 <2ip, 2 Y e+ Y e+3 Y e+de
i—1 i=i)—2ir+iz+1,itd i=2i1 —iy+1
d=ij+iz—1
(4) . 0,e,...,e5_1,
Ay | d=i+iz—1 iy 4y i3 —i1+2ip d—1
2 )Y e+ Y e+3 Y e tde
i=1 i=—2i1+ir+iz+1,i#d i=—i1+2ir+1
(4) o 11 0ser,.. 640,
Ay d=iitit+iz—1 d—2 —iitiptiz—1 d—2
Y  e+2e4, Y e+ )Y e+2e
i=—i) +ir+is i=1 i=2i3—1

TABLE 3.1: The lattice simplices A C R? with Vol(A) < 4.

Second, the complete classification of the spanning lattice non-simplices & C R? with
Vol(Z?) < 4 can be obtained from the following:

Theorem 3.2 ([25]). Let2 <V < 4 be a positive integer and & C R? a lattice spanning
non-simplex with Vol( ) =V. Assume that & is not a lattice pyramid. Then there exist
up to unimodular equivalence exactly the following 24 possibilities for & :
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(1) 8(2,1)=1+1: 2,
_ . () F .
(2) 6(P,t)=142t: 27, 1<i<2;
) §(2)=1+1+12: 27, 1<i<2;
@ §(2.)=1+3: 29 1<i<4;
5) 8(2,1)=1+2u+12: 2%, 1<i<9;
6) §(2.1)=1+1+12: 2 1<i<2;
D §(2,t)=1+t+2+83:. Y 1<i<a.
The dimension and vertices of & are presented in TABLE 3.2.
Finally, the complete classification of the non-spanning lattice non-simplices &2 C R?

with Vol(%?) < 4 can be obtained the following:

Theorem 3.3 ([48, Theorem 1.4]). Let 2 <V < 4 be a positive integer and & C R4
a non-spanning lattice non-simplex with Vol(&?) = V. Assume that & is not a lat-
tice pyramid. Then there exist, up to unimodular equivalence, exactly the following 4
possibilities for P :

(1) §(2,1) =1+t+t+1 withk >2: /™ 1<i<3;

(2) 8(P,t) =141+ 2  withk >2: BWY.
The dimension and vertices of & are presented in TABLE 3.3.

The this chapter is organized as follows: We, in Section 3.1, prove Theorem 3.1. Finally,
in Section 3.2, we prove Theorem 3.3.

3.1 Proof of Theorem 3.1

In this section, we classify the lattice simplices A C R4 of dimension d with Vol(A) <4
up to unimodular equivalence and lattice pyramid constructions. Namely, we prove
Theorem 3.1. In order to do this job, we divide into the following three cases:

(1) Vol(A) =2 (Subsection 3.1.1);

(2) Vol(A) = 3 (Subsection 3.1.2);

(3) Vol(A) =4 (Subsection 3.1.3).
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d | vertices
22 |2 0.e;,er,e1+€;
@1(3) 2 10,2eq,er,e1 + €
9”2(3) 310,e1,€,e3,€1+e3,e;+ €3
5@53) 310,e,er,e3,e;+e)—2e3
Qg’) 410,e,ep,e3,e4,—€; —er+e3+ey
20 1210,2e1,€,2¢; + ¢
@2(4) 2 10,3e,e; +er,2e; + e
9”3(4) 310,e1,e,e; +e3,e+e3,2e;3
9454) 41 0,e,e,e3,e4,€1 +-€2,€1 +e€3,€1 + €4
0@54) 2 e, —€,e—e,—e t+e
Q§4> 2 €1,€2,—€1,—€
Q’g‘l) 3 e],ep,e3,e; ey, —e3
9@4(14) 3 07e17e27e1 +e272e3
Q§4) 310,e,ey,e3,e +ey,e+e+e3
Qé4) 310,e,er,e3,e1+e€,e;+e —e;3
\,@g‘l) 4 10,2e1,eq4,er+€4,63+€4,60+€3+ €4
Q;@ 4] 0,e,er,e +-e,e3,e4,€3+ €y
354) 5]0,e,ex,e;+€,es5,e3+€s5,e4+€s5,e3+€;+€s
%1(4) 310,e,er,e3,e; +e—3e;3
%;54) 41 0,e,ep,e3,e4,—2e; —€r+e3+ey
C5/1(4) 4 07e17e23e37e47_e1_e2_e3+e4
y2(4) 4 07e17e27e37e47_e1 _ez_e3+2e4
33(4) 5] 0,e1,ep,€3,e4,e5,—2€; — € €3+ €4+ €5
5”4(4) 6| 0,e1,er,€3,€4,€5,€5,—€] —€; —€3+e€4+es5+¢e

TABLE 3.2: The spanning lattice non-simplices &2 with Vol(&?) < 4.

3.1.1 The case Vol(A) =2

In this subsection, we consider the case where Vol(A) = 2. Since |Ax| = 2, for any
A € Ap\ {0}, ord(A) = 2. Hence since A is not a lattice pyramid, by using Lemma
2.3, it follows that A, is generated by one element (1/2,...,1/2) and d + 1 is an even
number. Set d = 2k — 1 with some positive integer k. By using Lemma 2.9, one has
8(A,t) = 1+1t*. Moreover it is easy to see that A,z = A with any ordering of the
vertices of A?). Hence this completes the proof of the case where Vol(A) = 2.
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d vertices

%(4) 2k O,el,...,ed,l,Z‘j;lzej—l—Zed,el —e;_

42%2(4) 2k+1 O,el,...,ed,l,):;?;fej—i—2ed,ed,2+ed,1

%(4) 2k+2 O,el,...,ed_l,):d*“ej-l—zed,—ed_g +eso2+e;
B

=1
@ 1 2k 07317---;edflaz?;lzej‘i‘zed;—el+ed71

TABLE 3.3: The lattice non-spanning non-simplices & with Vol(#?) < 4.

3.1.2 The case Vol(A) =3

In this subsection, we consider the case where Vol(A) = 3. For nonnegative integers a
and b, we let A(a,b) be the finite abelian subgroups of (R/Z)%*? defined as follows:

Since Vol(A) = |Ap| = 3, for any A € Ap\ {0}, ord(A) = 3. Hence since A is not a
lattice pyramid, by Lemma 2.3, there exist nonnegative integers a,b witha+b=d + 1
such that Ay = A(a,b) with some ordering of the vertices of A. Since A(a,b) coincides
with A(b,a) by reordering of the coordinates, we can assume that a > b. Then by
using Lemma 2.9, one has i; = (a¢+2b)/3 and i, = (2a+ b)/3. Hence we obtain
a= —ij+2i,b=2i1—iyand d+ 1 =a+b = i) +ip. Moreover, it is easy to see that
A,z = A(a,b) with some ordering of the vertices of A®). Hence this completes the
proof of the case where Vol(A) = 3.

3.1.3 The case Vol(A) =4

In this subsection, we consider the case where Vol(A) = 4. For nonnegative integers
a,b,c, we let Aj(a,b,c) and Ay(a,b,c) be the finite abelian subgroups of (R/Z)4+b+¢
defined as follows:



Since Vol(A) = |Aa| =4, for any A € Ax\ {0}, ord(A) € {2,4}. Hence since A is not
a lattice pyramid, by Lemma 2.3, there exist nonnegative integers a,b,c withd +1 =
a+ b+ c such that A, coincides with A (a,b,c) or Ay(a,b,c) with some ordering of the
vertices of A.

At first, suppose that Ay = Aj(a,b,c) with some ordering of the vertices of A. Then
since Aj(a,b,c) coincides with Aj(c,b,a) by reordering of the coordinates, we may
assume that a > c. Moreover, by using Lemma 2.9, one has {i,i,i3} = {(a +2b+
3c¢)/4,(a+c)/2,(3a+2b+c)/4}. Set (hy,hy,h3) = ((a+2b+3c¢)/4,(a+c)/2,(3a+
2b+c)/4). Then we obtain a = —hy +hy + h3,b = hy —2hy + h3 and ¢ = hy + hy — h3.
Since a > ¢, (hy,h3) is (i1,i2), (i1,i3) or (i2,i3). Hence it follows from a,b,c > 0 that
one of the following conditions is satisfied:

(1) iy +i3> 2 and d + 1 = iy +i3, and Ap = Aq(—i1 +ia +i3,i1 — 2 + 3,11 +ia —
i3);

(2) ir+i3 > 20y and d + 1 = is + i3, and Ap = A (iy — in i3, —2i1 +ia + i3, i1 + s —
i3);

(3) i1 +ir>2i3and d + 1 = iy + o, and Ap = A1 (—iy +ia -+ i3, i1 -+ is — 203,01 — in +
i3);

If iy =iy or ip = i3, then the condition (1) is equivalent to one of the conditions (2) and
(3). Since ij + iy > 2i3 implies that ij = i = i3, if the condition (3) is satisfied, then
condition (2) is satisfied. Moreover, it always follows that i, + i3 > 2i;. Hence we know
that one of the following conditions is satisfied:

() i) <ip<iz, i1 +i3 > 20 andd—l—l:i1+i3,andAA:Al(—i1+i2+i3,i1—2i2+
i3,i1 + i — 13);

2) d+1=ir+is andAAZAl(il—i2+i3,—2i1—l—i2+i3,i1—|—i2—i3).

In particular, it is easy to see that if the condition (1°) is satisfied, then A A@ = Aj(a,b,c)
1

with some ordering of the vertices of A(14) , and if the condition (2’) is satisfied, then
A AW = Aj(a,b,c) with some ordering of the vertices of Ag”.
Next, we suppose that Ay = Ay(a,b,c) with some ordering of the vertices of A. It
follows that Ay (a, b, c) coincides with Ay (b, a,c) (resp. Az(c,b,a)) by reordering of the
coordinates. Hence we may assume that a > b > ¢. Then by using Lemma 2.9, one has
(i1,i,i3) = ((b+¢)/2,(a+c¢)/2,(a+b)/2). Therefore, we obtain d + 1 = i; +ip + i3
and Ay = Ap(—iy +ip +1i3,i] —ip+1i3,i] +ip —i3). In particular, it is easy to see that
(4)

A AB = Az(a,b,c) with some ordering of the vertices of A;". Hence this completes the
2

proof of the case where Vol(A) = 4.

Therefore, Theorem 3.1 follows.
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3.2 Proof of Theorem 3.3

In this section, we classify the non-spanning lattice non-simplices & C R? of dimension
d with Vol(Z) < 4 up to unimodular equivalence and lattice pyramid constructions.
Namely, we prove Theorem 3.3.

We recall that a matrix A € Z4*? is unimodular if det(A) = 41. Then lattice polytopes
2 c R? and 2 C R? of dimension d are unimodularly equivalent if and only if there
exist a unimodular matrix U € Z#*? and a lattice point w € Z¢ such that 2 = fi, () +

w, where fy is the linear transformation in R4 defined by U, i.e., fy(v) = vU for all
veRY

A lattice triangulation of a lattice polytope &2 C R? of dimension d is a finite collection
of lattice simplices 7" such that

(1) every face of a member of T isin 7T,

(2) any two elements of 7" intersect in a common (possibly empty) face, and

(3) the union of simplices in T is Z.

First, we show the following lemma:
Lemma 3.4. Let & C R? be a lattice non-simplex. Assume that {A1,Ay} is a lattice

triangulation of & and A = A\ N Ay. Then Ly (n) = La,(n) 4+ La,(n) — La(n).

Proof. Since {A],A;} is a triangulation of 2, it follows that {nA|,nA;} is a triangula-
tion of nZ for any positive integer n. Hence since

n?NZ = (nA; NZY U (nAy NZY),

one has
InPNZ% = [nA; NZ%) 4 |nAy NZ9| — |(nA; NnAy) N Z4|.

This implies that L g (n) = La, (n) 4+ La, (n) — La(n). O
Now, we consider the proof of Theorem 3.3. Let §(2,t) = 8 + 81t + - - - + 8¢9 be its
O-polynomial of 2. Since &7 is a lattice non-simplex, one has d; > 1. Hence by the
inequalities (2.1) and (2.2), it is known that §(Z2,t) forms one of the followings:

o I414rFp

o 141425

o 142112
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o |+3¢,

where k > 2 is some integer. In [8, 9], the lattice polytopes whose -polynomials equal
1 +2¢+1% or 1+ 3¢ are completely classified. Then they appear in the lists of Theorems
3.1 and 3.2. Hence we divide into the following two cases:

(1) 8(2,t) =1+t +154 ¥ (Subsection 3.2.1);

(2) 8(2,t) =1+t + 2tk (Subsection 3.2.2).

In these cases, since £ is a non-simplex and 0; = 1, the number of vertices of & equals
d+2 and & has no lattice points expect for its vertices. Let vy,...,v .1 be vertices
of & and for 0 <i <d+1, let A; be the lattice polytope which is the convex hull
of vo,...,Vi_1,Vit1,...,Vg+1. Remark that each A; is not necessarily a lattice simplex
of dimension d. Let {Ti,...,T,,} be a triangulation of .%2. Then since Vol(Z) = 4,
it follows that 2 < m < 4 and we may assume that 7} = Ay, and Vol(T}) > --- >
Vol(T,,). If for some i, Vol(7T;) = 1, namely, 7; is unimodularly equivalent to the standard
simplex of dimension d, it then follows that &7 is spanning. Hence one has m = 2 and
(Vol(Ty),Vol(T2)) = (2,2).

3.2.1 Thecase §(Z,t) =1+t + 15+ FH1

In this subsection, we consider the case where §(2,t) = 1 4+t +t* +¢**1. Then by
Lemma 2.2, it follows that 8(T7,7) = 14,1+ or 1 +¢*!. From Theorem 3.1,
for every lattice simplex A C RY with §(A,t) = 1 4¢, it follows that A is spanning.
Moreover, if §(T1,t) = 0(Tr,t) =1 +¢**1 then by using Lemma 3.4, for some n,

I (n) = n+d—1 n+d—k—1 - n+d—1
e N d—1 d—1 )
a contradiction. Hence we may suppose that §(77,¢) = 1 +tX. Moreover, by Theorem
3.1, we can assume that

0, (i=0),
vi=1{ e, (i=1,...,d—1),
?’;’lzej—%zed, (i=d).

andsetc =d —2k+1. Let vy = (ay,...,ay) € Z¢. Since 2 is not a lattice pyramid,
for 2k—1 <i<d—1, one has a; # 0. For a lattice polytope 2 C R4 of dimension e,
we set

Vol(2), (e=d),
0, (e<d).
32

VOld(Q) = {



Then, one has

VOld(Ai>: |2a,~|, (2](—1 Sigd—l),

Since 0,eq,...,e;_1 € & and & is not spanning, it then follows that a; € 27Z. More-
over, since for 0 <i <d+ 1, Vol(A;) < 4, one has a; € {—2,0,2} and a; € {—1,1} for
2k—1<1i<d—1. Now, we may assume that 7> € {Ag,A1,Apx_1,A4}.

3.2.1.1 Thecase T, =A;

Suppose that 7> = A,;. Then since 771 N 75 is a unimodular simplex of dimension d — 1, by
Lemma 3.4, one has §(73,¢) = 1+, Hence since (d+1)/2 > k+ 1 from the inequal-
ity (2.2), we obtain ¢ > 2. Moreover, since 71 N T3 belongs to the hyperplane defined by
the equation x; = 0 and Vol(7>) = 2, one has a; = —2. Hence (v;+v411)/2 € I NT.
Then it follows that a;+1>0for 1 <i<2k—2andag; >0for2k—1<i<d-—1.
Therefore, for 1 <i < 2k—2, one has a; € {—1,0} and for 2k —2 <i < d — 1, one has
a; = 1. Thus we can assume that

Va1 =(—1,...,-1,0,...,0,1,...,1,-2).
—— —— ——
a 2k—2—a ¢

Then one has
Vi vai1)/2=(0,...,0,1/2,...,1/2,0).
(Va+Vai1)/2 = ( / /2,0)
a 2k—2—a+c
Hence it follows from (v;+v,1)/2 € Ty N T, that 2k — 2 — a+ ¢ < 2. Therefore, since
¢ > 2, one has (a,c) = (2k —2,2). Then we have §(Z,t) = 1 +1 + K + 5+,

3.2.1.2 Thecase T, = Ay

Suppose that 7> = Ag. Then Az, = {(0,...,0)} C (R/Z)4. Hence T} NT; is a uni-
modular simplex of dimension d — 1. Then it follows from Subsubsection 3.2.1.1 that
8(T3,t) = 14+t and ¢ > 2. If for some i, a; < 0, then v, 1 /2 € Ag. This implies that
0 € T». Hence we obtain a; > 0 for 1 <i < d. Moreover, one has a; € {0,2} and for
2k—1<i<d-—1,onehasa; =1.

Assume that a; = 0. Then for 1 <i < 2k —2, we obtain g; € {0,1}. Hence we can
assume that
vair=(1,...,1,0,...,0,1,...,1,0).
~—— ~——

~——
a 2k—2—a c
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Then sincea+c—1>1,

4 a+c—2 a+c—2 a+c—2 atc—2 1
N atc—1"""a+c—1~~~a+c—1"""a+c—1" "a+c—1
" 2k—2—a ~~
a C
is an element of Az, with the ordering vy,..., v, . Since Vol(73) =2, one has a+c¢ < 3.

If a+c =2, namely, (a,c) = (0,2), then we obtain §(2,t) = 1 +¢ +t* +15*1. Suppose
thata+c=3. Thenht(A) =a+c—1=2 < k+1, a contradiction.

Assume that a; = 2. Then for 1 < i < 2k —2, one has a; € {0,1,2}. If for some
1 <i<2k—2,a;=0,then vy, /2 € T since the ith coordinate and the dth coordinate

are 0 and positive. Set vy1/2 = c1vi + -+ c4+1Va+1, Where 0 < cy,...,cq41 and
c1+---+cgy1 = 1. Then it follows that ¢, = 0 and ¢4, | = 1/2. This implies that 0 € 7>,
a contradiction. Hence {ay,...,as_,} is in {1,2}?¥=2, Therefore, we can assume that

Va1 =(2,...,2,1,...,1,1,...,1,2).
N N N —
a  2%-2—a ¢

Then
1 1 1 1 1 —1
A= 0,00 AT gy
a—+c a+c~~——a+c a+c a+c a+c
~ 2k—2—a ~
a C
is an element of Az, with the ordering vy, ...,v441. Hence since a+c¢ > 2, it follows that

Vol(T3) > a+ c. Therefore, one has a+ ¢ =2 and ht(A) = 2. However, this contradicts
that §(7»,1) = 1+ and k+ 1 > 3.

3.2.1.3 Thecase T, = A

Suppose that 7> = A;. Then Az, = {(0,...,0)} C (R/Z)?. Hence T; NT5 is a uni-
modular simplex of dimension d — 1. Then it follows from Subsubsection 3.2.1.1 that
8(T»,t) = 1 +¢*1 and ¢ > 2. Since T} N T, belongs to the hyperplane defined by the
equation 2x; —x; = 0, one has (aj,ay) € {(—2,-2),(—1,0),(0,2)}. Then it follows
that (vi+vg41)/2€ TiNT. If (a1,a4) = (—2,—2), then since the dth coordinate is neg-
ative, the point does not belong to 71 N T5. Set (vi +vy11)/2 =covo+cava+---+cqVa,
where 0 < cq,¢p,...,cqand co+co+---+c4 = 1. Assume that (a;,a;) = (—1,0). Then
we obtain ¢; = 0. Hence it follows that for 2 <i <d —1, ¢; = a;/2 > 0. Thus since
co+cr+--+cg=1landc>2,onehasc=2and q; =0for2 <i<2k—2anda; =1 for
i =2k —1,2k. Then we obtain §(2,t) = 1+t -+t +15+1. Assume that (a1, ay) = (0,2).
Then we obtain c¢; = 1/2. Moreover, since ¢; = a;/2 for 2k — 1 <i < d — 1, it follows
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that a; = 1 for 2 <i<d—1. However, from ¢ >2,one has co+co+---+c; > 1, a
contradiction.

3.2.14 Thecase ) = Ay

Suppose that ¢ > 1 and T, = Ay;—;. Since 71 N7 belongs to the hyperplane defined
by the equation x;; | = 0 and since Vol(73) = 2, one has ay;,_; = —1. Moreover, we
obtain (Vo1 +Vg11)/2 € Ty NT>. Hence it follows that for 1 <i<2k—2,a; >0
and 2k <i<d-—1, g; =1 and a4 € {0,2}. In particular, if a; = 2, then a; > 0 for
1 <i<2k—-2.

Assume that a; = 0. Then for 1 <i < 2k—2, one has g; € {0, 1}. Hence we can assume
that
Va1 =(1,...,1,0,...,0,—1,1,...,1,0).
—— —— ——
a 2k—2—a c—1

Set (VZk—l + Vd+1)/2 = 2?207i7é2k71 ¢;v;, where 0 < cq,...,Cop—2,Cok,--.,Cq and cqo +
ot cppn+co+--+cg=1. Then one has c; =0 and ¢; =1/2 for 1 <i<a or
for 2k <i < d— 1. Hence we obtain a+ (¢ — 1) <2, in particular, 1 <a+c¢ < 3. If
a+c =1, namely, (a,c) = (0, 1), then (vp;_1 +V441)/2 = 0. This implies that vy is not
a vertex of &, a contradiction. Hence one has 2 < a+ ¢ < 3. In each case, we obtain
§(P,t) =1+t +tk 151,

Assume that a; = 2. Then for 1 <i < 2k—2, one has g; € {1,2}. Hence we can assume
that
Va1 =(2,...,2,1,...,1,—1,1,...,1,2).
—— e~ S——
a 2k—2—a c—1

Set (VZk—l +Vd+1)/2 = Z?zO,i;ﬁZkfl ¢ivi, where 0 < cq,...,Ccok_2,Coy---,Ccq and co +
ot cppptey+--+cg=1. Thenone has c; =1/2 and ¢; = 1/2 for 1 <i <aand
ci=0fora+1<i<2k—2,and ¢; =1/2 for 2k < i <d— 1. Hence since co+ -+
Cok—2+ o+ +cqg =1, we obtain a+ (¢ — 1) < 1, in particular, | <a+c¢ <2. In
each case, we obtain §(2,t) = 1 +1 +tk k1,

Hence we know that &7 is unimodularly equivalent to the lattice polytope which is
the convex hull of 0,ey,...,e;_1,v and v/, where v and Vv’ satisfy one of the following
conditions:

(1) d = 2k, v:zj;%ej+2ed andv =e; —ey_1;
) d=2k,v:zj;fej+2ed andv =e; +e, —ey_|:

(3) d =2k v=YIlej+2e and v =Y Te;—es | +2e4;
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4) d=2k, v=Y1"Te;+2esand v =2e; + LI Je;—es_i +2eg;

(5) d=2k+1,v=Y1"7e;+2e andv' = —YI Ve +es 2+es 1 —2eg;
(6) dsz—H,Vsztf’ej—i—Zed andVv =e;_»+e; 1;

(7) d:2k+1,v:z;?;l3ej+2ed and Vv = —e;+e42+e€y_1:

(8) d=2k+1,v:z§?;l3ej+2ed and Vv = —ey_» +e;_1;

9) d:2k+1,V:):?;fej+2ed andv =e; —e;_o+es1;

(10) dsz—H,VzZ?;f’ej—i—Zed and V’:Z?;lsej—ed,g%—ed,l—i—Zed;

(1) d =2k+2,v= z;?;fej+2ed andVv = —e; 3+e; o+e, 1.

Fori=1,...,11, let &; be the lattice polytope which satisfies the condition (i). Set

1 -1
—1
-1 1
Uip= . . € 29,
-1 1
k—1 1
1 1 1 0 2
1
1 dxd
Uiz = e 7%
1
1 - -1 0 —1
and
0 —1 -1 0 =2
—1 0 —1 -1 0 =2
: —1 . . : : :
U175= -1 0 ) GZdXd,
—1 -1 ... -1 0 0o -2
—1 —1 —1 -1 1 -2
k—2 k-2 ... k=2 k-2 0 2k-3

where other entries equal zero. Then these matrices are unimodular. Moreover, one has
P = fUlﬁz(QZ) +e = fUm(:@g) = fUl.,4 + ( ?;lze]' —|—2ed). Hence &2, %, 3 and
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P4 are unimodularly equivalent each other. Set

0 -1 - -1 0 0 -2
—1
0 -1 0 0 =2 ind
Use=| _1 1 0 00 -2 |€z7,
—1 —1 —1 1 0 -2
—1 —1 -1 0 1 -2
k—2 k—2 k=2 0 0 2k-3
1 1 1 2
1
U57_ 1 GZdXda
1
1
—1 —1 —1
0 —1 -1 0 0 -2
—1
0 -1 0 0 =2 Ind
Uss=| —1 1 0 00 -2 [€Z7
—1 —1 -1 1 0 -2
-2 -2 -2 1 1 —4
k—2 k—2 k=2 0 0 2k-3
1 1 1 2
1
Usg = 1 € 794,
1
11 e 111 -2
1 - 1 -1
and
1
- 1 dxd
Us 10 = . S/
1o 111 =2
1

where other entries equal zero. Then these matrices are unimodular. Furthermore, one

has &5 = fus(Ps) + (LIZ7 € +2€4) = fus,(P7) = fuss(Ps) + (L_] €+ 2e4) =
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Juso(P9) = fus1o(P10). Hence Ps, ..., P9 and P are unimodularly equivalent each
other.

Finally, we will show that s and %7}, are not lattice pyramids. For i € {1,5,11}, let

Vgi), s ,VS)H be the vertices of &; and for i € {1,5,11}, set

Li=max{|V|:V c{l,....d+2,},|V|/2€Z Y W 2 e 2},
Jjev

Then one has Ly = 2k,Ls = 2k+2 and Lj; = 2k +4. This implies that Pyr(<;) and
Ps are not unimodularly equivalent each other, and Pyr(Pyr(?)),Pyr(Zs) and Z,
are not unimodularly equivalent each other. Hence we know that &5 and &1 are not
lattice pyramids.

Therefore, this completes the proof of the case §(2,1) = 1 4+ + 5 4-1++1,

3.2.2 Thecase §(2,t) =141 +2tF

In this subsection, we consider the case where 8(2,t) = 1 4 +2tF. Recall that if
0(Th,t) =141t or 6(Tr,t) = 1+1, then & is spanning. Hence by Lemma 2.2, one
has 8(Ty,t) = 8(T»,t) = 1 +1t*. Moreover, by Lemma 3.4, it follows that T; N T> is a
unimodular simplex of dimension d — 1. By Theorem 3.1, we can assume that

0, (i: 0)7

vi={e, (i=1,...,d—1),
Y e +2es, (i=d),

and set c =d —2k+ 1. Let vy = (ay,...,aq) € Z%. By the same way of Subsection
3.2.1, it follows that for 2k — 1 <i <d — 1, one has a; # 0 and a; € {-2,0,2}.

Now, we may assume that 75 € {Ag, A1, Aok—1,A4}-

3.2.2.1 Thecase T, =A;

Suppose that 7, = A;. Then since 77 N T, belongs to the hyperplane defined by the
equation x; = 0 and Vol(7,) = 2, we obtain a; = —2. Hence (vg+v441)/2 € I N T>.
Therefore, for 1 <i < 2k—2, one has a; € {—1,0} and for 2k —2 <i < d — 1, one has
a; = 1. Thus we can assume that

Va1 =(—1,...,-1,0,...,0,1,...,1,-2).
N N N —
a 2k—2—a c
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By the same way of Subsubsection 3.2.1.1, It follows that 2k —2 — a4 ¢ < 2. Moreover
from &8 (T3,t) = 1 + ¥, we obtain a+c € {2k —2,2k — 1}. Hence since a < 2k —2, (a,c)
equals (2k—2,0), (2k—2,1) or (2k—3,1). If (a,c) = (2k—2,0), then (vg+v411)/2 =
Vo, a contradiction. Therefore, one has (a,c) = (2k—3,1) or (2k —2,1). In each case,
we obtain §(2,t) = 1+t + 2tk

3.2.2.2 Thecase T, = Ay

Suppose that T, = Ay. If for some i, a; < 0, then v, /2 € T>. This implies that 0 € T,
a contradiction. Hence we obtain a; > 0 for 1 <i < d. Moreover, one has a; € {0,2}
and for2k—1<i<d—1,onehasa; = 1.

Assume that a; = 0. Then for 1 <i < 2k —2, we obtain g; € {0,1}. Hence we can
assume that
Voo =(1,...,1,0,...,0,1,...,1,0).
——— N N —
a 2k—2—a c

Since 71 N T, belongs to the hyperplane defined by the equation x| + -+ +x;_1 — (k—
3/2)xg =1, one has a+c¢ > 1. Then

4 a+c—2 a+c—2 at+c—2 at+c—2 1
N g—i—c—1"”’a+c—IJ’\’—'\','l/’a+c—17""a+c—lj’ "a+c—1
~~ 2k—2—a g
a C
is an element of Az, with the ordering vy,. .., v, . Since Vol(7>) =2, one has a+c < 3.

If (a,c) = (0,2), then 8(T»,t) = 1 +**!, a contradiction, and if (a,c) = (2,0), then
8(Ty,t) = 141~ a contradiction. Suppose that (a,c) = (1,1). Then §(T»,1) = 1+~
Therefore, one has 6(,t) =141+ 21K, Next, suppose that a + ¢ = 3. Then since
ht(A) =a+c—1 =2, one has k = 2. In each case, it is easy to show that Vol(7) > 3,
a contradiction.

Assume that a; = 2. By the proof of Subsubsection 3.2.1.2, it follows that {ay,...,ax_»}
is in {1,2}?¥=2, Therefore, we can assume that

Va1 =(2,...,2,1,...,1,1,...,1,2).
N N N —
a 2k—2—a c

Then
1 1 1 1 1 —1
A= 0y O AT gy
a-+c a—i—c)H,—/\cH—c a+ga+c a+tc
g 2k—2—a g
a C
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is an element of Az, with the ordering vi,...,vs41. Since Vol(T2) > a + ¢, one has
a+c < 2. Suppose that a + ¢ = 2. Then we obtain ht(A) = 2. This implies k = 2. In
each case, it is easy to see that §(2,t) # 1 +1t +2t2, a contradiction. If (a,c) = (0,0),
then v, = v, 1, a contradiction. If (a,c) = (1,0), then

A'=(0,1/2,...,1/2,0,1/2) € (R/Z)¥*!
2k—3

is an element of Ay, with the ordering vy,..., v, 1. However, ht(A’) = k— 1, a contra-
diction. Hence (a,c) = (0,1). Then one has §(2,t) = 1+t + 2t*.

3.2.2.3 Thecase T, = A

Suppose that 7> = A;. Since 71 N T, belongs to the hyperplane defined by the equation

2x1 —x4 = 0and since Vol(T) =2 and |ay| < 3, one has (a;,a4) € {(—2,-2),(—1,0),(0,2)}.
Then it follows that (vi +vyy1)/2 € 1 NT. If (a1,a4) = (—2,—2), then since the

dth coordinate is negative, the point does not belong to 73 N T>. Set (Vi +v441)/2 =

covp +covy + -+ cqvy, where 0 < cg,c2,...,cqand co+cr+---+c4 = 1. Assume

that (a;,a,y) = (—1,0). Then we obtain ¢; = 0. Hence it follows that for 2 <i <d —1,

¢i =a;/2 > 0. Thus we may assume that

Vail=(=1,1,...,1,0,...,0,1,...,1,0).
——— N — ———
a 2k—3—a c
and 0 < a+c < 2. Then since there exists an element A of Az, with ht(A) = k and
ord(A) =2, one has ¢ = a+ 1 or ¢ = a. Hence (a,c) equals (0,0), (0,1) or (1,1). If
(a,c) = (0,0), then it follows that (vi +Vv441)/2 = Vo, a contradiction. If (a,c) = (0,1)
or (a,c) = (1,1), then we obtain §(2,t) = 14+ 2t*. Assume that (a1, aq) = (0,2).
Then we obtain ¢; = 1/2. Moreover, for 2 <i<2k—2, a; € {1,2} and for 2k — 1 <
i <d—1,a; =1. Hence we may assume that

Varr=(0,2,...,2,1,...,1,1,...,1,2).
S—— Y —
a 2k—3—a c
Then one has 0 < a+c < 1since c; =+ =c4r1 =1/2, cg42 =" =co_2 =0 and
Cok—1 =+ =cq—1 = 1/2. Moreover, since there exists an element A of Az, withht(1) =
k and ord(A) = 2, one has ¢ = a+2 or ¢ = a+ 1. Hence it follows that (a,c) equals
(0,1). Then we obtain §( 2, t) = 1 41+ 2t*.

3.2.24 Thecase > = Ay,

Suppose that ¢ > 1 and 7> = Ay;_;. Then it is easy to see that §(T1,1) = 6(T1 NTh,t) =
1 +*, a contradiction.
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Therefore, &7 is unimodularly equivalent to the lattice polytope which is the convex
hull of 0,e,...,e;_1,v and v/, where v and V' satisfy one of the following conditions:

(1) d=2k v=Y"7ej+2e and vV = —YI [ e;+es | —2e,;
2) d =2k, v= Z?;lzej—l—%d and vV = —Z?;lzei%—ed,l —2ey4;
(3) dzzk,v:zj.’;%e,-+2ed andv =e; +e;_1;

4) d=2k,v=Y9?e;+2e,and vV =Y le;: +2e,;

(4) d=2k,v=) "7ej+2eqand Vv =}"" e;+2e,;

(5) d =2k, v=YI7ej+2e and v = —e; +e4 i;

(6) dzzk,v:zj.’;%e,-+2ed and Vv = —e; +er+e4_;;

(7) d =2k, v=Y1"7e;j+2e;and V' = YI") e+ 2e,.

Fori=1,...,7, let &; be the lattice polytope of (i). Set

1 1 .- 1 2
1 —1
Us = 1 -1 € 294,
—1
-1 1
—1 —1 k-2 —1
1 1 1 2
Usy = . e 794,
1
—1 —1 —1
—1
-1 1
Us3z = : /s
—1 1
k—1 1
1 1 2
—1 1
U574 = :1 ... 1 6 ZdXd,
—1 1
k—2 —1 —1 —1



—1
-1 1
Usg = . c 74,
—1 1
k—1 1
0 —1 -1 0 -2
—1
U= | P 0 —1 0 =2 | egax
1 - -1 0 0 -2
T e
k=2 o k=2 k-2 0 2k—3

where other entries equal zero. Then it follows that these matrices are unimodular
and one has s = fu; | (P1) +ex—2 = fus,(P2) = fus;(P3) + €1 = fus ,(Pa) +e1 =
Jus o(76) T €2 = fus,(P7) + Z?;f e;+2e4. Hence &, ..., %7 are unimodularly equiv-
alent each other.

Therefore, this completes the proof of the case §(2,t) = 1 +1 + 2K,

Thus, Theorem 3.3 follows.
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Chapter 4

Ehrhart polynomials of lattice
polytopes with normalized volume 5

To work towards a classification of the lattice polytopes whose normalized volumes are
5, we should classify all the possible 6-polynomials of lattice polytopes whose nor-
malized volumes are 5. Higashitani classified all the possible d-polynomials of lattice
simplices whose normalized volumes are 5.

Lemma 4.1 ([53, Theorem 1.2]). Let 1+t +12 43 4+ 1% be a polynomial with some
positive integers i1 < --- < ig. Then there exists a lattice simplex of dimension d whose
8-polynomial equals 1+ 1" 412 13 ' if and only if the following conditions are
satisfied:

o i1 t+ig=ir+iz<d+1;

o iy +ig >ipppforl <k <l <4withk+{<4.
In this chapter, we classify all the possible d-polynomials of lattice non-simplices
whose normalized volumes are 5. Thus, we obtain a classification of the possible J-

polynomials of lattice polytopes whose normalized volumes are 5. In fact, we will
show the following theorem.

Theorem 4.2 ([93, Theorem 0.4]). Let 1 +t11 412 13 +1 be a polynomial with some
positive integers iy < --- < is. Then there exists a lattice polytope of dimension d whose
8-polynomial equals 1+t +12 4t 4t if and only if (i,ip,13,i4) satisfies the condi-
tion of Theorem 4.1 or one of the following conditions:

(1) (i1,i2,13,i4) = (1,1,1,2) and d > 2;

(2) <i1>i2>i37i4) = (1727272) and d > 3;
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() (i1,ir,i3,is) = (1,2,3,3) and d > 5.

In particular, we cannot obtain the §-polynomials of (1), (2) and (3) by lattice sim-
plices.

This chapter is organized as follows: First, in Section 4.1, we will discuss some proper-
ties of lattice polytopes whose normalized volumes are prime integers. In particular, we
will show that every full-dimensional lattice polytope which is not an empty simplex
and whose normalized volume equals a prime integer is always a spanning polytope
(Theorem 4.3). Finally, in Section 4.2, by using this result we will prove Theorem 4.2.

4.1 Lattice polytopes with prime volumes

In this section, we will discuss some properties of lattice polytopes whose normalized
volumes are prime integers.

Let & C 74 be a lattice polytope of dimension d and (% NZ4) the affine sublattice
generated by &2 NZ¢. We call the index of & the index of (# NZ%)7 as a sublattice of
Z4. Then 2 is spanning if and only if its index equals 1. Now, we prove the following
theorem.

Theorem 4.3 ([93, Theorem 1.1]). Let p be a prime integer and &2 C R? be a lattice
polytope of dimension d whose normalized volume equals p. Suppose that & is not an
empty simplex. Then &7 is spanning.

Proof. Since & is not an empty simplex, there exists a lattice triangulation {Aj, ..., Az}
of & with some positive integer k > 2. Since the index of P must divide the normalized
volume of every A;, and since the sum of those normalized volumes is the prime p, the
index must be one. Hence &7 is spanning. ]

Next, we consider an application of this result to classifying lattice polytopes whose
normalized volumes are prime integers. Thanks to Theorem 4.3, every full-dimensional
lattice polytope whose normalized volumes equals 5 is either an empty simplex or a
spanning polytope. See e.g., [33] for how to classify empty simplices. Now, we fo-
cus on spanning polytopes. We recall that there are only finitely many spanning lat-
tice polytopes of given normalized volume (and arbitrary dimension) up to unimodular
equivalence and lattice pyramid constructions ([56, Corollary 2.4]). Hence we obtain
the following corollary.

Corollary 4.4. Let p be a prime integer and & a lattice polytope of dimension d whose
normalized volume equals p. Suppose that & is not an empty simplex. Then there are
only finitely many possibilities for & up to unimodular equivalence and lattice pyramid
constructions.
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4.2 Proof of Theorem 4.2

In this section, we will prove Theorem 4.2. From Lemma 2.5 and Theorem 4.3, we
obtain the following corollary.

Corollary 4.5. Let p be a prime integer and & C R? a lattice polytope of dimension d
whose normalized volume equals p and whose 8-polynomial equals 8+ 011 + - - - + Ost?,
where O; # 0. Suppose that & is not an empty simplex. Then one has &; > 1 for any
0<i<s.

Next, we give indispensable examples for our proof of Theorem 4.2.

Example 4.6. (a) Let 2| C R? be the lattice polytope which is the convex hull of the
following lattice points:
0.e,ep,2e; +3e; € R2.

Then one has §(2;,t) = 1+ 3t +12.
(b) Let 22, C R3 be the lattice polytope which is the convex hull of the following lattice

points:
07e17e27e3,e1 +e2+393 < R3.

Then one has §(2,,t) = 1+ 4 3t2.
(c) Let 273 C R’ be the lattice polytope which is the convex hull of the following lattice

points:
0,e1,€,€3,€4, €5, —€| +e€+e3+eq+2es € R,

Then one has §(P3,t) = 1 +1 +1> +213.
Finally, we prove Theorem 4.2.

Proof of Theorem 4.2. First, we can prove the “If” part of Theorem 4.2 from Lemma
2.3, Theorem 4.1 and Example 4.6. Hence we should prove the ”Only if ” part of The-
orem 4.2. Let & C R? be a lattice non-simplex of dimension d whose normalized
volume equals 5 and 8 (2,t) = 8§+ &1t + - - - + 8;t¢ the 5-polynomial of &. By Corol-
lary 4.5 and the inequalities (2.1) and (2.2), and the fact 6; > &, one of the followings
is satisfied:

(1) 6(L2,t)=1+4tandd > 1;

(
(2) §(2,t) =1+3t+t*>andd > 2;
(3) §(2,t) =1+2t+2t> and d > 2;
(

4) §(2,t) =1+t+3t*>andd > 3;
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(5) (2, t)=1+t+2t>+13 andd > 3;
6) §(2,t)=1+t+1>+2t3andd > 5;

(7) 8§(2,t) =1+t +t>+3+t*and d > 4.

Then we know that the conditions (1), (3), (5) and (7) satisfy the condition of Theorem
4.1. This completes the proof. [
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Chapter 5

Gorenstein simplices and the
associated finite abelian groups

In this chapter, to work towards a classification of the Gorenstein simplices, we discuss
a characterization of Gorenstein simplices in terms of their associated finite abelian
groups. In Section 5.1, we recall the Hermite normal form matrices and some of their
properties. In Section 5.2, we prove that a class of simplices arising from Hermite
normal form matrices are Gorenstein (Theorem 5.6). Using this result, we characterize
Gorenstein simplices whose normalized volume is a prime number. In fact, we will
prove the following.

Theorem 5.1 ([91, Theorem 0.1]). Let p be a prime number and A C R¢ a d-dimensional
lattice simplex with normalized volume p. Suppose that A is not a lattice pyramid
over any lower-dimensional simplex. Then A is Gorenstein of index r if and only

1 1
if d =rp—1 and A, is generated by (—,...,—). In this case, one has 6(A,t) =
P P

1_|_tr_|_t2"_|_..._|_t(l’*1)r.

In Section 5.3, we extend these results by characterizing Gorenstein simplices whose
normalized volume equals p? and pg, where p and g are prime numbers with p # ¢. In
fact, we will prove the following theorems.

Theorem 5.2 ([91, Theorem 0.2]). Let p be a prime number and A C R? a d-dimensional
lattice simplex with normalized volume p*. Suppose that A is not a lattice pyramid over
any lower-dimensional lattice simplex. Then A is Gorenstein of index r if and only if
one of the followings is satisfied:
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1. There exists an integer s with 0 < s < d — 1 such that rp*> — 1 = (d—s)+ ps and

1 11 1
Ap is generated by | —,...,—,—,...,—5 | for some ordering of the vertices of
p p p p
s d—s+1

A

2. d =rp—1 and there exist an integer s with 1 < s < d — 1 and integers 1 <
ai,...,as_1 < p—1such that Ay is generated by

2 —

ISi);v—lai ap+1 as—1+1 0 1 1
4 4 4 4 P
and
(LE%)
1<i<s—1 ,p_al,...,p_as_l,l,o,...,o
4 4 4 4

for some ordering of the vertices of A.

Theorem 5.3 ([91, Theorem 0.3]). Let p and g be prime numbers with p # q and
A C R? a d-dimensional lattice simplex with normalized volume pq. Suppose that A is
not a lattice pyramid over any lower-dimensional lattice simplex. Then A is Gorenstein
of index r if and only if there exist nonnegative integers si,s2,53 with s1+s,+s3=d+1
such that the following conditions are satisfied:

1. rpg=s1q+s2p+s3;

1 11 1 1
2. An is generated by | —,...,—,—,...,—,—,...,— | for some ordering of the
P 4 q pPq P4
—— ——— S—— —
S1 52 S3

vertices of A.

Moreover, we give a class of Gorenstein simplices whose normalized volumes equal
a power of a prime number (Theorem 5.13). Finally, in Section 5.4, we compute the
volume of the associated dual reflexive simplices of the Gorenstein simplices described
in Sections 5.2 and 5.3.

5.1 Hermite normal form matrices and lattice simplices

In this section, we recall some basic facts about Hermite normal form matrices. For
positive integers d and m, we denote by Herm(d,m) the finite set of lower triangular
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matrices H = (h;})1<i j<d € Z%d with determinant m satisfying h;; < h;; for all i > j. It
is well known that for any M € 7474 with determinant m € Z- there exist a unimodular
matrix U € Z4*? and a Hermite normal form matrix H € Herm(d,m) such that MU = H.
Let A C R be a lattice simplex of dimension d with normalized volume m and vy, . .., V4
the vertices of A, and let V be the d x d matrix whose ith row is v; — vg. Then one
has |det(V)| = m and we may assume that det(V') = m. Hence there exist a unimodular
matrix U € Z%*“ and a Hermite normal form matrix H € Herm(d,m) such that VU = H.
In particular, A is unimodularly equivalent to the lattice simplex whose vertices are the
origin of R? and all rows of H.

Let H = (hij)1<i j<a € Z2}? be a Hermite normal form matrix and set £(H) = |{i | hi; >
1}|. We then say that H has ((H) nonstandard rows. Let A(H) be the lattice simplex
whose vertices are the origin of RY and all rows of H, and set s = max{i | h; > 1}. If
A(H) is not a lattice pyramid over any lower-dimensional lattice simplex, then s =d. In
[40], lattice simplices arising from Hermite normal form matrices are discussed.

5.2 Hermite normal form matrices with one nonstan-
dard row

For a sequence of integers A = (a1, ...,aq4-1,aq4) wWith 1 < ay,...,aq_1 < aq, we set
A(A) = conv({vo,...,vq}) C R?, where

0, ifi=0,

e, ifl1<i<d—1,
Vi= a1

Z(ad—aj)ej—l—aded, ifi=d.

=1

Namely, A(A) is a lattice simplex arising from a Hermite normal form matrix with
one nonstandard row. In particular, the lattice simplices A(A) are exactly the lattice
simplices with one unimodular facet.

At first, we give the equations of the supporting hyperplanes of facets of A(A).

Lemma 5.4. For 0 <i<d, let F; be the facet of A(A) whose vertices are Vo, ...,Vi_],
Viii,...,Vq and FG the supporting hyperplane of .%;. Then one has

d—1 d—1
o Hp={(x1,...,x3) ER?: q Y xj+(1—= X (ag—aj))xa=aq};

j=1 j=1
o A ={(x1,....,xq) ER?: —agxi+ (ag—aj)x; =0}, 1 <i<d—1;
o Wy ={(x1,...,xq) GRd:—xd:O}.
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It is easy to compute A4 for the simplex A(A), as demonstrated with the following
lemma.

Lemma 5.5. Let ag be an integer with 1 < ayg < ag such that ag | (ap+---+aq_1 +

ap a ag_1 1
1). Then the finite abelian group Ap(a) is generated by (—O,—l,..., d 1,—) . In
aq dq aq dq
particular, A(A) is not a lattice pyramid over any lower-dimensional lattice simplex if
and only if 1 < ag,ay,...,az_1 < ay.

Proof. Set
ap ai aqjg— 1

,—) e (R/z)4+.

aci?ad,“'7 aq a4

(Ao Ag) = (
Then one has
d

do+ - +ag+1
Zli(vivl):(blw"vbdfl?l? a1
i=0 ad

) e Zd+1

where for 1 <i<d—1, b; =min{1,a; —a;}. Hence we know that (1, ...,A,) is an ele-
ment of Aps). Since the normalized volume of A(A) is a4 and the order of (Ao, ..., Aq)
is ag, Apa) is generated by (Ao, ...,Aq). Moreover, by Lemma 2.8, it is follows that
A(A) is not a lattice pyramid over any lower-dimensional lattice simplex if and only if
1 <ag,ai,...,az_1 < ay. ]

The following theorem characterizes exactly when the simplices A(A) are Gorenstein.
Theorem 5.6 ([91, Theorem 2.3]). Suppose that 1 < ay,...,a;—1 < az. Then A(A) is
Gorenstein of index r if and only if the following conditions are satisfied:

e For0<i<d-—1,a;|ay

o rag=ap+---+ag_1+ 1.

In order to prove this theorem, we show the following lemma.

Lemma 5.7. Suppose that 1 < ay,...,aq_1 < ag, rag =ao+---+aq_1+ 1 and for
0<i<d-—1,a;l|ay Then A(A) is Gorenstein of index r. Moreover, the vertices of the
associated dual reflexive simplex are the following lattice points:

[ ] —ed,'
a ag — a; )
° ——de,-+ d legfor1 <i<d-—1;
a; i
d—1 —d+1a,—
ag r +1Dayg—ag
e — ) ej—i—( ) ey.
ap j=1 ao
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Proof. Since ag(d — 1)+ (1 — Z?;ll (ag—aj)) = rag — a1 < rag, by Lemma 5.4, we
know that t = (1,...,1) is an interior lattice point of rA(A). Set A = rA(A) —t. Then by
Lemma 5.4, the equations of supporting hyperplanes of facets of A are as follows:

o —xg=1;

o —agxi+(ag—ai)xg=a;, 1 <i<d—1;

d—1 d—1
° qy .Z]Xj‘i‘(l— Y (aqg—aj))xq = ao.

= J=1

Hence by Lemma 2.7, A is reflexive and we can obtain the vertices of AY. [
Now, we prove Theorem 5.6.

Proof of Theorem 5.6. Let t = (ty,...,t;) € R be the unique interior lattice point of
rA(A) and A" = rA(A) — t. Then for each i, one has 7; > 1. By Lemma 5.4, the equation
—x4 = tg is a supporting hyperplane of a facet of A’. Hence by Lemma 2.7, wy =
—ey/ty is a vertex of (A’)Y. Therefore, we obtain z; = 1. If for some i, t; > 2, then
(t1y... ti—1,ti— 1 tir1,...,t4_1, 1) is the interior lattice point of rA(A). Since (¢1,...,t;)
is the unique interior lattice point of rA(A), one has t; = --- =t;_; = 1. Therefore, by
Lemma 2.7, the following points are the vertices of (A"):

( op s
— €4, lleO,
a ag —a; . .
e S e, if1<i<d—1,
ai a;
Wi = d—1
d—1 1— Zl(ad_aj)
aq Jj= io
—Zeﬁ— ey, ifi=d,
a i—1 a
\ J=

where a = ray; — Z?;ll aj— 1. Since the origin of R? belongs to the interior of A’, we

obtain a > 0. Moreover, A’ is reflexive, by Lemma 2.7, it is known that a divides
ag. Hence one has 1 < a < ay. Therefore, since ay | (a+a;+---+ay4_1+1) and
1 <ap < ay, we obtain a = ag. By Lemma 5.7, this completes the proof. 0

By Lemmas 2.7 and 5.7, we can prove Theorem 5.6.

Remark 5.8. If A(A) is Gorenstein of index 1, then A(A) is unimodularly equivalent
to a lattice polytope A = conv({ey,...,es,— Y%  a;_1€;}). In [17], properties of this
polytope A are discussed.

We obtain Theorem 5.1 as a special case of Theorem 5.6.
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Proof of Theorem 5.1. Since the normalized volume of A is a prime number, there exists
a sequence of integers A = (ay,...,aqy_1,p) with 1 < ay,...,a;_; < p such that A is
unimodularly equivalent to A(A). Let ag be an integer with 1 < gy < p such that p |
(ap+---+aq_1+1). Since A is not a lattice pyramid over any lower-dimensional
simplex, by Lemma 5.5, one has 1 < ag,...,as_1 < p. Hence, by Theorem 5.6, A(A) is
Gorenstein of index r if and only if ag = --- =a;_1 = 1 and d = rp — 1. Therefore, A

1 1
is Gorenstein of index r if and only if d = rp — 1 and A, is generated by (—, ceey —) .
p p
]

5.3 The case when Vol(A) = p? or Vol(A) = pg

Let s,d be positive integers with 1 <s < d, andletA = (ay,...,a5) and B= (by,...,by)
be sequences of integers with 0 < ay,...,a,_1 < as and 0 < by,...,bg_1 < bg. Set
A(A,B) = conv({vy,...,v4}) C RY, where

(0, ifi=0,

e, ifl<i<s—1,

s

Zajej, ifi:S,

Vi = j=1

ei, ifs+1<i<d-—1,
d

Y bje;, ifi=d.

\ J=1

Then A(A,B) is a lattice simplex arising from a Hermite normal form matrix with two
nonstandard rows.

We give the equations of the supporting hyperplanes of facets of A(A, B).

Lemma 5.9. Assume that by = 0. For 0 <i<d, let %; be the facet of A(A,B) whose
vertices are Vo, ...,Vi_1,Viil,...,Vq and ¢ the supporting hyperplane of %;. Then one
has

(xl,...,xd) GRdl

o Jp=1 asby Z xj+bd(1_ Z aj)xs+as<1_ Z bj)xd:asbd ;
1<j<d-1 1<j<s—1 1<j<d-1
JF#S J#s

A ={(x1,...,x3) ERL: —asbx; + abgxy + asbixg =0}, 1 <i<s—1;

A= {31, 5q) ERY : = = O);

r93?:{(961,...,)%) eRY: —bdxi+bixd:0}, s+1<i<d-—1;
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o Hy={(x1,...,xq) ERY: —x; =0}.

Let p, g be prime numbers with p # ¢. In this section, we characterize Gorenstein sim-
plices whose normalized volume equals p? and pq. In particular, we prove Theorems
5.2 and 5.3.

We prove the following lemma.

Lemma 5.10. Let p and q be prime numbers and set a; = p and by = q. Suppose
that A(A,B) is Gorenstein of index r. Then we have by = 0 or by = g — 1. Moreover,
if by = q — 1, then there exists a sequence of integers C = (cy,...,cq—1,pq) with 1 <
Cly---,cq—1 < pq such that A(A,B) and A(C) are unimodularly equivalent.

Proof. The following two equations define supporting hyperplanes of two facets of
rA(A,B):

o —X; = O;

o —gx;+byx;=0.
Let t = (t1,...,t;) € R? be the unique interior lattice point of rA(A,B). Then ¢; >
1 for each i. Set A =rA(A,B)—t. Then the followings are equations of supporting
hyperplanes of facets of A:

® —Xg =14;

o —gxs+bsxy = qts — bity.

e —qes+ bse ) ) . .
By Lemma 2.7, _t_d and % are vertices of AY. Hence since A is reflexive, we
d qls — Oslg

know thatz; =1 and is an integer. Therefore, we have ;= 1 and b € {0,¢—1}.

qts — by
Suppose that by = g — 1. Then we know

<@ pg—ar—pbi  pg—as1—pb 1 g—by1  q—ba- 1)

pa’ pq ' pq ‘pa g T g g
is an element of Ay, p), Where Ao is an integer with 0 < Ay < pg — 1 such that the sum
of all entries of this element is an integer. Hence by Lemma 5.5, there exists a sequence
of integers C = (cy,...,cq—1,pq) with 1 <cy,...,cq—1 < pg such that A(A,B) and A(C)
are unimodularly equivalent. ]

At first, we characterize Gorenstein simplices with normalized volume p?. In order to
prove Theorem 5.2, we show the following lemma.
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Lemma 5.11. Let p be a prime number and set a; = by = p and by = 0. Suppose that
d=rp—landfor1 <i<s—1,a;+bj=p—landfors+1<i<d—1,bj=p—1.
Then A(A,B) is Gorenstein of index r. Moreover, the vertices of the associated dual
reflexive simplex are the following lattice points:

® —€4,
o —pe;+aje;+biegforl <i<s—1;

o —¢€;,

—pei+bie;fors+1<i<d—1;

p Y e+(1— Y aje+(1— Y bje,.
1<j<d—1 1<j<s—1 1<j<d-1
j#s i7s

Proof. Since

pd=2)+(1— Y a)+(0- Y bj)=d=rp—1<rp,
1<j<s—1 1<j<d—1
J#s
by Lemma 5.4, we know that t = (1,...,1) is an interior lattice point of rA(A,B). Set
A =rA(A,B) —t. Then by Lemma 5.4, the equations of supporting hyperplanes of facets
of A are as follows:

—xg =1,

—pxit+aixs+bixg=1,1<i<s—1,

—x; = 1;

—pxi+bixg=1,s+1<i<d—1;

p Y xi+(l— Y aj)x+(1— Y bjxg=1.

1<j<d—1 1<j<s—1 1<j<d—1
J#£s i#s
Hence by Lemma 2.7, A is reflexive and we can obtain the vertices of AV, ]

Now, we prove Theorem 5.2.

Proof of Theorem 5.2. First notice that, by Theorem 5.6, the case of Hermite normal
form matrices with one nonstandard row are captured in the statement (1). Hence, we
consider the case of Hermite normal form matrices with two nonstandard rows. Let s,d
be positive integers with s < d, and letA = (ay,...,a5—1,p) and B= (by,...,by_1,p) be
sequences of integers with 0 < ay,...,a5_1,b1,...,by_1 < p. Assume that A(A, B) is not
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a lattice pyramid over any lower-dimensional lattice simplex and A(A, B) is Gorenstein
of index r. Then for 1 <i <s—1, we have (a;,b;) # (0,0) and for s+ 1 <i<d—1,
we have b; # 0. By Lemma 5.10, we only need to consider the case where by = 0. If for
some 1 <i<s—1,a; =0, then A(A, B) is unimodularly equivalent to A(A’, B"), where

/
A = (al,...,ai_l,aiJr],...,as_],p)

and
B = (b17"-7bi—labi+17‘"7bs—1707bi7bs+17"'7bd—17p)'

Hence we may assume that ay,...,a,_1 > 1. Let t = (f1,...,15) € R? be the unique
interior lattice point of rA(A,B), and set A" = rA(A,B) —t. Then by Lemma 5.9, the
equations of supporting hyperplanes of facets of A’ are as follows:

® —Xg =14;

o —px;+aixs+ bixg = pti —ajty — bity, 1 <i<s—1;

—Xg = I;

—pxi+bixg=pti—bjty, s+1<i<d—1;

ep Y xi+(1- X ajx+(l— X bjxy
1<j<d-1 1<j<s—1 1<j<d—-1
s s
=rp—p Y ti—(1— Y aj),—(1—- Y bl
1<j<d—1 1<j<s—1 1<j<d—1
s s

Hence by Lemma 2.7, it is known that —e; /t; and —e; /1, are vertices of (A")". There-
fore, since A’ is reflexive, we obtain t;, = t; = 1. Similarly, since pt; — a; — b; > 0 and
pti —a; — b; divides p,a; and b;, and since (a;,b;) # (0,0), we have that pt; —a; — b; = 1.
Hence, forany 1 <i<s—1, we have t; = 1 and p — a; — b; = 1. Moreover, since b; # 0
forany s+ 1 <i<d—1, we have thatt; = 1 and p — b; = 1. We then obtain

rp=p Y, ti—(- Y a)-(1- Y bj)=rp—d
1<j<d-1 1<j<s—1 1<j<d-1
J#s J#s
Since rp —d > 0 and rp —d divides p, we have rp—d =1 orrp—d = p.
Assume that rp —d = p. Then since p | (1 — Y <j<,—1a;), we know that A4 p) is
generated by

Y Y 70

(0 ar+1 as—1+1 1 1)
I » 5

and




Therefore, by Lemma 2.8, A(A, B) is a lattice pyramid over a lower-dimensional lattice
simplex. Thus one has rp —d = 1. Then it follows that A, (4 p) is generated by

2 — Z a;

1<i<s—1 a;+1 as_1+1 0 l l
p ) p 1000 p ) 7p?"'7p
and
( Py di>—1 .
=il ,p_al,...,p_as_],—,o,.. ,0
p p p p
By Lemma 5.11, this completes the proof. [

Next, we characterize Gorenstein simplices with normalized volume pg. In order to
prove Theorem 5.3, we show the following lemma.

Lemma 5.12. Let p and q be prime numbers with p # q and set ag = p and by = q.
Assume that k = rpq — p(d —s) — gs € {p,q}. Then A(A,B) is Gorenstein of index r.
Moreover, the vertices of the associated dual reflexive simplex are the following lattice

points:
e —¢€4,
o —pei+(p—lesfor1 <i<s—1;
L4 _es;
o —qgei+(qg—1l)egfors+1<i<d-—1;

L (Cl,...,Cd),

where ol | |
W60y
k
ﬁ, otherwise.
\ k

Proof. Since pg(d—2)+q(1—(p—1)(s—1))+p(1—(g—1)(d—s—1))=p(d—s)+
gs < rpq, by Lemma 5.9, it follows that t = (1,...,1) € Z? is an interior lattice point
of rA(A,B). Hence by Lemma 5.9, the equations of supporting hyperplanes of facets of
A = rA(A,B) — t are as follows:

o —xg=1
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o —paxi+(p—1gx;=1,1<i<s—1;
o —x;=1;
o —qxit+(g—Dxg=1,s+1<i<d-—1;

epg ¥ xj+q(l—(p—1(s—1))x+p(l—(¢—1)(d—s—1)xg
1<j<d-1
i#s

=rpq—p(d —s) —gs.

If rpg — p(d —s) —gs = p, then p | s. Hence, p|(1—(p—1)(s—1)). Moreover, if
rpqg—p(d—s)—qs=gq,thenq | (d—s),and so g | (1 —(d—s—1)(¢—1). Thus by
Lemma 2.7, A’ is reflexive and we can obtain the vertices of (A"). []

Now, we prove Theorem 5.3.

Proof of Theorem 5.3. The case when s3 > 1 follows from Theorem 5.6 since this case
corresponds to the Hermite normal form matrices with one nonstandard row. Hence,
we consider the case of Hermite normal form matrices with two nonstandard rows.
Let s,d be positive integers with s < d and p,q prime numbers with p # ¢, and we
let A= (ay,...,as_1,p) and B = (by,...,by_1,q) be sequences of integers with 0 <
ai,...,as—1 < pand 0 <by,...,by 1 < g. Assume that A(A, B) is not a lattice pyramid
over any lower-dimensional lattice simplex and A(A, B) is Gorenstein of index r. Then
for 1 <i<s—1,wehave (a;,b;) # (0,0) and for s+ 1 <i < d — 1, we have b; # 0. By
Lemma 5.10, we need only consider the case where by = 0.

Let t = (t1,...,t;) € R? be the unique interior lattice point of rA(A,B). Analogous to
the proof in Theorem 5.2, we have t; = 1 for each i and so we set A" = rA(A,B) —t. Then
by Lemma 5.9, the equations of supporting hyperplanes of facets of A’ are as follows:

o —X 4= 1;

® —pgx;+aiqxs+ pbix; = pq—pbi—aiq, 1 <i<s—1;

o —x,=1;

o —qgxi+bixg=q—bi,s+1<i<d—-1;

epg Y xj+q(l— Y aj)xs+p(l— Y bjxg

1<j<d—1 1</ <51 1<j<d—1
s s
=rpg—pq(d—2)—q(1— Y a;)—p(1— Y bj).
1<j<s—1 1<j<d—1
i#s
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Since A’ is reflexive, by Lemma 2.7, for 1 <i <s—1 we have pq— pb; —a;q € {1,p,q}
andfors+1<i<d—1wehaveb;j=qg—1. If forsome 1 <i<s—1, pg—pbi—aig=1,
then since

s—1
Y bj|—(d—s)
j=1 q—>b; q—bs1

a= , ey ,0,

and

1
are elements of Ay, p), we know that the ith entry of a + b equals —. Hence this

is the case where s3 > 1. If for some 1 <i < s—1, pqg— pb; —aijq = p, then since
(ai,b;) = (0,q—1), it follows that A(A, B) is unimodularly equivalent to A(A’, B"), where

/
A = (al,...,ai,l,aiﬂ...,as,l,p)

and
B/ == (b],.--,bi_l,bH_l,.--,bs_l,(),bi,bs_g_l,...,bd717q>-

Hence we may assume that for any 1 <i < s— 1, we have that pg — pb; —ajq = gq. In
particular, (a;,b;) = (p—1,0). Then we know that an element

p(d—s)+gs 1 11
pq 7p7' 7p7q7"'7
—_—— ——
s d—s

of (R/Z)¥*! generates A5. Moreover, we obtain

1— Y aj=—p(s—1)+s,
1<j<s—1

1— Z bj=—qd—s—1)+(d—ys),
1<j<d-1
s
and

rpq—pq(d—2)—q(1— Y aj)—p(1— Y bj)=rpg—p(d—s)—gs.
1<j<s—1 1<j<d—1

J#s
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Since A’ is reflexive, by Lemma 2.7, it follows that rpg — p(d —s) — gs € {1, p,q,pq}.

By Lemma 2.8, we know that rpg — p(d —s) —gqs # pq. f rpqg— p(d —s) —qs =1, we

—s —d — 1

have =S n +s _~rrq +
p . q . pq . .

we may just consider the case where rpg — p(d —s) —gs € {p,q}. However, it is clear

that this case satisfies the statement (2). By Lemma 5.12, this completes the proof.
[

. Hence, this is again the case where s3 > 1. Therefore,

By Theorem 5.6, we can construct Gorenstein simplices whose normalized volume is
equal p’, where p is a prime number and / is a positive integer. Finally, we give other
examples of Gorenstein simplices whose normalized volume equals p. These sim-
plices arise from Hermite normal form matrices with ¢ nonstandard rows. In particular,
Theorem 5.2 (2) is the motivation for the following theorem.

Theorem 5.13 ([91, Theorem 3.5]). Let p be a prime number, and let d and ¢ be positive
integers with ¢ < d, and let 1 <s1 < sy < --- < sy =d be positive integers. For 1 <i<k
and 0 < j <d, we set

( d

_Zgik; lf.]:07

k=1
p—dij . . .
_ < jg<gy§;i— e, S
R/Zag,]: ) ) lfl_]_S, 1and]7$s1, ySi—1,

1

-, ifj:Sl‘,

p

0, otherwise,

where each a;j is a positive integer with 1 < a;j < p— 1. Suppose that there exists
an integer r withd =rp— 1, and for 1 < j < d —1 with j # s1,...,5, there exists a
positive integer tj such that Y ;a;j =tjp—1. If A C R is a d-dimensional simplex such
that Ay is generated by (g10,---,81d);-- -+ (&0 - -,8¢d), then A is Gorenstein of index r
and Vol(A) = p.

Proof. Set A=conv({vy,...,vs}) C R, where

0, ifi =0,
€, ifi?éo,sl,...,Sg,
Vi = P
Z ajje;+ peg, if i = sy.
1< <5y
JES1seesSk—1

Then A C R is a d-dimensional simplex such that Vol(A) = p! and A, is generated by
(810,---581d)s---+(&e0s---,8¢a)- Let so =0. Then the equations of supporting hyper-
planes of facets of rA are as follows:

o —x;, =0,fork=1,...,4
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? : .
° —pxi+2j:k+lajixsj =0, for sp < i< Sga1s

*p )y xj+ )» 1— )y Agj | Xsi
1<j<sy 1<k<t 1<j<sy

j#slw"vsl/,fl j?éSh...,Sk,]

rp.

Lett' = (1],...,t};) be a lattice point of R, where
I, ifi=sy,...,s,

l . .

t;, ifi#£sy,...,s0.
Now, we claim ¢ is an interior lattice point of rA. Indeed, for s; < i < s;, we have
14
—pti + Z aji = —-1<0
j=k+1

and

p Z tji+ Z 11— Z agj | =d=rp—1<rp.

1<j<sy 1<kt 1<j<sg

JFESTyeesS0—1 JFES 5o Sk—1

Now set A’ = rA —t'. Then the equations of supporting hyperplanes of facets of A’ are
as follows:

o —x;, =1, fork=1,....4

l
o —pxi+ Y a]-,-xsjzl,forsk<i<sk+1;
j=k+1
ep ¥ x5+ X [[1- & ay|x]|=1
1<j<sy 1<k<t 1<j<s;
j¢51,...755_1 j?éSI,.‘.,Sk_]
Hence by Lemma 2.7, A’ is reflexive, and so A is Gorenstein of index r. ]

Remark 5.14. Let A be the Gorenstein simplex as in Theorem 5.13. Then the vertices
of the associated dual reflexive simplex of A are following lattice points:

o —¢ fork=1,....0

14
e —pe;+ Y aji€s;, for s < i < Spi1;
j=kt+1

*p Z ej+ Z 1— Z aij | €s;
1<j<sy 1<k<t 1<j<s
j#slv"'vsffl j?éSh...,Sk,]
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5.4 Volume of the associated dual reflexive simplex

In this section, we compute the volume of the associated dual reflexive simplices of
the Gorenstein simplices we constructed in Sections 5.2 and 5.3. We first consider
the case of Gorenstein simplices arising from Hermite normal form matrices with one
nonstandard row.

Theorem 5.15 ([91, Theorem 4.1]). Let A(A) C R? be a d-dimensional Gorenstein
simplex of index r as in Theorem 5.6 and set A=rA(A) — (1,...,1). For0<i<d—1,
we set b; = ay/a;. Then we have Vol(AY) = rHjté b;.

Proof. By Lemma 5.7, we know that AV = conv({wy,...,w,}), where

—ey, if i =0,
a ag — a; . :
e 42 e, if1<i<d—1,
W; = i a;
d—1
a r—d+1)ag;—a .
= ej—l—( ) d Oed, ifi=d.
an:1 aop
\

It is easy show AV is unimodularly equivalent to a d-dimensional simplex A" whose

vertices Vg, ...,V are the following:
0, ifi=0,
, | b, ifl<i<d—1,
Vi= d—1

bo Z ej—l—rboed, ifi=d.
=1

Hence we have Vol(AY) = rH?;é b;, as desired. O

From this theorem, we immediately obtain the following corollary.

Corollary 5.16. Let A C R¢ be a d-dimensional Gorenstein simplex of index r whose
normalized volume equals a prime number p. Suppose that A is not a lattice pyramid
over any lower-dimensional lattice simplex and the unique interior lattice point of rA is

the origin of R, Then we have Vol((rA)Y) = rp?.

Next, we consider the case of Gorenstein simplices with normalized volume p2, where
p is a prime number. By Theorem 5.15, we can compute the volume of the associated
dual reflexive simplices of the Gorenstein simplices in Theorem 5.2 (1).

The Gorenstein simplices in Theorem 5.2 (2) are included in the Gorenstein simplices
in Theorem 5.13. Hence, we consider the case of the Gorenstein simplices in Theorem
5.13. In fact, we can obtain the following Theorem.
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Theorem 5.17 ([91, Theorem 4.3]). Let A C RY be a d-dimensional Gorenstein poly-
tope of index r as in Theorem 5.13 such that the unique interior lattice point of rA is the
origin in RY. Then we have Vol((rA)Y) = rpd=t+1,

Proof. By Remark 5.14, (rA)V is the convex hull of the following lattice points:

o —¢ fork=1,....0

14
o —pe;+ Y ajiesj,forsk<i<sk+1;
j=k+1
ep )Y e+ ) 1= Y ey
1<j<sy 1<k</t 1<j<sy
JFS1yeesS0—1 J#S1 e sSk1
So we set
10 --- 0 t{
U= - : ) e 74x4,
00 - 1 1,
00 --- 0 tél

Since t, = t; = 1, it follows that U is unimodular. Letting A" = fy((rA)Y +e4), we
know that A’ is the convex hull of the following lattice points:

e 0

o —¢ fork=1,....0—1;

/-1
o —pe;+ ) aj,-esj,forsk<i<sk+1;
j=kt1
o p y e+ X 1-— ) agj | es, | +rpeq.
1<j<sy 1<k<t/—1 1<j<si
JFS1yeesS0—1 JFS1sSk1

d—{+1

Hence we have Vol(A') = rp , as desired. O

Corollary 5.18. Let p be a prime number, and let A C R¢ be a d-dimensional Goren-
stein simplex of index r whose normalized volume equals p>.

(1) Suppose that A and s satisfy the condition of Theorem 5.2 (1) and the unique interior
lattice point of rA is the origin in RY. Then we have Vol((rA)Y) = rp*—.

(2) Suppose that A satisfies the condition of Theorem 5.2 (2) and the unique interior
lattice point of rA is the origin in RY. Then we have Vol((rA)Y) = rp?=1.

62



Finally, we consider the case of Gorenstein simplices whose normalized volume equals
pq, where p and g are prime numbers with p # g.

Theorem 5.19 ([91, Theorem 4.5]). Let p and q be prime integers with p # q and A C
R? a d-dimensional Gorenstein simplex of index r whose normalized volume equals pq.
Suppose that A is not a lattice pyramid over any lower-dimensional lattice simplex and
the unique interior lattice point of rA is the origin in RY. Then we have Vol((rA)Y) =

rpsitssTlgatss=l yohere 51,59, 53 are nonnegative integers which satisfy the conditions

of Theorem 5.3.

Proof. First, assume that s3 > 1. Then by Theorem 5.15, we obtain Vol((rA)Y) =
Vpsl+s3_lq52+s3_l.

Next, assume that s3 = 0. Then by the condition (1) of Theorem 5.3, we know that
(s1,52) # (1,d) and (s1,s2) # (d,1). Moreover, by the condition (2) of Theorem 5.3
and the normalized volume of A, we have (s1,s2) # (d+1,0) and (s1,s2) # (0,d + 1).
Hence, we have 51,57 > 2. Since A, is generated by

< |-
| =

—_— —
S1 52

we may assume that rA = rA(A,B) — (1,...,1), where

A:(p_177p_17p)
—

s1—1
and
B=(0,....0,g—1,....q—1,q).
( q q-1,9)
S1 sp—2
Then by Lemma 5.12, we know that (rA)" = conv({wy,...,w,}) where

( e,
—ey, ifi=0,

—pei+(p—1ley,, ifl1<i<s —1,

W, =4 —¢€;, if i =sq,
—qgei+(q—1)eg, ifs;+1<i<d-—1,
\(Cl,...,Cd), ifiZd,
and | . .
o= Gi=Dp-1) o,
B p
“TY1-d-s1—-1)(g—1), ifi=d,
q, otherwise.
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It is easy show (rA)Y is unimodularly equivalent to a d-dimensional simplex A’ whose
vertices v, ..., V), are the following:

;

0, ifi=0,

—(p—1)e;+ pey,, ifl1<i<s;—1,
vi={ —e, ifi = sy,

—qe;, ifs1+1<i<d—1,

\(cl,...,cd_l,cl+---+cd+1), ifi=d,

Since ¢| + -+ ¢4 + 1 = rq, we have that Vol((rA)Y) = rp*1 =142~ as desired. O
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Chapter 6

Gorenstein simplices with a given
0-polynomial

In Corollary 5.1, it is shown that if A is a Gorenstein simplex whose normalized volume
Vol(A) is a prime number p, then its §-polynomial is of the form

S(At) = 1415+ 1P DE

where k > 1 is a positive integer. Once the fact became known, we cannot escape from
the temptation to achieve the study on the following problem:

Problem 6.1. Given positive integers k > 1 and v > 1, classify the Gorenstein simplices
with the 8-polynomial 1 +1t* + - +1(V=1k,

In particular, in Problem 6.1, when k > 2, the targets are Gorenstein empty simplices.
In this chapter, we focus on Problem 6.1.

This chapter is organized as follows. We devote Section 6.1 to discuss lower bounds
on the dimensions of Gorenstein simplices with a given d-polynomial of Problem 6.1
and, in addition, to classify the Gorenstein simplices when the lower bounds are held
(Theorem 6.2). The highlight of this chapter is Section 6.2, where a complete answer of
Problem 6.1 when v is either p? or pg, where p and g are distinct prime integers (The-
orems 6.5 and 6.6). Finally, in Section 6.3, we will discuss the number of Gorenstein
simplices, up to unimodular equivalence, with a given d-polynomial of Problem 6.1.

6.1 Existence

In this section, we prove that for positive integers k > 1 and v > 1, there exists a lattice
simplex with the §-polynomial 1+ % 412k ... + 10—k Moreover, we give a lower
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bound and an upper bound on the dimension of such a lattice simplex which is not a
lattice pyramid. In fact, we obtain the following theorem.

Theorem 6.2 ([52, Theorem 2.1]). Let k and v be positive integers. Then there exists a
lattice simplex A C R? of dimension d whose 8-polynomial is 1 +t*+12k+ ... + 1Dk,
Furthermore, if A is not a lattice pyramid over any lower-dimensional lattice simplex,
then one has vk — 1 < d < 4(v— 1)k —2. In particular, the lower bound holds if and
only if Ay is generated by (1/v,...,1/v).

Proof. We assume that there exists a lattice simplex A C R of dimension d whose J-
polynomial is 1 4K+ 12 4+ ... 410Dk Letx = (x0,...,%4) € Aa be an element such
that ht(x) = (v — 1)k. Then we have that ht(—x) > k. Hence since ht(x) +ht(—x) < d +
1, we obtain d > vk — 1. From Lemma 2.4, if A is not a lattice pyramid over any lower-
dimensional lattice simplex, then one has d < 4(v— 1)k —2. Now, we assume that d =
vk — 1. Since for each i, one has 0 < x; < (v—1) /v, we obtain ht(x) < (d+1)(v—1)/v=
(v —1)k. Hence for each i, it follows that x; = (v — 1) /v. Therefore A, is generated by
(1/v,...,1/v). Then it is easy to show that §(A,z) = 1 +rk + 1k ... 4 (0=Dk a5
desired. [l

6.2 Classification

In this section, we give a complete ansewer of Problem 6.1 for the case that v is the
product of two prime integers. First, we consider the case where v is a prime inte-
ger. Corollary 5.1 says that for each positive integers k and v, if v is a prime integer,
then there exists just one lattice simplex up to unimodular equivalence such that its -
polynomial equals 1+ X4+ ¢k ... 4 =Dk, By the following proposition, we know
that if v is not a prime integer, then there exist at least two such simplices up to unimod-
ular equivalence.

Proposition 6.3. Given positive integers k, v and a proper divisor u of v, let A C RY be
a lattice simplex of dimension d such that Ax is generated by

u/vy...,u/v,1/v,....1/v | € (R/Z)(V+”_l)k,

(v=1)k uk

Then one has 8(A,t) = 1415412k ... 41 0=Dk,
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Proof. Setx= | u/v,...,u/v,1/v,...;1/v | andy=(v/u)x=10,...,0,1/u,...,1/u
f w1 v 1 fy | andy = (v/u) fu,.... 1/

(v—1)k uk (v—1)k uk
Then we obtain ht(x) = uk and ht(y) = k. Moreover, it follows that

A= {ix+jye (R/Z) i=0,...v/u—1, j=0,....u—1}.
For any integers 0 <i<v/u—1and 0 < j <u—1, one has
ht(ix+ jy) = iht(x) + jht(y) = (iu+ j)k.
Hence, it follows from Lemma 2.9 that §(A,1) = 1+ tk 412k ot O=DK g desired.
0

Furthermore, the following proposition can immediately be obtained by Lemma 2.9.

Proposition 6.4. Given positive integers vi,v, and k, let Ay C R4 and Ay C R? be
lattice simplices of dimension dy and dy such that §(Ay,t) = 1+t 412 4 ... + =Dk
and 8(Ag,t) = 1+ 42k o =Dk Lor A € ROHEH pe  lattice simplex
of dimension d| + d, + 1 such that

Ax={(x,y) € (R/Z)"H+2:x € AA,,Y € Ap, b

Then one has §(A,t) = 1 +t* + 1% - 4 t02=Vk Iy particular; if neither Ay nor A,
is not a lattice pyramid, then A is not a lattice pyramid.

Now, we consider Problem 6.1 for the case that v is p? or pg, where p and ¢ are prime
integers with p # ¢g. The following theorems are the main results of this chapter.

Theorem 6.5 ([52, Theorem 3.4]). Let p be a prime integer and k a positive integer,
and let A C RY be a lattice simplex of dimension d whose 8-poynomial is 1+ t* 4 2% +
e —|—t(1’2_ Dk, Suppose that A is not a lattice pyramid over any lower-dimensional lattice
simplex. Then one of the followings is satisfied:

(1) d=p*k—1;
) d=p*k+(p—1k—1;
(3) d = p*k+ pk—1.
Moreover, in each case, a system of generators of the finite abelian group A, is the set

of row vectors of the matrix which can be written up to permutation of the columns as
follows:

() (1P - 1/p) € (R/Z) 5%
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(2) \l/p 1/e}/p2 1/p2 G(R/Z)IX(PZJFP*I)IC;

'

(P?2=1)k pk

Up--1/p 0.0
3) 0--- 0 1/p--1/p|e(R/z)>*PP+DE
Pk p2k

Theorem 6.6 ([52, Theorem 3.5]). Let p and q be prime integers with p # q and k a
positive integer, and let A C R? be a lattice simplex of dimension d whose 8-poynomial
is 1+ K412 ... 4 1(Pa=Dk_ Syppose that A is not a lattice pyramid over any lower-
dimensional lattice simplex. Then one of the followings is satisfied:

(1) d = pgk—1;

(2) d = pgk+ pk—1;

(3) d = pgk+qk—1;

4) d=pgk+(p—1)k—1;

(5) d=pgk+(g—1)k—1.

Moreover, in each case, the finite abelian group A is generated by one element which
can be written up to permutation of the coordinates as follows:

) (1/(pq),...,1/(pq)) € (R/Z)Pi*;

2 | 1/p,...,.1/p,1/q,...;1/q | € (R/Z)P(Q“)k;

-~

pk pak

3) | 1/q,...,1/¢,1/p,...,.1/p | € (R/Z)P+1)ek,

~ -~

gk pqk

4) 1/qa---,1/q,}/(pq),...,1/(pq) G(R/Z)(mﬂ?—l)(kﬂ);

-~

(pg—1)(k+1) plk+1)

(5) }/P,...,1/13,}/(pq),...,1/(pq) G(R/Z)(pq—‘rq—l)(k_o_]).

-~

(pg—1)(k+1) a(kr1)

Remark 6.7. The lattice simplices in Theorems 6.5 and 6.6 can be constructed by Propo-
sitions 6.3 and 6.4.

68



Before proving these theorems, we give the vertex representations of Gorenstein sim-
plices in Theorems 6.5 and 6.6. Given a sequence A = (ay,...,ay) of integers, let
A(A) C RY be the lattice simplex described in Section 5.2. Given sequences A =
(ai,...,as) and B = (by,...,by) of integers with 1 < s < d, let A(A,B) C R? be the
lattice simplex described in Section 5.3.

Corollary 6.8. Let p be a prime integer and k a positive integer, and let A C R? be a
lattice simplex of dimension d whose 8-poynomial is 1+ tK+12K 4 ... + ¢ =Dk Sup-
pose that A is not a lattice pyramid over any lower-dimensional lattice simplex. Then A
is unimodularly equivalent to one of A(A1), A(Az) and A(A3,B3), where

(D Ay =(1,...,1,p%);
N——
p2k—2

(2) A2: 17'--717p7"'ap7p2 s
—— ——
pk=1 " (p2—1)k—1

3)A3=|p—-1,....p—1,p|,B3=1]0,....0,p—1,....p—1,p

—_—— —_—— — o —
pk—1 pk pPh—2
Corollary 6.9. Let p and g be prime integers with p # q and k a positive integer, and
let A C R? be a lattice simplex of dimension d whose 8-poynomial is 1 +t*+12* +... 4+
¢ (Pa—1)k, Suppose that A is not a lattice pyramid over any lower-dimensional lattice
simplex. Then A is unimodularly equivalent to one of A(A1), A(A2,By), A(A3,B3), A(Ag)
and A(As), where

() Ay =(1,...,1,pq),
——
pgk—2

2) Ay=|p—1,....p—1,p|,By=10,...,0,g—1,...,qg— 1,9 |;
—_—— —_—— — oo
pk—1 pk pgk—2

3)Az=|g—1,....¢—1,q [, B3=10,....0,p—1,....p—1,p |,
—_———— —_——— ————
gk—1 qk pgk—2

(4) A4: 17"'717 Py--sPPq |5
—_—
pk—1  (pg—1)k—1

(5) ASZ 17"'717 q,.---,4 ,Pq
—_—— ——
gk—1  (pg—1)k—1
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In order to prove Theorems 6.5 and 6.6, we use the following lemma.

Lemma 6.10. Ler v and k be positive integers, and let A C R? be a lattice simplex
of dimension d whose 8-polynomial equals 1 +1t*+1K ... + 1Dk Assume that

x € (R/Z) is an element of Ap such that ht(x) = k and set m = ord(x). Then by

reordering the coordinates, we obtainx = | 1/m,...,1/m,0,...,0 | for some positive
—_—

s d—s+1
integer s.
Proof. Since m = ord(x), x must be of a form (k;/m,...,ks/m,0,...,0) for a positive
integer s and integers 1 < ky,...,ks < m — 1 by reordering the coordinates. If there

exists an integer k; > 2 for some 1 <i <, then one has k;(m — 1) /m > 1. Therefore, we
obtain ht((m — 1)x) < (m— 1)ht(x) = (m — 1)k. Since m = ord(x), (m — 1)x is different
from 0,x, ..., (m —2)x. We remark that for any a, b € (R/Z)%*!, one has ht(a+b) <
ht(a) + ht(b). This fact and the supposed d-polynomial imply that ht(¢x) = tht(x) =tk
for any 1 <t < m— 1. This is a contradiction, as desired. O

Finally, we prove Theorem 6.5 and Theorem 6.6.

Proof of Theorem 6.5. Theorem 5.2 implies that A is unimodularly equivalent to either
Ay or Ay, where Ay and A; are lattice simplices such that each system of generators of
Ap, and Ay, is the set of vectors of matrix as follows:

@ (1/p--1/p1/p* ... 1/p* | € (R/Z)>*H);

d—s+1 s
1 41 1
(ll) ((a0+ )/p (Cld 2_'_ )/p 0 /p> c (R/Z)Zx(d+l),
(p—ao)/p -+ (p—as2)/p 1/p O
where s is a positive integer and 0 < ay,...,ay—» < p — 1 are integers.

At first, we assume that A is unimodularly equivalent to Aj. If s = d + 1, then one
has (d +1)/p* =k, hence, d = p’k — 1. This is the case (1). Now, we suppose that
s #d+ 1. Let X be an element of Ax, with ht(x) = k. Then by Lemma 6.10, one has

x=[0,...,0,1/p,...,1/p | ,hence s = pk. Sety = | 1/p,...,1/p,1/p*,....1/p?
\ﬁ/—/%/_/ J/ 2

-~

d—s+1 s d:;+1 s
Since for any 1 < m < p — 1, ht(mx) = mk, we have ht(y) = pk. Hence it follows that

d—s+1=p*k—k,namely, d = p’k+ (p — 1)k — 1. This is the case (2).
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Next, we assume that A is unimodularly equivalent to A;. By Lemma 6.10, it follows
that for any 0 < i <d —2, a; € {0, p — 1}. Hence by reordering the coordinates of Ap,,
we can assume that Ay, is generated by

x=|1/p,...,1/p,0,...,0 | ; xo={0,...,0,1/p,...,1/p |,
—————— N — —_— ——
s d—s+1 s d—s+1

where 1 < s < |(d+1)/2]. Then since ht(x;) = k, one has s = pk. Moreover, since
ht(x;) = pk, we have d — s + 1 = p’k, namely, d = p’k + pk — 1. Therefore, This is the
case (3).

Conversely, in each case, it is easy to show that § (A7) =1+ K2k 4 t(Pz_')k, as
desired. U]

Proof of Theorem 6.6. By Theorem 5.3, we can suppose that A, is generated by

x=\1/p,....1/p,1/q,...,1/4,1/(pq),...,1/(pq) | ,

g g g

S1 $2 53

where 51 4 s + 53 = d + 1 with nonnegative integers s1,s2,53. If 51 = s = 0, since
ht(x) = k, one has d = pgk — 1. This is the case (1). If s3 = 0, we can assume that Ay is
generated by

x=|1/p,...,1/p,0,...,0 | ;x,={0,...,0,1/q,...,1/q |,
————— N — —— ——

S1 52 S1 2

with 51,52 > 0. Then it follows that ht(x;) = k and ht(x;) = pk, or ht(x;) = gk and
ht(x,) = k. Assume that ht(x) = k and ht(x,) = pk. Then one has s = pk and s, = pgk.
Hence since d = pgk + pk — 1, this is the case (2). Similarly, we can show the case (3).

Next we suppose that s1,s2,53 > 0. Let a be an element of Aj such that ht(a) = k.
By Lemma 6.10, we know that ord(a) # pg. Hence, it follows that ord(a) equals p
or g. Now we assume that ord(a) = p. By Lemma 6.10 again, a must be of a form

1/p,...,1/p,0,...,0,1/p,....1/p|. Let b= (by,...,bs41) be an element of Ax

S1 $2 53
such that ht(b) = pk. If there exists an index 1 <i < s; such that b; = n/p with an
integer 1 <n < p—1, then ht(b+ (p — 1)a) < ht(b) + (p — 1)ht(a). Since b+ (p —
1)a is different from 0,a,2a,...,(p—1)a,b,b+a,...,b+ (p —2)a, this contradicts to
that Ox(z) = 1 + 1k 4+ 12k ... 4 +(Pa-Dk  Hence one obtains b; = 0 for any 1 <i<sj.

Therefore, we can assume that b= | 0,...,0,¢/q,...,¢/q,m/q,...,m/q | for some
R/_/ [\ ~ '\

~
S1 $2 53
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positive integers ¢,m. Then whenever (g1,h1) # (g2,h2) with 0 < g;,¢0 < p—1 and
0<hy,hy <qg—1, gra+ h;b and ga+ hpb are different elements of Ax. Hence since
Sa(t) = 1415+ 1% 4 ... +4(Pa=Dk one has

ht(ga+ hb) = ght(a) + hht(b)

forany 0 < g<p—1and 0 <h < g—1. This implies that / = m = 1. However
since (p—1)/p+(g—1)/qg> 1, wehave ht((p—1)a+(¢g—1)b) < (p—1)ht(a) + (¢ —
1)ht(b), a contradiction. Therefore, it does not follow sy, 5,53 > 0.

Finally, we assume that s; = 0 and s, > 0. Then one has ht(¢x) = k, hence, s3 = pk.
Moreover, since ht(x) = pk, we obtain s, = (pg — 1)k. Therefore, this is the case (4).
Similarly, we can show the case (5).

Conversely, in each case, it is easy to see that §(A,1) =1 + 1k 2k g pPa=DE g
desired. O

6.3 The number of Gorenstein simplices

In this section, we consider how many Gorenstein simplices which have a given &-
polynomial of Problem 6.1.

Given positive integers v and k, let N(v,k) denote the number of Gorenstein simplices,
up to unimodular equivalence, which are not lattice pyramids over any lower-dimensional
lattice simplex and whose 8-polynomials equal 1 +#% 4% 4 ... + t"=Dk_For example,
by Corollary 5.1, N(p,k) = 1 for any prime integer p. Moreover, from Theorems 6.5
and 6.6, N(p?,k) = 3 and N(pgq,k) = 5 for any distinct prime integers p and q. How-
ever, in other case, it is hard to determine N(v, k). Therefore, our aim of this section is
to construct more examples of Gorenstein simplices of Problem 6.1 and to give a lower
bound on N (v,k).

The following theorem gives us more examples of Gorenstein simplces of Problem 6.1.

Theorem 6.11 ([52, Theorem 4.1]). Given a positive integer v, let A C R4 be a lattice
simplex of dimension d such that Ay is generated by

1/vi, o v, oy U va, v L v | € (R/Z)4F

Vv vV vV
S1 52 St

where 1 <vi <---<v,=vandforany 1 <i<t—1,v;|viy andsy,...,s; are positive
integers. Then §(A,t) = 1+t* 412 ... 1=V with a positive integer k if and only
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where vo = 1.

Proof. Let

Xo = l/vl,...,l/Vl,1/V2,...,1/\12,...,1/\/,,...,1/\/; G(R/Z)d+l,

Vv vV vV
S1 s S

and fori=1,...,t — 1, we set X; = v;Xg. Then it follows that

r—1
Ap = {ZcixiZC,‘EZ>0,0§C,‘§W+]/W—1 for i:(),...,t—l}.
i=0
. —_; Vi . .
Moreover, we obtain ht(x;) = —’s,-+j fori=0,...,t—1. Since

t—1
—
= Vit

ht(x;) = ht(‘f—ilxi_1> = %ht(xi_l) =S
i— i—

Vi Vi

for any 1 <i <t —1, it follows that forany 1 <i<t—1, s5; = ( )k and

Vi—1 Vit
Vi

sy = " kifand only if forany 0 <i <r— 1, ht(x;) = k. Hence we should prove
Vi—1 Vitl

that §(A,1) = 1+ +12* ... 4+0=Dkif and only if forany 0 < i <r— 1, ht(x;) =

Vi

k.

Vit1

At first, we assume that §(A,¢) = 1 +tk g2k 4 O-DE By Lemma 6.10, one
has ht(x,_;) = k. Suppose that for any n < i <t —1, ht(x;) = i

k with an integer
Vit1
1 <n<t—1. Thensince ht(Y'~) (viy1/vi— 1)x;) = (v /vy — 1)k, there exists an integer

n

. v
m with 0 < m < n— 1 such that ht(x,,) = ~Lk. Now, we assume that m < n— 1. Set
Vn

t—1
AN = {Cme—}—ZC,'X,'ZOSCi§Vi+1/Vi—1f0r i:m,n,n+1,...,t—1}.

i=n

Then one has {ht(x) :x € A’} = {j(k+1):j=0,...,(Viusr1vr)/(Vmva) — 1 }. However,

V. Vv 1% V.
Bt (X 1) :ht< ’”“xm) < (k) :( ] t)k.
Vm Vm VmVn
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. . .. . V .
and X, 1 is not in A/, a contradiction. Hence we obtain ht(x;_;) = Lk forany 0 <i <
Vi
t—1.

Conversely, we assume that for any 0 <i <7 — 1, ht(x;) = L/’c. Since for any ¢; with
Vit+1

0 < ¢ < vigr/vi— Lht(Xg eixi) = Yi-g ciht(x;), one has S(A,1) = 1+ 5+ +... 4

t(vfl)k, as desired. O

By Theorems 6.11, we can answer to Problem 6.1 when v is a power of a prime integer
and the associated finite abelian group is cyclic, namely, it is generated by one element.

Corollary 6.12. Let p be a prime integer, { and k positive integers, and let A C R? be
a lattice simplex of dimension d such that A, is cyclic and §(A,t) = 1+ tF 12k ... 4
¢(P' =Dk, Suppose that A is not a lattice pyramid over any lower-dimensional lattice
simplex. Then there exist positive integers 0 < ¢} < --- < {; =Vl and s1,...,s; such that
the following conditions are satisfied:

e [t follows that
B (pi=tr —pt=t)k, 1<i<r—1
Si - ‘gfftflk ;s —
Pk, =5

where £y = 0O;
o Ap is generated by

1/p", P p, 1 P11 pt | e (R/Z)!

~~ ~~ ~~
§1 52 St

for some ordering of the vertices of A.

Now, we consider to give a lower bound on N(v,k). Given positive integers v and &,
let M(v,k) denote the number of Gorenstein simplices, up to unimodular equivalence,
which are appeared in Theorem 6.11. Then one has N(v,k) > M(v,k). By Theorem
6.11, we can determine M(v,k) in terms of the divisor lattice of v. Given a positive
integer v, let D, the set of all divisors of v, ordered by divisibility. Then D, is a partially
ordered set, in particular, a lattice, called the divisor lattice of v. We call subset C C D,
a chain of D, if C is a totally ordered subset with respect to the induced order.

Corollary 6.13. Let v and k be positive integers. Then M(v,k) equals the number of
chains from a non-least element to the greatest element in D,. In particular, one has

M(v, k) = ZneDv\{v} M(l’l, k).

This corollary says that M (v, k) depends on only the divisor lattice D,,. In particular, let-
ting v = p‘l" -+« pi* with distinct prime integers py,.. ., p; and positive integers ay, . . ., ay,
M (v,k) depends on only (ay,...,a).
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Finally, we give examples of M (v, k).

Example 6.14. (1) Let v = p’ with a prime integer p and a positive integer £. Then from
Corollary 6.13, we know that M(v,k) equals the number of subsets of {1,...,¢—1}.
Hence one has M (v,k) =2/~

(2) Letv = py--- ps, where py,..., p; are distinct prime integers. From Corollary 6.13,
we know that M(v,k) depends on only 7. Now, let a(t) = M(v,k), where we define
a(0) = M(1,k) = 1. Then one has

at) =Mk = Y M(n,k):1+Zg(Z)M(pl---p,-,k):gc)a(i).

neD,\{v}

We remark that a(t) is the well-known recursive sequence ([79, A000670]) which is
called the ordered Bell numbers or Fubini numbers.
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Chapter 7

Gorenstein polytopes with trinomial
0-polynomials

In this chapter, we finish the complete classification of all lattice polytopes that are not
lattice pyramids and whose J-polynomial is palindromic and has precisely three terms
(Theorem 7.6). In the case of degree two, this was already done by Batyrev and Juny
[8]. Here, we only consider the case when the degree is strictly larger than two. In
this situation, the lattice polytope is necessarily an empty simplex, and we can apply
methods and results of Batyrev and Hofscheier [6, 7]. Since the precise formulation
of Theorem 7.6 needs some more notation, let us describe here only two immediate
consequences. First, the complete characterization of palindromic §-trinomials:

Corollary 7.1. Letd > 2, m > 2 and k > 1 be integers. The polynomial 1+ (m —2)t* 4
1% is the §-polynomial of a lattice polytope of dimension d if and only if the integers
k,m,d satisfy one of the following conditions:

(1) k=1,3<m<9andd =2;

2) k=1,2<m<9andd > 3;

(3) k>2, me{3,4,6,8} andd > 3k—1;

4) k=23a,m=2"andd > 4k — 1, where a > 1 and £ > 4

(5) k=32 m=3"andd > 3k—1, where a > 1 and { > 3.

The case kK = 1 was already known, as described in Section 2.6.
Secondly, Theorem 7.6 implies the following uniqueness result:

Corollary 7.2. A lattice simplex A that is not a lattice pyramid is uniquely determined
by its dimension and its §-polynomial if it is of the form 1 + (m — 2)t* + 2% with k > 2.
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Let us note that for k > 2 any of these lattice simplices that are not lattice pyramids have
dimension 3k — 1 or 4k — 1, see Theorem 7.6.

This chapter is organized as follows. In Section 7.1 we recall the notation and results
by Batyrev and Hofscheier. In Section 7.2 we present and prove the main result of this
chapter (Theorem 7.6): the classification of Gorenstein polytopes with -trinomials of
degree > 3. Finally, in Section 7.3, we discuss a future problem.

7.1 The approach by Batyrev and Hofscheier

In this section, we summarize results by Batyrev and Hofscheier from [6] and [7] which
play a crucial role in our proof of Theorem 7.6.

First, let us describe their generalization of White’s theorem.

Theorem 7.3 ([6]). Let k > 2 and let A be a lattice simplex of dimension 2k — 1 with
Vol(A) = m which is not a lattice pyramid. Then the following statements are equiva-
lent:

(a) the 8-polynomial of Ais 1+ (m — 1)t*;

(b) A is isomorphic to the Cayley polytope A} x - - - x Ay, of empty simplices A; C R* of
dimension I;

(¢) Aaiscyclic and generated by (ay/m,(m—ay)/m,...,ax/m,(m—a;)/m) € (R/Z)*
after reordering, where each 0 < a; < m/2 is an integer which is coprime to m.

Batyrev and Hofscheier use the language of linear codes to consider the case d > 2k — 1.
A linear code over ), with block length n is a subspace L of the finite vector space [
(where p is a prime). A € IF;;X” (an r X n matrix with entries in I¥),) is the generator
matrix of such an r-dimensional linear code L if the rows of A form a basis of L.

Definition 7.4. Fix a natural number r and a prime number p. Letn = (p" —1)/(p—1)
be the number of points in (» — 1)-dimensional projective space over F,. Consider
the r x n matrix A € F}" whose columns consist of nonzero vectors from each 1-
dimensional subspace of F},. Then A is the generator matrix of the simplex code of
dimension r over [F,, with block length 7.

Theorem 7.5 ([7]). Let d > 3 and let A be a lattice simplex of dimension d which is not
a lattice pyramid. Let the 8-polynomial of A be 1+ (m — 1)t for some m > 2 and 1 <
k < (d+1)/2. Then there exists a prime number p such that every non-trivial element
of Aa has order p. In particular, Ax can be identified with pAx C {0,...,p—1}4*1 a
linear code over ), with block length d + 1. The order m of Ay is equal to p", where
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the positive integer r is the dimension of the linear code pAp. The numbers p,d k,r are
related by the equation

(P =P (d+1)=2k(p"—1). (7.1)

A generator matrix of the linear code pAy is given (up to permutation of the columns)
by the rows in the following r x (d 4+ 1) matrix:

(A,...,A)ifp=20r (A,—A,...,A,—A) if p>2,

where A is the generator matrix of the r-dimensional simplex code over ¥, and A (resp.
the pair (A,—A)) is repeated k /2"~ (resp. k/p"~") times if p = 2 (resp. if p > 2).

Let us note that also the converse of the theorem holds, so the linear codes defined
by the generator matrices given in the theorem correspond to lattice simplices with
O-polynomial 1+ (p" — 1)tk if the numerical condition (7.1) holds, see also [7, Propo-
sition 5.2].

7.2 The classification of lattice polytopes with palindromic
O-trinomials

If B is a matrix, we denote by (B,0) the matrix with one additional zero column. The
following is the main result in this chapter.

Theorem 7.6 ([54, Theorem 3.1]). Let m > 3 and k > 2 be integers and let A be a
(necessarily empty) lattice simplex of dimension d whose 3-polynomial is 1+ (m —
2)tk + 12K Assume that A is not a lattice pyramid over any lower-dimensional simplex.
Then the integers k,m,d satisfy one of the following:

(@) me{3,4,6,8} andd=3k—1orm=4andd =4k —1;

() k=23a, m=2"andd =2""'a—1, where a > 1 and { > 3 with (a,£) # (1,3);

(c) k=3"2a, m=3"andd =3"'a—1, where a > 1 and { > 2 with (a,{) # (1,2).
Moreover, in each case, a system of generators of the finite abelian group Ay is the set

of row vectors of the matrix which can be written up to permutation of the columns as
follows:
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(a)

(1/31/3 ---1/3) € (R/Z)"*3*  in the case m = 3;

1/4 - 1/41/2---1/2 | € (R/Z)"3*  in the case m = 4 with d = 3k — 1;

2% b

1/2 - 1/2 0 --- 0

1/2 - 1/2 1/2 -+ 1/2 | € (R/2)** inthe case m = 4 with d = 4k — 1;
2% 2%

1/6 - 1/6 1/3---1/31/2---1/2 | € (R/Z)"3* in the case m = 6;

-~ -~ -~

k k k
/2 - 1/2 o -- 0o 1/2 -~ 1/2
1/4 - 1/4 1/4 - 1/4 1/2 - 1/2 | € (R/Z)**** inthe case m = 8.
* & *

(b)

82,00 (2,00 - (82,0 2o

€ (R/Z) :
1/2 . e 1/2

where Aﬁ)l € {0, 1}\E=DxC" 1) s the generator matrix of the simplex code over

F» of dimension (£ — 1) with block length (2= —1) andBlgzj1 € {0, 1/2}(5_1“(2“1—1)

is the matrix all of whose entries are divided by 2 from those of Aéz_)l, and where

in above matrix (Béz_)lao) € {0, 1/2}(571)“(7l is repeated a times.
(c)

3 3 3 3 3 3
(nglv_Béjlvo) (Bg217_3§2170) (BEJD_BEJI’O) c (R/Z)Exﬂ_la
1/3 . 1/3 ’

where Af_)l €40, 1,2}(€*1)X(3€71’1)/2 is the generator matrix of the simplex code

over F3 of dimension (¢ — 1) with block length (3'=' — 1)/2 and
- -

B €{0,1/3,2/3} V02 (regp, —B) € 0,2/3,1/3} B0

is the matrix all of whose entries are divided by 3 from those of Af’_)l (resp.

_Af_)l), and where in above matrix (323_)1,—323_)1,0) e {0, 1/372/3}(6—1)X3€—1
is repeated a times.

Example 7.7. In case (b) for k = 2 and ¢ = 3 the rows of the following matrix generate
Ap of size m = 8:
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1/2 0 1/2 0 1/2 0 1/2 0
0 1/2 1/2 0 0 1/2 1/2 0
12 1/2 1/2 1/2 1/2 1/2 1/2 1/2

In case (c) for k = 2 and ¢ = 2 the rows of the following matrix generate Ap of size
m=09:

1/3 2/3 0 1/3 2/3 0
(1/3 1/3 1/3 1/3 1/3 1/3)

In this section, we prove Theorem 7.6.

7.2.1 Preliminary results

For the proof of Theorem 7.6, we prepare some lemmas. Throughout this section, let A
be a lattice simplex of dimension d whose §-polynomial equals 1+ (m — 2)t* 41 with
k > 2 and m > 3. Note that A is necessarily empty.

For x = (xp,...,Xg) € Aa, let supp(x) = {i: x; # 0}. The following equality will be
used throughout:
| supp(x)| = ht(x) + ht(—x).

Lemma 7.8. Let x € Ap be an element whose orderisnandlet 1 < j <n—1 be coprime
to n. Then we have supp(x) = supp(jx). Hence,

ht(x) +ht((n — 1)x) = ht(jx) +ht((n — j)x).

Proof. Leti € supp(x), x; = § # 0 with gcd(a,b) = 1. By the definition of r, we observe
that b divides an, so also n. Hence, gcd(b, j) = 1. Therefore, b does not divide ja, so
i € supp(jx). O

Lemma 7.9. Let X € Ap be the unique element with ht(x) = 2k. Then,

(@) foranyy = (yo,...,ya) € Aa\{0, X}, we have |supp(y)| = 2k;
(b) there is no integer j andy € Ap\ {0, X} such that x = jy.
Proof. (a) Since ht(y) = k, ht(—y) =k, and y # x # —y, we have

2k = ht(y) +ht(—y) = [supp(y)|-
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(b) For any integer j and y € Ap \ {0,%x}, since |supp(y)| = 2k by (a), we have
|supp(jy)| < 2k. However, by |supp(x)| > ht(x) = 2k, x = jy never happens. O
The following proposition is crucial for the proof of Theorem 7.6.

Proposition 7.10. Let A be a lattice simplex which is not a lattice pyramid whose 0-
polynomial is 14 (m—2)t* +1*) withm > 3 and k > 2. Let x € A be the unique element
with ht(x) = 2k. Then the order of X must be 2 or 3 or 4 or 6, and up to permutation of
coordinates x is given as follows:

o x=(1/2,...,1/2) € (R/Z)* when its order is 2;

o x=(2/3,...,2/3) € (R/Z)* when its order is 3;

o x=(3/4,...,3/4,1/2,...,1/2) € (R/Z)** when its order is 4;

2% k
o x=(5/6,...,5/6,2/3,...,2/3,1/2,...,1/2) € (R/Z)* when its order is 6.
& x &

In particular, the dimension of A is 4k — 1 if the order of X is 2 and 3k — 1 otherwise.

Proof. Let m' > 2 be the order of x. Suppose that m' =5 or m’ > 7. Then @(m') > 2,
where ¢ is the Eulerian @-function. In particular, there exists an integer 2 < j < m' —2
which is coprime to m’. By Lemma 7.8 and —x # X, we obtain

3k = ht(x) + ht((m' — 1)x) = ht(jx) +ht((m’' — j)x) = 2k,
implying that k = 0, a contradiction. Thus, m’ < 6 and m’ # 5. Hence, m’ € {2,3,4,6}.

m’ = 2: Then each x; is 1/2 or 0. From ht(x) = 2k, we have x = (1/2,...,1/2,0,...,0)
T \—\S,—/
after reordering. Fix y € Ax \ {0,x} and let ¢ = |(supp(y)| \ supp(x)). Since |supp(x+
y)| = 2k by Lemma 7.9 (a), we have 2k = |supp(x+y)| = 4k — k' + ¢, where k' =
[{i € supp(x) Nsupp(y) : y; = 1/2}|. Hence, k' —q = 2k. On the other hand, since
|supp(y)| = 2k, we also have k' 4+ g < 2k. Thus, ¢ <0, i.e., ¢ = 0. This means that
supp(y) C supp(x). Hence, if s > 0, then A is a lattice pyramid by Lemma 2.8, a
contradiction. Thus s = 0 and we conclude that x = (1/2,...,1/2) € (R/Z)*.

m’ = 3: Then each x; is 1/3 or 2/3 or 0. It follows from ht(x) = 2k and ht(—x) =
k that x = (2/3,...,2/3,0,...,0) after reordering. Fix y € Ap\ {0,£x} and let ¢ =
————— N——

k1 + g, where k; = |{i € supp(x) Nsupp(y) : yi = 1/3}|. Hence, k; — g = k. Similarly,

3k s
|(supp(y)| \ supp(x)). Since |supp(x+y)| = 2k, we have 2k = |supp(x+y)| = 3k —
|
)| = 2k, we have 2k = |supp(2x +y)| = 3k — ky + g, where k, =

since |supp(2x +y
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[{i € supp(x) Nsupp(y) : yi = 2/3}|. Hence, ky — g = k. On the other hand, since
|supp(y)| = 2k, we also have k; +k, + g < 2k = k| + ko —2q. Thus, ¢ <0, i.e., g =0,
implying that s = 0. Hence we conclude that x = (2/3,...,2/3) € (R/Z)**.

m’ =4: Then each x;is 1/4 or 1/2 or3/4 or 0. For j=1,2,3,letq; = |{i: x; = j/4}|.
Since ht(x) = (g1 + 292 + 3¢3) /4 = 2k, ht(2x) = (g1 +¢3)/2 = k and ht(3x) = (3¢q; +
2g>+q3)/4 =k, we obtain ¢q; =0, g» = k and g3 = 2k, that is,

x=(3/4,...,3/4,1/2,...,1/2,0,....0
(3/ o /4,1/ o /2 )
2k k s

after reordering. Fix y € Ap\ {jx:j=10,1,2,3} and let ¢ = |(supp(y) \ supp(x))|.
Let k;j = |{i € supp(x) Nsupp(y) : x; = 3/4,y; = j/4}| for j=1,2,3 and let k' = |{i €
supp(x) Nsupp(y) : x; = y; = 1/2}|. Since |supp(x+y)| = |supp(2x+Yy)| = | supp(3x+

y)| = 2k, we have the following:
o 2k =|supp(x+y)|=2k—k +k—K +q,ie,k+q=k +k,;
o 2k =|supp(2x+Yy)| >2k—ky+k +q,ie., kK +q<ky;
o 2k = |supp(3x+y)|=2k—k3+k—k +q,ie,k+qg=ki+Kk.

In particular, we have 2k + 3q < k; +ky + k3 + k". On the other hand, since |supp(y)| =
2k, we have ki + ko + k3 + k' + g < 2k. Thus we obtain

2k+4q <ki+ky+ks+k +q <2k

This means ¢ = 0, and thus, s = 0. Hence we conclude thatx = (3/4,...,3/4,1/2,...,1/2) €
2% b

2k

(R/7Z)3 after reordering.

m’ = 6: Then each x; is 1/6,1/3,1/2,2/3,5/6 or 0. For j =1,2,3,4,5, letq; = |{i:
x; = j/6}|. Then

ht(x) = (g1 +2q2 +3q3 +4q4 +5¢5) /6 = 2k,
ht(2x) = (q1 +292+q4 +2q5) /3 =k,

ht(3x) = (q1 +¢3+95)/2 =k,

ht(4x) = (2q1 +q2+294+¢q5)/3 =k and
ht(5x) = (5q1 +492 + 393 +2q4+q5) /6 = k.

Thus g1 = g» =0 and g3 = q4 = g5 =k, that is,

x=(5/6,...,5/6,2/3,...,2/3,1/2,...,1/2,0,...,0
(3/6.5/6.2/3, 231/ 1/2,0....0)
k k k s
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after reordering. Fixy € Ap\ {jx:j=0,1,2,3,4,5} and let g = |(supp(y) \ supp(x))|.
Let

k] = |{l € supp(x)ﬂsupp(y) L= 5/6,)’, :]/6}| fij: 1727374757
K; = |{i € supp(x) Nsupp(y) : x; = 2/3,y; = j/3}| for j = 1,2,
K" = |{i € supp(x) Nsupp(y) : x; = yi = 1/2}|.

Since | supp(jx+y)| = 2k for j = 1,2,3,4,5, we have the following:

 2k=|[supp(x+y)| =k—ki+k—kj+k—K'+q.ic.k+q=k+k+k";

2k = |supp(2x+y)| > k—ko+k—ky+ K" +q,ie . k" +q <k +kb;

2k = |supp(3x+y)| > k—ks+ k| +ky+k—K'+q,ie., k| +k+q < ks +k";

2k = |supp(4x+y)| > k—ks+k—K +k"+q,ie, k" +q < ks +Kki;

2k = |supp(5x+y)| =k —ks+k—ky+k—K'+q,ie. . k+qg=ks+k,+k".

By summing up these five inequalities, we have 2k +5q < ky +-- -+ ks + k| + k), + k.
On the other hand, since |supp(y)| = 2k, we have ky +--- + ks + k| + k5 + k" + g < 2k.
Thus we obtain

2k +6q <ki+--+ks+ky+k+k"+q <2k
This means g = 0, and thus, s = 0. Hence we conclude that

x=(5/6,...,5/6,2/3,...,2/3,1/2,...,1/2) € (R/Z)*
* * &

after reordering. O]

As a corollary of this proposition, we obtain the following:

Corollary 7.11. Let m > 3 and k > 2 be integers. Let A be a lattice polytope with
8(A,t) = 1+ (m—2)tk+1?*. Assume that Ay is a cyclic group. Then m must be 3 or 4
or 6. Moreover, the generator of A looks as follows:

o (1/3,...,1/3) € (R/Z)* or its inverse when m = 3;

o (1/4,...,1/4,1/2,...,1/2) € (R/Z)%* or its inverse when m = 4;

2% k

o (1/6,...,1/6,1/3,...,1/3,1/2,...,1/2) € (R/Z)%* or its inverse when m = 6.
k b k
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Proof. Let x € Ap be the unique element with ht(x) = 2k. By Lemma 7.9 (b), x and its
inverse must be a generator of Ax. On the other hand, by Proposition 7.10 and m > 3,
m is 3 or 4 or 6. The form of x follows directly from Proposition 7.10. [

7.2.2 Proof of Theorem 7.6

Let A be an empty simplex whose 8-polynomial equals 1+ (m — 2)t* + ¢ for given
integers m > 3 and k > 2.

By Corollary 7.11 we can assume that Ay is not cyclic. Namely, we assume that there
is a group isomorphism

() 1 AA— Z/m1Z X+ X Z/I’I’ng,
where ¢ > 2, m; € Z>, and m; divides m;; foreach 1 <i</—1.

Let x € Ay be the unique element with ht(x) = 2k. Then there is x\) € Z/m;Z for
each 1 <i < ¢ such that o(x) = (x,... V) € Z/m\Z x --- x Z/m/Z. Let S = {i €
{1,...,0} : xY) £ 0}. Then S # 0.

We will split the proof into two cases.

7.2.3 Thecase? >3

First, we consider the case ¢ > 3.

Assume that |S| > 1. Then there are ¢ and ¢’ in S such that g # ¢'. Let
G=0¢ " (Z/mZx - xT/my1Zx{0} x Z/my\Zx -+ x L/myZ).

Then G is a subgroup of A, not containing x. Let Ag C RY be a lattice simplex such
that Ap, = G. Since we have ht(y) = k for each y € G\ {0}, the §-polynomial of Ag
equals 1+ (|G| — 1)¢k. Moreover, since £ > 3, G is not cyclic. Although Ag might be a
lattice pyramid, the structure of Ag (equivalently, G) is known by Theorem 7.3 or 7.5.
Since G is not cyclic, Ag is the case of Theorem 7.5. In particular, there are a prime
number p and a positive integer r such that G = (Z/pZ)". Hence, m| = --- =my_| =
My =~ =my=pand r ={—1. Similarly, let

G — q)fl(z/mlz XX Lfmy (LXA{0} X Lfmy \Lx - X L/ myZ).

Then the same discussion as above shows that there is a prime number p’ such that
my=--=my_| =myy =---=my=p. Since £ >3 and g # ¢, we conclude that
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my=---=my = p(=p), that is, Ap = (Z/pZ)*. Moreover, since the order of x € A
is 2 or 3 or 4 or 6 by Proposition 7.10, p should be 2 or 3. Therefore,

Ap = (Z)27)" or Ay = (Z./3Z)".

In each case, there is another isomorphism ¢’ : Ay — (Z/bZ)", where b = 2 or b = 3,
such that ¢'(x) = (0,...,0,1) € (Z/bZ)".

Hence, we can assume the case |S| = 1. By Lemma 7.9 (b) and [S| = 1, ¢@(x) gener-
ates one direct factor of ¢(A,) and so does @(—x). For the remaining direct factors,
the same discussions as above can be applied. Therefore, ¢(A,) must be one of the
following (non-cyclic) groups:

() (2/27)"

(i) (Z/27)"~' x Z./4Z;

)
-
Gil) (Z/27)"' xZ/61Z;
(iv) (Z/32)"
)

™) (Z/32)' x Z/67.

Here, we assume that ¢(x) belongs to the last direct factor.

By the discussions below, we verify the cases (i) and (iv) can happen but the cases (ii),
(iii) and (v) never happen.

The case (i): Let us consider the subgroup G' = ¢~ '((Z/27)""! x {0}) of Aa, where
x & G'. Then it follows that we have ht(y) = k foreachy € G'\ {0}. By Theorem 7.5, we
know the system of generator of G’ as follows: let A’ be the lattice simplex of dimension
d’ < d which is not a lattice pyramid such that Ay = G’ after taking (d — d')-repeated
lattice pyramids. Then the system of generators of Ay is the set of the row vectors of
the matrix

B?,,....B?)),

where Aéz_)l € {0, 1}(6_1)”2(71_1) is the generator matrix of the simplex code over [,

k(21—
of dimension (¢ — 1) with block length (2=! — 1) and Bﬁ)l € {0, %}(Z Dx@ D g

the matrix all of whose entries are divided by 2 from those of A((i)I, and where Béi)l S
_ -1

{0, %}(6 D25 repeated k/2¢~3 times.

Leta = k/2€_3. Then k =2 3g and a > 1. By Theorem 7.5, we know the relation

2072 (d' +1) =2k(27 1 —1) =222 - 1).
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Thus d’' +1=a(2"' —1).

On the other hand, since the order of x is 2 in this case, we have |supp(x)| =4k =d + 1
by Proposition 7.10. Therefore,

d+1—(d +1)=2"1a—a" ' -1)=a.

Consequently, in this case, we have m = 26 k=23gandd =4k —1=2""1a—1 with
a > 1 and / > 3 and the system of generators of Ay is the set of row vectors of the matrix

( (Bgz—)lvo) (32?170) (Béi)lvo))e(R/Z)ka
1/2 1/2 1/2

up to permutation of the columns. This is the case (b) of Theorem 7.6.

The cases (ii) and (iii): Let G’ be the same thing as the case (i) above.

Since the order of x is 4 or 6, we have d + 1 = 3k by Proposition 7.10. Takey € G’ \ {0}.

Since the order of y is 2, we have y = (1/2,...,1/2,0,...,0) € (R/Z)* after reordering.
2%k k

By |supp(x+y)| = 2k, |{i € supp(x) Nsupp(y) : x; = 1/2}| should be k. Similarly, for

y € G'\ {0} with y #y’, one has |{i € supp(x) Nsupp(y’) : x; = 1/2}| = k. Recall that

[{i € supp(x) : x; = 1/2}| = k by Proposition 7.10. Thus, |supp(x+y+Yy')| = 3k, a

contradiction.

The case (iv): Let us consider the subgroup G’ = ¢~ ((Z/37)~! x {0}) of Aa, where
x & G'. Let A’ be a lattice simplex of dimension d’ < d which is not a lattice simplex
such that Ay = G’ after taking (d — d’)-repeated lattice pyramids. Then the system of
generators of Ay is the set of the row vectors of the matrix

(87, -BY)),.... B, ~B)),

where Agi)l € {0,1,2}(=DxB"7"=1)/2 i the generator matrix of the simplex code over

_ =1_
F5 of dimension (¢— 1) with block length (3¢~1 —1)/2and B, € {0,1,2}(1)*C =172

1373
_ —1_
(resp. —3153,)1 € {0, %,% (== E =0/ 2) is the matrix all of whose entries are divided

by 3 from those of A?_)l (resp. —Agf_)l), and where in above matrix (Bgi)l, —Bgs_)l) €

{0,1,2y(=0xE D)

31 % is repeated (k/3°~?) times.

Leta = k/3£_2. Then k =3 2g and a > 1. By Theorem 7.5, we know the relation
(B =3 (d +1) =2k(3" " 1) =2-3"24(3 1),
Thus d’ +1=a(3"' -1).
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Since the order of x is 3, we have | supp(x)| = 3k = d + 1 by Proposition 7.10. Therefore,
d+1—(d' +1)=3""1a—a3" ' -1)=ua

Consequently, in this case, we have m = 36, k=3"2gandd =3k—1=3""1a—1 with
a > 1 and ¢ > 3 and the system of generators of Ay is the set of row vectors of the matrix

(B§?17_Bé3—)170) (BES—)N_B?—)VO) (Bf_)l,—Bg’_)].O) G(R/Z)fﬁk
1/3 1/3 1/3

up to permutation of the columns. This is the case (c) of Theorem 7.6 with £ > 3.

The case (v): Let G’ be the same thing as the case (iv).

Takey € G'\ {0}. Theny=(1/3,...,1/3,2/3,...,2/3,0,...,0) after reordering. Since
y e G\ {0} y=(1/ /3,2/ /3 ) g

-~ -~

k k k
tsupp(x+y) = 2k, |{i € supp(x) Nsupp(y) : x; =2/3,y; = 1/3}| should be k. Thus, we
have supp(x + 2y) = 3k, a contradiction.

7.24 Thecase/ =2

Next, we consider the case ¢ = 2.

Let G; = ¢ 1 (Z/mZ x {0}) and G, = ¢~ 1 ({0} x Z/myZ). Clearly, either G| or G,
does not contain x, say, G;. Then we have ht(y) = k for eachy € G| \ {0}. By Theorem
7.3, Gy is generated by (aj/my, (mg—ay)/my,...,ax/mg,(mg—ai)/my,0,...,0) € G
after reordering, where m, = |G| and each g; is an integer with 0 < a; < m,/2 which
is coprime to my. Let g = (ai/my, (mg —ay)/my,...,ar/my, (mg —ay)/my,0,...,0) €
(R/Z)d+1.

Let o(x) = (x),x?)) € Z/m|Z x Z/my 7, where 0 < x\)) < m; —1 fori=1,2.

The case where the order of x is 2: Thenx = (1/2,...,1/2) € (R/Z)* and d + 1 = 4k
by Proposition 7.10. Since |supp(x + g)| = 2k, we obtain that m; =2 and a; = 1 for
each i.

Assume that x(!) # 0 and x2) # 0. Let g; and g, be the generators of G| and G»,
respectively, such that x = x(Vg; +x®g,. Since |supp(x(Vg;)| = |supp(xPg,)| =
2k and x = (1/2,...,1/2) € (R/Z)*, g; and g, look like (1/2,...,1/2,0,...,0) after

2k 2%k
reordering and we also have x(!) = x(2) = 1. In particular, ¢(Ay) = (Z/27)%. Thus
there is another isomorphism @' : Ay — (Z/27)? such that ¢/(x) = (0,1) € (Z/27Z)>.
Hence we can deduce the case where x!) = 0 or x(2) = 0.
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Assume that x!) = 0 or x®) = 0. Then x generates one direct factor of Ax. Hence the
system of generators of Ay is the set of row vectors of the matrix

/2 - 1/2 o ... 0
1/2 ]/2 1/2 1/2 G(R/Z)2X4k

S

g g

2k 2k

after reordering. This is the case (a) with m =4 and d = 4k — 1 of Theorem 7.6.

The case where the order of x is 3: Then x = (2/3,...,2/3) € (R/Z)3* by Proposition
7.10. Since | supp(x + g)| = 2k, we obtain m, = 3 and a; = 1 for each i.

Assume that x(!) # 0 and x2) = (. By the similar discussions to the above, we see that
©(Ap) = (Z/3Z)?. Thus there is another isomorphism ¢’ : Ay — (Z/37)? such that
@'(x) = (0,1) € (Z/37)?. Hence we can deduce the case where x(!) = 0 or x(2) = 0.

Assume that x(!) = 0 or x(2) = 0. Then each of x and —x generates one direct factor of
Ax. Hence we obtain that the system of generators of A, is the set of row vectors of the
matrix

1/3 -~ 1/3 2/3 -~ 2/3 0 -~ 0
1/3 - 1/3 1/3 -~ 1/3 1/3 - 1/3 | e (R/Z)>3F,

.

g

k k k

This is the case (c) with / = 2 of Theorem 7.6.

The case where the order of x is 4: Then x = (3/4,...,3/4,1/2,...,1/2) € (R/Z)* by

N~ ~~

2%k k
Proposition 7.10. Let k; = [{i € supp(x) Nsupp(g) : x; = 3/4,g; = j/4}| for j=1,2,3

and k' = |{i € supp(x) Nsupp(g) : x; = g; = 1/2}|. Since |supp(x+g)| = | supp(2x +
g)| = |supp(3x+g)| = 2k, similar to the proof of Proposition 7.10, we obtain k; + k' =
k3 +k' = k and k, > k’. Thus we have k| + ky + k3 + k' > 2k. On the other hand, since
|supp(g)| = 2k, we also have kj +kp + k3 + k' < 2k. Hence ky +ky + k3 + k' = 2k.
Moreover, since |supp(2x + 2g)| = 2k, one has |supp(2x + 2g)| = 2k — k; — k3 = 2k.
Thus k; = k3 = 0. Hence it follows from ky +k' = ks +k' =k that kh = k' = k. In
particular, g looks like (1/2,...,1/2,0,...,0) € (R/Z)* after reordering and has order
— =

2k k
2.

Assume that x(!) = 0 and x2 # 0. each generator of G| and G» has order 2, we obtain
that Ap = (Z/27)%. However, (Z/27,)? does not contain any element with order 4, a
contradiction.
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Hence x!) = 0 or x®) = 0. Then each of x and —x generates one direct factor of Ay.
Thus we see that the system of generators of Ay is the set of row vectors of the matrix

12+ 1/2 0 - 0 1/2 - 1/2
1/4 - 1/4 1/4 - 1/4 1/2 - 1/2 | e (R)Z)>*.

g

k k k

This is the case (a) with m = 8 of Theorem 7.6.

The case where the order of x is 6: Thenx=(5/6,...,5/6,2/3,...,2/3,1/2,...,1/2) €
Vv Vv \I:

k k

(R/7Z)3 by Proposition 7.10. Let

kj = [{i € supp(x) Nsupp(g) : x; = 5/6,g; = j/6}| for j =1,2,3,4,5,
k; = |{i € supp(x) Nsupp(g) : x; = 2/3,8i = j/3}| for j=1,2,
k" = |{i € supp(x) Nsupp(g) : x; = gi = 1/2}|.

Since | supp(x+g)| = -- =|supp(5x+g)| = 2k, similar to the proof of Proposition 7.10,
we see that kj + - -- + ks + k| + k5 + k" > 2k. On the other hand, since |supp(g)| = 2k,
we also have kj + - -+ + ks + k| + k5, + k" < 2k. Hence, ky + -+ ks + k| + kb + k" = 2k.

Moreover, since |supp(x+ 2g)| = | supp(x+4g)| = 2k, one also has
2k = | supp(x +2g)| = k+k — k5 + k and 2k = |supp(x +4g)| = k+k— k| +k.

Hence k = k| = k. Then it follows that 2k = k| + &} < |{i € supp(x) : x; =2/3}| =k,
a contradiction.

Therefore, we conclude that the order of x is never 6 when Ax has exactly two direct
factors. This finishes the proof of Theorem 7.6.

7.3 Future work

It is known [31] that there exists a function f in terms of the degree k and the leading
coefficient b of an §-polynomial of a lattice polytope A such that Vol(A) < f(b,k). In
the situation of Corollary 7.1 (where b = 1) one observes that A satisfies m < 9. In
other words,

Vol(A) < gdeg(A).

Moreover, equality implies k = 1 and so as described in (2) above A is isomorphic
to a lattice pyramid over conv({(0,0),(3,0),(0,3)}). Now, having seen how Scott’s
theorem could be generalized from dimension two to degree two [89], we make the
following guess about a more general class of §-trinomials:
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Conjecture 7.12. Let A be a lattice polytope with 8-polynomial 1+ at* +bt* and b > 2.
Then a+b+1 < (4b+4)k, or equivalently,

4b+4

Vol(A) < deg(A).
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Part 11

Constructions of new classes of
reflexive polytopes
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Chapter 8

Introduction to Grobner bases

In this part, we will consider constructions of new classes of reflexive polytopes. Re-
flexive polytopes are interesting objects in commutative algebra, combinatorics, toric
geometry and mirror symmetry. Hence, to find large classes of reflexive polytopes is an
important problem.

In order to show that a lattice polytope is reflexive, we use the theory of Grobner bases
and toric ideals. In this chapter, we recall basic materials and notation on toric ideals.

Let K[x| = K|[x],...,x,] be the polynomial ring in n variables over a field K with each
degx; = 1 and let ./, denote the set of monomials in the variables xi,...,x,. We say
that a monomial x?‘ - x8n divides x?‘ ---xz" if one has a; < b; for all 1 <i < n. Recall
that a partial order on a set P is a relation < on P such that for all x,y,z € P one has

(1) x < x (reflexivity);
(i) x <yandy < x = x =y (antisymmetry);
(iii) x <yandy <z = x <z (transitivity).
It is custom to write x < y if x <y and x # y. A partially ordered set (poset, for short)
is a set P with a partial order < on P. A total order on P is a partial order < on P such
that, for any two elements x and y belonging to P, one has either x <y or y < x. We
recall that a monomial order on K[x] is a total order < on .#, such that
(1) 1 <uforall 1 #u€ . #,;
(ii) if u,v € A, and u < v, then nw < vw for all w € .%,,.

We give an example of a monomial order. Let <,y be the total order on .7, by setting
x{a5% X <pey xlf‘xlz’2 .- xbn if either (i) Yo ai <Yl bjor(i)Y; a=Y" b and
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the rightmost nonzero component of the vector (b; —ay,by —ay,...,b, —ay,) is negative.
Then <,ey is @ monomial order on K[x] and is called the reverse lexicographic order on
K[x] induced by the ordering x, <rey - - <rey X]. A reverse lexicographic order is also
called a graded reverse lexicographic order.

We will work with a fixed monomial order < on K[x|. Let f be a polynomial in K[x].
The initial monomial in- (f) of f with respect to < is the biggest monomial with respect
to <. Let I be a nonzero ideal of K[x|. The monomial ideal generated by {in-(f) : 0 #
f €1} is called the initial ideal of I with respect to < and is written as in< (/). In
general, even if I = ({f} }1ea), it is not necessarily true that in- (/) coincides with

({in<(fa)}rea)-

Definition 8.1. Let / be a nonzero ideal of K[x]. A finite set of nonzero polynomials
{g1,-..,8s} with each g; € I is said to be a Grobner basis of I with respect to < if in- (1)
is generated by the monomials in-(g1),...,in<(gs).

It is known that a Grobner basis of 1 with respect to < exists. Moreover, a Grobner basis
of I generates the ideal /.

Lemma 8.2. Let I be an ideal of K[x| and 4 a Grobner basis of with respect to some
monomial order. Then 9 is a generating set of I.

Next, we introduce the two associated graded ring of lattice polytopes. Let K [til,s] =
K [tlil e ,t]\iyl,s] the Laurent polynomial ring in N + 1 variables over a field K. If a =
(ai,...,an) € ZV, then t3s is the Laurent monomial #{" - --#3"'s € K[t*!, s]. In particular
t%s = 5. Let &2 C RY be a lattice polytope of dimension d and 2 NZN = {ay,...,a,}.
Then, the toric ring K| 2] of & is defined by

K[2]=K[{t’s:ac 2NZN}] Cc K[t" ],
and the Ehrhart ring &x () of & is defined by
E(P)=K[{t*s" :acmPNZN ,m > 1}] C K[t*,s].

We regard K[Z?] and &k () as graded K-algebras by setting each deg(t*s™) = m.
Then we know that the Hilbert function of &x(4?) coincides with the Ehrhart poly-
nomial of &2. The toric ideal 15 of & is the kernel of a surjective homomorphism
7 K[xy,...,x,) = K[Z] defined by 7(x;) = t¥s for 1 <i <n. It is known that /5 is
generated by homogeneous binomials. See, e.g., [87]. Now, we give a useful result of
Grobner bases of the toric ideals of lattice polytopes.

Lemma 8.3 ([73, (0.1), p. 1914]). Work with the same situation as above. A finite set
9 of 1 is a Grobner basis of 1 with respect to < if and only if w(u) # w(v) for all

u¢ ({inc(g):g€9})andv ¢ ({inc(g):g€9}) withu #v.
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Please refer [39, Chapters 1 and 5] and [87] for more details on Grobner bases and toric
ideals.

Now, we recall an important class of lattice polytopes. We say that a lattice polytope
2 C RN of dimension d possesses the integer decomposition property if, for each in-
teger k > 1 and for each a € k2 N7V, there exist ay, .. .,a; belonging to Z NZN with
a=aj;+---+ay. Clearly, & possesses the integer decomposition property if and only
if K[Z] = k(). In this case, the Hilbert function of K[| coincides with the Ehrhart
polynomial of &. The integer decomposition property is particularly important in the
theory and application of integer programing [77, §22.10]. Moreover, a lattice polytope
which possesses the integer decomposition property is normal and very ample. These
properties play important roles in algebraic geometry.

Finally, we give indispensable lemmata for this part. Let < be a monomial order on
K[x] and in- (/%) the initial ideal of 15 with respect to <. The initial ideal in< (/%) is
called squarefree if in- (I ) is generated by squarefree monomials.

Lemma 8.4 ([44, Lemma 1.1]). Ler &2 C R? be a lattice polytope of dimension d such
that the origin of R? is contained in its interior and 2 N7% = {ay,...,a,}. Suppose
2 is spanning and there exists an ordering of the variables x;, < --- < x;, for which
a;, = 0 such that the initial ideal in (15 ) of the toric ideal I 5 with respect to the reverse
lexicographic order < on the polynomial ring K[xy,...,x,| induced by the ordering is
squarefree. Then & is a reflexive polytope which possesses the integer decomposition

property.

Lemma 8.5 ([35, Corollary 6.1.5]). Let S be a polynomial ring and I C S a graded ideal
of S. Let < be a monomial order on S. Then S/I and S/in<(I) have the same Hilbert
function.

The structure of the rest of Part 11

The organization of the rest of this part is as follows. In Chapter 9, we will give several
new classes of reflexive polytopes with the integer decomposition propery arising from
finite posets. In Chapter 10, we will give a class of reflexive polytopes with the integer
decomposition propery arising from perfect graphs. In Chapter 11, we will give two
classes of reflexive polytopes with the integer decomposition propery arising from finite
posets and perfect graphs. In Chapters 9, 10 and 11, we use the technique on G6bner
bases. In Chapter 12, we will give a classes of reflexive polytopes arising from finite
simple graph by using Matrix Theory. Finally, in Chapter 13, we will construct higher-
dimensional self dual reflexive polytopes.
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Chapter 9

Reflexive polytopes arising from posets

In this chapter, we give several large classes of reflexive polytope arising from finite
posets. In particular, these reflexive polytopes possess the integer decomposition prop-
erty.

In order to give classes of reflexive polytopes, we introduce two constructions of lattice
polytopes. Given two lattice polytopes & C RY and 2 C R of dimension d, we set
the lattice polytopes I'(#?, 2) C RN and (2, 2) c R¥*! with

[N(2,2)=conv{ZU(-2)},

QP2,2) =conv{(Z x {1} )U(—2x{-1}H}.

If & = 2, then we will write I'(#) =T'(#,Z) and Q(Z?) = Q(Z, ). We remark
that the origin of R” is always a relative interior lattice point of I'(#?) and the origin of
R"*1 is always a relative interior lattice point of Q(.%?). Assume that & and .2 are full-
dimensional, namely, N = d. Then I'(#?, 2) and Q(%?, 2) are also full-dimensional.
In particular, each of &2 x {1} and —2 x {—1} is a facet of Q(Z, 2).

In this chapter, the study on ['(#?,2) and Q(Z,2) will be done when each of &
and 2 is an order polytope and a chain polytope, which are lattice polytopes arising
from finite posets. This chapter is organized as follows. In Section 9.1, we recall some
terminologies of finite posets and introduce order polytopes and chain polytopes. In
Section 9.2, we consider I'(#, 2) when each of &2 and 2 is an order polytope and a
chain polytope. Finally, in section 9.3, we consider Q (&7, 2) when each of & and 2
is an order polytope and a chain polytope.
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9.1 Two poset polytopes

In this section, we recall some terminologies of finite posets and introduce two lattice
polytopes arising from finite posets. Let P = {p,..., p;} denote a finite poset. A subset
I of P is called a poset ideal of P if p; € I and p; € P together with p; < p; guarantee
pj € 1. Note that the empty set @ and itself P are poset ideals of P. Let _# (P) denote
the set of poset ideals of P. A subset A of P is called an antichain of P if p; and p;
belonging to A with i # j are incomparable. In particular, the empty set () and each
l-elemant subsets {p;} are antichains of P. Let <7 (P) denote the set of antichains of
P. For a poset ideal I of P, we write max(/) for the set of maximal elements of /. In
particular, max (/) is an antichain. A linear extension of P is a permutation ¢ = ijiy - - iy
of [d] ={1,2,...,d} which satisfies i, < i}, if p;, < p;, in P. Let e(P) denote the number
of linear extensions of P.

Stanley [81] introduced two classes of lattice polytopes arising from finite posets, order
polytopes and chain polytopes. The order polytope Op of P is defined to be the convex
polytope consisting of those (x1,...,x;) € R? such that

(H o< <lforl1 <i<d;

(2) xi=xjif p; < pjinP.

The chain polytope €p is defined to be the convex polytope consisting of those (xy,...,x4) €
R? such that

(1) x; >0for1 <i<d,;

(2) xj, +---+x;, <1 for every maximal chain p;, <--- < p; of P.

It then follows that both order polytopes and chain polytopes are lattice polytopes of
dimension d. For each subset I C P, we define the (0, 1)-vectors p(I) =Y, c;€;. In
particular p(0) is the origin 0 of R?. In [81, Corollary 1.3 and Theorem 2.2], it is
shown that

{the set of vertices of Op} = {p(I): 1€ 7 (P)},

{the set of vertices of 6p} = {p(A) : A € &/ (P)}.

Next, we consider the Ehrhart polynomials of order polytopes and chain polytopes. In
fact, Op and %ép have the same Ehrhart polynomial. Moreover, every lattice point in
kOp corresponds an order preserving map ¢ : P — [k+ 1]. Counting order preserving
maps is classical [84, Sect. 3.15]. The order polynomial Qp(k) of P counts the number
of order preserving maps into k-chains.
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Lemma 9.1 ([81, Theorem 4.1 and Corollary 4.2]). Let P = {p1,...,pa} be a finite
poset. Then for every n > Oone has

Qp(k+1) = Lg, (k) = Lg, (k).
In particular, e(P) = Vol(Op) = Vol(6p).

Finally, we consider the toric ideals of order polytopes and chain polytopes. Recall
that a lattice polytope & is called compressed ([88]) if all its “’pulling triangulations”
are unimodular. If & is spanning, then & is compressed if and only if every reverse
lexicographic initial ideal of /4 is squarefree ([87]). It follows from [72, Theorem 1.1]
that all order polytopes and all chain polytope are compressed and possess the integer
decomposition property. Moreover, each of 15, and I, possesses a squarefree quadratic
initial ideal. Let K[O] = K[{x1};c 7 (p)| and K[€] = K[{Xmax(1)}1c #(p)] denote the
polynomial rings over K, and define the surjective ring homomorphisms 7, and 74 by
the following:

o Ty : K[O] — K[Op] by setting 15 (x;) = tPWs;

o Wy : K[€] — K[Cp] by setting Ty (xmax(r)) =t/ s,

where I € _# (P). Then the toric ideal /5, (resp. I, ) is the kernel of 75 (resp. my).

Next, we introduce monomial orders <, and <¢, and ¥, and %, which are the sets
of binomials. Let <, denote a reverse lexicographic order on K[] satisfying x; < x;
if I C J, anf let <4 denote a reverse lexicographic order on K[%] satisfying Xmax (1) <&
Xmax(s) if I C J, where I and J are poset ideals of P, Let %, be the set of the following
binomials:

XIXJ — X[uJXing,

and % the set of the following binomials:

Xmax(I*max(J) — ¥max(1UJ)Xmax(I+J)s

where I and J are poset ideals of P which are incomparable in ¢ (P) and [+ J is the
poset ideal of P generated by max(/NJ) N (max(/) Umax(J)).

Lemma 9.2 ([36]). Work with the same situation as above. Then 9 is a Grobner basis
of 1, with respect to <.

Lemma 9.3 ([42]). Work with the same situation as above. Then Yy is a Grobner basis
of I, with respect to <.

From these facts, it follows that each of &p and 6p possesses a regular, flag, unimodular
triangulation. (Recall that a flag complex is a simplicial complex any of its nonface is
an edge.) Furthermore, toric ideals of order polytopes naturally appear in algebraic
geometry (e.g., [18]) and in representation theory (e.g., [96]).

99



9.2 Typel

In this section, we consider I'(Op, Op), T'(Op,6p) and I'(6p, €p) for finite posets P =
{pla'“apd} and 0 = {qlw"aCId}'

9.2.1 When are they reflexive?

In this subsection, we discuss when I'(Op, Op), I'(Op,6p) and I'(6p, 6p) are reflexive
polytope. In fact, we show the following theorem.

Theorem 9.4 ([43, 45, 46]). Let P={py,...,pa} and Q ={qi,...,qq} e finite posets.

(1) ([43, Corollary 2.2]) If P and Q possess a common linear extension, then the
lattice polytope I'(Op,0p) is a reflexive polytope which possesses the integer
decomposition property.

(2) ([46, Corollary 1.2]) The lattice polytope I'(Op,6p) is a reflexive polytope which
possesses the integer decomposition property.

(3) ([45, Corollary 1.3]) The lattice polytope I (6p,€p) is a reflexive polytope which
possesses the integer decomposition property.

Let
Ki[00] K{{x1}tor1e_g(p)YI{vs}oric 7o) Uiz}
Ki[0€¢] = K[{xi}orre 7)Y {Vmaxi }@#e 7 U{zH,
K\[¢¢] = K[{xrnax }07516/ U {ymax }07516/ U{z}]

denote the polynomial rings over K, and define the surjective ring homomorphisms
Jrlﬁ o nlﬁ% and 717(15% by the following:

o T, Ki[0O] — K[U(Op, 0p)] by setting
”é’ﬁ(xl) =P (s, n%ﬁ()’]) =t PUs and ﬂlﬁﬁ(z) =y,

o 1) Ki[0F) — K[[(Op,%p)| by setting

T (1) = Vs, Thep max(s)) = £ P s and 7). (2) = s,

o L :Ki[€%] — K[[(%p,%p)] by setting
n%%(xmax(l)) = tp(max([))s’ nflg%@max(J)) = t—p(max(]))s and 77"}5%(2) =S
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where @ A1 € 7 (P)and 0 #J € #(Q). Then the toric ideal Ir(g, ¢,) of I'(Op, Op)
is the kernel of ng - Similarly, the toric ideal Ir(g, —¢,) (tesp. I, ¢,)) is the kernel

1
of @, (resp. 71735%).

Next, we introduce monomial orders <lﬁﬁ, <1@><g and <clg<€ and %@Lﬁ, %@L(g and %jp(g
which are the sets of binomials.

Let <, denote a reverse lexicographic order on K [0 0] satisfying

o z<L v <L, X
o xp <Ly xifl' CI,

° yy <1[0-,ﬁyj ifJ CJ,
and 4}, C K[O 0] the set of the following binomials:

(Gl) X[ Xy — xIUI’xIﬁI’;
(G2) ysyy —yjuryins;

(G3) X1ys =X\ (pi} Y1\ (g}

and let <1ﬁ(g denote a reverse lexicographic order on K| [0'€] satisfying
®Z <lﬁ<g Ymax(J) <1@’<g X715
® Xy <10><g XI lfll C I,

® Ymax(J') <lﬁ<g Ymax(J) ifJ' CJ,
and 4} C K[0'%) the set of the following binomials:
(G4) xpxp —xpurxinr;

(G5) Ymax(7)Ymax(7") — Ymax(JUJ')Ymax(JxJ')5

(G6) X1Ymax(J) _XI\{p,-}ymax(J)\{qi}’

and let <l denote a reverse lexicographic order on K/ [¢%] satisfying

1 1 .
®Z <fg<g ymax(]) <<g(g xmax([)’

® Xmax(I') <clg<g Xmax (1) ifI' C I;
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® Ymax(J') <<lg(g Ymax(J) if J' C J,

and 4., C K|[¢'%) the set of the following binomials:

(G7) Xmax(I*max(I') — Ymax(IUI')Ymax(I+I")
(G8) Ymax(J)Ymax(J’) — Ymax(JUJ')Ymax(J+J')>

(G9) Amax (1) Ymax(J) — Xmax()\{p;}Ymax(J)\{g;}>

where

® Xp=Y0o =2

e [ and I’ are poset ideals of P which are incomparable in _# (P);
e Jand J' are poset ideals of Q which are incomparable in _# (Q);
e p;is a maximal element of / and ¢g; is a maximal element of J.

Proposition 9.5 ([43]). Work with the same situation as above. If P and Q possess a
common linear extension, then the origin of R? is contained in the interior of I'(Op,0p)
and %50 is a Grobner basis ofIQ(ﬁPﬁQ) with respect to <1ﬁﬁ .

Proposition 9.6. Work with the same situation as above. Then 9) - is a Grobner basis
of I(6,p.15) With respect 10 <y .

Proof. 1t is clear that %é%; C Ir(opz,)- We note that the initial monomial of each of
the binomials (G4), (G5) and (G6) with respect to <lﬁ(g is its first monomial. Let

. 1 e . . . . 1
in_i (¢,4) denote the set of initial monomials of binomials belonging to ¢,... It

follows from Lemma 8.3 that, in order to show that E?é% is a Grébner basis of Ir(¢, 4,
with respect to <1m0p, we must prove the following assertion: If # and v are monomials
belonging to K;[0'¢] with u # v such that u ¢ (in<5%(€§ég%)> and v ¢ (in<g(g(€¢ég<g)>,

then )5 (1) # Lo (v).

Let u,v € K;[0'€] be monomials with u # v. Write

o 8 Gaw Vo o & S Vi
U=2z"Xp Xy, ymax(];) . 'ymax(Jb)’ v=z xI{ h 'xI;, ymax(]{) 'ymax(Jé,)’

where

e 00 >0,0'>0;
° 11,...,Ia,I{,...,IZl,€/(P)\{(/)};
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o Ji,...,0pJy, Ty € _Z(0)\{0};
° 51,...,§Q,V1,...,Vb,éll,...,é;,,V{,...,Vll)/>0,

and where u and v are relatively prime with u ¢ (in_ . (9))) and v & (in_ L (GL)).
Note that either ot = 0 or o’ = 0. Hence we may assume that o’ = 0. Thus

’ ’ /
_ ol S oy _ & S I
U=z Xxj X, ymax(ll) ymax(Jb)’ V= xli xI;, ymax(Ji) ymax(Jl’y,)’

By using (G4) and (G5), it follows that

e [ ChLC---CliandJ1 CJp C - CJp;

e [ CLC---Cl,andJ] CJyC - CJp.
Furthermore, by virtue of Lemmas 9.2 and 9.3, it suffices to discuss # and v with
(a.d') # (0,0) and (b, ') # (0,0).

Since I, # I;,, we may assume that /, \I; , # 0. Then there exists a maximal element p;
of I, with p« ¢ I,.

Now, suppose that 7). (1) = 7). (v). Then we have

/ /

L e ¥ ow- ¥ & ¥ v
1e{ly,....Ia} Je{Uqdp} llg{li,,_,/;,} J’e{J’l,...Jl’),}
pi€l gi€max(J) picl’ gi€max(J')

for all 1 < i < d by comparing the degree of #;. Since p;+ ¢ I’,, one has

Z é] — Z Vy=— Z V}/ <O0.
16{11,“.,1(1} JE{J],“,,Jb} ‘]/G{Ji"""]/ljl}
pix€l g+ €max(J) g €max(J’)

Moreover, since p;« is belonging to [, we also have

Z §1>O.

Hence there exists an integer ¢ with 1 < ¢ < b such that g;« is a maximal element of J..
Therefore we have xj,ymax(s,) € (in_ L (¢))), but this is a contradiction. O

Proposition 9.7. Work with the same situation as above. Then %&10(5 is a Grobner basis
of Ir(p %,) With respect to <<1g<€.

Proof. We can show that the assertion follows by a similar way in the proof of Propo-
sition 9.6. O

103



Finally, we show Theorem 9.4.

Proof of Theorem 9.4. Tt is easy to show that I'(Op, 0p), I'(Op,6p) and I'(6p, €p) are
spanning. By Lemma 8.4 and Propositions 9.5, 9.6 and 9.7, the assertion follows. [l

9.2.2 Their d-polynomials and volumes

In this subsection, we discuss their 8-polynomials and volumes of I'(Op, Op), I'(Op,6p)
and F(CKP, %Q)

First, we show the following theorem.

Theorem 9.8 ([45, Theorem 1.1]). Let P = {py,...,pa} and Q ={qi,...,qq} be finite
posets. Then we have

6(F(ﬁp,%Q),l‘) = 6(1—‘((5[1,(5Q),t).

In particular, the volume of T'(Op,€p) is the same as that of I'(6p,6p). Moreover, if P
and Q possess a common linear extension, then we have

5(F(ﬁp, ﬁQ),l‘) = 5(F(ﬁp,ch),t) = S(F((gp,%Q),l).
In this case, these polytopes have the same volume.

Here, we put
Ry :=Kil0O0)/iny (Ir(o,.00):

Ry =K [0€)/in_1_(Ir(o,.%,));

Rggcg = K1 [Cg(g]/ln<<lg<( (IF(CKP,CKQ))'

In order to prove Theorem 9.8, we show the following proposition.

Proposition 9.9. Work with the same situation as above. Then the ring Rgcg is isomor-
phic to the ring R}g%. Moreover, if P and Q possess a common linear extension, then
these rings Rlﬁ o Rlﬁcg and R}g% are isomorphic.

Proof. From Propositions 9.6 and 9.7, we have

K|[0F]
<{x1x1’aymax(J)ymax(J’)7x1ymax(J) tLI',J and J' satisfy (x)})’

~

1
Rpy

K€%
{xmax(l)xmax(l’)7ymax(1)ymax(.l’)7xmax(l)ymax(1) :1,I',J and J' satisfy (*)}>,

where the condition (x) is the following:

I~
R%%=<
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e [ and I’ are poset ideals of P which are incomparable in _¢ (P);
e Jand J' are poset ideals of Q which are incomparable in _# (Q);

e There exists 1 <i < d such that p; is a maximal element of / and ¢; is a maximal
element of J.

Hence it is easy to see that the ring homomorphism ¢ : Rlﬁcg — R}K% by setting @ (x;) =
Xmax(7)» @ Vmax(7)) = Ymax(7) @0d @(z) = zis an isomorphism. Therefore, one has R, =
R}gcg. Similarly, if P and Q possess a common linear extension, then from Proposition

9.5, we have

K [00]
{xpxp,yyyy,xpyy - LI, J and J' satisfy (%)})

>~

|
Rpp

Moreover, we can see that the ring homomorphism gD/ : Rlﬁ 6= Rlﬁcg by setting (p/ (x1) =

X, @ () = Ymax(s) and ¢ (z) = z is an isomorphism. Hence one has Rl , =R, =
RL.. O

Now, we can prove Theorem 9.8

Proof of Theorem 9.8. From Theorem 9.4, we have that both I'(0p, 6p) and I'(6p,6p)
possess the integer decomposition property. Hence the Ehrhart polynomial of I'(&p, 6p)
(resp. I'(6p,6p)) is equal to the Hilbert function of K[I'(&p, €p)] (resp. K[I'(¢p,6p))).
By Proposition 9.9, lef and R%gmg have the same Hilbert function. Hence K [I'(0p, €p)]
and K[I'(¢p,%p)] also have the same Hilbert function. Therefore we have the desired
conclusion.

If P and Q possess a common linear extension, I'(0p, Op) also possesses the integer
decomposition property from Theorem 9.8. Therefore, by the same argument, we have
the desired conclusion. O

We immidiately obtain the following corollary.

Corollary 9.10. Let P = {p1,...,pa} and Q ={qu,...,qa} e finite posets. Then we
have

5(F(ﬁp,cgg),t) = 5(F<ﬁQ,(€P),I).

In particular, these polytopes have the same volume.

As the end of this section, we give an example that P and Q do not have any common
linear extension.
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Example 9.11. Let P = {p; < p2} and Q = {q2» < q1} be chains. It is clear that P and
O have no common linear extension. Then

S(F(ﬁPaﬁQ)J) = 1+2ta

6(F(ﬁp,%Q),l) = 5(F(Cgp,ch),t) = 1424172

9.2.3 A volume formula

In this subsection, we give a formula for the volume of I'(6p, %)) in terms of the un-
derlying finite posets. For finite posets P and Q with PN Q = 0, the ordinal sum P ® Q
of P and Q is the finite poset on PUQ such that s <t in PH Q if (a) s, € Pand s <t
inP,or (b)s,r€Qands<tinQ,or(c)s € Pandr € Q. Then we have &/ (P Q) =
o (P)U(Q). Let P={pi,...,pq} and Q = {q1,...,q94}. Given a subset W of [d],
we define the induced subposet of P on W to be the finite poset Py = {p; : i € W} such
that p; < p; in Py if and only if p; < p; in P. For W C [d], we let Ay (P, Q) be the
ordinal sum of Py and Qy, where W = [d] \ W. Note that [Ay (P,Q)| = d and we have
%(Aw<P,Q)) :d(Pw)Uon(Qw) LetW = {il,...,ik} - [d] and W = {ik+1,...,id} -
[d] with W UW = [d]. Then we have Aw (P,Q) ={pi,,---,Pir,qir.,»---+4i, }- Also, we
let R = {ry,...,rq} be the finite poset such that r; < r; if (a) i,j € W and p; < p; in
Aw(P,Q), or (b) i,j €W and ¢; < gj in Aw(P,Q), or (¢) i € W,j € W and p; < g; in
Aw (P, Q). We call a permutation ¢ = iji - - - iy of [d] a linear extension of Ay (P,Q), if ¢
is a linear extension of R, and we write e(Ay (P, Q)) for the number of linear extensions
of Aw (P,Q),i.e., e(Aw(P,Q)) =e(R). For A C Aw (P, Q), we define the (—1,0, 1)-vector
P'(A) =Y caei— Ly caejand we set

Cry(po) = conv({p'(A) |A € o (Aw(P,Q))}).

First, we will show the following lemma.

Lemma 9.12. Work with the same situation as above. Then %A/W P.0) and g are uni-
modularly equivalent. Moreover we have

Proof. LetU = (u;})1<i j<a € Z°*“ be a unimodular matrix such that

l,ifi=jandie W,
ujj = —1,ifi=jandie W,
0,ifi # j.
Then ‘KA’W Po) = fu(%r), where R is the finite poset defined by the above. This says

that %”AW (P.0) and %% are unimodularly equivalent. Hence since the normalized volume
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of @r is equal to e(R), We have
VO](%A/W(P,Q)) = Vol(¢k) = e(R) = e(Aw (P, Q)),

as desired. ]

Let & C R? be a lattice polytope. Then we write V(2?) for the vertex set of &, and
for W C [d], we set

Py ={(x1,...,xg) € Z:ifi e W,x; > 0and if j € W,x; <0},

Vw(@):{()q,...,xd) EV(:@)ZifiGW, x,-Z()andiijW, ng()}.

The following is the key proposition in this subsection.

Proposition 9.13. Work with the same situation as above. Then we have

wc[d]

In particular, for any subset W C [d|, we have

Proof. For any W C [d], we have

Vi (T(€p, %0)) = V(€4 (po)) \ 10}
since &7 (Aw (P,Q)) = o/ (Pw) U </ (Qy;). Hence it follows that
I'(6p,6p)w D conv(Vw (I'(6p,6p)) U{0}) = CKAW(RQ).
Moreover, we obtain

L(¢p, %) > | Cayp0)-
wc[d]

We will show that for any x,y € V(I'(6p,¢p)) and a,b € Rwitha+b=1,a >0and b >
0, there exists W C [d] such that ax + by € %AW(P 0)- This shows that Uy g Ch P0)
contains any edge of I'(¢p, ¢p), hence, we have

F((gp,(gQ)C U CgA/W(P,Q)'
WcCld]

When x,y € 6p or X,y € (—%p), it clearly follows. Let

Al - {pila"'7pi47pi4+17"'7pim}
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and

A2 =Aqivs -+ GipsQis1s- - Din }
be antichains of <7 (P) and .7 (Q), and we set X = p(A;) and y = —p(A;). We should
show the case a > b. Let W = {i,....,in} C [d] and c =a—b. Then A} = {p;,,..., pi, }.
Ay ={pi,,s---> iy and A5 ={q;,.,,...,qi,} are antichains of Ay (P,Q). We set X' =
p'(A}),y = p'(A%) and z’ = p’(A}). Then we have ax+ by = ¢x' + by’ + bz’ and ¢ +
2b = 1. Hence ax + by € %A/W(RQ)'

Therefore, we have

wcCld]

In particular,
L7, 0w = Chy gy

as desired. O]

Now, we give a formula for the volume of I'(¢p, %) in terms of the underlying posets.
In particular, the following theorem is immediately given Lemma 9.12 and Proposition
9.13.

Theorem 9.14 ([92, Theorem 1.3]). Let P={p1,...,pa} and Q ={qi,...,qa} be finite
posets. Then we have

Vol(T(6p,6p)) = Y, e(Aw(P,Q)).
wcld]

Moreover, by using Theorems 9.8 and 9.14, one obtains the following corollary.

Corollary 9.15. Let P = {p1,...,pa} and Q ={q1,-..,qa4} be finite posets. Then we
have

Vol(T(Op,6p)) = ). e(Aw(P,Q)).
wc[d]

Moreover, if P and Q have a common linear extension, then we have

Vol(T(€p,0p)) = Y, e(Aw(P,Q)).
wc[d]

Remark 9.16. By the proof of Proposition 9.13, for any W C [d], ['(¢p, 6p)w is a lattice
polytope. However, I'(Op, Op)w and I'(Op,6p)w are not always lattice polytopes. In
fact, let P = {p1, p2} be a 2-element chain with p; < p and Q = {q1,¢9>} a 2-element
chain with ¢; < g. Then for W = {1}, we know that I'(Op, Op)w and I'(Op,6p)w are
not lattice polytopes. This means that we can not prove Corollary 9.15 by means of a
proof similar to that of Theorem 9.14.

We give a few examples.
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Example 9.17. Let P and Q be the finite posets with the Haase diagrams shown in the
following:

P: 0:
P1 q1

p2 pP3 q2 q3

Then I'(6p, 6p) is centrally symmetric, i.e., for each facet . of I'(¢p,%p), —F is a
facet of I'(6p,¢p). For each subset W of {1,2,3}, the Haase diagram of Aw (P, Q) is
presented in the following:

Ag123(P,Q): Af1 2y (P Q): Ap1 3y (P Q): Ap 3y (P O):
P1 q3 q2 q1
P1 D1
p2 P3 p2 P3 p2 ) 2K]
Ay (P Q): Ay (P, Q): Ay (P O): Ag(P,Q):
q2 q3 qi qi qi
q3 q2
P P2 p3 q2 q3

Hence we have
Vol(F(‘Kp,%Q)) =4x14+4%x2=12.

Example 9.18. Let P={py,...,ps} be a d-element antichain and Q = {q,...,q,} ad-
element chain with ¢; < --- < g4. For W C [d], we will compute the volume of %A’W (P.O)"
We set W = {1,...,k}. Then Py is a k-element antichain and Qy; is a (d — k)-element
chain. Hence we have

CgA/W(P,Q) = conv({[0, 1]* x {0}, —e11,...,—€4})

and Vol(% AW = k!. Therefore, we obtain

r0))

Vol (L(%5, %))

Il
~
=
N
>
~
=

2

iy
o

I
M=~
x|
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For a positive integer d, we write a(d) for the total number of arrangements of a d-
element set. Then we have

Vol(T'(¢p, 6p)) = a(d).

Next, as an application of Proposition 9.13 we will compute the equations of the sup-
porting hyperplanes of facets and dual polytopes of I'(¢p,%p). We begin by recall-
ing these features for the chain polytopes which were originally studied in [81]. Let
P = {p1,...,pa} be a finite poset. Then there are two types of the equations of the
supporting hyperplanes of facets for the chain polytope €p:

e for each element p; of P, x; =0,

e for each maximal chain C of P, Zp,»ecxi =1.

We write .# (P) for the set of maximal chains of P. Then the number of facets of €p
equals |.Z (P)| +d.

The next lemma follows immediately from Lemma 9.12.

Lemma 9.19. Let P ={py,...,pq} and Q = {q1,...,qa4} be finite posets, and let W C
[d]. Then there are three types of the equations of the supporting hyperplane of facets

Jor x,po)

e for each element p; of Ay (P,Q), x; =0,
e for each element q; of Aw (P,Q), —x; =0,

e for each maximal chain C of Aw (P,Q), ¥.p.ccXi — Ly;ecXj = 1.

Now, we characterize the equations of the supporting hyperplanes of facets of I'(6p, 6p)
in terms of the underlying posets. Namely, we prove the following theorem.

Theorem 9.20 ([92, Theorem 2.2]). Let P ={pi,...,pa} and Q ={qi,...,qa} be finite
posets. The equations of the supporting hyperplanes of facets for I'(¢p,6p) are given

as
in— ZXJ'ZI

pieC q;€C

for each W C [d] and for each maximal chain C of Aw (P,Q). Moreover, the number of
facets of U(€p, Cp) equals |Uyw c|q) - (Aw (P, Q).

Proof. We let W be a subset of [d] and let C be a maximal chain of Ay (P,Q). Then by
Lemma 9.19, %c = 7N CKAW (o) 1s a facet of CKAW (p)» Where ¢ is the hyperplane

{(X],...,xd)G]Rdi Zx,-— Z XJ'ZI}

pieC q;€C
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in RY. We lety = (y1,...,y4) be an interior point of .%¢. Then by Lemma 9.19, we
know y; > 0 if i € W and y; < 0 if j € W. Hence for any W’ C [d] with W # W/,
we have y ¢ ‘5 (PO Therefore, it follows that y does not belong to the interior of
Uy(p)(0)- By Proposmon 9.13, #Zc NI (6p,6p) is a facet of I'(6p,%p).

Since I'(¢p, 6p) is reflexive, from Lemma 2.7 the equation of the supporting hyperplane
of each facet of I'(6p, €p) is of the form ax; + - - +asxs = 1 with each a; € Z. Hence
the equations of the supporting hyperplanes of facets for I'(4p, ) are given as

Zx,-— ijzl

pieC quC
for each W C [d] and for each maximal chain C of Ay (P, Q), as desired. O

Remark 9.21. For some finite posets P = {py,...,pqs} and Q = {q1,...,q4}, we have

Y, | (wP.0)#] | #(Aw(P.0))|.

wcld] wcld

For instance, let P = {p1,p2,p3} and Q = {q1,¢2,93} be 3-element antichains. For
Wi = {1}, C; ={p1,93} is a maximal chain of Ay, (P, Q). Then for W, = {1,2}, C; is
also a maximal chain of Ay, (P, Q). Hence we have

Y, [ wP.O)|>| | #(bw(P0)).

wcCld] wcld

By using Lemma 2.7 and Theorem 9.20, one has the following corollary.

Corollary 9.22. Let P = {p1,...,pa} and Q ={q1,...,qa4} be finite posets. Then we
have

V(D(6p,%60)") = |J {p'(C) eR?:Ce .4 (Aw(P.0))}.
wcld]

Namely,

L(¢p,6p)" =conv | |J {p'(C) € RY:Ce.#(Aw(P,Q))}
wcld]

We end this subsection with a pair of examples demonstrating Theorem 9.20 and Corol-
lary 9.22.

Example 9.23. Let P and Q be the finite posets as in Example 9.18. We fix W =
{i,...,ix} C [d]. Then we have

%(AW(P?Q)) = {{pisacIl’kH?"WQid} 1 S s S k}
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and |.Z (Aw (P,Q))| = k. Hence

d
U #oweo =Y (e

wcld) k=1
=d- 2971 41.

Example 9.24. Let P and Q be the finite posets as in Example 9.17. Then by Corollary
9.22, the vertices of I'(6p, )" are the following:

+(1,1,0),+(1,0,1), (1, —1,0),&=(1,1,—1), (1, —1,1),£(1,0,—1).

Moreover, there do not exist finite posets P’ and Q' with |P'| = |Q'| = 3 such that
[(6p,6p)" and I'(6p, 6y ) are unimodularly equivalent. Indeed, since I'(¢p,%p)"
is centrally symmetric and the number of its vertices equals 12, each of P’ and Q' needs
to have just 7 antichains. However, there exists no 3-element partially ordered set which
has just 7 antichains.

9.2.4 When are they smooth Fano?

In this subsection, we consider the characterization problem of finite posets yield smooth
Fano polytopes. First, we recall several classes of lattice polytopes related to reflexive
polytopes. Let & C R? be a lattice polytope of dimension d containing the origin of
R? in its interior.

2 is called Fano, if the vertices are primitive lattice points.

P is called canonical Fano, if int(22)NZ4 = {0}.

2 is called terminal Fano, if 2 NZ¢ = {0}UV(2).

2 is called smooth Fano, if the vertices of any facet of & form a Z-basis of Vi

It is known that Fano polytopes correspond to toric Fano varieties, smooth Fano poly-
topes to nonsingular toric Fano varieties and canonical (respectively terminal) Fano
polytopes to toric Fano varieties with canonical (respectively terminal) singularities.
Moreover simplicial Fano polytopes are associated to QQ-factorial toric Fano varieties.
In particular, each smooth Fano polytope is a simplicial reflexive polytope, and each
reflexive polytope is a canonical Fano polytope.

Let &2 C R be a Fano polytope.
o We call & centrally symmetric if & = — 2.
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e We call & pseudo-symmetric if there exists a facet .# of & such that —.% is also
its facet. Note that every centrally symmetric polytope is pseudo-symmetric.

e A del Pezzo polytope of dimension 2k is a convex polytope
Vo =conv({tey,... T ey, t(e;+---+ex)}).

Note that del Pezzo polytopes are centrally symmetric smooth Fano polytopes.

e A pseudo del Pezzo polytope of dimension 2k is a convex polytope
V2k = conv({j:el . :Eezk,e] +--- —|—62k}).

Note that pseudo del Pezzo polytopes are pseudo-symmetric smooth Fano poly-
topes.

e Let us that & splits into &) and &, if the convex hull of two Fano polytopes
P C R4 and P, C R with d = dy + d», i.e., by renumbering

P = COHV({(OCl,O),(O, 062) € Rd o € P, € @2})

Then we write &2 = P O Ps.

There is well-known fact on the characterization of centrally symmetric or pseudo-
symmetric smooth Fano polytopes.

e Any centrally symmetric smooth reflexive polytope splits into copies of the closed
interval [—1, 1] or a del Pezzo polytope [95].
e Any pseudo-symmetric smooth reflexive polytope splits into copies of the closed
interval [—1, 1] or a del Pezzo polytope or pseudo del Pezzo polytope [26, 95].
Let P={p1,...,pq} and Q = {q1,...,qq} be finite posets. In this subsection, we con-

sider when each of I'(0p, Op), I'(Op,€p) and I'(6p, 6p) is a smooth Fano polytope.

First, we consider when I'(6p, 6 ) is smooth Fano. For 1 <i <d, we set «7;(P) ={I €
o (P): |I| =i}.

Theorem 9.25 ([45, Theorem 2.1]). Let P={p1,...,pa} and Q ={qi,...,qa} be finite
posets. Then the following conditions are equivalent:

(i) I'(€p,6p) is simplicial;

(i) I'(6p,€p) is smooth Fano,

(iii) T'(6p,€p) splits into copies of the closed interval [—1, 1] or a del Pezzo 2-polytope
or a pseudo del Pezzo 2-polytope;
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(iv) For any 1,1, € o/5(P) with I # I, Iy NI, = 0 and for any J|,J> € 9/(Q) with
J1 # o, J1NJy =0, and for any I € </3(P) and for any J € <4 (Q), |{i:pi€1,q; €
JH # 1.

Proof. ((i) = (iv)) Let p;, < p;, < --- < p;, be a maximal chain of P. Then x;, +x;, +
---4x;, = 1 is the equation of the supporting hyperplane of a facet of ép, in particular,
this is a facet of I'(6p, ¢p). Since I'(6p, 6y ) is simplicial, this facet is a (d — 1)-simplex.
Hence there exist just d — s antichains Iy,...,I; ; € &/ (P) \ < (P) such that for each
Iv, {pi,s Piys---»Pi, } NIk| = 1. Since for each j € P\ {pi,, pi,,---,Ppi,} there exists i €
{pi,,Pis---,pi } such that {i, j} is an antichain of P, for each j € P\ {pi,, piy,--.,Di, },
there exists just one i € {p;,, pi,, ..., pi,} such that {i, j} is an antichain of P. Then for
k>3, o(P)=0.

First, we assume that there exist I}, € o/ (P) with I} # I, such that I; NI, # (. Let
I = {pi,,pi,} and L, = {p;,, pi,}. Then we know that {p;,, p;, } is not an antichain of
P. Indeed, if {p;,,pi;} is an antichain of P, then {p;,, pi,, pi;} is also an antichain of
P. Hence there exists a maximal chain p;, < pj, <--- < pj, of P such that {p;,, pi;} C
{pji,pj,---.pj} Thensince {p;, pi,} and {p;,, pi; } are antichains of P, a facet whose
equation is xj, +x;, +---+xj, = 1 of I'(ép,6p) is not a (d — 1)-simplex.

Next, we assume that for any 1,1, € o/ (P) with I} # L, [y NI, =0, and for any J;,J, €
2 (Q) with Jy # Jp, J1NJo = 0, and there exist I € @4 (P) and J € 2%4(Q) such that
Hi:piel,qieJ} =1. WeletI={p;,pi,} and J ={qi,,qi,}. Then x;, —x;; =
1 is the equation of the supporting hyperplane of a face of I'(4p, %) and this face
is not simplex. Indeed, we set J# = {(x1,...,xs) € R?: x;, —x;; = 1} and '+ =
{(x1,-..,x4) € RY: x;, —xi; < 1}. Then every vertex of I'(6p, %) belongs to 7", and

p({pil 7pi2})7p({pi2})7 _p({qil 7qi3})7 _p({CIi3}> eH.
Since

(p({pirsPin}y) = (=p({gs}))) = (P({rir}) — (=P ({gis})))
—(=p({4i,9:}) = (=p({gi}))),

this face is not a simplex.

((iv) = (iii)) We assume that
h(P) = {{p1,p2},-- s AP2u—1, P2k} A P2k 15 P2k12}s - - AP2k121- 1, P2kt 21 } )

(Q)={{q1,q2},- - {q2—1, 92} {q2ur 2141, Qpr 21425 - - s {Qak2042m—15 @k 2042m } s
where &,/ and m are nonnegative integers with 2k 4+ 21+ 2m < d. Then it follows that
I'(¢p,6p) is the convex full of tey,...,+e; and +(e; +ey),...,+(exy_; +ey) and

€1+ €12, €2 12/—1 + €2 and — (€421 + €42142)5 -, —(€2h+2042m—1 +
exy+21+2m). Hence I'(6p,6p) splits into copies of the closed interval [—1,1] or a del
Pezzo 2-polytope or a pseudo del Pezzo 2-polytope.
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((iii) = (ii) =(i)) Since I'(6p,6p) splits into copies of the closed interval [—1,1] or
a del Pezzo 2-polytope or a pseudo del Pezzo 2-polytope, I'(6p, 6 )is smooth Fano.
Moreover, in general, any smooth Fano polytope is simplicial. [

Next, we consider when I'(0p,6p) is smooth Fano.

Theorem 9.26 ([45, Theorem 2.2]). Let P={py,...,pa} and Q ={qi,...,qa} be finite
posets. Then the following conditions are equivalent:

(i) I'(Op,%p) is simplicial;
(i) I'(Op,%p) is smooth Fano;

(iii) /(P) = {{pil}ﬂ{pi17pi2}7"'7{pi17"'7pid}} or
S (P)={{pa}.{pri}. Apir, pin}, - Apis -, pig }} and
JZ{(Q) = {{qi1}7{qi2}7"'7{qid}} or

‘Q%(Q) = {{qi1}7{qi2}7'"7{qid}7{qi1 >qi2}}'

Proof. ((i) = (iii)) We may assume that p;, is a minimal element of P and ¢’ (P) =
Hpi b Apispin by Apiys -+ piy b C 7 (P). Then x;; = 1 is the equation of the sup-
porting hyperplane of a facet of Op, in particular, this is a facet of I'(0p,%6p). Since
I'(Op,%p) is simplicial, this facet is a (d — 1)-simplex. Hence there is no poset ideal
I € ¢(P)suchthat p; € IandI ¢ #Z'(P). If there exists I € _# (P) such that p; ¢ I,
there exists a minimal element p;, € I of P. Then since {{p;,,pi;}} is a poset ideal of
P, we have j = 2. Hence we know that ¢ (P) = {{pi, },{pi,Pi}>----{Piys---,Pi, } }

or 7Z(P)={{pi}.{pi,}. {pi,»Pi},---:{Piy»---,pi, } }. Also, by the proof of Theorem
9.25, we may assume that for any J;,J, € 2% (Q) with J| # Jo, J;NJ, = 0.

We assume that 7 (P) = {{pi, },{Pi,,Pir}--->1Pir>-- > Pig} }- 1f {qi;» 4} is an an-
tichain of Q with 2 < j <k, then x; —x; = 1 is the equation of the supporting hy-
perplane of a face of I'(€p,6p) and this face is not a simplex. Indeed, we set J# =
{(x1,...,x2) € RY: sy — x5, = 1} and S = {(x1,...,x4) € R?: x;; —x;, < 1}. Then
every vertex of I'(Op,6p) belongs to .7 ". Also, one has

p<{pil})7p<{pil7pi2})7"'7p({pi1""?pikfl})7_p({qik})7_p({qij7qik}) € .

Since

(=p({4i}) —p(ri})) = (=p{4i; 4 }) —p({Pi }))
+(e{Pirs---5pi}) =P P }))
- (p({piw' .- 7pl.j71}> _p({pil}))’

this face is not a simplex. If {g;,, g;, } is an antichain of Q with 3 < j, then —x;; +2x;, = 1
is the equation of a supporting hyperplane of a face of I'(p,6)p) and this face is not
a simplex. Indeed, we set /% = {(x1,...,x4) € RY: —x; +2x;, = 1} and 54" =
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{(x1,...,x4) € RY: —x; +2x;, < 1}. Then each vertex of I'(0p, %) belongs to 4"
Also, one has

p{PirsPir})s-- s P{Pirs-- - Pig} ), —P({air 1) =P ({4343 }) € Ha.

Hence since the face I'(Op,6p) N .74 has d + 1 vertices, this face is not a simplex.

We assume that _# (P) = {{pi, },{pi }s{Pir>Pir}>- - sAPivs- -5 Pig } - {43554, } is an
antichain of Q with 2 < j <k, then similarly, x;, —x;, = 1 is the equation of a supporting
hyperplane of a face of I'(0p, %) and this face is not a simplex. If {g;,q;,} is an
antichain of Q with 3 < j, then x;, —x;, = 1 is the equation of a supporting hyperplane of
a face of I'(Op,6p) and this face is not a simplex. Indeed, we set 743 = {(x1,...,x4) €
RY: x;, —xi; =1} and A5 = {(x1,...,xq) € RY: x;, —x;; < 1}. Then every vertex of
['(Op,%p) belongs to 7", and one has

p({ri,}):p({piysPi})s - PPy - 7pl.j71})7 _p({Qij})> _p({qil’qij}) € 3.

Since

(P({Piz}) - p({piwpippis})) = (p({pil’piZ}) —P({Pil,Pig,Pi3}>)
+(=p{4,9:,}) —P{Pir: Pir, Pis }))
- (_p({Qij}) _p({piwpiz?pis}))a

this face is not a simplex.

((iii) = (ii)) If 2 C R? is a smooth Fano polytope of dimension d, the lattice polytope
P =conv(PU{e;+ey+--+eqii,—eqii}) C R

is also smooth Fano. Moreover, if d = 2, then I'( ﬁp,%Q) 1s smooth Fano. Hence for
d > 2, we know that I'(Op,6p) is smooth.

((if) = (1)) In general, any smooth Fano polytope is simplicial. U

Finally, we consider when I'(0p, ) is smooth Fano.

Theorem 9.27 ([45, Theorem 2.3]). Let P={pi,...,pa} and Q ={qi,...,qa} be finite
posets. Assume that P and Q have a common linear extention. Then the following
conditions are equivalent:

(i) T'(Op, Op) is simplicial;

(i) I'(Op, Op) is smooth Fano;

(111) /(P) = {{ph}a{pilapiz}a"'7{pi17-~'7pid}} or
f(P) = {{pil}7{pi2}7{pil7piz}7"'7{pil7"’7pid}}’ and
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J(0) =Hai b Aaian b Aais - ai, ) or
/(Q) = {{qi1}7{qi2}’{qi1’qi2}7" '7{qi17"' ’qid}}‘

Proof. ((i) = (iii)) By the proof of Theorem 9.26, We have ¢ (P) = {{pi, },{pri,»Pi,},

~"7{Pi1w-~:l7id}} or /(P) = {{Ph}?{l’iz}a{pippiz}w-~7{Pi1w-~:Pid}}- Also, we
have 7 (0)={{q; },{9j-95}s---:Aqjis-- a5 1} or Z(O)={{qji }:{apnt a9}

...»{4j,,---,q;,}}. Since P and Q have a common linear extention, we may assume that
forany 1 <k <d, iy = ji.

((iii) = (ii)) If 22 C R? is a smooth Fano polytope of dimension d, the lattice polytope
P = COHV(QZ U {:I:(e1 +e+--- —|—ed+1)}) C Rd+1

is also smooth Fano. Also, if d =2, then I'(Op, ﬁQ) is smooth Fano. Hence for d > 2,
we know that I'(0p, O) is smooth Fano.

((ii) =(i)) In general, any smooth Fano polytope is simplicial. [

Theorem 9.28 ([45, Theorem 3.1]). Letd >3 and P={p1,...,pa} and Q={q1,...,q4}
be finite posets. Assume that I'(Op,Op), I'(Op,6p) and I'(€p,6p) are smooth Fano.

Then I'(Op,0p) and I'(6p,6p) are unimodularly equivalent. However, I'(Op,6p) is

not unimodularly equivalent to these polytopes. Moreover, if P # Q, then I'(Op,6p) is

also smooth Fano and is not unimodularly equivalent to I'(Op,6p).

Proof. Let P, P, be the finite posets as follows.

Pr: P:
Di,® Pi®
Pi,® Pis
pi® Pi, Pi,

By Theorem 9.27, I'(Op, Up) is smooth Fano if and only if P,Q € {P;,P»}. Also when
P,Qe{P,P,},I'(0p,6p) and I'(6p,6p) are smooth Fano by Theorems 9.25 and 9.26.
Hence it follows that I'(Op, Op), I'(Op,€p) and I'(¢p, ) are smooth Fano if and only
if P,Q € {Pi,P,}. We can assume that i; = j forany 1 < j <d.

We should consider the following four cases.
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(The case P = Q = P) I'(Op, Op) and I'(6p,6p) are unimodularly equivalent, in par-
ticular, these polytopes are centrally symmetric. However, since I'(0p,6p) is not cen-
trally symmetric, I'(Op,6p) is not unimodularly equivalent to these polytopes.

(The case P = Q = P») Similarly, I'(0p, 0p) and I'(¢p,6p) are unimodularly equiva-
lent, and I'(Op, €p) is not unimodularly equivalent to these polytopes.

(The case P = P; and Q = P,) I'(Up,0p) and I'(6p,6p) are unimodularly equiva-
lent, in particular, these polytopes are pseudo-symmetric. However, I'(0p, %) is not
unimodularly equivalent to these polytopes, since it follows that [{v € V(I'(0p,%p)) :
—veV(I(Op,6p))} # {veV(I(Op,0p)): —v e V(I'(Op,0p))}|, where we write
V(2) for the vertex set of a polytope Z.

(The case P = P, and Q = Py) Similarly, I'(Op, %) is not unimodularly equivalent to
I'(Op,0p) and I'(6p,6p). Moreover, I'(Op,6p) and I'(0p, €p) are not unimodularly
equivalent. Indeed, we assume that these polytopes are unimodularly equivalent. Then
there exists a unimodular matrix U € Z4*¢ such that T'(0p, ) = fu(T'(0g,6p)). Also
for v e {+e;,+(e; +e;)}, there exists v/ € {+e;,+e,} such that iy (v) = V.

If fy(e;) =e; and fy(e; +e;) = e, we have

1 0 o --- 0
U= | usi usnp wsz - uzg | €744,
Ugl Ugy Ug3s -+ Ugd

Then fy(—e2) =€ —ex ¢ V(I(O(P),—€(Q))).

If fy(e;) =e; and fy(e; +e) = —ey, we have
1 0 o --- 0
1 -1 0 - 0
U= | usi un wusz - uzg | €744,
Ugl Ugy U3 -+ Uqd
Then fU(e1 ) +e3) = (u31,u32 — 1,u33,...,u3d) and fU(—e3) = (—u31,...,—u3d).

Since I'(Op, 6p) is a (— 1,0, 1)-polytope, uzr = 0 or 1. Then fy(e; +e,+e3) = —e; or
fu(—e3) = —ey, a contradiction.
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If fy(e;) = —e; and fy(e; +e€2) = ey, we have

1 1 o --- 0
U= | w1 wusp uzz - wuzq | €799,
Ugy Uy Ug3 ct Udd
Then fy (e + ey +e3) = (u31,uzr + 1,u33,...,u3q) and fy(—e3) = (—u31,...,—usq).

Since I'(Op,6p) is a (—1,0,1)-polytope, uz; = 0 or —1. Then fy(e; +e,+e3) =e; or
f(—e3) = €5, a contradiction.

If fy(e;) = —e; and fy(e; +e€2) = —ey, we have
1 0 0 - 0
I —1 0 - 0
U= | w1 un usz - uyg | ez
Ugl Ugp Ug3 - Ugq

Then fy(—e2) = —e; +ex & V(I'(Op,%p)).

Therefore, I'(Op, 6p) and I'(Op, €p) are not unimodularly equivalent. O

By Theorems 9.8 and 9.28, the following corollary immidiately follows.

Corollary 9.29. For any d > 3, there exist smooth Fano polytopes &2 and 2 such that
the following conditions satisfied:

o ¥ and 2 have the same Ehrhart polynomial.

o & and 2 are not unimodularly equivalent.

Now, we recall the following fact.

Lemma 9.30 ([16, Theorem 1]). Let &2 be a d-dimensional reflexive polytope in R4
and Py a dy-dimensional lattice polytope in R with 0 € int( ). Then one has

S(P1 @ Pot) = 8(P1,1)8(Pot).

In particular,
Vol( 22 & 7,) = Vol(Z1)Vol(Z7,).

We let [,m,n be nonnegative integers and

P = (®IL) B (V1) ® (DnV2),
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where L is the closed interval [—1,1]. Since Vol(L) = 2, Vol(V») = 5 and Vol(V») = 6,
we have Vol(#?) =2/ .5™.6".

Finally, we consider the volume of each of I'(0p, 0)), I'(Op,6p) and I'(6p, €p) when
these polytopes are smooth Fano. Let P; and P, be the finite posets as in the proof of
Theorem 9.28.

Example 9.31. (i) Let P = Q = P;. Then I'(ép,%p) is unimodularly equivalent to
@®4L. Hence we know the normalized volume of each of I'(Op, 0p), I'(Op,6p) and
['(%p,%p) is equal to 2¢ by Theorem 9.8.

(ii) Let P = Q = P,. Then I'(6p,%p) is unimodularly equivalent to (By_2L) @ V5.
Hence the normalized volume of each of I'(Op, Op), I'(Op,6p) and I'(6p, ) is equal
to 29-2.6.

(iii) Let P = Py and Q = P». Then I'(6p, 6p) is unimodularly equivalent to (©;_,L) &
V,. Hence the normalized volume of each of I'(Op, Op), T'(Cp,%p) and T'(6p,%p) is
equal to 2972 5. In particular, the normalized volume of I'(Cp, Op) is also 24-2.5,

9.3 Type Q

In this section, we consider Q(0p,0p), Q(Op,6p) and Q(€p,€p) for finite posets
P= {p17"'7pd} andQ: {(]17~--761d}-

9.3.1 When are they reflexive?

In this subsection, we discuss when Q(Op, Op), Q(Op,6p) and Q(6p,6p) are reflexive
polytope. In fact, we show the following theorem.

Theorem 9.32 ([49, Theorem 1.3]). Let P={p1,...,pa} and Q ={qi,...,qaq} be finite
posets.
(1) If P and Q possess a common linear extension, then the lattice polytope Q(COp, )

is a reflexive polytope which possesses the integer decomposition property.

(2) The lattice polytope Q(Op,6yp) is a reflexive polytope which possesses the integer
decomposition property.

(3) The lattice polytope Q(6p,6p) is a reflexive polytope which possesses the integer
decomposition property.
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Now, for finite posets P = {p1,...,pq} and Q = {q1,...,q4}, let

K[00] = K[{xitie 7)Y {yitic s Uiz}
K[0¢] = K[{xi}ie gp)Y{Vmax) tie s (0)U{}];
K [cgcg] = K[{xmax(l) }Ie/(P) U {yrnax(J) }JG/(Q) U {Z}]

denote the polynomial rings over K, and define the surjective ring homomorphisms
J'Eé o né% and 717(25%& by the following:
o 12, :Kx[00) — K[Q(Op,0p)) by setting
2 (x1) = tPUUHd+1}) g n2,(vy) = t—PUUd+1}) ¢ and n245(z) =s,

o 12 Kr[OF) — K|Q(Op,6p)] by setting
g (1) = P 120 Yinan()) = P g and 15,(2) =5,

o 12, : Ko |CC) — K|Q(%p,6p)] by setting

) = P DU g 72 () P U g and 72, (2) =

2
Ny (xmax 1))
S

where I € 7 (P) and J € _#(Q). Then the toric ideal Ig (g, g,) of Q(Op,0p) is the
kernel of né - Similarly, the toric ideal I (¢, 4,) (resp. Io(z, ,)) 1s the kernel of ﬂé)%;

(resp. nczgcg).
Next, we introduce monomial orders <2ﬁﬁ, <2ﬁ% and <<25<g and %éﬁ, gécg and %;cg
which are the set of binomials. Let <2ﬁﬁ denote a reverse lexicographic order on
K, [0 0] satisfying

°Z <2@>@> yi <2ﬁﬁ XI;

o xp <%, xifl' CI

° yy <zﬁﬁyj if J/ C J,
and 92, C K>[0 0] the set of the following binomials:

(Ol) X[Xp — X101 XNy s
(O2) ysyy —ysuryinss
(O3) xX1y7 = X1\ {pi) Y1\ {41}

(04) xpyp —2°,

and let <2ﬁ(g denote a reverse lexicographic order on K>[0'¢] satisfying
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2 2 .
® 7 <gy Ymax(J) <@g XI

o xp <2 x/ifI'CI

® Ymax(J') <2ﬁ<g Ymax(J) if J' C J,
and 92 C K>[0'¢ the set of the following binomials:

(05) xpxp — XpurXinr;
(06) Ymax(J)Ymax(J/) — Ymax(JUJ')Ymax(J+J')>

(O7) X1Ymax(J) — X1\ {p;}Ymax(/)\{g;}

(08) xoyp —2°,

and let <2, denote a reverse lexicographic order on K»[%'%] satisfying

2 2 .

® 7 <yy¢ Ymax(J) <g¢ Xmax(I)>
2 ; .
° Xmax(I') <(5(é7 Xmax (1) if I' C I;

® Ymax(J') <<25<g Ymax(J) if J' CJ,

and 42 C K[¢'%) the set of the following binomials:

(09) Xmax (I)*max(I') — Ymax(IUI')Ymax (I+I")
(010) Ymax(J)Ymax(J') — Ymax(JUJ')Ymax(J*J')>
(O11) Xmax(I)Ymax(J) ~ ¥max(I)\{p;} Ymax(J)\{g;}>
(012) xgyo — 2%,

where

e [ and I’ are poset ideals of P which are incomparable in _# (P);
e Jand J' are poset ideals of Q which are incomparable in _# (Q);
e p;is a maximal element of / and ¢g; is a maximal element of J.

Proposition 9.33. Work with the same situation as above. If P and Q possess a common
linear extension, then the origin of R is contained in the interior of Q(Op, Op) and
%30 is a Grobner basis of Io(g, ¢,) With respect to <200 .
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Proof. Set P' ={py41}®Pand Q' = {q4:+1}® Q. Then we have
S (P)={0}U{1U{pas1}:1€ 7 (P)},

S(Q)={0tu{JU{qu1}: 7€ 7(0Q)}.

Hence we know that Q(Op,6p) =T'(Op/, Oy ). By [43], we can easily show if P and Q
possess a common linear extension, then the origin of R?*! is contained in the interior

of Q(Op,0p) and %30 is a Grobner basis of lo(op,0,) with respect to <%)0’ as desired.
O]

Proposition 9.34. Work with the same situation as above. Then %gc is a Grobner basis
of In(6p,%,) With respect to <2-.

Proof. 1t is clear that %é% C Io(0p 4. We note that the initial monomial of each of
the binomials (O5) — (O8) with respect to <Zﬁ<g is its first monomial. Let in 2. (%é%)

denote the set of initial monomials of binomials belonging to %écg. It follows from
Lemma 8.3 that, in order to show that %é,%) is a Grobner basis of I Op %) with respect
to <2ﬁ%), we must prove the following assertion: If # and v are monomials belonging to
. . 2 . 2 2
K>[O'€] with u # v such that u ¢ <1n<%,% (95,)) and v & <1n<;M (9%4)), then o (u) #

T (v).
Let u,v € K[0'€¢'] be monomials with u # v. Write

a b a Vi Vi o & &y Vi Yy
U=z Xp X, ymax(Jl) o 'ymax(Jb)’ V=2 xI; h .xI[:/ ymax(]{) h .ymax(Jl’),)’

where

e 00>0,0'>0;
o Ii,....I.,I;,....Il, € 7 (P);
Tyeoisdpdise i dy € _7(0);

!/ !/ !/ !/
51,...,&a,\/l,...,\/b,gl,..., a/,Vl,...,Vb/ >0,

. . . . 2 . 2
and where u and v are relatively prime with u & (in <2 (954)) and v & (in <2 (954))-
Thus By using (O5) and (06), it follows that

e [ CLC---ClyandJ1 CJHh C - CJps

e [ CLLC--ClandJ] CHC - C U
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Now, suppose that 7%, (1) = 75, (v). Then we have

Y &- ¥ w- X & ¥ v

1€{ly,...la} Je{I)dp} relr),., 1[’1/} Je{d) s J}/),}

pi€l gi€max(J) piel giemax(J')
for all 1 <i <d by comparing the degree of ¢;.

Assume that (a,a’) # (0,0) and I, \ I', # 0. Then there exists a maximal element p;+ of
I, with p ¢ I, Since p;+ ¢ I, one has

Z & — Z V)= — Z V}/SO.

1e{ly,...la} Je{y,dp} J’E{J{,“.,Jé,}
pix€l g+ €max(J) g €max(J’)

Moreover, since p;+ is belonging to I, we also have

Hence there exists an integer ¢ with 1 < ¢ < b such that g;« is a maximal element of /..
Therefore we have x7,Ymax(s,) € (in <2 (492.)), but this is a contradiction. By consider-
ing the case where (a,a’) # (0,0) and I/, \ I, # 0, it is known that one of the followings
is satisfied:

Then we have

Y w= Y v
JE{J] iy} Ve ity }
gi€max(J) gi€max(J’)

for all 1 <i<d. Assume that (b,b’) # (0,0) and Jj, \ J;, # 0. Then there exists a
maximal element g; of J, with gy ¢ J;,. Since gy ¢ J;,, one has

0< Y w# )Y vi=0,

Je{J)odp} S

gy<€max(J’)

but this is a contradiction. By considering the case where (b,b") # (0,0) and J;, \ J;, # 0,
it is known that one of the followings is satisfied:

e (b,b)=(1,0),J, =0;
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o (b,b')=(0,1),J;, = 0;

o (b,b')=(0,0).
Hence one has u = z%x;y; and v = z“,xglyg/, where £,&' v, v/ > 0. Since xgyp €

(in <2 (92..)) and since u and v are relatively prime, we may assume that v =&’ = 0.
% > a;

Thus u = z“xg and v = za/yé’,. Note that either o« = 0 or o’ = 0. Hence by comparing

the degree of 411, it is known that £ = v/ = o = &’ = 0, contradiction. O

Proposition 9.35. Work with the same situation as above. Then %CZC is a Grobner basis
ofIQ(chng) with respect to <%C .

Proof. We can show that the assertion follows by a similar way in the proof of Propo-
sition 9.35. [

Finally, we show Theorem 9.32.

Proof of Theorem 9.32. 1Tt is easy to show that Q(Op, Op), Q(Op,6p) and Q(6p,6p)
are spanning. By Lemma 8.4 and Propositions 9.33, 9.34, 9.35, the assertion follows.
O

9.3.2 Their -polynomials and volumes

In this subsection, we consider combinatorial properties of these polytopes, especially,
the 6 polynomials and the volume of Q(Op,6p), Q(Op,6p) and Q(0p, %), for finite
posets P = {py,...,pqs} and Q = {q1,...,qq}. In fact, we show the following theorem.

Theorem 9.36 ([49, Theorem 1.4]). Let P={py,...,pa} and Q ={qi,...,qa} be finite
poset. We set P' = {pg1} ®P and Q' ={qu1}® Q. If P and Q possess a common lin-
ear extension, then all of Q(Op,0p), Q(Op,6p), Q(€p,6p), T'(Op,0y), T'(Op, 6y )
and I'(6€p, 6y ) have the same & polynomial. In particular, these polytopes have the
same volume.

Here, we put
R}y = K[00]/in (lo(op.04));

Ry =Ko 0] [in> (lo(,.4,)),
R =Kol €6 [in 2 _(lo(sp.,))-

Proposition 9.37. Work with the same situation as above. If P and Q possess a common
linear extension, then these rings Rzﬁ o Rzﬁ(g and R?%) are isomorphic.
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Proof. By Proposition 9.33, 9.34 and 9.35, we have

K00
({x;x[/,yjyj/,xlyj,xoy@ | I,I’,J and J’ satisfy (*)}>7

2
Rpo =

K>[0F]
(X7, Ymax (/) Ymax (/) s X1 max(s) »%oYo | I,1',J and J' satisfy (x)})’
K> [€'6]
{Xmax (1) Xmax(1)» Ymax(J)Ymax (/) » ¥max (1) Ymax (7 XoY0 | I,I',J and J' satisfy (x)})’

o~

2
Ryy

2 ~
R‘ﬁ%:<

where the condition (x) is the following:

e [ and I’ are poset ideals of P which are incomparable in _¢ (P);
e Jand J' are poset ideals of Q which are incomparable in _# (Q);

e There exists 1 <i < d such that p; is a maximal element of / and ¢; is a maximal
element of J.

Hence it is easy to see that the ring homomorphism ¢ : Rzﬁ(g — R%o(g by setting @ (x;) =
Xmax(7)s @ (Vmax(J)) = Ymax(s) @nd @(z) = z is an isomorphism. Similarly, if P and Q
possess a common linear extension, we can see that the ring homomorphism (p/ : R% o=
R%,, by setting 0 (xp)=x, ¢ (y) = Ymax(s) and ¢ (z) = z is an isomorphism. Hence it
1s known that Rzﬁ o= Rzﬁ% = R(zg(g, as desired. L]

Now, we prove Theorem 9.36.

Proof of Theorem 9.36. By Theorem 9.32, it is known that that Q(Op, Op), Q(Op,6p)
and Q(%p, €¢p) possess the integer decomposition property. Hence the Ehrhart polyno-
mial of Q(Op, Op) (resp. Q(Op,€p) and Q(6p,%p)) is equal to the Hilbert function
of K[Q(Op,Op)] (resp. K[Q(Op,6p)| and K[Q(6p,€p)]). By Proposition 9.37, Rs ¢,
R4 and Ry have the same Hilbert function. Hence by Lemma 8.5, K[Q(0p, Op)],
K[Q(Op,%p)] and K[Q(%p,%p)] also have the same Hilbert function. On the other
hand, in the proof of Proposition 9.33, it is known that Q(&p, Op) =T'(Op, Oy ). Hence
by Theorem 9.8, we have the desired conclusion. O]

Finally, we give a combinatorial formula to compute the volume of these polytopes in
terms of the underlying finite posets P and Q.

By Theorems 9.14 and 9.36, we obtain the following theorem.
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Theorem 9.38 ([49, Theorem 3.4]). Let P={py,...,pa} and Q ={q1,...,qa} be finite
posets, and set P' = {pg1} &P and Q' = {qu11} ® Q. If P and Q possess a common
linear extension, then we have

VOI(Q(CKP,%Q)) = Z e(Aw(P/,Q/)).
Wcld+1]

9.3.3 Examples

In this subsection, we give some curious examples of reflexive polytopes.

First, we consider a difference of the class of I'(.%?, 2) and the class of Q(Z, 2). It is
known that the class of Q(Op, Op) is included in that of I'(Op, Op).

Example 9.39. Let P be the finite poset as follows,

P: Ds D6
@ P4
P1 P2

For any finite poset P’ with 7 elements, it is known that the f-vector of Q(%p,%p) is
not equal to that of I'(Opr, Opr) and T'(6p, 6p). Hence Q(%p, €p) is not unimodularly
equivalent to I'(Opr, Opr) and T'(€pr, €pr).

By this example, we know that the class of Q(%p,6p) is not included in that of I'(Op, Op),
I'(Op,6p) and I'(6p,6p). Similarly, the class of Q(Op,%6p) is included in none of the
above classes. This fact says that the class of Q(Op,€p) and that of Q(%p,€p) are new
classes of reflexive polytopes which possess the integer decomposition property.

Example 9.40. Let P be the finite poset as in Example 9.39 and P’ = {p7} & P. Also,
we let P, P, and P; be the finite posets as follows:
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Pii qps D6 P aps D6 Ps: D7

P4 p7 J43
, % . @ .
P1 p2 P1 p2 P1 p2

Then we have
L(p,6p) =T (6p,Cp) =T (%p,,6p,) =T (%p;, p).
Hence it is known that the 11 reflexive polytopes
Q(Op,0p),Q2(0Op,6p),Q2(Cp,Cp),

F(ﬁpl,%p/),r(%}w,%p),
F(ﬁpl ) ﬁpl)7r(ﬁsz ﬁPz)ar(ﬁP37ﬁP3)7
F(ﬁPl >CgP1)’F(ﬁP27C€P2)’F(ﬁP37C€P3)

possess the integer decomposition property and have the same Ehrhart polynomial.
However, these polytopes are not unimodularly equivalent each other.

By these five classes of reflexive polytopes with the integer decomposition property, we
can obtain several interesting examples. From this example, one of the future problem
is to discuss how many reflexive polytopes which have the same J-polynomial.

Finally, we give some examples of this problem.

Example 9.41. Let &2 C R? be the reflexive polytope of dimension d whose vertices
are followings:

€,...,€4,—€1 —--—€4.

Then we have §(2,t) = 1 +1+---+1¢. On the other hand, every reflexive polytope of

dimension d whose §-polynomial is equal to 1 47 + - - - +¢¢ is unimodularly equivalemt
to Z.

Example 9.42. By checking any reflexive polytopes of dimension 2, we obtain follow-
ings:

e The number of reflexive polytopes whose 8-polynomials equal 1 47412 is 1;
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The number of reflexive polytopes whose §-polynomials equal 1 + 27 42 is 3;
The number of reflexive polytopes whose 8-polynomials equal 1+ 3¢ +£2 is 2;
The number of reflexive polytopes whose 8-polynomials equal 1+ 47 +£2 is 4;
The number of reflexive polytopes whose 8-polynomials equal 1+ 5¢ +£2 is 2;
The number of reflexive polytopes whose §-polynomials equal 1+ 6 + 2 is 3;

The number of reflexive polytopes whose 8-polynomials equal 1+ 7¢ +£% is 1.
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Chapter 10

Reflexive polytopes arising from
perfect graphs

In this chapter, the study on I'(2?, 2) and Q(Z, 2) will be done when each of & and
2 is stable set polytopes, which are lattice polytopes arising from finite simple graphs.
This chapter is organized as follows. In Section 10.1, we recall what perfect graphs are
and finite posets and introduce the stable set polytopes of finite simple graphs. In Sec-
tion 10.2, we give a class of reflexive polytope with the integer decomposition property
which arise from perfect graphs. In Section 10.3, we consider the §-polynomials and
volumes of these reflexive polytopes. Finally, in Section 10.4, we give some curious
examples.

10.1 Perfect graphs and stable set polytopes

In this section, we recall what perfect graphs are and finite posets and introduce the
stable set polytopes of finite simple graphs. Let G be a finite simple graph on the
vertex set [d] and E(G) the set of edges of G. (A finite graph G is called simple if
G possesses no loop and no multiple edge.) A subset W C [d] is called stable if, for
all i and j belonging to W with i # j, one has {i, j} ¢ E(G). We remark that a stable
set is often called an independent set. A clique of G is a subset W C [d]| which is a
stable set of the complementary graph G of G. The clique number ®(G) of G is the
maximal cardinality of cliques of G. The chromatic number x(G) of G is the smallest
integer t > 1 for which there exist stable set Wy,..., W, of G with [d] =W, U---UW,.
In general, it follows that ®(G) < x(G). A finite simple graph G is said to be perfect
([20]) if, for any induced subgraph H of G including G itself, one has w(H) = x(G).
The perfect graphs include many important classes of graphs, for example, chordal
graphs and comparability graphs. Moreover, it is known that the complementary graph
of a perfect graph is perfect ([20]). This characterization of perfect graphs is called the
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perfect graph theorem. Recently, a stronger characterization of perfect graphs, which is
called the strong perfect graph theorem, is known. An odd hole is an induced odd cycle
of length > 5 and an odd antihole is the complementary graph of an odd hole.

Lemma 10.1 ([20, Strong Perfect Graph Theorem]). A finite simple graph G is perfect
if and only if G has no odd hole and no odd antihole as induced subgraph.

Next, we introduce the stable set polytopes of finite simple graphs. Let S(G) denote
the set of stable sets of G. One has 0 € S(G) and {i} € S(G) for each i € [d]. The
stable set polytope 2 C RY of G is the (0, 1)-polytope which is the convex hull of
{p(W) : W € S(G)} in R?. Then the dimension 2 is equal to d. It is known that
every chain polytope is a stable set polytope. In fact, let P = {py,...,py} be a finite
poset. Then its comparability graph Gp is the finite simple graph on [d] such that
{i,j} € E(Gp) if and only if p; < p; or p; < p;. Then a stable set of Gp corresponds
to an antichain of P. Moreover, one has 6p = Z,. Since every comparability graph is
perfect, the class of chain polytopes is contained in the class of the stable set polytopes
of perfect graphs. Finally, we give a characterization of perfect graphs in terms of the
stable set polytopes.

Lemma 10.2 ([72, Example 1.3 (c)]). Let G be a finite simple graph on [d]. Then G is
perfect if and only if 2 is compressed.

10.2 Squarefree Grobner basis

In this section, we give a class of reflexive polytope with the integer decomposition
property which arise from perfect graphs. In fact, we show the following.

Theorem 10.3 ([50, Theorem 1.1]). Let G| and G, be finite simple graphs on [d].

(a) ([74]) The following conditions are equivalent:

(i) The lattice polytope T'(2g,, 2:,) is reflexive;

(ii) The lattice polytope I'(2g,, Zg,) is reflexive and possesses the integer de-
composition property;

(ii1) Both G| and G, are perfect.
(b) The following conditions are equivalent:

(i) The lattice polytope Q( 2, , Lg,) possesses the integer decomposition prop-
erty;
(i) The lattice polytope Q(2g,,2c,) is reflexive and possesses the integer de-

composition property;
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(ii1) Both G| and G, are perfect.

In order to prove this theorem, we recall the toric ideals of integer matrices. Let
K[t*',s] = K[ri"',... 17", 5] denote the Laurent polynomial ring in d + 1 variables over
a field K. For an integer vector a € Z¢, leta' be its transpose vector. Given an integer
d X n matrix A = (alT, ...,a)), where a]T = (aij,... ,adj)T is the jth column of A, then

we define the toric ring K[A] of A as follows:
K[A] = K[t*s, ... t*s] C K[t*] 5],

Let K[x| = K|[x1,...,x,] be the polynomial ring in n variables over K and define the
surjective ring homomorphism 7 : K[x] — K[A] by setting 7(x;) = t*sfor j=1,...,n.
The toric ideal of A is the kernel 14 of 7.

Let Z%” denote the set of d x n integer matrices (a;;) 1<i<« With each a;; > 0. In [74],

1<j<n
the concept that A € Z%" and B € Zif)m are of of harmony is introduced. For an integer
vector a = (aj,...,aq) € 24, let at) = (agﬂ,...,ay)),a(*) = (ag_),...,aé_)) € Zéo

§+) = max{0,q;} and al(_) — max{0,—a;}. Note that a = a*) —a(~) holds in
general. Given A € Z%” and B € Z‘%m such that the zero vector 0 is a column in each
of A and B, we say that A and B are of harmony if the following condition is satisfied:
Leta' beacolumnofAandb! thatof B. Letc=a—b c Z4. If ¢ = ¢(*) — c(_>, then

(")) T is a column vector of A and (¢(~))T

where a

is a column vector of B.

Now we prove the following theorem.

Theorem 10.4 ([50, Theorem 2.1]). LetA=(a[,...,a, ) € Z{"and B=(b],...,b}) €
725", where a, = by, = 04 € Z4, be of harmony. Let K[x] = K[x1,...,x,] and K[y] =

K[y1,...,ym| be the polynomial rings over a field K. Suppose that in.,(I) C K[x| and

in.,(Ig) C K[y] are squarefree with respect to reverse lexicographic orders <4 on K[X|

and <p on K|[y| respectively satisfying the condition that

o x; <axj if foreach 1 <k <d ay; < ay;.
® Xx, is the smallest variable with respect to <4.

® y,, is the smallest variable with respect to <p.

Let (—B,A)* denote the (d + 1) X (n+m+ 1) integer matrix

Then the toric ideal I _p )« of (—B,A)* possesses a squarefree initial ideal with respect
to a reverse lexicographic order whose smallest variable corresponds to the column
0., of (—B,A)".
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Proof. Letl_g ) CK[X,y,2] = K[x1,...,Xu, 1, --,Ym,Z] be the toric ideal of (—B,A)"
defined by the kernel of

n*: K[x,y,z] = K[(—B,A)*| CK[ti",....t5) 5]

with 7(z) =5, T (x;) =t*t s fori=1,...,nand 7*(y;) = t’bftdjlls forj=1,...,m.
Assume that the reverse lexicographic orders <4 and <p are induced by the orderings
Xp <g - <gaxpand y, <p--- <pyi. Let <qy be the reverse lexicographic order on
K|[x,y,z] induced by the ordering

7 <rev Xn <rev ' <rev X1 <rev Ym <rev ' <tev Y1-

In general, for an integer vector a = (ay,...,ay) € Z¢, we let supp(a) = {i: 1 <i <
d,a; # 0}. Set the following:

E={(i,j) 1 1<i<n, 1 <j<m,supp(a;) Nsupp(b;) #0}.

If ¢ = a; — b; with (i, j) € &, then it follows that ¢{*) # a; and ¢(~) # b;. Since A and

B are of harmony, we know that (¢(*)) T is a column of A and (¢(~)) T is a column of B.

It follows that f = x;y; —xxys (7 0) belongs to I _pay where ¢(t) = a; and ) = by.
Then since for each 1 < ¢ <d, a < a;, one has x; <4 x; and in., (f) = x;y;. Hence

{xiyj o (i,) € £} Cing, (I —pay)-
Moreover, it follows that x,,y,, — 2> € [(_pa)» and xpyp € Ing,, (I(_ B, A)*). We set
M = {xnym} U{xiyj 1 (i,]) € EYUMyIMp (Cine,,(I_pay)),

where ./ (resp. .#p) is the minimal set of squarefree monomial generators of in, (14)
(resp. in<,(Ig)). Let ¢ be a finite set of binomials belonging to I(_p )~ with M =

{ine,(f): f €9}

Now, we prove that & is a Grobner base of [(_p4)« with respect to <rey. By the
following fact ([73, (0.1), p. 1914]) on Grobner bases, we must prove the follow-
ing assertion: If u and v are monomials belonging to K[x,y,z| with u # v such that

u¢ {inc(g):g€¥9})andv ¢ ({inc(g):g€9}), then w*(u) # n*(v).

Suppose that there exists a nonzero irreducible binomial ¢ = u — v be belonging to
I_pay-such thatu ¢ ({in(g) : g € 4}) andv ¢ ({in<(g) : g € 4}). Write

(1)) () ()
peP q€Q p'eP q€Q

where P and P’ are subsets of [n], Q and Q' are subsets of [m], ¢ is a nonnegative
integer, and each of iy, j,, i;,,, j;, is a positive integer. Since g = u — v is irreducible, one
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has PNP' = QN Q' = 0. Furthermore, by the fact that each of x;y; with (i, j) € & can
divide neither u nor v, it follows that

( U supp(ap)> N ( U supp(bq)) = U supp(a,) | N U supp(by) | = 0.

peP q€0 p'eP qeQ

Hence, since 7*(u) = *(v), it follows that

Zipap: Z lp/ap/, Z]‘I g = Z ]q/b/

peP p'ep! q€0 qeQ

Let 5 = ZpGPiP’ 6/ = Zp’eP’ i;" V= ZqGQjCI’ and v/ = Zq’GQ’ J/q’ Then g tv= 51 +
v/ + a. Since o > 0, it follows that either & > &’ or v > v/. Assume that £ > &’. Then

h:pr—xn (Hx,)

peP p'eP

belongs to Iy and I(_p 4y« If h # 0, then inc, (h) = inc,, (h) = Hpepxg’ divides u, a
contradiction. Hence P = {n} and Q = 0. If & = &/, then the binomial

hy = Hxéf— ng",/

pEP p'epr

belongs to I4 and [(_p 4)«. Moreover, if hg # 0, then either [] ¢ ijf or []rep x;’,/ must
belong to inc, (I4) and in<,,, (I_p 4))- This contradicts the fact that each of u and v can
be divided by none of the monomials belonging to .#. Hence hg =0 and P = P' = 0.
Similarly, Q = {m} and Q' = 0, or Q = Q' = 0. Hence we know that g = xXy! — 7%,
where k and ¢ are nonnegative integers. Since u cannot be divided by x,y,,, it follows
that g = 0, a contradiction. Therefore, & is a Grobner base of inc, (/(_p4)-) with
respect to <gey. ]

Let 2 C R? be a lattice polytope of dimension d with # NZ? = {ay,...,a,}. Set
A= (a[,...,a,). Then the toric ring K[Z?] and the toric ideal I of & coincide with
K[A] and I4. By Lemma 8.4 and Theorem 10.4, we obtain the following corollary.

Corollary 10.5. Work with the same situation as in Theorem 10.4. Let &2 C R4t! be
the lattice polytope of dimension d 4 1 with

202 = {(@, 1), (a0, 1), (b1, 1),y (b, —1), 0421}

Suppose that 04,1 € Z3T belongs to the interior of & and 2 is spanning. Then P is
a reflexive polytope which possesses the integer decomposition property.

Finally, we prove Theorem 10.3.
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Proof of Theorem 10.3. For a finite simple graph G on [d], let A s(G) be the matrix whose
columns are those (p(W))" with W € S(G). If W € S(G), then each subset of W is
also a stable set of G. This means that S(G) is a simplicial complex on [d]. Hence
it is easy to show that Ag(,) and Ag(g,) are of harmony. Moreover, by Lemma 10.2,
for any perfect graph G, 2 is compressed. Let & C R?*! be the convex hull of
{£(e; +eg41),...,£(eg+e411),2eq.1}. Then it follows that 04, ; € Z¢*! belongs to
the interior of & and & is spanning. Moreover, we have & C Q(Z;,,Zg,). This
implies that 0,1 € Z?*! belongs to the interior of Q(Z2g,, Zs,) and Q(Zg,,Zg,) is
spanning. On the other hand, one has

1
Q(QGI,QGz) N{(ay,...,aq+1) € RI*! agy1 =0} = i(QGI — QGZ) x {0}.
1
Since 5(361 —96,)NZ* = {04}, we obtain

(2, 26,)NZH = {(a, 1):ae 2, ﬂZd}U{(—b,—l) ‘b e 2g, mZd}u{0d+1}.

Hence, by Corollary 10.5, if G; and G, are perfect, Q(Zg,, Zg, ) is a reflexive polytope
which possesses the integer decomposition property.

Next, we prove that if G is not perfect, then Q(Zg,, Z¢,) does not possess the integer
decomposition property. Assume that G is not perfect and Q(Zg,, Zg,) possesses the
integer decomposition property. By Lemma 10.1, G| possesses either an odd hole or an
odd antihole. Suppose that G| possesses an odd hole C of length 2¢ + 1, where ¢ > 2.
By renumbering the vertex set, we may assume that the edge set of C'is {{i,i+1}:1 <
i <20} U{1,2¢+ 1}. Then the maximal stable sets of C in [2¢+ 1] are

Si={1,3,...,20— 11,8, = {2,4,....20},..., S0y = {20+ 1,2,4,...,20—2}

and each i € [2¢ + 1] appears ¢ times in the above list. For 1 <i < 2/+ 1, we set
Vi =1 jcs;€j T €4+1. Then one has

Vit Vo +(—egy)
A= ¢

=e;+--+eyr1t+2e44.

Since 2 < (20+2)/¢ < 3, a € 3Q(Zg,, Zs,) NZ!. Hence there exist aj,ay,a3 €
Q(Z6,,26,)N 74+ such that a = a; + a» +a3. Then we may assume that a;,a, €
Zc x {1} and a3 = 0, ;. However, since the maximal cardinality of the stable sets of
C in [2¢+ 1] equals 4, a contradiction.

Suppose that G| possesses an odd antihole of length 2/ + 1, where ¢ > 2. Similarly, we
may assume that the edge set of C is {{i,i+1}:1<i<2¢}U{1,2¢+ 1}. Then the
maximal stable sets of C are the edges of C.For1<i<2/ wesetw;,=e;+e |+ €J11
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and set wyy | = €| +ey/1 +e;.1. Then one has

_ Wit Wapr + (—€aq)

b
2

=e;+--+exy1+legi

and b € ((+ 1)Q(Z2g,,2c,). Hence there exist by,...,by, | € Q(ZDg,,2g,) NZH!
such that b=b; +---+ by, . Then we may assume that by,...,by € D¢ x {1} and
by 1 =04, 1. However, since the maximal cardinality of the stable sets of C in [2/+ 1]
equals 2, a contradiction.

Therefore, if Q(2g,,Zc,) possesses the integer decomposition property, then G and
G, are perfect, as desired. O]

It would, of course, be of interest to find a complete characterization for Q(Z2g,, Zg,)
to be reflexive. For a finite simple graph G on [d], Q(Z¢) is called the Hansen polytope
of G. This polytope possesses nice properties (e.g., centrally symmetric and 2-level) and
is studied in [27, 75]. Especially, in [27], it is shown that if G is perfect, then Q(Z2¢)
is reflexive. Theorem 10.6 (b) says that G is perfect if and only if the Hansen polytope
Q(Z2¢) possesses the integer decomposition property.

10.3 o6-polynomials

In this section, we consider the J-polynomials and the volumes of Q(Zg,, Zs,) and
I'(Zg,,2g,) for perfect graphs G| and G,. The suspension of a finite simple graph G
on [d] is the finite simple graph G on [d + 1] with E(G) = E(G)U{{i,d+ 1} : i € [d]}.
Our main theorem of this section is the following.

Theorem 10.6 ([50, Theorem 1.2]). Let G| and G, be finite perfect simple graphs on
[d]. Then one has

S(Q(QGUQGQ)J> = 5(F(°@a7°@@)7t) = (1 +t)6(r(°@G17°@G2>7t)-
Thus in particular

Vol(Q(Zg,, Z,)) = Vol(I'(2-, 25-)) = 2- Vol(I'(Zg, , Zc, )

We obtain this Theorem from the following.

Theorem 10.7 ([50, Theorem 3.1]). Work with the same situation as in Theorem 10.4.
Let & C R? be the lattice polytope with 2 NZ% = {ay,...,a,} and 2 C R? the lat-
tice polytope with 2N Z¢ = {by,...,b,}. Suppose that T(P,2) and Q(P,2) are
spanning,

IZ,2) Nz = {a1,...,a,_1,—b1,...,—by_1,04}
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and
Q(2, 2)n7% " = {(a},1),...,(an, 1), (=b1,—1),...,(=by, —1),0441 }.

Then we obtain

S(QUP,2),A) = (1+1)8(I(P,2),1).

In particular,

Vol(Q(2, 2)) = 2-Vol(I( 2, 2)).

Proof. Set # = conv({I'(Z2,2) x {0},+e,.1}). Then it follows from [12, Theorem
1.4]that 6(Z,t) = (1+1)0(I'(£2,2),t). Moreover, by [74, Theorem 1.1] and Theorem
104, Z and Q( &, 2) possess the integer decomposition property. Hence we should
show that K[Z#] and K[Q(Z?,2)] have the same Hilbert function.

Now, use the same notation as in the proof of Theorem 10.4. Then we have

K[x,y,z]  K[xy,7]

inc (loz,.2)  (A)

Set

(a;,0), 1<i<n-—1, (b;,0), 1<j<m-—1,

/ . / .
a; = § €11, l=n, andbj: €d+1, J=m,

0d+17 i=n+1, 0d+17 Jj=m+1
Then it is easy to show that A’ = (a}",...,a} ) and B' = (b]",...,b} ) are of har-
mony. Moreover, in<,, (Ig') C K[y1,...,Ymy1] andinc , (Isr) C K[x1, ..., %, 1] are square-
free with respect to reverse lexicographic orders <, on K|xj,...,x,+1] and <p on

K[y1,...,Ym+1) induced by the orderings x,,+1 <ar X, <a -+ <ar X1 and Y11 <p' Ym <p'
.-+ <g y1. Now, we introduce the following:

& ={(i,j) : 1 <i<n, 1< j<m,supp(a;)Nsupp(b’;) #0}.

Then we have &' = &U{(n,m)}. Let 4 (resp. .#g) be the minimal set of squarefree
monomial generators of inc,,(Iy/) (resp. in<,, (Iz)). Then it follows that .Zy = .44
and Ay = Mp. This says that 4 = &' U My U Mp. By the proof of [74, Theorem
1.1], we obtain in<  (I) = (.#) C K[X,y,z]. Hence it follows that

K[x,y,z]  K[xy,7]
inc.,(lo».2) inc.,(z)

Therefore, K[%] and K[Q (<, 2)] have the same Hilbert function, as desired. O

Now, we prove Theorem 10.6.
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Proof of Theorem 10.6. For any finite simple graph G on [d], we have S(G) = S(G) U
{d 4+ 1}. Hence it follows that F(QGA],QGAZ) = conv({I'(Zg,, Zs,) x {0}, +eqy1}).
Therefore, by Theorem 10.7, we obtain

6((Za,, 26y, 1) = 8(I(2g,, Z5,),1) = (1+1)8(1(Z6,, 26, ) 1),

as desired. O]

10.4 Examples

In this section, we give some curious examples of I'(Zg,, Zg,) and Q(Zg,, Zs,).
First, the following example says that even though G and G, are not perfect graphs,
Q(2g,, 2¢,) may be reflexive.

Example 10.8. Let G be the finite simple graph as follows:

G:

Namely, G is a cycle of length 5. Then G is not perfect. Hence I'(2g, Z2) is not
reflexive. However, Q( 2, 2¢) is reflexive. In fact, we have

8(T(26,2¢6),1) = 1+ 15t + 601> + 621> + 15¢* +-1°,

8(Q(26,2¢),1) = 1416t +75¢> + 1241% + 75¢* + 161° +1°.

Moreover, I'(2¢, 2g) possesses the integer decomposition property, but Q(Zg, Z;)
does not possess the integer decomposition property.

For this example, I'(2g, Z) possesses the integer decomposition property. Next ex-
ample says that if G| and G, are not perfect, I'(Zg,, Z¢,) may not possess the integer
decomposition property.

Example 10.9. Let G be a finite simple graph whose complementary graph G is as
follows:
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Then G is not perfect. Hence ['(2g, Z¢) is not reflexive. However, Q(Zg, Zg) is
reflexive. Moreover, in this case, I'(2g, Z) and Q(Zg, Z¢) do not possess the integer
decomposition property.

For any finite simple graph G with at most 6 vertices, Q(Z2g, Z) is always reflexive.
However, in the case of finite simple graphs with more than 6 vertices, we obtain a
different result.

Example 10.10. Let G be the finite simple graph as follows:

G: ° °

Namely, G is a cycle of length 7. Then G is not perfect. Hence I'(Zg,Z¢) is not
reflexive. Moreover, Q(Z2g, Z¢) is not reflexive. In fact, we have

8(0(26,26),t) = 1 +49 + 567> + 18017 4 1799¢* 4+ 569¢° 4+ 49¢° + 17,

8(Q2g,25),1) = 1+ 50t + 616> + 2370 4 3598:* + 23681 + 618:% 4 5017 +13.

Finally, we show that even though the Ehrhart d-polynomial of Q(Zg,,Zg,) coin-
cides with that of F(o@a, QGAZ), Q(Z2g,,2,) may not be unimodularly equivalent to
F(Qa,gég)
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Example 10.11. Let G be the finite simple graph as follows:

G:

Namely, G is a (2,2,2)-complete multipartite graph. Then G is perfect. Hence we know
that Q(Z,2g) and I'(2,2;) have the same Ehrhart §-polynomial and the same
volume. However, Q(Zg, Z¢) has 54 facets and I'(2, 25) has 432 facets. Hence,
Q(26,2c) and I'(Z5, 2) are not unimodularly equivalent. Moreover, for any finite
simple graph G’ on {1,...,7} except for G, the Ehrhart 8-polynomial of INZ2g,2q)
is not equal to that of Q(Zg, Zg).
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Chapter 11

Reflexive polytopes arising from
perfect graphs and posets

In this chapter, the study on I'(#2, 2) and Q( 22, 2) will be done, when & is the order
polytope Op of a finite poset P = {py,...,ps} and 2 is the stable set polytope g
of a finite simple graph G on [d]. In particular, we give two new classes of reflexive
polytopes with the integer decomposition property which arise from order polytopes
and stable set polytopes. In fact, we show the following.

Theorem 11.1 ([51, Theorem 1.2]). Let G be a finite simple graph on [d]. Then the
following conditions are equivalent:

(i) T(Op,Z2¢) is a reflexive polytope for some finite poset P ={p1,...,pa};
(ii) T'(Op,2¢) is a reflexive polytope for all finite poset P = {p1,...,pa};

(iii) Q(Op,2¢) possesses the integer decomposition property for some finite poset
P= {p17"'7pd};

(iv) Q(Op,2¢) possesses the integer decomposition property for all finite poset P =
{pla ) 7Pd};

(v) G is perfect.

Furthermore, if G is perfect, then each of T'(Op,2¢) and Q(Op,2¢) is a reflexive
polytope with the integer decomposition property for all finite poset P = {py,...,pa}.

A proof of Theorem 11.1 will be given in Sections 11.1 and 11.2. Furthermore, in Sec-
tion 11.3, the discussion on d-polynomials of these reflexive polytopes will be achieved.
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11.1 Typel

In this section, we prove the equivalence (i) < (ii) < (v) of Theorem 11.1. In fact, we
prove the following proposition.

Proposition 11.2. Let G be a finite simple graph on [d|. Then the following conditions
are equivalent:
(i) T(Op,2¢) is a reflexive polytope for some finite poset P = {p1,...,pa};
(ii) T'(Op, 2¢) is a reflexive polytope for all finite poset P = {py,...,pa};
(ii1) G is perfect.

In particular, if G is perfect, then T'(Op, 2¢) possesses the integer decomposition prop-
erty for all finite poset P = {p1,...,pa}.

Proof. ((iii) = (i1)) Suppose that G is perfect. Let

K[O2] = K[{x1}or1c 7 (p)U{Vctorcesc) ULz}]
denote the polynomial ring over K and define the surjective ring homomorphism 7 :
K[0 2] — K[[(Op, 26)] C K[t{",...,t7",s] by the following:
o n(x;) =t°Us, where 0 £ 1€ ¢ (P);
o n(yc) =t PCs, where 0 # C € S(G);

° 77:(2) =Ss.

Then the toric ideal It(g,, 9, of I'(Op, Z¢) is the kernel of 7.
Let <g, and < g, denote reverse lexicographic orders on K[0] = K[{x1}g1e y(p)U
{z}] and K[2] = K[{yc}oxces(c) U{z}] satisfying

® z<g,xrand z <g; yc;

o xp <gp XI ifI' C I,

® yor <9, YcC if C' CC,
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where I,I' € _# (P)\ {0} with I # I’ and C,C’ € S(G) \ {0} with C # C’. From Lem-
mas 9.2 and 10.2, we know that in<, (I,) and in<, _(I9,) are squarefree. Let ./,
and .# 9, be the minimal sets of squarefree monomial generators of in op (Ig,) and
inc, (I2,). Then Lemma 9.2, it follows that

Mg, ={xixp:1,I'e F(P)ILT1DI'}. (11.1)

Let < be a reverse lexicographic order on K[0' 2] satisfying

® z2<Yyc <Xp;
o xp<xyifl' CI,

® Yy <yC lfC/ CC,

where I.I' € _# (P)\ {0} with I # I and C,C’ € S(G) \ {0} with C # C’, and set
M = Mg, U Mo, {xryc:1€ F(P),C € S(G),max(I)NC # 0}.
Let 4 be a finite set of binomials belonging to Ir(¢, o) With # = {in-(g): g € ¥}.

Now, we prove that ¢ is a Grobner base of I, g,,) With respect to <. Suppose that
there exists a nonzero irreducible binomial f = u —v be belonging to Iz, g,;) such that

udg ({inc(g):g€9})andv¢ ({inc(g):g€9}). Write

V, U, Vé,,

. 1238 Cj _a I J
u=| [T ")\ Il v ) v=2" II =" |{ II » )

1<i<a 1<j<b 1<i<a’ ' 1<j<p 7

o I, Iy, I, € 7 (P)\{0};

o Ci,...,Cp,Cl.....Cl, € S(G)\ {0}:

where

e a,d',b,b' and o are nonnegative integers;
® L, 1y, Ve, Vi are positive integers.
By (11.1), we may assume that [; C --- C Iy and I} C --- C I,. If (a,a’) = (0,0), then

inc, (f) =in<(f). Hence we have (a,da’) # (0,0). Assume that I, \ I; # 0. Then there
exists a maximal element i of I, such that i ¢ I,. Hence we have

Z M — Z Vy=— Z Vé/SO.

16{1]....,154} CG{C]....,Cb} C/E{CQ_’_“’CL/}
iemax(I) ieC iec’
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This implies that there exists a stable set C € {C},...,Cp} such that i € C. Then x;,yc €
M, a contradiction. Similarly, it does not follow that I, \ I, # 0. Therefore, ¢ is a
Grobner base of I, 9,,) with respect to <.

Thus, by Lemma 8.4, it follows that I'(0p, 2¢) is reflexive and possesses the integer
decomposition property.

((i) = (iii)) Suppose that G is not perfect. By Lemma 10.1, G possesses either an odd
hole or an odd antihole. First, suppose that G possesses an odd hole C of length 2¢ 41,
where ¢ > 2. By renumbering the vertex set, we may assume that the edge set of C is
{{i,i+1}:1<i<20}U{1,2¢+1}. Then the hyperplane .7#’ C R¢ defined by the
equation zj + - -+ + zo741 = —£ is a supporting hyperplane of I'(0p, Z;). Let .# be a
facet of I'(Op, 2¢) with ' NI'(Op, 2¢) C .F and ajz; + -+ +agzg = 1 with each
a; € R the equation of the supporting hyperplane .77 C R¢ with .# C .. The maximal
stable sets of C are

Si={1,3,...,20—1},8, ={2,4,....20},... Sop 11 = {20+ 1,2,4,...,20—2}

and each i € [2/+ 1] appears ¢ times in the above list. Since for each S§;, we have
—Y jes;aj =1, itfollows that —¢(a; +---+aze11) =20+ 1. Hence ay +---+azy1 ¢ Z.
Therefore, I'(Op, Z¢) is not reflexive.

Finally, we suppose that G possesses an odd antihole C of length 2¢ + 1, where ¢ > 2.
Similarly, we may assume that the edge set of Cis {{i,i+1}:1<i<20}U{1,20+1}.
Then the hyperplane .77’ C R? defined by the equation z; + - +zpp1 ] = —2 is a
supporting hyperplane of I'(0p, 25). Let .F be a facet of ['(Op, 2¢) with ' N
I['(Op,2¢) C ¥ and ajz; + -+ +agzg = 1 with each g; € R the equation of the sup-
porting hyperplane .7 C R? with .# C . Then since the maximal stable sets of C is
the edges of C, for each edge {i, j} of C, we have —(a; +a;) = 1. Hence it follows that
—2(ay+---+ays1) =20+ 1. Thus a; + - -- + a1 & Z. Therefore, I'(Op, Z¢) is not
reflexive, as desired. O

Remark 11.3. Proposition 11.2 is a generalization of Theorem 9.4 (2).

11.2 Type Q

In this section, we prove the equivalence (iii) < (iv) < (v) of Theorem 11.1. In fact,
we prove the following proposition.

Proposition 11.4. Let G be a finite simple graph on [d|. Then the following conditions
are equivalent:

(i) Q(Op,2¢) possesses the integer decomposition property for some finite poset
P= {p17"'7pd};
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(il) Q(Op,2¢) possesses the integer decomposition property for all finite poset P =
{pla s 7pd};

(i) G is prefect.
In particular, if G is perfect, then Q(Op, 2¢) is reflexive for all finite poset P={py,...,pa}.

Proof. ((ii1) = (i1)) Suppose G is perfect. Let

K[O2] = K[{x1}1c 7p)YU{yctcesic)U{z}]
denote the polynomial ring over K and define the surjective ring homomorphism 7 :
K[02] - K[Q(0Op, 26)] C K[t 5] by the following:
o n(x;) =t°Uty 15, where I € _7 (P);
o (yc) = t*p(c)tdjl]s, where C € S(G);

o 7(z)=s.

Then the toric ideal I, 9, of Q(Op,Z¢) is the kernel of 7.
Let <g, and < g, denote reverse lexicographic orders on K[0] = K[{x1};c #(p)] and
K[2] = K[{yc}ces(c)] satistying
o Xy <gp Xl ifl' CI,
® Vo <9;YC if C' CC,
where I,I' € _# (P) with I #I' and C,C’ € S(G) with C # C', and .#5, and .4 9, the

minimal sets of squarefreec monomial generators of in<, (/s,) and inc 25 (I2,)- Then
it follows that

Mg, ={xixp:1,I'e F(P)ILT1DI'}. (11.2)

Let < be a reverse lexicographic order on K[ 2] satisfying

® z2<Yyc <Xp;
o xp <xyifl' CI,

o yo < ycifC' CC,
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where I,I' € _# (P) with I # I' and C,C’ € S(G) with C # C’, and set
M= M, U Mo, U{xiyc:1€ Z(P),C€S(G),max(I)NC # 0} U{xpye}-
Let ¢ be a finite set of binomials belonging to Ig (g, o,y With .# = {in<(g): g € ¥ }.

Now, we prove that ¢ is a Grobner base of Ig(g, 9,) With respect to <. Suppose that
there exists a nonzero irreducible binomial f = u — v be belonging to Io (s, 2, such
that u ¢ ({inc(g):g€¥})andv ¢ ({in(g):g€¥}). Write

o /41/( vlc’.
=TT { TLoe ) v===( T1 %")( II ')
1<i<a 1<j<b 1<i<da' ' 1<j<p ’

o I, 00, € 7(P)
e Ci,....Cp,Cl,...,Cl, € S(G);

where

e a,d,b,b' and o are nonnegative integers with (a,da’) # 0;

® L, 1y, Ve, Vi are positive integers.

By (11.2), we may assume that /; C --- C lpand I} C--- C 1,

By the same way of the proof of Proposition 11.2, we know that a = 0 and I, = 0, or
a =0 and I, = 0. Suppose that a =0 and I, = 0. Then by focusing on the degree of
7+ and s of 7(u) and 7(v), we have

- X Vo=t~ ) VC’

1<j<b 1<j<b

Z VC—a—f—”@—f‘ Z VC/.

1<j<b 1<j<p’

Hence 0 = o+ 21 > 0, a contradiction.

Suppose that @’ = 0 and I, = 0. Then we have

L Vog=— ) Vo

J

1<5<b 1<<b
w+ Y, ve,=oa+ Y, vc,.
1<j<b 1<j<b’

Hence one obtains 2y = o. By focusing on y@ - f, it is easy to show that

( H yC ) ( H Yo ) EIQ@JQZG)
1<j<b 1<j<p
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Vc.
Since xgyg € 4, for each i, C; # 0. Hence in-(f') = Hléjébyc? and in. (f’) divides
u, a contradiction. Therefore, ¢ is a Grobner base of I (4, 9,,) With respect to <.

Thus, by Lemma 8.4, it follows that Q(0p, 2¢) is reflexive and possesses the integer
decomposition property.

((i) = (i11)) We can prove this by the same way of Theorem 10.3. Il

Remark 11.5. Proposition 11.4 is a generalization of Theorem 9.32 (2).

11.3 o-polynomials
In this section, we discuss the §-polynomials of I'(0p, 2¢) and Q(Op, 2) for a finite
poset P ={pi,...,pq} and a perfect graph G on [d].

The following theorem is the main result of this section.

Theorem 11.6 ([51, Theorem 1.4]). Let P = {pi,...,pq} be a finite poset and G a
perfect graph on [d]. Then we have

S(F(ﬁp,gc),t) = 6(F(%p,QG),t),
S(Q(ﬁp,gc),t) = S(Q(%P,QG),I),

5(QOp, 26),1) = (1+1)-8(T(Op, 26).1).

Proof. Let
K[€2]=K [{xmax(l)}@#le 7 (p)Y {yC}(I)#CeS(G) U{z}]

denote the polynomial ring over K and define the surjective ring homomorphism 7 :
K[¢ 2] — K[T(6p,26)] C K[ti,...,£5"] by the following:

® T(Xmax(r)) = tP(max(D) g where 0 £ I € J(P);
o 7(yc) =t P, where 0 £ C € S(G);

° ﬁ(z) =3s.

Then the toric ideal I, 9, of I'(¢p, Z¢) is the kernel of 7.

Let <¢, and < g, denote reverse lexicographic orders on K[¢'] = K[{xmax (1) Yo1¢_#(P)V
{z}] and K[2] = K[{yc}oxces(c) U{z}] satisfying

® 2 <¢p Xmax(r) and 2 < g; yc;
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® Xmax(I') <%p Xmax(1) ifI' I

® yo <g9;Yc ifC' cC,
where I.I' € _# (P)\ {0} with I #I' and C,C’ € S(G) \ {0} with C # C’. Then from
Lemma 9.3, we know thatinc, (I4,) is squarefree. Let .4, and .# 9, be the minimal

sets of squarefree monomial generators of in<, (I¢,) and inc 2 (I2,). Then from 9.3,
it follows that

My = {Xmar(tXmaxry : LI € F(P),I LT 1T} (11.3)

Let <49 be a reverse lexicographic order on K|[x,y, 7] satisfying

® 2 <¢2YC <€2 Xmax(I)’
® Xmax(I') <¢2 Xmax(I) if I' C I;

® yo <goycifC'CC,

where I,I' € _7 (P)\ {0} with I # I' and C,C’ € S(G) \ {0} with C # C’, and set
My g = %%PU%QGU{XmaX([)yC :1e Z(P),CeS(G),max(I)NC # 0}.

Let ¢ be a finite set of binomials belonging to Ir«;,, o,) With #4 9 = {in<,,(g) : g €
% }. By the same way of the proof of Proposition 11.2, we can prove that ¢ is a Grobner
base of g, 9,,) With respect to <¢ 5.

Now, use the same notation as in the proof of Proposition 11.2. Set

K02 , K€

Rpo= 13 Rpg= ot
LT (Mpa) T (M)

Then the Hilbert function of K[I'(Op, 2 )] equals that of R o, and the Hilbert function
of K[I'(6p,2¢)] equals that of Ry 9. Moreover, it is easy to see that the ring homo-

morphism ¢ : Rg9 — Ry 9 by setting ¢(x1) = Xpax(1), ®(¥c) = yc and @(z) =z is an
isomorphism. Hence since I'(0p, 2¢) and I'(6p, Z¢) possess the integer decomposi-
tion property, we have

S(F(ﬁp,gc),t) = S(F((gp,gg),l‘).
Similarly, we obtain

S(Q(ﬁp,gc),t) = 6(.(2((5}),3@0),[).
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Moreover, since the chain polytope %p is a stable set polytope of a perfect graph, by
Theorem 10.6, it follows that

6(Q(0p, 2¢),t) = (1+1)-6(I(Op, Zg),1),

as desired. O]

Remark 11.7. In Theorems 9.8 and 9.36, for any finite posets P and Q on [d], it is
proved that 5(F(ﬁp,%Q>,l) = 5(F(Cgp,ch),t> and S(Q(ﬁp,ch),ﬂ = S(Q(C@D,CKQ),I).
Therefore, Theorem 11.6 is a generalization of those results.
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Chapter 12

Reflexive polytopes arising from finite
simple graphs

It is known that every lattice polytope is unimodularly equivalent to a face of some
reflexive polytope ([29]). From this fact, in [29], the reflexive dimension of a lattice
polytope is introduced. For a lattice polytope 2, its reflexive dimension is the smallest
integer r such that & is unimodularly equivalent to a face of a reflexive polytope of
dimension r. Computing the reflexive dimension of a lattice polytope is hard problem
in general. However, it is reasonable to determine the reflexive dimension of a (0, 1)-
polytope. In fact, it follows from Chapters 9, 10 and 11 that if & is an order polytope, a
chain polytope or a stable set polytope, then its reflexive dimension equals dim(.2?) + 1.
Hence, we ask the following question:

Question 12.1. For any (0, 1)-polytope of dimension d, is its reflexive dimension equal
tod+1?

In Chapters 9, 10 and 11, by using technique on Gronbner bases, we give several classes
of reflexive polytopes. In fact, the order polytopes and the cain polytopes of finite posets
and the stable set polytopes of perfect graphs are compressed and, in particular, possess
the integer decomposition property. However, a (0, 1)-polytope may not possess the
integer decomposition property. Hence we cannot solve this question for any (0, 1)-
polytope by using the same methods. In this chapter, by using matrix theory, we show
this question is true for the edge polytopes of finite simple graphs, which necessarily do
not possess the integer decomposition property.

This chapter is organized as follows. In Section 12.1, we recall the definition of the
edge polytopes of finite simple graphs. In Section 12.2, we will give a new class of
reflexive polytopes arising from some class of lattice polytopes (Theorem 12.4). From
this result, we can show that every edge polytope is unimodularly equivalent to a facet
of some reflexive polytope (Corollary 12.6). Finally, in Section 12.3, we will give
a criterion to discuss when the reflexive polytopes arising from the edge polytope of
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connected finite simple graph described in Corollary 12.6 (Theorem 12.8) possess the
integer decomposition property.

12.1 Edge polytopes

In this section, we introduce the edge polytopes of finite simple graphs. Throughout this
section, we assume that every finite simple graph has no isolated vertices. Let G be a
simple graph on the vertex set V(G) = [d] and denote E(G) the edge set of G. The edge
polytope P C R? of G is the convex hull of all vectors e; +e; such that {i, j} € E(G).
This means that the edge polytope of &7 of G is the convex hull of all row vectors of
the incidence matrix Ag of G, where Ag is the matrix in {0, 1}£(%) >[4l with

1 ifvee,
ey = .
0 otherwise.

Moreover, the dimension of Pg equals rank(A) — 1. In fact,

Lemma 12.2 ([94, p. 57]). Let G be a finite simple graph on [d] and cy(G) the number
of connected bipartite components of G. Then the dimension of the edge polytope Pg
of G equals d — co(G) — 1.

Every lattice polytope &7 is unimodularly equivalent to a full-dimensional lattice poly-
tope 2. We say that 2 is a full-dimensional unimodularly equivalent copy of &7. Some-
times it is convenient to work with full-dimensional lattice polytopes, i.e., lattice poly-
topes embedded in a space of their same dimension. However, the edge polytopes of
finite simple graphs are not full-dimensional from Lemma 12.2. Given an edge poly-
tope ¢, one can easily get a full-dimensional unimodularly equivalent copy of & by
considering the lattice polytope defined as the convex hull of the row vectors of Ag with
some columns deleted. Indeed, let Gy,...,G; be the connected bipartite components
of G. If k =0, we can get a full-dimensional unimodularly equivalent copy of & by
considering the lattice polytope defined as the convex hull of the rows of Ag with one
column deleted. Assume that k > 1 and V| UV, the bipartition of G. Then we can get a
full-dimensional unimodularly equivalent copy of # by considering the lattice poly-
topes defined as the convex hull of the row vectors of A with the the columns i, .. ., i;
deleted, where iy € Vi, i1 € V, and for 2 < j <k, i; is a vertex of G;. An example of
this can be observed in Example 12.3.

Example 12.3. Let G be the following finite simple graph with the incidence matrix of
Ag.
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G: €4 4 5 1 170000

011000

ey e3 es Ag=10 01100

100100

2 3 6 000O0T1 1
€2

Then by Lemma 12.2, &g C RS is a lattice polytope of dimension 3. Let 25 C R?
be the lattice polytope which is the convex hull of the row vectors of Ag with the first,
second and fifth column deleted. Namely, 2 is the convex hull of the row vectors of

Ag =

S o = = O
S = = O O
- o O O O

Then 2 is a full-dimensional unimodularly equivalent copy of .

12.2 Reflexive polytopes arising from edge polytopes

In this section, we construct reflexive polytopes which arise from the edge polytopes of
finite simple graphs. We show the following theorem:

Theorem 12.4 ([63, Theorem 2.1]). Let 2,2 C R? be (0, 1,2)-polytopes of dimension
d such that all of their vertices belong to

{0}U{e;:1<i<d}U{ej+ej:1<i<j<d} CR
If the origin of R belongs to the interior of Q(P,2), then Q( P, 2) is reflexive. In

particular, Q(Z?) and Q(2) are reflexive.

For two d x d integer matrices A, B, we write A ~ B if B can be obtained from A by
some row and column operations over Z. In order to prove Theorem 12.4, we will need
the following proposition.

Proposition 12.5. Let A = (a;j)1<i j<a € {0, 1,2}9%? be a d x d integer matrix such
that each row vector a; = (a;1,. .. ,a;q) of A satisfies the following conditions:

® ajy=1;
o |ajg+--+ag1| <2
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If det(A) # 0, then, for some integer 0 < s < d,

1

0 ;

0

In this case, one has 2A~1 € 74%4,

Since the proof of Proposition 12.5 is rather technical, we save it until the end of this
section. We now prove Theorem 12.4 and discuss a quick corollary.

Proof of Theorem 12.4. Let . be a facet of Q(Z?,2). Then there exist d + 1 vertices
Vi,...,Vgy1 of Q(F,2) such that aff({vy,...,vy1}) NQ(L,2) = .%, where for a
subset A C RY*1, aff(A) is the affine space generated by A. Since the origin of RY*!
belongs to the interior of Q (7, 2), there exist rational numbers ay,...,a4 such that

aff({vi,...,var1) = {(x1,-- . xar1)} € R rapxy + -+ agpxa = 1}

By Lemma 2.7, we need to show that aj,...,az.1 € Z. Let V be the (d+1) x (d+1)
integer matrix whose ith row vector is v;. Then we have det(V) # 0 and

al 1
Vv : =
ad+1 1
Hence each a; is the sum of all entries in the ith row vector of V=1, If vi,... ,v41
are vertices of &2 x {1}, then one has a; =--- = a4, =0 and a1 = 1. Similarly, if
Vi,...,Vq11 are vertices of —2 x {—1},thenonehasa; =---=a;=0and ay, = —1.
Now, we assume that for some positive integer 1 < k < d, vy,...,Vv; are vertices of

P x {1} and v 1,...,V4y; are vertices of — 2 x {—1}. Let Wbea (d+1)x (d+1)
integer matrix such that for 1 <i <k, the ith row vectoris v; and fork+1 < j < d+1,
the jth row vector is —v;. Then one has det(W) # 0 and

0 1
wl | =

0 1

1

Hence for any 1 <i < d+ 1, the sum of all entries in the ith row vector of W1 is an
integer. Moreover, for k+ 1 <i < d + 1, the ith column vector of V1 is coincide with
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the ith column vector of W~! times (—1). Thus, since 2W ! is an integer matrix from
Proposition 12.5, we know that for any 1 <i < d + 1, the sum of all entries in the ith
row vector of V1 is an integer. Therefore, Q(Z, 2) is reflexive, as desired. ]

By Theorem 12.4, we can give a new class of reflexive polytopes arising from the edge
polytopes of finite simple graphs and we can determine the reflexive dimensions of the
edge polytopes of finite simple graphs.

Corollary 12.6. Let G be a finite simple graph on [N]. Then Q(Z¢) is unimodularly
equivalent to some reflexive polytope. Moreover, P is unimodularly equivalent to a

facet of Q(Pg).

Proof. Let d be the dimension of &g and Z(; C R a full-dimensional unimodularly
equivalent copy of ¥ as defined in Section 12.1 (see Example 12.3). Then all of its
vertices of Z(; belong to

{0bUu{e;:1<i<d}U{ei+e;:1<i<j<d}CR

Hence, it follows from Theorem 12.4 that Q (%) is reflexive. Moreover it is easy to see
that Q(.Z7;;) is a full-dimensional unimodularly equivalent copy of Q(Z). Therefore,
we know that Q(Z) is unimodularly equivalent to some reflexive polytope and ¢ is
unimodularly equivalent to a facet of Q(Zg). O

We now end the section with a proof of Proposition 12.5.

Proof of Proposition 12.5. We prove this proposition by induction on d, i.e., the size
of A. When d = 1, the claim is trivial. Suppose that d > 1. We should show that for
a given d x d integer matrix A satisfying the assumption of the proposition, one can
obtain a matrix from A by some row and column operations over Z as the following:

where A’ is a (d — 1) x (d — 1) integer matrix satisfying the assumption of the proposi-
tion.

We will divide the proof into some cases. Note that by the assumption, no two row
vectors in A are the same, and each row vector a; of A is one of the following:

(Type 1) a; = (0,...,0,1,0,...,0,1,0,...,0,1), ie, for some 1 < j; < jo <d —1,a;5, =
a;j, = ajq = 1, and for other j,a;; = 0;
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(Type 2) a; = (0,...,0,1,0,...,0,1), i.e., for some 1 < j; <d —1,a;;, = ajg = 1, and for
other j,a;j = 0;

(Type 3) a;=(0,...,0,2,0,...,0,1),i.e., forsome 1 < j; <d—1,a;;, =2,a;g =1, and for
other j,a;; = 0;

(Type 4) a;=(0,...,0,1),i.e., forany 1 < j<d—1,4;; =0, and a;g = 1.
We can then divide the proof into the following cases:

(1) A does not have any row vectors of Type 1 and Type 2;
(2) A has at least one row vector of Type 2, but A has no row vectors of Type 1;

(3) A has at least one row vector of Type 1.

The case (1): Since each row vector of A is either Type 3 or Type 4 and since det(A) # 0,
one can obtain the following matrices subsequently from A by some row and column
operations over Z:

.0 2 0
A~ : ~ .
0 21 0 .
1 2
Thus, in this case, we can get the desired matrix from A by some row and column
operations over Z.

The case (2): Since A has at least one row vector of Type 2 and A does not have any row
vector of Type 1, one can obtain the following matrix A from A by interchanging some
rows and columns:

10 -~ 0 1
01 - 0 1
. 0 r
A= 10 0 ] 1 :

where r > 1 and C is a (d — r) x d integer matrix such that each row vector is either Type
3 or Type 4. Now, by interchanging some row vectors of C if necessarily, we can assume
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the first column vector of C is (0,...,0)" or (2,0,...,0) " If the first column vector of
Cis (0,...,0)", we can obtain the below matrix from A by a column operation:

1 0
1 1
I, 0 : I, 0 :
i 1
A=15 1|7 |0
0 C’ 1 0 C’ 1
0 I 0 I
10 -~ 0
0
= : A/ ,
0

where I, is the unit matrix of size r. Moreover, it is clear that A’ satisfies the assumption
of the proposition. Hence, by the inductive hypothesis, one obtains the desired matrix
from A.

Assume that the first column vector of Cis (2,0, ... ,O)T. Then we can obtain the below
matrices from A subsequently by some row and column operations over Z:

1 0

1 1

I, 0) I, 0

o 1
1720 01| 7|20 0 —1
0 C” 1 0 C” 1

0 | 0 |

0 0

1 1

I 0 I, 0

1 1

“10 0 : 0 -1 | |00 0 1
0 C” 1 0 C” 1

0 ! 0 |
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10 - 0
0
= . A//

0

Moreover, it is clear that A” satisfies the assumption of the proposition. Hence, by
induction hypothesis, one obtain a desired matrix from A.

The case (3): Since A has at least one row vector of Type 1, we can obtain the following
matrix from A by interchanging some rows and columns of A:

where B is a m X d integer matrix for some m > 0 such that each row vector is either
Type 1 or Type 2, and C is a (d —m — 1) x d integer matrix such that each row vector
is either Type 3 or Type 4. We set [ :=d —m — 1. Let By 5 (resp. Cyy ) denote the
submatrix consisting of the first and second column vectors of B (resp. C). Here, to
prove the claim, we divide into the following subcases:

(3-1) By ) is a zero matrix;

(3-2) By ) is not a zero matrix.

Note, in both subcases, by a permutation of first row and second row, we can assume

co C1

0 )
Chay=1|. .|

0 C|

where either co =2 and ¢; =0, or ¢g = 0.

The subcase (3-1): In this case, if cg = 0, then we can obtain the below matrix from A
by some column operations:

157



1 110 01 1 010 0]0
0 0 1 0 0 1
B/ ) o B/
A=]10 0 1 |~ 0 0 1
0 / 1 0 ¢ / 1
Ocl 1 OC[ 1
1o -0
0

Moreover, it is clear that A satisfies the assumption of the proposition. Hence, by the
inductive hypothesis, we obtain the desired matrix from A. Next, if co =2 and ¢; =0,
then we can obtain the below matrices from A subsequently by some row and column

operations:
1 110 01 1 110 0 1
0 0 1 0 0 1
B// ) o B//
Ao 0 O 1 0 O 1
|2 010 01 0 —-21]0 0] —1
0 ¢ 1 0 c 1
g c' s 7 C"
0 C| 1 0 C| 1
1 010 0| O 1 010 00
0 0 1 0 0 1
B// ) o B//
0 0 1 0 0
0 =210 0] -1 0 210 01
0 ¢ 1 0 ¢ 1
7 c" | 7 C'
O Cy 1 O C| 1
1 ‘ 0 --- 0
0

=: 5 A//

0

Moreover, it is clear that A” satisfies the assumption of the proposition. Hence, by the
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inductive hypothesis, we obtain the desired matrix from A.

The subcase (3-2): Note, since det(A) # 0, each row vector of By 5y is (0,1), (1,0), or
(0,0). Thus, by some row permutations of A, and if necessary a permutation of the first
and second columns, we can assume

0 1
: p
01
1 0
Byoy= | ¢ q-p
1 0
00
: m—q
00

where p > 1and g—p > 0.

Let @, be the 2nd row vector of A. Then & is either Type 1 or Type 2. If &, is Type 2,
we can obtain the below matrices from A subsequently by some row operations over Z
as the following:

1 11]0 01 1 010 0|0
0 110 01 0 110 01
0 1 1 0 1 1
0 1 1 0 1 1
1 0 1 1 0 1
B | B’
A= 1 0 1 |~] 1 0 1
0 0 1 0 0 1
0 0 1 0 0 1
co €1 1 co €1 1
0 c 1 0 ¢ 1
7 C | 7 C
O Cl 1 O Cl 1
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Moreover, it is clear that A satisfies the assumption of the proposition. Hence, by the
inductive hypothesis, we obtain the desired matrix from A.

Next assume that &, is Type 1. Note that a; is a row vector like (0,1,0,...,0,1,0,...,0,1).
By interchanging columns, we can assume a, = (0,1,1,0,...,0,1). Then, we can ob-
tain the below matrices from A subsequently by some row and column operations over

7, as follows:

1 010 0
0 110 1
0 1 1
0 1 1
0 O 1
o B/ :
0 O 1
0 O 1
0 0 1
0 C1 1
0 ¢ 1
2 C/
0 C| 1

1 1 0 0 0

0 1 1 0 0

0 1 by

0 1 b,

1 0 b

. Pl B
A= 1 0 b,

0 0 by

0O 0 b,

co (1 Cll

0 ¢ cl

C 2 C"

0 ¢ ¢
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1 0 -1
0 1 1
0 b
0 1 b,
1 0 b
o B
10 b
0 0 byt
0O 0 b,
co (] C,]
0 ¢ c!
C C"
0 ¢ ¢




1 O 0 0 00 1 O 0 0 00
0 1 1 0 01 0 1 0 0|1
0 1 by 1 0 1 b, 1
0 1 b, I 01 b 1
1 0 b +1 1 0O 0 b +1 1
P B , L B
~l 1 0 b+l ~1 0 0 b1 I
0 0 by 0 0  bysi I
0 O by 1 0 O by 1
co ¢1 cjtco 1 0 ¢ cj+co 1
0 o c 1 0 o c 1
g Cc’ | 2 C"
0 ¢ ¢ 1 0 ¢ ¢ 1
1]0 0
0
=1 . A//
0

One can easily show A” also satisfies the assumption of the proposition. Therefore, this
completes the proof by induction. ]

12.3 When do they possess the integer decomposition
property?

In this section, we discuss when the reflexive polytopes arising from the edge poly-
topes of connected finite simple graphs described in Corollary 12.6 possesses the inte-
ger decomposition property. First, we introduce a criterion to determine when the edge
polytopes of connected finite simple graphs possess the integer decomposition property.

Theorem 12.7 ([71, Corollarly 2.3]). Let G be a connected finite simple graph on [n|.
Then PG possesses the integer decomposition property if and only if for any two odd
cycles C and C' of G having no common vertex, there exists an edge of G joining a
vertex of C with a vertex of C'.

The following theorem gives a criterion to determine when the reflexive polytopes aris-
ing from the edge polytopes of connected finite simple graphs described in Corollary
12.6 possess the integer decomposition property.
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Theorem 12.8 ([63, Theorem 3.2]). Let G be a connected finite simple graph on [N).
Then Q(Pg) possesses the integer decomposition property if and only if G does not
contain two disjoint odd cycles.

In order to prove this theorem, we need the following lemma. Recall that a lattice poly-
tope is called unimodular if all its triangulations are unimodular, that is each simplex
has the normalized volume equal to 1. In particular, unimodular lattice polytopes are
compressed.

Lemma 12.9 ([70, Example 3.6 b]). Let G be a connected finite simple graph on [N)|.
Then P is unimodular if and only if G done not contain two disjoint odd cycles.

Now, we prove Theorem 12.8.

Proof of Theorem 12.8. First, let us assume that G has two disjoint odd cycles C; and
C,. Then it follows from Lemma 12.2 that the dimension of &?; equals N — 1. More-
over, we can assume that V(Cy) = [2k+ 1] and V(Cp) = {2k +2,...,2k+ 2+ 2} with
some positive integers k and £. Let 2, C RN~1 be the full-dimensional unimodularly
equivalent copy of & which is the convex hull of the row vectors of the incidence ma-
trix Ag of G with (2k +2¢+ 2)nd column deleted. Then Q(Z(;) is a full-dimensional
unimodularly equivalent copy of Q (%) and one has

QUZ)NZY = (P x {1} NZY) V(- P x {-13)NZY) U {0y}
We show that Q(2) does not possess the integer decomposition property. Set
X=ej+ - +eyr—(eyqa+ - +euqomr)+ (k—Ley € Z".

Since e +e,...,ex + ey and e 4 ey, are vertices of QZ’G and since —epyyp —
€243,y —€2k 120 — €2k120+1, —€2k 12011 and —epr o are vertices of —@’G, it follows
that x € (k+ £+ 1)Q(25) NZN. Suppose that Q(Z?() possesses the integer decompo-
sition property. Then there exist just k +m+- 1 lattice points X, ..., Xgym+1 € Q(P5) N
ZN such that X = Xj + - - - +X+1. For any vertex v of 2. x {1}, one has (v,e; +---+
exr1) €{0,1,2} and (v,ep 0+ +expiorr1) € {0,1,2}. Hence since (x,e; + -+
eyr1) =2k+1and (X,ex2+ -+ e€xyiorr1) = 2¢, we can assume that X,...,X; 1 €
P x {1} and Xgy2, ..., Xgpo+1 € —26 x {—1}. Then one has (X; +- - - +Xpjp41,€4) =
k—{+1. Thus, X # X| + - - + X1+ 1, a contradiction. Therefore, Q(Z(;) does not pos-
sess the integer decomposition property.

Conversely, assume that G does not have two disjoint odd cycles. Let 2 C R4 be
a full-dimensional unimodularly equivalent copy of #; defined in Section 12.1 (see
Example 12.3). Hence Q(Z) is a full-dimensional unimodularly equivalent copy of
Q(Z) and one has

QP NI = (P x (INNZHYU((~ P x (1) NZH) U041}
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Let A be a pulling triangulation of Q(27(;) such that all its maximal simplices contain
the origin of R?*!. We will show that A is unimodular. Let ¢ be a maximal simplex of
A. Then there exist d + 1 lattice points X, ..., Xz belonging to &7, x {1} such that

6 =conv({0441,Vi,. ., Vi, —Vitiyeeny —Var1})

with some integer 0 <t < d+ 1. It follows that the normalized volume of ¢ equals
|det(V)|, where V is the (d + 1) x (d + 1) integer matrix whose ith row vector is v;. Set

o' =conv({0y.1,v1,...,Vai1})-

Then the normalized volume of & is equal to that of ¢/. We show that the normalized
volume of ¢’ is 1. Let 7 be the lattice simplex which is the convex hull of the row
vectors of V' with the last column deleted. Then 7 is a simplex of dimension d all
of whose vertices belonging to &;;. By Lemma 12.9 and [39, Theorem 5.6.3], the
normalized volume of any maximal simplex all of whose vertices belonging to 7 is
1, that of 7 is also 1. Since Pyr(7) is unimodularly equivalent to ¢’, the normalized
volume of ¢’ equals 1. Hence A is unimodular. [
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Chapter 13

New classes of self dual reflexive
polytopes

A reflexive polytope & is called self dual it &7 is unimodularly equivalent to its dual
polytope £2V. This is an extremely rare property in reflexive polytopes, especially for
reflexive simplices. In this chapter, we give new classes of self dual reflexive polytopes.

This chapter is organized as follows. In Section 13.1, we will give a higher-dimensional
construction of self dual reflexive polytopes. In Sections 13.2 and 13.3, we will give
two classes of self dual reflexive simplices.

13.1 A higher-dimensional construction of self dual re-
flexive polytopes

In this section, we give a higher-dimensional construction of self dual reflexive poly-
topes.

For d > 2 and a lattice polytope & C RY~! of dimension d — 1, we set

oA (P) =P x[-1,1] CRY,
B(P) =conv({Z x {0},ey,—eq}) C RY,
P(P) =conv({Z x [—1,0],e;}) C R?.

We recall that if & is reflexive, then &7 (&?) and #(Z?) are also reflexive. Moreover,
we have & (P)V = B(PY) and B(P)" = ' (PV). D(Z) is an analogy between
o (P) and B(2).

At first, we show that if & is reflexive, then Z(Z?) is a reflexive polytope of dimension
d.
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Proposition 13.1. Ford > 2, let 2 C R~ be a reflexive polytope of dimension d — 1.
Then 2(2) is a reflexive polytope of dimension d. Moreover, (") and ()" are
unimodularly equivalent.

Proof. Let #,..., % be facets of & and for 1 <i <, and let .7 be the hyperplane
satisfying #; = 2N 7. Then Z(7) has 25+ 1 facets. By Lemma 2.7, we can assume
that for 1 <i <y,

I = {XGR‘I’I | (a;,x) = 1},

where a; € Z4~ 1. Set

conv({Z; x {0},e;}) i=1,....,s,
Fl = Fiyx[-1,0] i=s+1,...,2s,
P x{-1} i=2s+1.

Then .7{,...,.7; . are facets of Z(Z). For 1 <i < 2s+ 1 let ] be the hyperplane
satisfying .7/ = 2(%) N .. Then

{XERd | {(a1,1),x) = 1} i=1,....s,
A = {xeRd\<(ai,s,0),x>:1} i=s+1,...,2s,
{XERdH—ed,X):l} i=2s+1.
Hence by Lemma 2.7, Z(&?) is a reflexive polytope of dimension d.

Moreover, since ap,...,a, are the vertices of 92", it clearly follows that (") and
9(2)V are unimodularly equivalent. O

Next, we present a direct formula for the computation of the §-vector of Z(.%?) in terms
of the d-vector of .

Proposition 13.2. For d > 2, let & C R4~ be a lattice polytope of dimension d — 1
with the d-vector 6(P) = (80(2),01(L),...,8,-1(2)), and let

5(2(2)) = (80(2(2)),61(2(2)),....6a(2(Z)))
be the d-vector of D( ). Then fori=0,1,...,d, we have
§(T(2)) = i+ 1)8(2) + ([d—i+1)81(2),

where 0_1 () = 64(Z) = 0.

In order to prove Proposition 13.2, we use the following lemmas.
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Lemma 13.3. For d > 2, let 2 C R be a lattice polytope of dimension d — 1 with

the d-vector () = (80(2),01(L),...,04-1(Z?)). Set

2=2x[0,1]cR?,

and we let §(2) = (00(2),061(L2),...,04(2)) be the 5-vector of 2. Then for i =

0,1,...,d, we have
6i(2)=(i+1)8(2)+(d—1i)6i-1(2),

where 0_1 () = 64(Z) = 0.

Proof. We know Lg(n) = (n+1)-Lg(n). Hence one has

52)= ¥ (1) 0k Lo

k=0

Since .

J d k ]

5(2)= ¥ (1) -0kLoti -,

i—o \k

we obtain
(J+1)6;(2)+(d—Jj)§j-1(2) = 6;(2),

as desired. O

Now, we prove Propsition 13.2.

Proof of Proposition 13.2. We set 21 = Pyr(2) C RY and 2, = & x [-1,

2\1U2) =2(Z) and 21N 2, = & x {0}. Hence we have
Ehrg(5)(t) = Ehrg, (¢) + Ehr g, (t) — Ehr 5 (t).
By Lemma 2.9, (1 —¢)-Ehrg, () = Ehr (). Hence we have

Ehrp( ) (t) =t -Ehrg, (1) +Ehr g, (1).

Let5(£1) = (80(991);51<o@1);-~~,5d(=@l)) and 5(9@2) = (50(92),51(22),...

be the §-vectors of 2| and 2,. By Lemmas 13.3 and 2.9, we have

51'(@@1):{ .

and fori =0,...,d, we have

0i(22) = (i+1)5(Z)+ (d —i)6;-1(2),
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where 6_; () = §;,(Z?) = 1. Hence fori = 0,... .d,

85i(2(2)) = §i-1(21) + 6(2,)
=6 1(2)+ i+ 1)6i(P) +(d —1)§;-1(2)
=(i+1)&(P)+(d—i+1)5_1(2),
as desired. D

We give a higher-dimensional construction of self dual reflexive polytopes. By follow-
ing theorem, we obtain the construction.

Theorem 13.4 ([90, Theorem 2.7]). Ford > 2, let 7 and 2 C R~ be lattice polytopes
of dimension d — 1 such that each of them has at least one interior integer point. Then
we have the following properties:

(a) P and 2 are unimodularly equivalent if and only if () and 2(2) are uni-
modularly equivalent;

(b) 6(P)=6(2)ifand only if 6(2(2)) =6(2(2)),
where 8( ), 6(2), 6(2(2)) and 6(2(L2)) are the d-vectors of &, 2, () and
D2(2).

Remark 13.5. For d > 2, let & C R?~! be a reflexive polytope of dimension d — 1.
Then by Proposition 13.1 and Theorem 13.4, we have the following properties:

(a) Z is self dual if and only if 2(2?) is self dual;
(b) 6(Z)=6(2)ifand only if 6(2(2)) = 6(2(2)Y),

where 8(22), 6(2V), 6(2(2)) and §(2(2?)V) are the §-vectors of 2, 2, P(P)
and 2(2)".

Now, we prove Theorem 13.4.

Proof of Theorem 13.4. (a) Clearly, if & and £ are unimodularly equivalent, then
2(2) and Z(2) are unimodularly equivalent. Conversely, suppose that (<) and
9(2) are unimodularly equivalent. We can assume that the origin of R?~! belongs to
the interior of 22 and the interior of 2, and there exists a unimodular matrix U € Z*4
such that 2(.2) = fy(2(9)), where fy is the linear transformation in R¢ defined by

U. Letvy,...,v, be the vertices of &2 and wy,...,w, be the vertices of 2, and let
Uiy Uiz - Ul
U— M.zl up - M?d
Ugr Uq2 "+ Udd
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Sincee; and —e, belong to Z(%) and since for each (x1,...,x;) € 2(£2), we have
—1 <x4 <1, we know —1 < uyy < 1. If ugy =0, then fyy((v;,0)) and fy((vi,—1))
have a common dth coordinate for 1 <i <s. Since Z(2) has just one vertex whose
dth coordinate equals 1 and since the dth coordinate of fi/(e;) equals O, there does
not exist a vertex v of Z(2?) such that fiy(v) = ey, a contradiction. If vy = —1, then
fu(eq) = —e;. However, e, is a vertex of Z(<?) but —e, is not a vertex of Z(2), a
contradiction. Hence u;y; = 1. Since fy(e;) = e, we have

/*
U

*

0O -~ 01

where U’ € Z(@-1x(d-1) i 3 ynimodular matrix. Then for each v; there exists a vertex
w;, of 2 such that fy((v;,0)) = (w;,,—1) and fy((vi,1)) = (w};,0). Hence for each
v; we have fi/(v;) = wj,, where fy is the linear transformation in R?~! defined by U’.
Therefore, & and 2 are unimodularly equivalent. (b) If § () = 6(2), by Proposition
13.2, we have 6(2(Z?)) = 6(2(L2)). Suppose that 6(Z2(Z?)) = 6(2(2)). We set

6(Z) = (80(2),01(2),....,84-1(Z)),

6(2) = (80(2),61(2),...,84-1(2)).
By Proposition 13.2, fori =1,...,d — 1, we have

((+1)(6:(2) = 6:(L2)) + (d =i+ 1)(6i—1(F) = 6i-1(L2)) =0

Since 6y( L) = &p(2), fori =0,...,d — 1, we have §;(Z?) = §;(2). Hence 6(Z) =
0(2). O

We let &2 C R? be a reflexive polytope of dimension 2. Then the 8-vector of & equals
the §-vector of 2V if and only if & is self dual. However, there exists a reflexive
polytope of dimension 3 whose 8-vector equals the -vector of the dual polytope such
that it is not self dual. We give an example of such a reflexive polytope.

Example 13.6 ([37, Example 35.11]). Let & C R3 be the reflexive polytope with the
vertices (—1,0,1), (—1,0,—1), (1,1,1), (1,1,—1), (0,—1,1) and (0,—1,—1). Then
P has 5 facets. Hence &PV has 5 vertices (0,0,1), (0,0,—1), (2,—1,0), (—1,2,0)
and (—1,—1,0). Therefore & and P are not unimodularly equivalent. However,

§(2)=56(2)=(1,8,8,1).

By using Theorem 13.4 and Example 13.6, we obtain the following corollary.

Corollary 13.7. For each d > 3, there exists a reflexive polytope of dimension d such
that §(P) = 8(PV) but 2 is not self dual.
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13.2 A new class of self dual reflexive simplices arising
from Sylvester Sequence

For d > 2, we let & be a reflexive polytope of dimension d. Clearly, (<) is not
simplicial and not a simplex. In this section we consider self dual reflexive simplices.

First, we give an elementary number-theoretic notion.

Definition 13.8. The well-known recursive sequence ([79, AO00058]) of pairwise co-
prime natural numbers by :=2, b, :=1+bg---b,_1(n > 1) is called Sylvester Sequence.
It starts as bg =2, b1 =3, by =7, b3 =43, by = 1807.

It is known that a class of self dual reflexive simplices arising from Sylvester Sequence.

Example 13.9 ([66, Definition 4.6]). For d > 2, we let & be the d-dimensional lattice
simplex whose vertices v; € R i=0,1,...,d are of the form:

—(e1+---+eq) i=0,
=
") biei —vo i=1,....d.

Then 2 is reflexive and we know that & and " are unimodularly equivalent, in
particular, Vol(Z?) = by — 1

For d > 2, we let & be a reflexive simplex of dimension d. It is known
(d+ 1) < Vol(2)Vol(2Y) < (by — 1),

and if Vol(&?) = by — 1, then & is unimodularly equivalent the lattice simplex de-
scribed in Example 13.9, hence, &2 and £V are unimodularly equivalent ([66, Theo-
rem C]). This implies that if & is a self dual reflexive simplex, then we have Vol(Z?) <
bg—1.

In this section, we give a new class of self dual reflexive simplices arising from Selvester
Sequence. In fact,

Theorem 13.10 ([90, Theorem 3.2.]). For d > 3, let & be the d-dimensional lattice
simplex whose vertices v; € R i=0,1,...,d, are of the form:

( d
—3e;—2Y ¢ i=0,
i=2

Vi=14 €1 iZl,
e+ 2e; i=2,3,
\e1+2bi,4e,- i=4,...,d.
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Then 2 is reflexive and we know that & and 2" are unimodularly equivalent, in
particular, Vol( ) < by — 1.

In order to prove Theorem 13.10, we use the following lemma.

Lemma 13.11 ([79, A000058]). For eachn >0

1 1 1 | 1
bo b by boby

Now, we prove Thorem 13.10.

Proof of Theorem 13.10. First, we show that &7 is reflexive. Let %y,...,.%#, be facets
of &, which are of the form:

Fi=conv({Vvo,...,Vi_1,Vit1,---,Vq}) 0<i<d,
and for 0 <i < d, let 7 be a hyperplane satisfying .%; = & N . Then

{(xl,...,xd)G]Rd:xl:l} i=0,

I =
{(xl,...,xd)GRd:xl—inzl} i=2,...,d.

Also S = {(x1,...,x4) € RY: ¥4 ax; = 1}, where

(—(4by-by_s—1) i=1,
4bo -+ -by_4 .
e —5— i=2,3,
4bg---by_
270 Td—4 i=4,...d
(| 2bi4
In fact, vo € 77 since
4by---by_ 4bg---by_
3(4bg--by_g—1) —dby- - by_g—4bg--by_s— 0" Pd—4 2707 Pd—4
bo by—4
3+4b b 1 ! ! !
=—3+4by--by-a( —(b—0+b—l+"'+bd—_4))
1
=—3+4+4by-- by 4—— (Lemma 13.11)

bo---by_4
=1.

Hence since a; € Z (1 <i <d), by Lemma 2.7, & is reflexive.
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Next, we show that &2 and £V are unimodularly equivalent. By Lemma 2.7, we obtain
that wo, ..., wy are vertices of &2V, where

€1 iZO,
Wi = (al,...,ad) iZl,

e —2e; i=2,...,d

We set a d X d matrix

1 2
2 2 1 1 1
1 —1
_ dxd
U= 1 — by S/
1 —by_4

where all other terms are zero. Then by Lemma 13.11, we have

12 0 s
bo---by_
det@)=det| 2 2 1 |(=1)93by---bg 4+ (—1)42 %
01 —1I = Vi
d=4 py .- by 4
= (—1)d73b0"-bd74+ (—1)d72 Z B —
i=0 i
d—3 d—4 1
=(=1)*"bo-bg-a(1— ZE)
i=0 !

_ (_1>d—3.

Hence U is a unimodular matrix. Let fy be the linear transformation in R defined by
U. Then

\ /) i=0,

Vi i= 1,
fo(wi) = .

Vo l:2,

Vi i=3,...,d.

Hence & = fi;(2?"). Therefore we have & and &V are unimodularly equivalent.

Finally, we show that Vol(&?) < by — 1. If d = 3, then Vol(Z?) = 16 <42 =b3 — 1. We
assume that d > 4. Since for each n > 1, b,, > by = 2, for each n > 0, we have b, > 2".
Hence since d > 4 and since Vol(Z2) = |29 (a; — 1)| = 29F by - - - by_4, we have

bg—1=by---bg_1 >23 by -by_y > 29T by by_4 = Vol (P),

as desired. ]
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13.3 Self dual reflexive simplices with Eulerian polyno-
mials

In this section, we give another class of self dual reflexive simplices. In particular, their
0-polynomials coincide with Eulerian polynomials.

We recall the descent set of a permutation © = ijiy iz of [d] = {1,2,...,d} is D(x) =
{j:ij>ij41} C|d—1]. The Eulerian polynomial of degree d — 1 is the polynomial

Ad(t) = Z tdeS(ﬂ)7

nESy

where S, is the symmetric group on [d] and des(7) = |[D(x)|. An alternative definition
of the Eulerian polynomial is via

- A
k;(l +k)k = %.

We now define a class of reflexive simplices which are self dual. For d > 2, let 2,
denote the d — 1 dimensional lattice simplex which is the convex hull of the row vectors
of

1 1 1 1
1-d 1 1 1
0 2-d 1 1
0 0 3-d 1
0 0 0 -1

Let v; denote the (i — 1)st row vector of the matrix.
We have the following theorem.
Theorem 13.12 ([47, Theorem 1]). For d > 2, we have 2,; and Q;l/ are unimodularly
equivalent.
It behooves us to give the equations of supporting hyperplanes of facets of the simplex
to compute its dual polytope.
Proposition 13.13. For 0 <i < d — 1, let .%; be the facet of 24 whose vertices are
V0,3 Vi1, Vitl,--.,Vq_1 and F the supporting hyperplane of %;. Then one has

o Hy={x=(x1,....;g 1) ERT: YTy <1};

o Ky =1{x=(x1,...,x51) ER ik YK <1} for1 <k <d—1.
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Proof. It is sufficient to show that the vertices of 2, each satisfy precisely d — 1 of the
halfspace inequalities with equality and satisfies the other inequalty strictly. Let fi(x) =
kxj — Zf;ll xi, and fy(x) = —Z?;ll x;. For a vertex v;, we have that f;(v;) =1 for all
k # d — j. This follows, because if k < d — j, we have fi(v;) = (k)(1) — Z;‘:—ll 1=1,if
k> d— jwith k # d, we have fi(v;) = (d—j) =Y/ "1 =1, andif k=d > d — j,
we have f;(v;) = —(j—d) —Zf.lz_lj_l l=1.Inthecaseof k=d — j, fy—;(vj) = —(d —
J)?—=(d—-1—-j)<1if j#0and j#d— 1. For j =0 we have f;(v9) =1 —d < 1 and
for j =d — 1, we have f](v4_1) = —1 < 1. Thus, this completes the proof. O

By Lemma 2.7, and Proposition 13.13, it is clear that 2 = —2,. Therefore, we have
shown Theorem 13.12.

Remark 13.14. We should note that Vol(2,) = d!. For d > 4, it is immediate that
these polytopes are different than previously known self dual reflexive simplices given
in Example 13.9 and Theorem 13.10.

Moreover, the self dual reflexive simplex of 2, has an interesting 6-polynomial and a
special triangulation.

Theorem 13.15. Let d > 2.
(i) We have 6(24,t) = Ay(t), where Ay(t) is the Eulerian polynomial.
(i) £y has a regular, flag, unimodular triangulation.

Proof. Itis well-known that & has a regular, flag, unimodular triangulation if and only
if Pyr(Z?) has a regular, flag, unimodular triangulation (cf. [22, Section 4.2]).

Let %, denote the d-dimensional lattice simplex which is the convex hull of the row
vectors of

0 0 0 - 0
n 0 0 - 0
n n—1 0 - 0
n n—1 n-2

0
n n—-1n-2 --- 1

This polytope %, is called a lecture hall polytope. Notice that Pyr(2,) is unimodularly
equivalent to Z,;. Let % be the polytope defined from %, by removing the (d + 1)st
row and dth column, let U; denote the (d — 1) x (d — 1) upper triangular matrix defined
by (Ug)ij =1ifi < jand (Uy);; = 0 otherwise. Then we know that 2, is unimodularly
equivalent to —fy, (24— (e1+---+e4_1)) = %. Hence it follows that Pyr(2,) is
unimodularly equivalent to %,.

It is known that for d > 2, 6 (%4,t) = A4(t) ([76]) and Z,; has a regular, flag, unimodular
triangulation ([11]). Therefore, by Lemma 2.3, the assertion follows. O

173






Bibliography

[1] B. Assarf, M. Joswig and A. Paffenholz. Smooth Fano Polytopes with Many
Vertices. Discrete Comput. Geom., 52:153-194, 2014.

[2] G. Balletti and A. Higashitani. Universal inequalities in Ehrhart Theory. Israel J.
Math., to appear.

[3] G. Balletti and A. M. Kasprzyk. Three-dimensional lattice polytopes with two
interior lattice points. arXiv:1612.08918, 2016.

[4] V. V. Batyrev. Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces
in toric varieties. J. Algebraic Geom., 3:493-535, 1994.

[5] V. V. Batyrev. Lattice polytopes with a given A*-polynomial. Contemp. Math.,
423:1-10, 2006.

[6] V. V. Batyrev and J. Hofscheier. A generalization of a theorem of G. K. white.
arXiv:1004.3411, 2010.

[7] V. V. Batyrev and J. Hofscheier. Lattice polytopes, finite abelian subgroups in
SL(n, %) and coding theory. arXiv:1309.5312, 2013.

[8] V. V. Batyrev and D. Juny. Classification of Gorenstein toric del Pezzo varieties in
arbitrary dimension. Mosc. Math. J., 10:285-316, 2010.

[9] V. V. Batyrev and B. Nill. Multiples of lattice polytopes without interior lattice
points. Mosc. Math. J., 7:195-207, 2007.

[10] V. V. Batyrev and B. Nill. Combinatorial aspects of mirror symmetry. Contemp.
Math., 452:35-66, 2008.

[11] M. Beck, B. Braun, M. K&ppe, C. D. Savage, and Z. Zafeirakopoulos. Generat-
ing functions and triangulations for lecture hall cones. SIAM J. Discrete Math.,
30:1470-1479, 2016.

[12] M. Beck, P. Jayawant, and T. B. McAllister. Lattice-point generating functions for
free sums of convex sets. J. Combin. Theory Ser. A, 120:1246-1262, 2013.

175



[13] M. Beck and S. Robins. Computing the continuous discretely. Undergraduate
Texts in Mathematics. Springer, New York, second edition, 2015. Integer-point
enumeration in polyhedra, With illustrations by David Austin.

[14] M. Blanco and F. Santos. Lattice 3-polytopes with few lattice points. SIAM J.
Discrete Math., 30:669-686, 2016.

[15] M. Blanco and F. Santos. Lattice 3-polytopes with 6 lattice points. SIAM J. Dis-
crete Math., 30:687-717, 2016.

[16] B. Braun. An Ehrhart Series Formula For Reflexive Polytopes. Electron J. Com-
bin., 13:1-5, 2006.

[17] B. Braun, R. Davis, and L. Solus. Detecting the Integer Decomposition Property
and Ehrhart Unimodality in Reflexive Simplices. arXiv:1608.01614, 2016.

[18] J. Brown and V. Lakshmibai. Singular loci of Bruhat-Hibi toric varieties. J. Alge-
bra, 319:4759-4779, 2008.

[19] C. Casagrande. The number of vertices of a Fano polytope. Ann. Inst. Fourier
(Grenoble), 56:121-130, 2006.

[20] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect
graph theorem. Ann. of Math. (2), 164:51-229, 2006.

[21] D. A. Cox, J. B. Little, and H. K. Schenck. Toric varieties, volume 124 of Grad-
uate Studies in Mathematics. American Mathematical Society, Providence, RI,
2011.

[22] J. A. De Loera, J. Rambau, and F. Santos. Triangulations: Structures for Algo-
rithms and Applications. Springer, 2010.

[23] E. De Negri and T. Hibi. Gorenstein algebras of Veronese type. J. Algebra,
193:629-639, 1997.

[24] E. Ehrhart. Sur les polyedres rationnels homothétiques a n dimensions. C. R.
Acad. Sci. Paris, 254:616-618, 1962.

[25] A. Esterov and G. Gusev. Multivariate Abel-Ruffini. Math. Ann., 365:1091-1110,
2016.

[26] G. Ewald. On the classification of toric Fano varieties. Discrete Comput. Geom.,
3:49-54, 1988.

[27] R. Freij, M. Henze, M. W. Schmitt, and G. M. Ziegler. Face numbers of centrally
symmetric polytopes from split graphs. Electron. J. Combin., 20:1-13, 2013.

[28] B. Griinbaum. Convex Polytopes, volume 221 of Graduate Text in Mathematics.
Springer, 2003.

176



[29] C. Haase and H. V. Melinkov. The reflexive dimension of a lattice polytope. Ann.
Comb., 10:211-217, 2006.

[30] C. Haase, B. Nill, and A. Paffenholz. Lecture notes on lattice polytopes. 2012.

[31] C. Haase, B. Nill, and S. Payne. Cayley decompositions of lattice polytopes and
upper bounds for ~*-polynomials. J. Reine. Angew. Math., 637:207-216, 2009.

[32] C. Haase and J. Schicho. Lattice polygons and the number 2i + 7. Amer. Math.
Monthly, 116:151-165, 2009.

[33] C. Haase and G. M. Ziegler. On the maximal width of empty lattice simplices.
European J. Combin., 21:111-119, 2000.

[34] M. Henk and M. Tagami. Lower bounds on the coefficients of Ehrhart polynomi-
als. European. J. Combin., 30:70-83, 2009.

[35] H. Herzog and T. Hibi. Monomial Ideals. Graduate Text in Mathematics. Springer,
2011.

[36] T. Hibi. Distributive lattices, affine semigroup rings and algebras with straight-
ening laws. In M. Nagata and H. Matsumura, editors, Commutative Algebra and
Combinatorics, volume 11 of Advanced Studies in Pure Math., pages 93-109,
1987.

[37] T. Hibi. Algebraic Combinatorics on Convex Polytopes. Carslaw Publications,
Glebe, N.S.W., Australia, 1992.

[38] T. Hibi. A lower bound theorem for Ehrhart polynomials of convex polytopes.
Adv. Math., 105:162-165, 1994.

[39] T. Hibi. Grobner Bases: Statistics and Software Systems. Springer, 2013.

[40] T. Hibi, A. Higashitani, and N. Li. Hermite normal forms of d-vectors. J. Combin.
Theory Ser. A, 119:1158-1173, 2012.

[41] T. Hibi, A. Higashitani, and Y. Nagazawa. Ehrhart polynomials of convex poly-
topes with small volumes. European J. Combin., 32:226-232, 2011.

[42] T. Hibi and N. Li. Chain polytopes and algebras with straightening laws. Acta
Math. Vietnam., 40:447-452, 2015.

[43] T. Hibi and K. Matsuda. Quadratic Grobner bases of twinned order polytopes.
European J. Combin., 54:187-192, 2016.

[44] T. Hibi, K. Matsuda, H. Ohsugi, and K. Shibata. Centrally symmetric configura-
tions of order polytopes. J. Algebra, 443:469—-478, 2015.

177



[45] T. Hibi, K. Matsuda, and A. Tsuchiya. Gorenstein Fano polytopes arising from
order polytopes and chian polytopes. arXiv:1507.03221, 2015.

[46] T. Hibi, K. Matsuda, and A. Tsuchiya. Quadratic Grobner bases arising from
partially ordered sets. Math. Scand., 121:19-25, 2017.

[47] T. Hibi, M. Olsen, and A. Tsuchiya. Self dual reflexive simplices with Eulerian
polynomials. Graphs Combin., 33:1401-1404, 2017.

[48] T. Hibi and A. Tsuchiya. Classification of lattice polytopes with small volumes.
arXiv:1708.00413, 2017.

[49] T. Hibi and A. Tsuchiya. Facets and volume of Gorenstein Fano polytopes. Math.
Nachr., 290:2619-2628, 2017.

[50] T. Hibi and A. Tsuchiya. Reflexive polytopes arising from perfect graphs. J.
Combin. Theory Ser. A, 157:233-246, 2018.

[51] T. Hibi and A. Tsuchiya. Reflexive polytopes arising from partially ordered sets
and perfect graphs. J. Algebraic Combin., to appear.

[52] T. Hibi, A. Tsuchiya, and K. Yoshida. Gorenstein simplices with a given 0-
polynomial. arXiv:1705.05268, 2017.

[53] A. Higashitani. Ehrhart polynomials of integral simplices with prime volumes.
INTEGERS, 14:1-15, 2014.

[54] A. Higashitani, B. Nill, and A. Tsuchiya. Gorenstein polytopes with trinomial
h*-polynomials. arXiv:1503.05685, 2015.

[55] J. Hofscheier, L. Katthén, and B. Nill. Spanning Lattice Polytopes and the Uniform
Position Principle. arXiv:1711.09512, 2017.

[56] J. Hofscheier, L. Katthéin, and B. Nill. Ehrhart Theory of Spanning Lattice Poly-
topes. Int. Math. Res. Not. IMRN, to appear.

[57] M. Joswig and K. Kulas. Tropical and ordinary convexity combined. Adv. Geom.,
10:333-352, 2010.

[58] A.M. Kasprzyk. Canonical toric Fano threefolds. Canad. J. Math., 62:1293—-1309,
2010.

[59] M. Kreuzer and H. Skarke. Classification of Reflexive Polyhedra in Three Dimen-
sions. Adv. Theor. Math. Phys., 2:847-864, 1998.

[60] M. Kreuzer and H. Skarke. Complete classification of reflexive polyhedra in four
dimensions. Adv. Theor. Math. Phys., 4:1209-1230, 2000.

178



[61] B. Lorenz, and A. Paffenholz. Smooth reflexive polytopes up to dimension 9.
https://polymake.org/polytopes/paffenholz/www/fano.html

[62] J. C. Lagarias and G.M. Ziegler. Bounds for lattice polytopes containing a fixed
number of interior points in a sublattice. Canad. J. Math., 43:1022—-1035, 1991.

[63] T. Nagaoka and A. Tsuchiya. Reflexive polytopes arising from edge polytopes.
arXiv:1712.06078, 2017.

[64] B. Nill. Gorenstein toric Fano varieties. Manuscripta Math., 116:183-210, 2005.

[65] B. Nill. Classification of Pseudo-Symmetric Simplicial Reflexive Polytopes. Con-
temp. Math., 423:269-282, 2007.

[66] B. Nill. Volume and Lattice Points of Reflexive Simplices. Discrete Comput.
Geom., 37:301-320, 2007.

[67] B. Nill. Lattice polytopes having A*-polynomials with given degree and linear
coefficient. European J. Combin., 29:1596-1602, 2008.

[68] M. @bro. Classification of smooth Fano polytopes. PhD thesis, University of
Aarhus, 2007.

[69] M. @bro. Classification of terminal simplicial reflexive d-polytopes with 3d — 1
vertices. Manuscripta Math., 125:69-79, 2008.

[70] H. Ohsugi, J. Herzog, and T. Hibi. Combinatorial pure subrings. Osaka J. Math.,
37:745-757, 2000.

[71] H. Ohsugi and T. Hibi. Normal polytopes arising from finite graphs. J. Algebra,
207:409-426, 1998.

[72] H. Ohsugi and T. Hibi. Convex polytopes all of whose reverse lexicographic initial
ideals are squarefree. Proc. Amer. Math. Soc., 129:2541-2546, 2001.

[73] H. Ohsugi and T. Hibi. Quadratic initial ideals of root systems. Proc. Amer. Math.
Soc., 130:1913-1922, 2002.

[74] H. Ohsugi and T. Hibi. Reverse lexicographic squarefree initial ideals and Goren-
stein Fano polytopes. J. Commut. Alg., to appear.

[75] R. Sanyal, A. Werner, and G. M. Ziegler. On Kalai’s conjectures about centrally
symmetric polytopes. Discrete Comput. Geometry, 41:183-198, 2009.

[76] C. D. Savage and M. J. Schuster. Ehrhart series of lecture hall polytopes and
Eulerian polynomials for inversion sequences. J. Combin. Theory Ser. A, 119:850—
870, 2012.

[77] A.Schrijver. Theory of Linear and Integer Programing. John Wiley & Sons, 1986.
179


https://polymake.org/polytopes/paffenholz/www/fano.html

[78] P. R. Scott. On convex lattice polygons. Bull. Austral. Math. Soc., 15:393-399,
1976.

[79] N.J. A. Sloane. On-line encyclopedia of integer sequences. https://oeis.org/.

[80] R. P. Stanley. Decompositions of rational convex polytopes. Annals of Discrete
Math., 6:333-342, 1980.

[81] R. P. Stanley. Two poset polytopes. Discrete Comput. Geom., 1:9-23, 1986.

[82] R. P. Stanley. On the Hilbert function of a graded Cohen-Macaulay domain. J.
Pure. Appl. Algebra, 73:307-314, 1991.

[83] R. P. Stanley. A Monotonicity Property of h-vectors and h*-vectors. European J.
Combin., 14:251-258, 1993.

[84] R. P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, sec-
ond edition, 2012.

[85] A. Stapledon. Inequalities and Ehrhart o-vectors. Trans. Amer. Math. Soc.,
361:5615-5626, 2009.

[86] A. Stapledon. Additive number theory and inequalities in Ehrhart theory. Int.
Math. Res. Not. IMRN, 2016:1497-1540, 2016.

[87] B. Sturmfels. Grobner Bases and Convex Polytopes, volume 8 of University Lec-
ture Series. American Mathematical Society, Providence, RI, 1996.

[88] S. Sullivant. Compressed polytopes and statistical disclosure limitation. Tohoku
Math. J., 58:433 — 445, 2006.

[89] J. Treutlein. Lattice polytopes of degree 2. J. Combin. Theory Ser. A, 117:354-360,
2010.

[90] A. Tsuchiya. The &-vectors of reflexive polytopes and of the dual polytopes.
Discrete Math., 339:2450-2456, 2016.

[91] A. Tsuchiya. Gorenstein simplices and the associated finite abelian groups. Euro-
pean J. Combin., 67:145-157, 2018.

[92] A. Tsuchiya. Volume, facets and dual polytopes of twinned chain polytopes. Ann.
Comb., to appear.

[93] A. Tsuchiya. Ehrhart polynomials of lattice polytopes with normalized volumes
5. J. Comb., to appear.

[94] C.E. Valencia and R. H. Villarreal. Explicit representations of the edge cone of a
graph. International Journal of Contemporary Mathematical Sciences, 1:53—66,
2006.

180


https://oeis.org/

[95] V.E. Voskresenskii and A. A. Klyachko. Toroidal Fano varieties and root system.
Math. USSR Izvestiya, 24:221-244, 1985.

[96] Y. Wang. Sign Hibi cones and the anti-row iterated Pieri algebras for the general
linear groups. J. Algebra, 410:355-392, 2014.

[97] G. K. White. Lattice tetrahedra. Canad. J. Math., 16:389-396, 1964.

[98] G. M. Ziegler. Lectures on polytopes, volume 152 of Graduate Text in Mathemat-
ics. Springer, 1995.

181



	1 Introduction
	I Classification problems on lattice polytopes
	2 Introduction to Ehrhart theory
	2.1 Ehrhart polynomials and -polynomials
	2.2 Lattice pyramids and Cayley polytopes
	2.3 Spanning Polytopes
	2.4 Reflexive polytopes and Gorenstein polytopes
	2.5 The associated abelian groups of lattice simplices
	2.6 Characterizations of -polynomials

	3 Classification of lattice polytopes with small volumes
	3.1 Proof of Theorem 3.1
	3.1.1 The case Vol()=2
	3.1.2 The case Vol()=3
	3.1.3 The case Vol()=4

	3.2 Proof of Theorem 3.3
	3.2.1 The case (P,t)=1+t+tk+tk+1
	3.2.1.1 The case T2=d
	3.2.1.2 The case T2=0
	3.2.1.3 The case T2=1
	3.2.1.4 The case T2=2k-1

	3.2.2 The case (P,t)=1+t+2tk
	3.2.2.1 The case T2=d
	3.2.2.2 The case T2=0
	3.2.2.3 The case T2=1
	3.2.2.4 The case T2=2k-1



	4 Ehrhart polynomials of lattice polytopes with normalized volume 5
	4.1 Lattice polytopes with prime volumes
	4.2 Proof of Theorem 4.2

	5 Gorenstein simplices and the associated finite abelian groups
	5.1 Hermite normal form matrices and lattice simplices
	5.2 Hermite normal form matrices with one nonstandard row
	5.3 The case when Vol()=p2 or Vol()=pq
	5.4 Volume of the associated dual reflexive simplex

	6 Gorenstein simplices with a given -polynomial
	6.1 Existence
	6.2 Classification
	6.3 The number of Gorenstein simplices

	7 Gorenstein polytopes with trinomial -polynomials
	7.1 The approach by Batyrev and Hofscheier
	7.2 The classification of lattice polytopes with palindromic -trinomials
	7.2.1 Preliminary results
	7.2.2 Proof of Theorem 7.6
	7.2.3 The case 3
	7.2.4 The case =2

	7.3 Future work


	II Constructions of new classes of reflexive polytopes
	8 Introduction to Gröbner bases
	9 Reflexive polytopes arising from posets
	9.1 Two poset polytopes
	9.2 Type 
	9.2.1 When are they reflexive?
	9.2.2 Their -polynomials and volumes
	9.2.3 A volume formula
	9.2.4 When are they smooth Fano?

	9.3 Type 
	9.3.1 When are they reflexive?
	9.3.2 Their -polynomials and volumes
	9.3.3 Examples


	10 Reflexive polytopes arising from perfect graphs
	10.1 Perfect graphs and stable set polytopes
	10.2 Squarefree Gröbner basis
	10.3 -polynomials
	10.4 Examples

	11 Reflexive polytopes arising from perfect graphs and posets
	11.1 Type 
	11.2 Type 
	11.3 -polynomials

	12 Reflexive polytopes arising from finite simple graphs
	12.1 Edge polytopes
	12.2 Reflexive polytopes arising from edge polytopes
	12.3 When do they possess the integer decomposition property?

	13 New classes of self dual reflexive polytopes
	13.1 A higher-dimensional construction of self dual reflexive polytopes
	13.2 A new class of self dual reflexive simplices arising from Sylvester Sequence
	13.3 Self dual reflexive simplices with Eulerian polynomials



