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Chapter 1

Introduction

A convex polytope is the convex hull of finitely many points in a Euclidean space (see
the books [28] and [98]). Convex polytopes are fundamental objects in mathematics,
and they are currently in an extremely active area of research. A lattice polytope or
an integral polytope is a convex polytope all of whose vertices have integer coordi-
nates. Lattice polytopes are interesting objects arising in many different branches of
pure mathematics and applied mathematics such as number theory, commutative alge-
bra, combinatorics, toric geometry, optimization and mirror symmetry. They possess
rich structures arising from the interaction of algebraic, geometric, analytic and combi-
natorial properties, and lattice polytopes are useful combinatorial objects to understand
these fields. On the other hand, we can realize properties of lattice polytopes from the
theories of closely related areas. In fact, there are several results on lattice polytopes
which are proven by using methods of commutative algebra and algebraic geometry.
Moreover, no combinatorial proofs of some of these results are known.

In this thesis, we pick up properties of lattice polytopes which are closely related with
combinatorics, algebraic geometry and commutative algebra. The keywords are Ehrhart
theory and reflexive polytopes. In particular, we focus on the following two topics:
classification problems on lattice polytopes and constrictions of new classes of reflexive
polytopes.

Classification problems on lattice polytopes

One of the final, but, unreachable goals of the study on lattice polytopes is to classify
all of the lattice polytopes, up to unimodular equivalence. Recently, many authors have
studied classifications of lattice polytopes from several viewpoints. We recall some re-
sults on classifications of lattice polytopes. From a viewpoint of counting lattice points,
the following classes of lattice polytopes are classified:
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• 3-dimensional lattice polytopes with at most 6 lattice points ([14, 15]);
• 3-dimensional lattice polytopes with one interior lattice point ([58]);
• 3-dimensional lattice polytopes with two interior lattice points ([3]).

Meanwhile, from a viewpoint of toric geometry, there are several classifications of lat-
tice polytopes. In particular, the following classes of lattice polytopes correspond to an
important class of toric varieties, which are called toric Fano varieties:

• Centrally symmetric smooth Fano polytopes [95];
• Pseudo-symmetric smooth Fano polytopes [26, 95];
• Smooth Fano polytopes up to dimension 9 [61, 68].
• Pseudo-symmetric simplicial reflexive polytopes [65];
• Reflexive polytopes up to dimension 4 [59, 60].

Additionally, there exist other classifications of smooth Fano polytopes and reflexive
polytopes (e.g. [1, 19, 69]).

To work towards classification problems of lattice polytopes, we focus on the theory of
Ehrhart polynomials and d -polynomials, which is called Ehrhart theory. Ehrhart dis-
covered that the function which counts the number of lattice points in dilations of a
lattice polytope is a polynomial. The polynomial is called the Ehrhart polynomial of a
lattice polytope, and some of its coefficients have combinatorial interpretations (see the
books [13] and [37]). In particular, we can know the volume of a lattice polytope from
its Ehrhart polynomial, and Ehrhart theory can be seen as a higher-dimensional gener-
alization of Pick’s theorem. On the other hand, the d -polynomial of a lattice polytope
is an equivalent invariant to the Ehrhart polynomial. It is known that the coefficients of
the d -polynomial are nonnegative integers and they have combinatorial interpretations
(see [30]). One of the most important problems of Ehrhart theory is to characterize d -
polynomials. However, this is also a hard problem. Thus, we focus on d -polynomials
that have especially simple forms. The restrictions enable us to characterize them and
to classify all lattice polytopes with these d -polynomials. Moreover, such results help
to learn what to expect in more general situations. In this thesis, we will characterize d -
polynomials which satisfy some reasonable conditions and classify all lattice polytopes
with these d -polynomials.

Constructions of new classes of reflexive polytopes

A reflexive polytope is one of the keywords belonging to the current trends in the re-
search of lattice polytopes. Many authors have studied reflexive polytopes from the
viewpoints of combinatorics, commutative algebra and algebraic geometry. In fact, it is
known that reflexive polytopes correspond to Gorenstein toric Fano varieties, and they
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are related to mirror symmetry (see, e.g., [4, 21]). Since a Gorenstein toric Fano va-
riety is defined from a reflexive polytope completely, it has a lot of information of a
Gorenstein toric Fano variety. Thus, from a viewpoint of algebraic geometry, reflexive
polytopes are useful combinatorial objects to understand Gorenstein toric Fano vari-
eties. Please refer to [64] for the details of Gorenstein toric Fano varieties. On the
other hand, reflexive polytopes give crucial examples in commutative algebra. In fact,
the semigroup algebra associated to the cone over a reflexive polytope is a Gorenstein
algebra of a-invariant �1. Equivalently, a reflexive polytope is a lattice polytope hav-
ing a unique interior lattice point and a palindromic d -polynomial. As above, reflexive
polytopes have many important properties in combinatorics, commutative algebra, toric
geometry and other areas.

One of the most precious properties of reflexive polytopes is that in each dimension,
there exist only finitely many reflexive polytopes up to unimodular equivalence ([62]).
This fact motivates us to classify reflexive polytopes up to unimodular equivalence. So
far, all of them are known up to dimension 4 ([59, 60]). However, it is too hard to clas-
sify higher-dimensional reflexive polytopes. Therefore, in order to understand reflexive
polytopes, finding new classes of reflexive polytopes is an important problem. In this
thesis, we will give several new classes of reflexive polytopes arising from combinato-
rial objects.

Structure of this thesis

The organization of this thesis is as follows. We divide this thesis into two parts. Each
part includes the author’s results on each topic.

• Part I is devoted to the studies on classification problems of lattice polytopes.
There are six chapters in Part I. In Chapter 2, we will recall the notations of
lattice polytopes and introduce Ehrhart theory. In Chapters 3 and 4, we will try
to classify the lattice polytopes with small volumes. In Chapters 5, 6 and 7, we
will discuss a classification problem of a special class of lattice polytopes, which
are called Gorenstein polytopes. In particular, we focus on Gorenstein simplices.
Part I contains the results of [48, 52, 54, 91, 93].

• Part II is devoted to the studies on constructions of new classes of reflexive poly-
topes. There are six chapters in Part II. In Chapter 8, we will recall the notations
of toric ideals and introduce Gröbner bases. By using the theory of Gröbner
bases, we will construct several classes of reflexive polytopes. In Chapters 9,
10, 11 and 12, we will give new large classes of reflexive polytopes arising from
other combinatorial objects and investigate the combinatorial properties of these
reflexive polytopes. Finally, in Chapter 13, we will discuss constructions of self
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dual reflexive polytopes. This property is an extremely rare property in reflexive
polytopes. Part II contains the results of [45, 46, 47, 49, 50, 51, 63, 90, 92].
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Chapter 2

Introduction to Ehrhart theory

For a lattice polytopes P , let aff(P) be the affine span of P and dim(P) the dimen-
sion of P . We say that two lattice polytopes P ⇢ Rd and Q ⇢ Re are unimodularly
equivalent if there exists an affine map aff(P)! aff(Q) that maps Zd \ aff(P) bijec-
tively onto Ze \ aff(Q), and which maps P to Q.

One of the most important problems on lattice polytopes is to classify all of the lattice
polytopes, up to unimodular equivalence. In this part, we will classify some classes of
lattice polytopes from a viewpoint of Ehrhart theory. Ehrhart theory is the theory of
Ehrhart polynomials and d -polynomials. These polynomials often appear in the area
of enumerative combinatorics and they are important combinatorial invariants of lattice
polytopes. In this chapter, we will recall the definitions of Ehrhart polynomials and
d -polynomials, and some related facts.

2.1 Ehrhart polynomials and d -polynomials

Let P ⇢RN be a lattice polytope of dimension d. Given a positive integer k, we define

LP(k) = |kP \ZN |,

where kP = {kx : x 2 P} and |X | is the cardinality of a finite set X . The study on
LP(k) originated in Ehrhart [24] who proved that LP(k) is a polynomial in k of degree
d with the constant term 1. We say that LP(k) is the Ehrhart polynomial of P .

The generating function of the lattice point enumerator, i.e., the formal power series

EhrP(t) = 1+
•

Â
k=1

LP(k)tk
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is called the Ehrhart series of P . It is well known that it can be expressed as a rational
function of the form

EhrP(t) =
d0 +d1t + · · ·+ddtd

(1� t)d+1 .

The sequence of the coefficients of the polynomial in the numerator

d (P) = (d0,d1, . . . ,dd)

is called the d -vector (or the h⇤-vector) of P and the polynomial

d (P, t) = d0 +d1t + · · ·+ddtd

is called the d -polynomial (or the h⇤-polynomial) of P . The degree of the polynomial
d (P, t) is called the degree of P , denoted by deg(P).

For a general lattice polytope P , we can extract the Ehrhart polynomial of P from its
d -vector:

Proposition 2.1. Let P ⇢ RN be a lattice polytope of dimension d with its d -vector
d (P) = (d0,d1, . . . ,dd). Then one has

LP(k) =
d

Â
i=0

di

✓
k+d � i

d

◆
.

The following properties of d (P) are known:

• d0 = 1, d1 = |P \ZN |� (d + 1) and dd = |int(P)\ZN |, where int(P) is the
relative interior of P . Hence one has d1 � dd;

• di � 0 for each i ([80]);

• When dd 6= 0, one has di � d1 for 1  i  d �1 ([38]);

• When P is full-dimensional, namely, N = d. then Âd
i=0 di/d! coincides with the

usual volume of P ([84, Proposition 4.6.30]). In general, the positive integer
Âd

i=0 di is said to be the normalized volume of P , denoted by Vol(P).

Moreover, there are two well-known inequalities on d -vectors. Set s = deg(P). In
[82], Stanley proved that

d0 +d1 + · · ·+di  ds +ds�1 + · · ·+ds�i, 0  i  bs/2c, (2.1)

while in [38], Hibi proved that

dd�1 +dd�2 + · · ·+dd�i  d2 +d3 + · · ·+di+1, 1  i  b(d �1)/2c. (2.2)
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Recently, more general results of inequalities on d -vectors are in [85, 86].

Finally, we recall that the d -vector of a lattice polytope has a monotonicity property:

Lemma 2.2 ([83, Theorem 3.3]). Let P ⇢ RN be a lattice polytope of dimension d
with the d -vector (d0(P),d1(P), . . . ,dd(P)) and Q ⇢ Rn a lattice subpolytope of P
with the d -vector (d0(Q),d1(Q), . . . ,dd(Q)). Then one has di(P) � di(Q) for any
0  i  d.

Refer the reader to [13] and [37, Part II] for the detailed information about Ehrhart
polynomials and d -polynomials.

2.2 Lattice pyramids and Cayley polytopes

In this section, we recall well-known constructions of lattice polytopes. For a positive
integer N, let e

(N)
1 , . . . ,e

(N)
N denote the canonical unit vectors of RN and 0N denote the

origin of RN . If RN is clear from the context, we will write e1, . . . ,eN and 0.

Let conv(S) be the convex hull of a subset S ⇢ RN . For a lattice polytope P ⇢ RN of
dimension d, the lattice pyramid over P is defined by

conv({P ⇥{0} ,eN+1})⇢ RN+1.

Let Pyr(P) denote this polytope. We often use lattice pyramid shortly for a lattice
polytope that has been obtained by successively taking lattice pyramids. Note that the
d -polynomial does not change under lattice pyramids:

Lemma 2.3 ([13, Theorem 2.4.]). Let P ⇢ RN be a lattice polytope. Then one has

d (P, t) = d (Pyr(P), t).

Moreover, it is known that there are only finitely many lattice polytopes of fixed degree
s and fixed volume V up to unimodular equivalence and lattice pyramid constructions
([67, Corollary 1.4]). Therefore, it is essential that we classify lattice polytopes which
are not lattice pyramids over any lower-dimensional lattice polytope. Now, we recall a
sufficient condition that a lattice polytope is a lattice pyramid:

Lemma 2.4 ([67, Theorem 7]). Let P ⇢ RN be a lattice polytope of dimension d with
d+ c+1 vertices and s the degree of the d -polynomial of P . If d � c(2s+1)+4s�1,
then P is a lattice pyramid.

We also define a lattice polytope P to be a Cayley polytope of P1, . . . ,Pn ⇢ RN if P
is unimodularly equivalent to the lattice polytope

conv({{e
(n)
1 }⇥P1, . . . ,{e

(n)
n }⇥Pn})⇢ Rn ⇥RN = Rn+N ,
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see e.g. [9]. We denote this by P1 ⇤P2 ⇤ · · · ⇤Pn. Note that a lattice pyramid of a
lattice polytope is unimodularly equivalent to a Cayley polytope.

2.3 Spanning Polytopes

In this section, we introduce an important class of lattice polytopes. A full-dimensional
lattice polytope P ⇢Rd is called spanning if any lattice point in Zd is an affine integer
combination of the lattice points in P . This is equivalent to that any lattice point in
Zd+1 is a linear integer combination of the lattice points in P ⇥ {1}. A spanning
polytope is also called a primitive polytope.

For the d -polynomial of a spanning polytope, the following result is known:

Lemma 2.5 ([56, Theorem 1.3]). Let P ⇢ Rd be a lattice polytope of dimension d
whose d -polynomial equals d0 +d1t + · · ·+dsts, where ds 6= 0. If P is spanning, then
one has di � 1 for any 0  i  s.

Recently, there is a more general result of the d -polynomials of spanning polytopes in
[55].

2.4 Reflexive polytopes and Gorenstein polytopes

In this section, we introduce reflexive polytopes and Gorenstein polytopes. A full-
dimensional lattice polytope P ⇢ Rd is called reflexive if the origin of Rd is a unique
lattice point belonging to the interior of P and its dual polytope

P_ := {y 2 Rd : hx,yi  1 for all x 2 P}

is also a lattice polytope, where hx,yi is the usual inner product of Rd . It is known that
reflexive polytopes correspond to Gorenstein toric Fano varieties, and they are related
with mirror symmetry (see, e.g., [4, 21]). It is known from the work of Lagarias and
Ziegler ([62]) that there are only finitely many reflexive polytopes (up to unimodular
equivalence) in each dimension, with one reflexive polytope in dimension one, 16 in
dimension two, 4319 in dimension three, and 473800776 in dimension four according
to computations by Kreuzer and Skarke ([59, 60]). Moreover, every lattice polytope is
unimodularly equivalent to a face of some reflexive polytope ([29]). We say that a lattice
polytope P is Gorenstein of index r where r 2 Z>0 if rP is unimodularly equivalent
to a reflexive polytope ([23]). Equivalently, the semigroup algebra associated to the
cone over P is a Gorenstein algebra of a-invariant �r. Gorenstein polytopes are of
interest in combinatorial commutative algebra, mirror symmetry, and tropical geometry
(we refer to [8, 10, 57]).
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A polynomial Âs
i=0 aiti (with as 6= 0) is palindromic, if ai = as�i for i = 0, . . . ,s. From

a viewpoint of Ehrhart theory, we can characterize reflexive polytopes and Gorenstein
polytopes by the following:

Lemma 2.6. Let P ⇢ Rd be a lattice polytope of dimension d with the d -polynomial
d (P, t) = d0 +d1t + · · ·+dsts, where ds 6= 0. Then the following conditions are equiv-
alent:

• P is Gorenstein of index r;

• r = d � s+1 and d (P, t) is palindromic.

In particular, P is unimodularly equivalent to a reflexive polytope if and only if s = d
and d (P, t) is palindromic.

By Lemmas 2.3 and 2.6, it follows that P is Gorenstein of index r if and only if Pyr(P)

is Gorenstein of index r+1. Hence, if we construct all Gorenstein polytopes which are
not lattice pyramids, we can obtain all Gorenstein polytopes.

Finally, we give a characterization of reflexive polytopes in terms of their facets:

Lemma 2.7 ([37, Corollary 35.6]). Let P ⇢ Rd be a lattice polytope of dimension d
containing the origin in its interior. Then a point a 2 Rd is a vertex of P_ if and only
if H \P is a facet of P , where H is the hyperplane

n
x 2 Rd : ha,xi= 1

o

in Rd.

2.5 The associated abelian groups of lattice simplices

In this section, we introduce the associated finite abelian groups of lattice simplices,
which are very useful tools for a classification of lattice simplices. For a lattice simplex
D ⇢ RN of dimension d whose vertices are v0, . . . ,vd 2 ZN , set

LD = {(l0, . . . ,ld) 2 (R/Z)d+1 :
d

Â
i=0

li(vi,1) 2 ZN+1}.

The collection LD forms a finite abelian group with addition defined as follows: For
(l0, . . . ,ld) 2 (R/Z)d+1 and (l 0

0, . . . ,l 0
d) 2 (R/Z)d+1, (l0, . . . ,ld) + (l 0

0, . . . ,l 0
d) =

(l0+l 0
0, . . . ,ld +l 0

d) 2 (R/Z)d+1. We denote the unit of LD by 0, and the inverse of l
by �l , and the order of l by ord(l ), and also denote l + · · ·+l| {z }

j

by jl for an integer

20



j > 0 and l 2 LD. Note that e.g. �(1/3,2/3) = (2/3,1/3). For l = (l0, . . . ,ld) 2 LD,
where each li is taken with 0  li < 1, we set ht(l ) = Âd

i=0 li 2 Z.

In [7], it is shown that there is a bijection between unimodular equivalence classes
of d-dimensional lattice simplices with a chosen ordering of their vertices and finite
subgroups of (R/Z)d+1 such that the sum of all entries of each element is an integer. In
particular, two lattice simplices D and D0 are unimodularly equivalent if and only if there
exists an ordering of their vertices such that LD = LD0 . Moreover, we can characterize
lattice pyramids in terms of the associated finite abelian groups by using the following
lemma:

Lemma 2.8 ([67, Lemma 12]). Let D ⇢ RN be a lattice simplex of dimension d. Then
D is a lattice pyramid if and only if there is i 2 {0, . . . ,d} such that li = 0 for all
(l0, . . . ,ld) 2 LD.

It is well known that the d -polynomial of the lattice simplex D can be computed as
follows:

Lemma 2.9 ([9, Proposition 2.6]). Let D be a lattice simplex of dimension d whose
d -polynomial equals d0 + d1t + · · ·+ ddtd. Then for each i, we have di = |{l 2 LD :
ht(l ) = i}|. In particular, one has Vol(D) = |LD|.

2.6 Characterizations of d -polynomials

In this section, we recall some results on characterizations of the d -polynomials of
lattice polytopes.

Small dimension

Let us describe what is known about d -polynomials of small-dimensional lattice poly-
topes. In dimension d = 1, for a given lattice segment of length a+1, we know that the
d -polynomial is 1+at. In dimension 2, the d -polynomials of lattice polygons have been
classified by Scott [78]. It holds that 1+at +bt2 with a,b 2 Z�0 is the d -polynomial of
a lattice polygon P if and only if

• b = 0 (i.e., P has no interior lattice points), or

• b= 1 and a= 7 (here, P is unimodularly equivalent to conv({(0,0),(3,0),(0,3)})),
or

• b � 1 and b  a  3b+3.
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We refer to [32] for a thorough discussion.

In dimension 3 there are currently only partial results. The arguably most significant
one is White’s theorem [97]: a three-dimensional lattice simplex is empty (i.e., d1 = 0)
if and only if it is the Cayley polytope of two empty line segments in R2. Recently, all
three-dimensional lattice polytopes with at most 6 lattice points (i.e., d1  2) have been
classified [14, 15].

Small degree

It is natural to take the degree of the d -polynomial as a measure of complexity. We
recall what is known about d -polynomial of small degrees. Any degree zero lattice
polytope is a unimodular simplex (i.e., the convex hull of affine lattice basis). Lattice
polytopes of degree one are completely classified [9]:

• Lattice pyramids over conv({(0,0),(2,0),(0,2)}), or

• Cayley polytopes of line segments in R1.

Lattice polytopes of degree two are not yet classified. However, their d -polynomials
are completely known [34, 89]. A polynomial 1+ at + bt2 with a,b 2 Z�0 is the d -
polynomial of a lattice polytope P (in some dimension) if and only if

• b = 0, or

• b = 1 and a = 7 (here, P is unimodularly equivalent to a lattice pyramid over
conv({(0,0),(3,0),(0,3)})), or

• b � 1 and a  3b+3.

Note how close this is to the characterization in dimension two above. It follows from
the proof in [34] that any such polynomial can be given by the d -polynomial of a lattice
polytope in dimension three. Most recently, Balletti and Higashitani [2] improved the
result further to any lattice polytope whose d -polynomial satisfies d3 = 0.

Small number of monomials

An even more general problem is to consider the number of terms in the d -polynomial.
Batyrev and Hofscheier [6, 7] have recently classified all lattice polytopes whose d -
polynomials are binomials, i.e., of the form 1+ atk. Let P be a d-dimensional lattice
polytopes with such a binomial d -polynomial. Since the degree one case k= 1 is known,
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let k � 2. Hence, d1 = 0 implies that P is an empty simplex. It can be observed [7,
Prop.1.5] that d � 2k� 1. Let d = 2k� 1. In this case, it is proven in [6] that P has
d -polynomial 1+ atk (with a � 1) if and only if P is a Cayley polytope of k empty
line segments in Rk. Note that for d = 3 and k = 2 this recovers White’s theorem. In
particular, one sees from [7, Example 2.2] that any a 2 Z�1 and k 2 Z�1 is possible
for an d -polynomial of the form 1+atk. The reader might notice the analogy with the
degree one case above.

For d � 2k, we are in an exceptional situation. Let us consider only d -polynomials
of lattice polytopes that are not lattice pyramids (otherwise, by what we’ve just seen,
any 1+ atk can appear). Note that since D is a simplex, it follows from Lemma 2.4
that d  4k� 2. Now, the following characterization can be deduced from the results
in [7]: 1+ atk (with a 2 Z�1) is the d -polynomial of a d-dimensional lattice polytope
P with d � 2k where P is not a lattice pyramid if and only if a = 2kp

d+1�p(d+1�2k) �1
and 2k

d+1�p(d+1�2k) is a power of a prime p. It is not hard to see that this implies p  k,
in particular, Vol(P) = a+ 1 < 2k2. Hence, there are only finitely many non-lattice-
pyramid lattice polytopes with binomial d -polynomials for given k and arbitrary d � 2k.
They are completely classified by Batyrev and Hofscheier [7]. It turns out that they are
uniquely determined by their d -polynomial.

Palindromic d -polynomials

By Lemma 2.6, palindromic d -polynomials correspond to Gorenstein polytopes. From
a complete classification of reflexive polytopes up to dimension 4, we can characterize
the palindromic d -polynomials of lattice polytopes whose dimensions are at most 4.
Moreover, for fixed degree, there exist only finitely many Gorenstein polytopes that are
not lattice pyramids [31]. They have been completely classified by Batyrev and Juny up
to degree two [8]. In particular, their results imply that a polynomial 1+(m� 2)t + t2

with m2Z�2 is the d -polynomial of a d-dimensional lattice polytope that is not a lattice
pyramid if and only if

• d = 2 and 3  m  9, or

• d = 3 and 2  m  8, or

• d = 4 and 3  m  6, or

• d = 5 and m = 4.
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Small volumes

We recall a complete characterization of the d -polynomials of lattice polytopes whose
normalized volumes are at most 4. In [41, Theorem 0.1], the possible d -polynomials
with d0+ · · ·+dd  3 are completely classified by the inequalities (2.1) and (2.2). How-
ever, this is not true for d0 + · · ·+ dd = 4. In [40, Theorem 5.1], the complete classifi-
cation of the possible d -polynomials with d0 + · · ·+dd = 4 is given.

Theorem 2.10 ([40, 41] ). Let 2  V  4 be a positive integer and 1+ ti1 + · · ·+ tiV�1

a polynomial with 1  i1  · · ·  iV�1  d. Then there exists a lattice polytope of
dimension d whose d -polynomial equals 1+ ti1 + · · ·+ tiV�1 if and only if one of the
followings is satisfies:

(1) V = 2 and i1  b(d +1)/2c;

(2) V = 3, 2i1 � i2 and i2  b(d +1)/2c;

(3) V = 4, i3  i1 + i2, i1 + i3  d + 1 and i2  b(d + 1)/2c, and the additional
condition

2i2  i1 + i3 or i2 + i3  d +1.

We remark that when d0 + · · ·+dd  4, all the possible d -polynomials can be obtained
by simplices. However, when d0 + · · ·+dd = 5, this is not true ([40, Remark 5.3]).

The structure of the rest of Part I

The organization of the rest of this part is as follows. In Chapter 3, we will classify
the lattice polytopes whose normalized volumes are at most 4. In Chapter 4, we will
characterize the d -polynomials of lattice polytopes whose normalized volumes equal 5.
In Chapter 5, to work towards a classification of the Gorenstein simplices, we will dis-
cuss a characterization of Gorenstein simplices in terms of their associated finite abelian
groups. In Chapter 6, we consider Gorenstein simplices with a given d -polynomial. Fi-
nally, in Chapter 7, we will finish the compete classification of the lattice polytopes that
are not lattice pyramids and whose d -polynomials are palindromic and have precisely
three terms.
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Chapter 3

Classification of lattice polytopes with

small volumes

Taking into consideration the fact that a complete characterization of the d -polynomials
of lattice polytopes whose normalized volumes are at most 4 is known ([40, 41]), it is
reasonable to classify the lattice polytopes whose normalized volumes are at most 4. In
fact, in this chapter, this job will be done.

In the frame of a classification of general square systems of polynomial equations solv-
able by radicals, Esterov and Gusev [25] succeeded in classifying all lattice spanning
polytopes P whose normalized volumes are at most 4. However, the condition of span-
ning lattice polytopes is rather strong for achieving a classification of lattice polytopes.
For example, no empty simplex does enjoy the property and, in addition, there exists a
lattice non-simplex whose normalized volume is 4 and which lacks the property. Com-
bining our work with Esterov and Gusev [25] will establish a complete classification of
lattice polytopes whose normalized volumes are at most 4. Moreover, our classification
work will be making steady progress by means of d -polynomials.

In this chapter, we will classify, up to unimodular equivalence and lattice pyramid con-
structions, the lattice polytopes whose normalized volumes are at most 4. The complete
classification of the lattice polytopes whose normalized volumes are at most 4 up to uni-
modular equivalence consists of these polytopes and lattice pyramids over them. Note
that every lattice simplex of dimension d with Vol(P) = 1 is unimodularly equivalent
to the standard simplex of dimension d. In order to do this job, we divide into the
following three cases:

(1) Lattice simplices D ⇢ Rd with Vol(D) 4;

(2) Spanning lattice non-simplices P ⇢ Rd with Vol(P) 4;

(3) Non-spanning lattice non-simplices P ⇢ Rd with Vol(P) 4.
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The complete classification of the case (2) can be obtained from [25]. Therefore, we
will show the cases (1) and (3).

First, the complete classification of the lattice simplices D ⇢Rd with Vol(D) 4 can be
obtained from the following:

Theorem 3.1 ([48, Theorem 1.2]). Let D⇢Rd be a lattice simplex of dimension d whose
d -polynomial equals 1+ ti1 + · · ·+ tiV�1 with 2  V  4, where (i1, . . . , iV�1) satisfies
the conditions in Theorem 2.10. Assume that D is not a lattice pyramid. Then there
exist, up to unimodular equivalence, exactly the following 5 possibilities for D:

(1) V = 2 : D(2);

(2) V = 3 : D(3);

(3) V = 4 : D(4)
i , 1  i  3.

The conditions and vertices of D are presented in TABLE 3.1.

conditions vertices
D(2) d = 2i1 �1 0,e1, . . . ,ed�1,e1 + · · ·+ ed�1 +2ed

D(3) d = i1 + i2 �1 0,e1, . . . ,ed�1,

2
�i1+2i2�1

Â
i=1,i 6=d

ei +
d�1
Â

i=�i1+2i2
ei +3ed

D(4)
1

i1 < i2 < i3, 0,e1, . . . ,ed�1,

i1 + i3  2i2, 2
i1�2i2+i3

Â
i=1

ei +
2i1�i2

Â
i=i1�2i2+i3+1,i 6=d

ei +3
d�1
Â

i=2i1�i2+1
ei +4ed

d = i1 + i3 �1

D(4)
2 d = i2 + i3 �1 0,e1, . . . ,ed�1,

2
�2i1+i2+i3

Â
i=1

ei +
�i1+2i2

Â
i=�2i1+i2+i3+1,i6=d

ei +3
d�1
Â

i=�i1+2i2+1
ei +4ed

D(4)
3 d = i1 + i2 + i3 �1 0,e1, . . . ,ed�2,

d�2
Â

i=�i1+i2+i3
ei +2ed�1,

�i1+i2+i3�1
Â

i=1
ei +

d�2
Â

i=2i3�1
ei +2ed

TABLE 3.1: The lattice simplices D ⇢ Rd with Vol(D) 4.

Second, the complete classification of the spanning lattice non-simplices P ⇢ Rd with
Vol(P) 4 can be obtained from the following:

Theorem 3.2 ([25]). Let 2V  4 be a positive integer and P ⇢Rd a lattice spanning
non-simplex with Vol(P) =V . Assume that P is not a lattice pyramid. Then there exist
up to unimodular equivalence exactly the following 24 possibilities for P:
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(1) d (P, t) = 1+ t : P(2);

(2) d (P, t) = 1+2t : P(3)
i ,1  i  2;

(3) d (P, t) = 1+ t + t2 : Q(3)
i , 1  i  2;

(4) d (P, t) = 1+3t : P(4)
i ,1  i  4;

(5) d (P, t) = 1+2t + t2 : Q(4)
i , 1  i  9;

(6) d (P, t) = 1+ t + t2 : R(4)
i ,1  i  2;

(7) d (P, t) = 1+ t + t2 + t3 : S (4)
i , 1  i  4.

The dimension and vertices of P are presented in TABLE 3.2.

Finally, the complete classification of the non-spanning lattice non-simplices P ⇢ Rd

with Vol(P) 4 can be obtained the following:

Theorem 3.3 ([48, Theorem 1.4]). Let 2  V  4 be a positive integer and P ⇢ Rd

a non-spanning lattice non-simplex with Vol(P) = V . Assume that P is not a lat-
tice pyramid. Then there exist, up to unimodular equivalence, exactly the following 4
possibilities for P:

(1) d (P, t) = 1+ t + tk + tk+1 with k � 2 : A (4)
i ,1  i  3;

(2) d (P, t) = 1+ t +2tk with k � 2 : B(4).

The dimension and vertices of P are presented in TABLE 3.3.

The this chapter is organized as follows: We, in Section 3.1, prove Theorem 3.1. Finally,
in Section 3.2, we prove Theorem 3.3.

3.1 Proof of Theorem 3.1

In this section, we classify the lattice simplices D ⇢Rd of dimension d with Vol(D) 4
up to unimodular equivalence and lattice pyramid constructions. Namely, we prove
Theorem 3.1. In order to do this job, we divide into the following three cases:

(1) Vol(D) = 2 (Subsection 3.1.1);

(2) Vol(D) = 3 (Subsection 3.1.2);

(3) Vol(D) = 4 (Subsection 3.1.3).
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d vertices
P(2) 2 0,e1,e2,e1 + e2

P(3)
1 2 0,2e1,e2,e1 + e2

P(3)
2 3 0,e1,e2,e3,e1 + e3,e2 + e3

Q(3)
1 3 0,e1,e2,e3,e1 + e2 �2e3

Q(3)
2 4 0,e1,e2,e3,e4,�e1 � e2 + e3 + e4

P(4)
1 2 0,2e1,e2,2e1 + e2

P(4)
2 2 0,3e1,e1 + e2,2e1 + e2

P(4)
3 3 0,e1,e2,e1 + e3,e2 + e3,2e3

P(4)
4 4 0,e1,e2,e3,e4,e1 + e2,e1 + e3,e1 + e4

Q(4)
1 2 e1,�e2,e1 � e2,�e1 + e2

Q(4)
2 2 e1,e2,�e1,�e2

Q(4)
3 3 e1,e2,e3,e1 + e2,�e3

Q(4)
4 3 0,e1,e2,e1 + e2,2e3

Q(4)
5 3 0,e1,e2,e3,e1 + e2,e1 + e2 + e3

Q(4)
6 3 0,e1,e2,e3,e1 + e2,e1 + e2 � e3

Q(4)
7 4 0,2e1,e4,e2 + e4,e3 + e4,e2 + e3 + e4

Q(4)
8 4 0,e1,e2,e1 + e2,e3,e4,e3 + e4

Q(4)
9 5 0,e1,e2,e1 + e2,e5,e3 + e5,e4 + e5,e3 + e4 + e5

R(4)
1 3 0,e1,e2,e3,e1 + e2 �3e3

R(4)
2 4 0,e1,e2,e3,e4,�2e1 � e2 + e3 + e4

S (4)
1 4 0,e1,e2,e3,e4,�e1 � e2 � e3 + e4

S (4)
2 4 0,e1,e2,e3,e4,�e1 � e2 � e3 +2e4

S (4)
3 5 0,e1,e2,e3,e4,e5,�2e1 � e2 + e3 + e4 + e5

S (4)
4 6 0,e1,e2,e3,e4,e5,e6,�e1 � e2 � e3 + e4 + e5 + e6

TABLE 3.2: The spanning lattice non-simplices P with Vol(P) 4.

3.1.1 The case Vol(D) = 2

In this subsection, we consider the case where Vol(D) = 2. Since |LD| = 2, for any
l 2 LD \ {0}, ord(l ) = 2. Hence since D is not a lattice pyramid, by using Lemma
2.3, it follows that LD is generated by one element (1/2, . . . ,1/2) and d +1 is an even
number. Set d = 2k� 1 with some positive integer k. By using Lemma 2.9, one has
d (D, t) = 1+ tk. Moreover it is easy to see that LD(2) = LD with any ordering of the
vertices of D(2). Hence this completes the proof of the case where Vol(D) = 2.
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d vertices
A (4)

1 2k 0,e1, . . . ,ed�1,Âd�2
j=1 e j +2ed,e1 � ed�1

A (4)
2 2k+1 0,e1, . . . ,ed�1,Âd�3

j=1 e j +2ed,ed�2 + ed�1

A (4)
3 2k+2 0,e1, . . . ,ed�1,Âd�4

j=1 e j +2ed,�ed�3 + ed�2 + ed�1

B(4) 2k 0,e1, . . . ,ed�1,Âd�2
j=1 e j +2ed,�e1 + ed�1

TABLE 3.3: The lattice non-spanning non-simplices P with Vol(P) 4.

3.1.2 The case Vol(D) = 3

In this subsection, we consider the case where Vol(D) = 3. For nonnegative integers a
and b, we let L(a,b) be the finite abelian subgroups of (R/Z)a+b defined as follows:

L(a,b) =

*
0

BB@
1
3
, . . . ,

1
3| {z }

a

,
2
3
, . . . ,

2
3| {z }

b

1

CCA

+
.

Since Vol(D) = |LD| = 3, for any l 2 LD \ {0}, ord(l ) = 3. Hence since D is not a
lattice pyramid, by Lemma 2.3, there exist nonnegative integers a,b with a+b = d +1
such that LD = L(a,b) with some ordering of the vertices of D. Since L(a,b) coincides
with L(b,a) by reordering of the coordinates, we can assume that a � b. Then by
using Lemma 2.9, one has i1 = (a + 2b)/3 and i2 = (2a + b)/3. Hence we obtain
a = �i1 +2i2,b = 2i1 � i2 and d +1 = a+b = i1 + i2. Moreover, it is easy to see that
LD(3) = L(a,b) with some ordering of the vertices of D(3). Hence this completes the
proof of the case where Vol(D) = 3.

3.1.3 The case Vol(D) = 4

In this subsection, we consider the case where Vol(D) = 4. For nonnegative integers
a,b,c, we let L1(a,b,c) and L2(a,b,c) be the finite abelian subgroups of (R/Z)a+b+c

defined as follows:

L1(a,b,c) =

*
0

BB@
1
4
, . . . ,

1
4| {z }

a

,
1
2
, . . . ,

1
2| {z }

b

,
3
4
, . . . ,

3
4| {z }

c

1

CCA

+
;

L2(a,b,c) =

*
0

BB@
1
2
, . . . ,

1
2| {z }

a

,
1
2
, . . . ,

1
2| {z }

b

,0, . . . ,0| {z }
c

1

CCA ,

0

BB@0, . . . ,0| {z }
a

,
1
2
, . . . ,

1
2| {z }

b

,
1
2
, . . . ,

1
2| {z }

c

1

CCA

+
.
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Since Vol(D) = |LD| = 4, for any l 2 LD \{0}, ord(l ) 2 {2,4}. Hence since D is not
a lattice pyramid, by Lemma 2.3, there exist nonnegative integers a,b,c with d + 1 =

a+b+c such that LD coincides with L1(a,b,c) or L2(a,b,c) with some ordering of the
vertices of D.

At first, suppose that LD = L1(a,b,c) with some ordering of the vertices of D. Then
since L1(a,b,c) coincides with L1(c,b,a) by reordering of the coordinates, we may
assume that a � c. Moreover, by using Lemma 2.9, one has {i1, i2, i3} = {(a+ 2b+
3c)/4,(a+c)/2,(3a+2b+c)/4}. Set (h1,h2,h3) = ((a+2b+3c)/4,(a+c)/2,(3a+
2b+ c)/4). Then we obtain a =�h1 +h2 +h3,b = h1 �2h2 +h3 and c = h1 +h2 �h3.
Since a � c, (h1,h3) is (i1, i2), (i1, i3) or (i2, i3). Hence it follows from a,b,c � 0 that
one of the following conditions is satisfied:

(1) i1 + i3 � 2i2 and d+1 = i1 + i3, and LD = L1(�i1 + i2 + i3, i1 �2i2 + i3, i1 + i2 �
i3);

(2) i2 + i3 � 2i1 and d+1 = i2 + i3, and LD = L1(i1 � i2 + i3,�2i1 + i2 + i3, i1 + i2 �
i3);

(3) i1 + i2 � 2i3 and d+1 = i1 + i2, and LD = L1(�i1 + i2 + i3, i1 + i2 �2i3, i1 � i2 +
i3);

If i1 = i2 or i2 = i3, then the condition (1) is equivalent to one of the conditions (2) and
(3). Since i1 + i2 � 2i3 implies that i1 = i2 = i3, if the condition (3) is satisfied, then
condition (2) is satisfied. Moreover, it always follows that i2+ i3 � 2i1. Hence we know
that one of the following conditions is satisfied:

(1’) i1 < i2 < i3, i1+ i3 � 2i2 and d+1 = i1+ i3, and LD = L1(�i1+ i2+ i3, i1�2i2+
i3, i1 + i2 � i3);

(2’) d +1 = i2 + i3 and LD = L1(i1 � i2 + i3,�2i1 + i2 + i3, i1 + i2 � i3).

In particular, it is easy to see that if the condition (1’) is satisfied, then LD(4)
1

=L1(a,b,c)

with some ordering of the vertices of D(4)
1 , and if the condition (2’) is satisfied, then

LD(4)
2

= L1(a,b,c) with some ordering of the vertices of D(4)
2 .

Next, we suppose that LD = L2(a,b,c) with some ordering of the vertices of D. It
follows that L2(a,b,c) coincides with L2(b,a,c) (resp. L2(c,b,a)) by reordering of the
coordinates. Hence we may assume that a � b � c. Then by using Lemma 2.9, one has
(i1, i2, i3) = ((b+ c)/2,(a+ c)/2,(a+b)/2). Therefore, we obtain d +1 = i1 + i2 + i3
and LD = L2(�i1 + i2 + i3, i1 � i2 + i3, i1 + i2 � i3). In particular, it is easy to see that
LD(4)

2
= L2(a,b,c) with some ordering of the vertices of D(4)

3 . Hence this completes the
proof of the case where Vol(D) = 4.

Therefore, Theorem 3.1 follows.
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3.2 Proof of Theorem 3.3

In this section, we classify the non-spanning lattice non-simplices P ⇢Rd of dimension
d with Vol(P)  4 up to unimodular equivalence and lattice pyramid constructions.
Namely, we prove Theorem 3.3.

We recall that a matrix A 2 Zd⇥d is unimodular if det(A) =±1. Then lattice polytopes
P ⇢ Rd and Q ⇢ Rd of dimension d are unimodularly equivalent if and only if there
exist a unimodular matrix U 2 Zd⇥d and a lattice point w 2 Zd such that Q = fU(P)+

w, where fU is the linear transformation in Rd defined by U , i.e., fU(v) = vU for all
v 2 Rd .

A lattice triangulation of a lattice polytope P ⇢Rd of dimension d is a finite collection
of lattice simplices T such that

(1) every face of a member of T is in T ,

(2) any two elements of T intersect in a common (possibly empty) face, and

(3) the union of simplices in T is P .

First, we show the following lemma:

Lemma 3.4. Let P ⇢ Rd be a lattice non-simplex. Assume that {D1,D2} is a lattice
triangulation of P and D = D1 \D2. Then LP(n) = LD1(n)+LD2(n)�LD(n).

Proof. Since {D1,D2} is a triangulation of P , it follows that {nD1,nD2} is a triangula-
tion of nP for any positive integer n. Hence since

nP \Zd = (nD1 \Zd)[ (nD2 \Zd),

one has
|nP \Zd|= |nD1 \Zd|+ |nD2 \Zd|� |(nD1 \nD2)\Zd|.

This implies that LP(n) = LD1(n)+LD2(n)�LD(n).

Now, we consider the proof of Theorem 3.3. Let d (P, t) = d0 +d1t + · · ·+ddtd be its
d -polynomial of P . Since P is a lattice non-simplex, one has d1 � 1. Hence by the
inequalities (2.1) and (2.2), it is known that d (P, t) forms one of the followings:

• 1+ t + tk + tk+1;

• 1+ t +2tk;

• 1+2t + t2;
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• 1+3t,

where k � 2 is some integer. In [8, 9], the lattice polytopes whose d -polynomials equal
1+2t+ t2 or 1+3t are completely classified. Then they appear in the lists of Theorems
3.1 and 3.2. Hence we divide into the following two cases:

(1) d (P, t) = 1+ t + tk + tk+1 (Subsection 3.2.1);

(2) d (P, t) = 1+ t +2tk (Subsection 3.2.2).

In these cases, since P is a non-simplex and d1 = 1, the number of vertices of P equals
d + 2 and P has no lattice points expect for its vertices. Let v0, . . . ,vd+1 be vertices
of P and for 0  i  d + 1, let Di be the lattice polytope which is the convex hull
of v0, . . . ,vi�1,vi+1, . . . ,vd+1. Remark that each Di is not necessarily a lattice simplex
of dimension d. Let {T1, . . . ,Tm} be a triangulation of P . Then since Vol(P) = 4,
it follows that 2  m  4 and we may assume that T1 = Dd+1 and Vol(T1) � · · · �
Vol(Tm). If for some i, Vol(Ti)= 1, namely, Ti is unimodularly equivalent to the standard
simplex of dimension d, it then follows that P is spanning. Hence one has m = 2 and
(Vol(T1),Vol(T2)) = (2,2).

3.2.1 The case d (P, t) = 1+ t + tk + tk+1

In this subsection, we consider the case where d (P, t) = 1+ t + tk + tk+1. Then by
Lemma 2.2, it follows that d (T1, t) = 1 + t,1 + tk or 1 + tk+1. From Theorem 3.1,
for every lattice simplex D ⇢ Rd with d (D, t) = 1+ t, it follows that D is spanning.
Moreover, if d (T1, t) = d (T2, t) = 1+ tk+1, then by using Lemma 3.4, for some n,

LT1\T2(n) =
✓

n+d �1
d �1

◆
�
✓

n+d � k�1
d �1

◆
<

✓
n+d �1

d �1

◆
,

a contradiction. Hence we may suppose that d (T1, t) = 1+ tk. Moreover, by Theorem
3.1, we can assume that

vi =

8
>><

>>:

0, (i = 0),

ei, (i = 1, . . . ,d �1),

Â2k�2
j=1 e j +2ed, (i = d).

and set c = d �2k+1. Let vd+1 = (a1, . . . ,ad) 2 Zd . Since P is not a lattice pyramid,
for 2k� 1  i  d � 1, one has ai 6= 0. For a lattice polytope Q ⇢ Rd of dimension e,
we set

Vold(Q) =

(
Vol(Q), (e = d),

0, (e < d).
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Then, one has

Vold(Di) =

8
>><

>>:

|2ai �ad|, (1  i  2k�2),

|2ai|, (2k�1  i  d �1),

|ad|, (i = d).

Since 0,e1, . . . ,ed�1 2 P and P is not spanning, it then follows that ad 2 2Z. More-
over, since for 0  i  d +1, Vol(Di)< 4, one has ad 2 {�2,0,2} and ai 2 {�1,1} for
2k�1  i  d �1. Now, we may assume that T2 2 {D0,D1,D2k�1,Dd}.

3.2.1.1 The case T2 = Dd

Suppose that T2 =Dd . Then since T1\T2 is a unimodular simplex of dimension d�1, by
Lemma 3.4, one has d (T2, t)= 1+tk+1. Hence since (d+1)/2� k+1 from the inequal-
ity (2.2), we obtain c � 2. Moreover, since T1\T2 belongs to the hyperplane defined by
the equation xd = 0 and Vol(T2) = 2, one has ad =�2. Hence (vd +vd+1)/2 2 T1 \T2.
Then it follows that ai + 1 � 0 for 1  i  2k� 2 and ai � 0 for 2k� 1  i  d � 1.
Therefore, for 1  i  2k�2, one has ai 2 {�1,0} and for 2k�2  i  d �1, one has
ai = 1. Thus we can assume that

vd+1 = (�1, . . . ,�1| {z }
a

,0, . . . ,0| {z }
2k�2�a

,1, . . . ,1| {z }
c

,�2).

Then one has
(vd +vd+1)/2 = (0, . . . ,0| {z }

a

,1/2, . . . ,1/2| {z }
2k�2�a+c

,0).

Hence it follows from (vd +vd+1)/2 2 T1 \T2 that 2k�2�a+c  2. Therefore, since
c � 2, one has (a,c) = (2k�2,2). Then we have d (P, t) = 1+ t + tk + tk+1.

3.2.1.2 The case T2 = D0

Suppose that T2 = D0. Then LT1\T2 = {(0, . . . ,0)} ⇢ (R/Z)d . Hence T1 \T2 is a uni-
modular simplex of dimension d � 1. Then it follows from Subsubsection 3.2.1.1 that
d (T2, t) = 1+ tk+1 and c � 2. If for some i, ai < 0, then vd+1/2 2 D0. This implies that
0 2 T2. Hence we obtain ai � 0 for 1  i  d. Moreover, one has ad 2 {0,2} and for
2k�1  i  d �1, one has ai = 1.

Assume that ad = 0. Then for 1  i  2k � 2, we obtain ai 2 {0,1}. Hence we can
assume that

vd+1 = (1, . . . ,1| {z }
a

,0, . . . ,0| {z }
2k�2�a

,1, . . . ,1| {z }
c

,0).
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Then since a+ c�1 � 1,

l =

0

BB@
a+ c�2
a+ c�1

, . . . ,
a+ c�2
a+ c�1| {z }

a

,0, . . . ,0| {z }
2k�2�a

,
a+ c�2
a+ c�1

, . . . ,
a+ c�2
a+ c�1| {z }

c

,0,
1

a+ c�1

1

CCA

is an element of LT2 with the ordering v1, . . . ,vd+1. Since Vol(T2)= 2, one has a+c 3.
If a+c = 2, namely, (a,c) = (0,2), then we obtain d (P, t) = 1+ t+ tk+ tk+1. Suppose
that a+ c = 3. Then ht(l ) = a+ c�1 = 2 < k+1, a contradiction.

Assume that ad = 2. Then for 1  i  2k � 2, one has ai 2 {0,1,2}. If for some
1  i  2k�2, ai = 0, then vd+1/2 2 T2 since the ith coordinate and the dth coordinate
are 0 and positive. Set vd+1/2 = c1v1 + · · ·+ cd+1vd+1, where 0  c1, . . . ,cd+1 and
c1+ · · ·+cd+1 = 1. Then it follows that cd = 0 and cd+1 = 1/2. This implies that 02 T2,
a contradiction. Hence {a1, . . . ,a2k�2} is in {1,2}2k�2. Therefore, we can assume that

vd+1 = (2, . . . ,2| {z }
a

,1, . . . ,1| {z }
2k�2�a

,1, . . . ,1| {z }
c

,2).

Then

l =

0

BB@
1

a+ c
, . . . ,

1
a+ c| {z }

a

,0, . . . ,0| {z }
2k�2�a

,
1

a+ c
, . . . ,

1
a+ c| {z }

c

,
1

a+ c
,
a+ c�1

a+ c

1

CCA 2 (R/Z)d+1

is an element of LT2 with the ordering v1, . . . ,vd+1. Hence since a+c� 2, it follows that
Vol(T2)� a+ c. Therefore, one has a+ c = 2 and ht(l ) = 2. However, this contradicts
that d (T2, t) = 1+ tk+1 and k+1 � 3.

3.2.1.3 The case T2 = D1

Suppose that T2 = D1. Then LT1\T2 = {(0, . . . ,0)} ⇢ (R/Z)d . Hence T1 \T2 is a uni-
modular simplex of dimension d � 1. Then it follows from Subsubsection 3.2.1.1 that
d (T2, t) = 1+ tk+1 and c � 2. Since T1 \T2 belongs to the hyperplane defined by the
equation 2x1 � xd = 0, one has (a1,ad) 2 {(�2,�2),(�1,0),(0,2)}. Then it follows
that (v1+vd+1)/22 T1\T2. If (a1,ad)= (�2,�2), then since the dth coordinate is neg-
ative, the point does not belong to T1\T2. Set (v1+vd+1)/2 = c0v0+c2v2+ · · ·+cdvd ,
where 0 c0,c2, . . . ,cd and c0+c2+ · · ·+cd = 1. Assume that (a1,ad) = (�1,0). Then
we obtain cd = 0. Hence it follows that for 2  i  d � 1, ci = ai/2 � 0. Thus since
c0+c2+ · · ·+cd = 1 and c� 2, one has c= 2 and ai = 0 for 2 i 2k�2 and ai = 1 for
i= 2k�1,2k. Then we obtain d (P, t) = 1+t+tk+tk+1. Assume that (a1,ad) = (0,2).
Then we obtain cd = 1/2. Moreover, since ci = ai/2 for 2k�1  i  d �1, it follows
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that ai = 1 for 2  i  d � 1. However, from c � 2, one has c0 + c2 + · · ·+ cd > 1, a
contradiction.

3.2.1.4 The case T2 = D2k�1

Suppose that c � 1 and T2 = D2k�1. Since T1 \ T2 belongs to the hyperplane defined
by the equation x2k�1 = 0 and since Vol(T2) = 2, one has a2k�1 = �1. Moreover, we
obtain (v2k�1 + vd+1)/2 2 T1 \ T2. Hence it follows that for 1  i  2k � 2, ai � 0
and 2k  i  d � 1, ai = 1 and ad 2 {0,2}. In particular, if ad = 2, then ai > 0 for
1  i  2k�2.

Assume that ad = 0. Then for 1  i  2k�2, one has ai 2 {0,1}. Hence we can assume
that

vd+1 = (1, . . . ,1| {z }
a

,0, . . . ,0| {z }
2k�2�a

,�1,1, . . . ,1| {z }
c�1

,0).

Set (v2k�1 + vd+1)/2 = Âd
i=0,i 6=2k�1 civi, where 0  c0, . . . ,c2k�2,c2k, . . . ,cd and c0 +

· · ·+ c2k�2 + c2k + · · ·+ cd = 1. Then one has cd = 0 and ci = 1/2 for 1  i  a or
for 2k  i  d � 1. Hence we obtain a+(c� 1)  2, in particular, 1  a+ c  3. If
a+c = 1, namely, (a,c) = (0,1), then (v2k�1+vd+1)/2 = 0. This implies that v0 is not
a vertex of P , a contradiction. Hence one has 2  a+ c  3. In each case, we obtain
d (P, t) = 1+ t + tk + tk+1.

Assume that ad = 2. Then for 1  i  2k�2, one has ai 2 {1,2}. Hence we can assume
that

vd+1 = (2, . . . ,2| {z }
a

,1, . . . ,1| {z }
2k�2�a

,�1,1, . . . ,1| {z }
c�1

,2).

Set (v2k�1 + vd+1)/2 = Âd
i=0,i 6=2k�1 civi, where 0  c0, . . . ,c2k�2,c2k, . . . ,cd and c0 +

· · ·+ c2k�2 + c2k + · · ·+ cd = 1. Then one has cd = 1/2 and ci = 1/2 for 1  i  a and
ci = 0 for a+ 1  i  2k� 2, and ci = 1/2 for 2k  i  d � 1. Hence since c0 + · · ·+
c2k�2 + c2k + · · ·+ cd = 1, we obtain a+(c� 1)  1, in particular, 1  a+ c  2. In
each case, we obtain d (P, t) = 1+ t + tk + tk+1.

Hence we know that P is unimodularly equivalent to the lattice polytope which is
the convex hull of 0,e1, . . . ,ed�1,v and v

0, where v and v
0 satisfy one of the following

conditions:

(1) d = 2k, v = Âd�2
j=1 e j +2ed and v

0 = e1 � ed�1;

(2) d = 2k, v = Âd�2
j=1 e j +2ed and v

0 = e1 + e2 � ed�1;

(3) d = 2k, v = Âd�2
j=1 e j +2ed and v

0 = Âd�2
j=1 e j � ed�1 +2ed;
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(4) d = 2k, v = Âd�2
j=1 e j +2ed and v

0 = 2e1 +Âd�2
j=2 e j � ed�1 +2ed;

(5) d = 2k+1, v = Âd�3
j=1 e j +2ed and v

0 =�Âd�3
j=1 e j + ed�2 + ed�1 �2ed;

(6) d = 2k+1, v = Âd�3
j=1 e j +2ed and v

0 = ed�2 + ed�1;

(7) d = 2k+1, v = Âd�3
j=1 e j +2ed and v

0 =�e1 + ed�2 + ed�1;

(8) d = 2k+1, v = Âd�3
j=1 e j +2ed and v

0 =�ed�2 + ed�1;

(9) d = 2k+1, v = Âd�3
j=1 e j +2ed and v

0 = e1 � ed�2 + ed�1;

(10) d = 2k+1, v = Âd�3
j=1 e j +2ed and v

0 = Âd�3
j=1 e j � ed�2 + ed�1 +2ed;

(11) d = 2k+2, v = Âd�4
j=1 e j +2ed and v

0 =�ed�3 + ed�2 + ed�1.

For i = 1, . . . ,11, let Pi be the lattice polytope which satisfies the condition (i). Set

U1,2 =

0

BBBBBBBB@

1 �1
�1
�1 1

... . . .
�1 1

k�1 1

1

CCCCCCCCA

2 Zd⇥d,

U1,3 =

0

BBBBBBBB@

1 1 · · · 1 0 2
1

1
. . .

1
�1 · · · �1 0 �1

1

CCCCCCCCA

2 Zd⇥d

and

U1,5 =

0

BBBBBBBBBB@

0 �1 · · · · · · �1 0 �2
�1 0 �1 · · · �1 0 �2

... �1 . . . . . . ...
...

...
...

... . . . . . . �1 0 �2
�1 �1 . . . �1 0 0 �2
�1 �1 . . . �1 �1 1 �2

k�2 k�2 . . . k�2 k�2 0 2k�3

1

CCCCCCCCCCA

2 Zd⇥d,

where other entries equal zero. Then these matrices are unimodular. Moreover, one has
P1 = fU1,2(P2)+ e2 = fU1,3(P3) = fU1,4 +(Âd�2

j=1 e j + 2ed). Hence P1,P2,P3 and
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P4 are unimodularly equivalent each other. Set

U5,6 =

0

BBBBBBBBBB@

0 �1 · · · �1 0 0 �2

�1 . . . . . . ...
...

...
...

... . . . 0 �1 0 0 �2
�1 · · · �1 0 0 0 �2
�1 · · · �1 �1 1 0 �2
�1 · · · �1 �1 0 1 �2

k�2 · · · k�2 k�2 0 0 2k�3

1

CCCCCCCCCCA

2 Zd⇥d,

U5,7 =

0

BBBBBBBBBB@

1 1 · · · 1 2
1

. . .
1

1
1

�1 · · · �1 �1

1

CCCCCCCCCCA

2 Zd⇥d,

U5,8 =

0

BBBBBBBBBB@

0 �1 · · · �1 0 0 �2

�1 . . . . . . ...
...

...
...

... . . . 0 �1 0 0 �2
�1 · · · �1 0 0 0 �2
�1 · · · �1 �1 1 0 �2
�2 · · · �2 �2 1 1 �4

k�2 · · · k�2 k�2 0 0 2k�3

1

CCCCCCCCCCA

2 Zd⇥d,

U5,9 =

0

BBBBBBBBBB@

1 1 · · · 1 2
1

. . .
1

1
�1 �1 · · · �1 1 1 �2

�1 · · · �1 �1

1

CCCCCCCCCCA

2 Zd⇥d,

and

U5,10 =

0

BBBBBBBB@

1
. . .

1
1

�1 · · · �1 1 1 �2
1

1

CCCCCCCCA

2 Zd⇥d,

where other entries equal zero. Then these matrices are unimodular. Furthermore, one
has P5 = fU5,6(P6)+ (Âd�3

j=1 e j + 2ed) = fU5,7(P7) = fU5,8(P8)+ (Âd�3
j=1 e j + 2ed) =
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fU5,9(P9)= fU5,10(P10). Hence P5, . . . ,P9 and P10 are unimodularly equivalent each
other.

Finally, we will show that P5 and P11 are not lattice pyramids. For i 2 {1,5,11}, let
v
(i)
1 , . . . ,v

(i)
d+2 be the vertices of Pi and for i 2 {1,5,11}, set

Li = max{|V | : V ⇢ {1, . . . ,d +2,}, |V |/2 2 Z, Â
j2V

v
(i)
j /2 2 Zd}.

Then one has L1 = 2k,L5 = 2k+ 2 and L11 = 2k+ 4. This implies that Pyr(P1) and
P5 are not unimodularly equivalent each other, and Pyr(Pyr(P1)),Pyr(P5) and P11
are not unimodularly equivalent each other. Hence we know that P5 and P11 are not
lattice pyramids.

Therefore, this completes the proof of the case d (P, t) = 1+ t + tk + tk+1.

3.2.2 The case d (P, t) = 1+ t +2tk

In this subsection, we consider the case where d (P, t) = 1+ t + 2tk. Recall that if
d (T1, t) = 1+ t or d (T2, t) = 1+ t, then P is spanning. Hence by Lemma 2.2, one
has d (T1, t) = d (T2, t) = 1+ tk. Moreover, by Lemma 3.4, it follows that T1 \T2 is a
unimodular simplex of dimension d �1. By Theorem 3.1, we can assume that

vi =

8
>><

>>:

0, (i = 0),

ei, (i = 1, . . . ,d �1),

Â2k�2
j=1 e j +2ed, (i = d),

and set c = d � 2k+ 1. Let vd+1 = (a1, . . . ,ad) 2 Zd . By the same way of Subsection
3.2.1, it follows that for 2k�1  i  d �1, one has ai 6= 0 and ad 2 {�2,0,2}.

Now, we may assume that T2 2 {D0,D1,D2k�1,Dd}.

3.2.2.1 The case T2 = Dd

Suppose that T2 = Dd . Then since T1 \ T2 belongs to the hyperplane defined by the
equation xd = 0 and Vol(T2) = 2, we obtain ad = �2. Hence (vd +vd+1)/2 2 T1 \T2.
Therefore, for 1  i  2k�2, one has ai 2 {�1,0} and for 2k�2  i  d �1, one has
ai = 1. Thus we can assume that

vd+1 = (�1, . . . ,�1| {z }
a

,0, . . . ,0| {z }
2k�2�a

,1, . . . ,1| {z }
c

,�2).
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By the same way of Subsubsection 3.2.1.1, It follows that 2k�2�a+c  2. Moreover
from d (T2, t) = 1+ tk, we obtain a+c 2 {2k�2,2k�1}. Hence since a  2k�2, (a,c)
equals (2k�2,0), (2k�2,1) or (2k�3,1). If (a,c) = (2k�2,0), then (vd +vd+1)/2 =

v0, a contradiction. Therefore, one has (a,c) = (2k�3,1) or (2k�2,1). In each case,
we obtain d (P, t) = 1+ t +2tk.

3.2.2.2 The case T2 = D0

Suppose that T2 = D0. If for some i, ai < 0, then vd+1/2 2 T2. This implies that 0 2 T2,
a contradiction. Hence we obtain ai � 0 for 1  i  d. Moreover, one has ad 2 {0,2}
and for 2k�1  i  d �1, one has ai = 1.

Assume that ad = 0. Then for 1  i  2k � 2, we obtain ai 2 {0,1}. Hence we can
assume that

vd+1 = (1, . . . ,1| {z }
a

,0, . . . ,0| {z }
2k�2�a

,1, . . . ,1| {z }
c

,0).

Since T1 \T2 belongs to the hyperplane defined by the equation x1 + · · ·+ xd�1 � (k�
3/2)xd = 1, one has a+ c > 1. Then

l =

0

BB@
a+ c�2
a+ c�1

, . . . ,
a+ c�2
a+ c�1| {z }

a

,0, . . . ,0| {z }
2k�2�a

,
a+ c�2
a+ c�1

, . . . ,
a+ c�2
a+ c�1| {z }

c

,0,
1

a+ c�1

1

CCA

is an element of LT2 with the ordering v1, . . . ,vd+1. Since Vol(T2)= 2, one has a+c 3.
If (a,c) = (0,2), then d (T2, t) = 1+ tk+1, a contradiction, and if (a,c) = (2,0), then
d (T2, t) = 1+ tk�1, a contradiction. Suppose that (a,c) = (1,1). Then d (T2, t) = 1+ tk.
Therefore, one has d (P, t) = 1+ t + 2tk. Next, suppose that a+ c = 3. Then since
ht(l ) = a+ c�1 = 2, one has k = 2. In each case, it is easy to show that Vol(T2)� 3,
a contradiction.

Assume that ad = 2. By the proof of Subsubsection 3.2.1.2, it follows that {a1, . . . ,a2k�2}
is in {1,2}2k�2. Therefore, we can assume that

vd+1 = (2, . . . ,2| {z }
a

,1, . . . ,1| {z }
2k�2�a

,1, . . . ,1| {z }
c

,2).

Then

l =

0

BB@
1

a+ c
, . . . ,

1
a+ c| {z }

a

,0, . . . ,0| {z }
2k�2�a

,
1

a+ c
, . . . ,

1
a+ c| {z }

c

,
1

a+ c
,
a+ c�1

a+ c

1

CCA 2 (R/Z)d+1
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is an element of LT2 with the ordering v1, . . . ,vd+1. Since Vol(T2) � a+ c, one has
a+ c  2. Suppose that a+ c = 2. Then we obtain ht(l ) = 2. This implies k = 2. In
each case, it is easy to see that d (P, t) 6= 1+ t +2t2, a contradiction. If (a,c) = (0,0),
then vd = vd+1, a contradiction. If (a,c) = (1,0), then

l 0 = (0,1/2, . . . ,1/2| {z }
2k�3

,0,1/2) 2 (R/Z)d+1

is an element of LD0 with the ordering v1, . . . ,vd+1. However, ht(l 0) = k�1, a contra-
diction. Hence (a,c) = (0,1). Then one has d (P, t) = 1+ t +2tk.

3.2.2.3 The case T2 = D1

Suppose that T2 = D1. Since T1 \T2 belongs to the hyperplane defined by the equation
2x1�xd = 0 and since Vol(T1)= 2 and |ad| 3, one has (a1,ad)2 {(�2,�2),(�1,0),(0,2)}.
Then it follows that (v1 + vd+1)/2 2 T1 \ T2. If (a1,ad) = (�2,�2), then since the
dth coordinate is negative, the point does not belong to T1 \T2. Set (v1 + vd+1)/2 =

c0v0 + c2v2 + · · ·+ cdvd , where 0  c0,c2, . . . ,cd and c0 + c2 + · · ·+ cd = 1. Assume
that (a1,ad) = (�1,0). Then we obtain cd = 0. Hence it follows that for 2  i  d �1,
ci = ai/2 � 0. Thus we may assume that

vd+1 = (�1,1, . . . ,1| {z }
a

,0, . . . ,0| {z }
2k�3�a

,1, . . . ,1| {z }
c

,0).

and 0  a+ c  2. Then since there exists an element l of LT2 with ht(l ) = k and
ord(l ) = 2, one has c = a+ 1 or c = a. Hence (a,c) equals (0,0), (0,1) or (1,1). If
(a,c) = (0,0), then it follows that (v1+vd+1)/2 = v0, a contradiction. If (a,c) = (0,1)
or (a,c) = (1,1), then we obtain d (P, t) = 1+ t + 2tk. Assume that (a1,ad) = (0,2).
Then we obtain cd = 1/2. Moreover, for 2  i  2k� 2, ai 2 {1,2} and for 2k� 1 
i  d �1, ai = 1. Hence we may assume that

vd+1 = (0,2, . . . ,2| {z }
a

,1, . . . ,1| {z }
2k�3�a

,1, . . . ,1| {z }
c

,2).

Then one has 0  a+ c  1 since c2 = · · · = ca+1 = 1/2, ca+2 = · · · = c2k�2 = 0 and
c2k�1 = · · ·= cd�1 = 1/2. Moreover, since there exists an element l of LT2 with ht(l )=
k and ord(l ) = 2, one has c = a+ 2 or c = a+ 1. Hence it follows that (a,c) equals
(0,1). Then we obtain d (P, t) = 1+ t +2tk.

3.2.2.4 The case T2 = D2k�1

Suppose that c � 1 and T2 = D2k�1. Then it is easy to see that d (T1, t) = d (T1 \T2, t) =
1+ tk, a contradiction.
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Therefore, P is unimodularly equivalent to the lattice polytope which is the convex
hull of 0,e1, . . . ,ed�1,v and v

0, where v and v
0 satisfy one of the following conditions:

(1) d = 2k, v = Âd�2
j=1 e j +2ed and v

0 =�Âd�3
j=1 ei + ed�1 �2ed;

(2) d = 2k, v = Âd�2
j=1 e j +2ed and v

0 =�Âd�2
j=1 ei + ed�1 �2ed;

(3) d = 2k, v = Âd�2
j=1 e j +2ed and v

0 = e1 + ed�1;

(4) d = 2k, v = Âd�2
j=1 e j +2ed and v

0 = Âd�1
j=1 e j +2ed;

(5) d = 2k, v = Âd�2
j=1 e j +2ed and v

0 =�e1 + ed�1;

(6) d = 2k, v = Âd�2
j=1 e j +2ed and v

0 =�e1 + e2 + ed�1;

(7) d = 2k, v = Âd�3
j=1 e j +2ed and v

0 = Âd�1
j=2 e j +2ed .

For i = 1, . . . ,7, let Pi be the lattice polytope of (i). Set

U5,1 =

0

BBBBBBBBBB@

1 1 · · · 1 2
1 �1

. . . ...
1 �1

�1
�1 1

�1 · · · �1 k�2 �1

1

CCCCCCCCCCA

2 Zd⇥d,

U5,2 =

0

BBBBBBBB@

1 1 · · · 1 2
1

. . .
1

1
�1 · · · �1 �1

1

CCCCCCCCA

2 Zd⇥d,

U5,3 =

0

BBBBB@

�1
�1 1

... . . .
�1 1

k�1 1

1

CCCCCA
2 Zd⇥d,

U5,4 =

0

BBBBBBBB@

1 · · · 1 2
�1 1

... . . .
�1 1
�1 1

k�2 �1 · · · �1 �1

1

CCCCCCCCA

2 Zd⇥d,
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U5,6 =

0

BBBBBBBB@

1 �1
�1
�1 1

... . . .
�1 1

k�1 1

1

CCCCCCCCA

2 Zd⇥d,

U5,7 =

0

BBBBBBBB@

0 �1 · · · �1 0 �2

�1 . . . . . . ...
...

...
... . . . 0 �1 0 �2

�1 · · · �1 0 0 �2
�1 · · · �1 �1 1 �2

k�2 · · · k�2 k�2 0 2k�3

1

CCCCCCCCA

2 Zd⇥d,

where other entries equal zero. Then it follows that these matrices are unimodular
and one has P5 = fU5,1(P1)+e2k�2 = fU5,2(P2) = fU5,3(P3)+e1 = fU5,4(P4)+e1 =

fU5,6(P6)+e2 = fU5,7(P7)+Âd�3
j=1 e j+2ed . Hence P1, . . . ,P7 are unimodularly equiv-

alent each other.

Therefore, this completes the proof of the case d (P, t) = 1+ t +2tk.

Thus, Theorem 3.3 follows.
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Chapter 4

Ehrhart polynomials of lattice

polytopes with normalized volume 5

To work towards a classification of the lattice polytopes whose normalized volumes are
5, we should classify all the possible d -polynomials of lattice polytopes whose nor-
malized volumes are 5. Higashitani classified all the possible d -polynomials of lattice
simplices whose normalized volumes are 5.

Lemma 4.1 ([53, Theorem 1.2]). Let 1+ ti1 + ti2 + ti3 + ti4 be a polynomial with some
positive integers i1  · · · i4. Then there exists a lattice simplex of dimension d whose
d -polynomial equals 1+ ti1 + ti2 + ti3 + ti4 if and only if the following conditions are
satisfied:

• i1 + i4 = i2 + i3  d +1;

• ik + i` � ik+` for 1  k  ` 4 with k+ ` 4.

In this chapter, we classify all the possible d -polynomials of lattice non-simplices
whose normalized volumes are 5. Thus, we obtain a classification of the possible d -
polynomials of lattice polytopes whose normalized volumes are 5. In fact, we will
show the following theorem.

Theorem 4.2 ([93, Theorem 0.4]). Let 1+ ti1 + ti2 + ti3 + ti4 be a polynomial with some
positive integers i1  · · · i4. Then there exists a lattice polytope of dimension d whose
d -polynomial equals 1+ ti1 + ti2 + ti3 + ti4 if and only if (i1, i2, i3, i4) satisfies the condi-
tion of Theorem 4.1 or one of the following conditions:

(1) (i1, i2, i3, i4) = (1,1,1,2) and d � 2;

(2) (i1, i2, i3, i4) = (1,2,2,2) and d � 3;
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(3) (i1, i2, i3, i4) = (1,2,3,3) and d � 5.

In particular, we cannot obtain the d -polynomials of (1), (2) and (3) by lattice sim-
plices.

This chapter is organized as follows: First, in Section 4.1, we will discuss some proper-
ties of lattice polytopes whose normalized volumes are prime integers. In particular, we
will show that every full-dimensional lattice polytope which is not an empty simplex
and whose normalized volume equals a prime integer is always a spanning polytope
(Theorem 4.3). Finally, in Section 4.2, by using this result we will prove Theorem 4.2.

4.1 Lattice polytopes with prime volumes

In this section, we will discuss some properties of lattice polytopes whose normalized
volumes are prime integers.

Let P ⇢ Zd be a lattice polytope of dimension d and hP \ZdiZ the affine sublattice
generated by P \Zd . We call the index of P the index of hP \ZdiZ as a sublattice of
Zd . Then P is spanning if and only if its index equals 1. Now, we prove the following
theorem.

Theorem 4.3 ([93, Theorem 1.1]). Let p be a prime integer and P ⇢ Rd be a lattice
polytope of dimension d whose normalized volume equals p. Suppose that P is not an
empty simplex. Then P is spanning.

Proof. Since P is not an empty simplex, there exists a lattice triangulation {D1, . . . ,Dk}
of P with some positive integer k � 2. Since the index of P must divide the normalized
volume of every Di, and since the sum of those normalized volumes is the prime p, the
index must be one. Hence P is spanning.

Next, we consider an application of this result to classifying lattice polytopes whose
normalized volumes are prime integers. Thanks to Theorem 4.3, every full-dimensional
lattice polytope whose normalized volumes equals 5 is either an empty simplex or a
spanning polytope. See e.g., [33] for how to classify empty simplices. Now, we fo-
cus on spanning polytopes. We recall that there are only finitely many spanning lat-
tice polytopes of given normalized volume (and arbitrary dimension) up to unimodular
equivalence and lattice pyramid constructions ([56, Corollary 2.4]). Hence we obtain
the following corollary.

Corollary 4.4. Let p be a prime integer and P a lattice polytope of dimension d whose
normalized volume equals p. Suppose that P is not an empty simplex. Then there are
only finitely many possibilities for P up to unimodular equivalence and lattice pyramid
constructions.
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4.2 Proof of Theorem 4.2

In this section, we will prove Theorem 4.2. From Lemma 2.5 and Theorem 4.3, we
obtain the following corollary.

Corollary 4.5. Let p be a prime integer and P ⇢ Rd a lattice polytope of dimension d
whose normalized volume equals p and whose d -polynomial equals d0+d1t+ · · ·+dsts,
where ds 6= 0. Suppose that P is not an empty simplex. Then one has di � 1 for any
0  i  s.

Next, we give indispensable examples for our proof of Theorem 4.2.

Example 4.6. (a) Let P1 ⇢ R2 be the lattice polytope which is the convex hull of the
following lattice points:

0,e1,e2,2e1 +3e2 2 R2.

Then one has d (P1, t) = 1+3t + t2.

(b) Let P2 ⇢R3 be the lattice polytope which is the convex hull of the following lattice
points:

0,e1,e2,e3,e1 + e2 +3e3 2 R3.

Then one has d (P2, t) = 1+ t +3t2.

(c) Let P3 ⇢R5 be the lattice polytope which is the convex hull of the following lattice
points:

0,e1,e2,e3,e4,e5,�e1 + e2 + e3 + e4 +2e5 2 R5.

Then one has d (P3, t) = 1+ t + t2 +2t3.

Finally, we prove Theorem 4.2.

Proof of Theorem 4.2. First, we can prove the ”If” part of Theorem 4.2 from Lemma
2.3, Theorem 4.1 and Example 4.6. Hence we should prove the ”Only if ” part of The-
orem 4.2. Let P ⇢ Rd be a lattice non-simplex of dimension d whose normalized
volume equals 5 and d (P, t) = d0+d1t+ · · ·+ddtd the d -polynomial of P . By Corol-
lary 4.5 and the inequalities (2.1) and (2.2), and the fact d1 � dd , one of the followings
is satisfied:

(1) d (P, t) = 1+4t and d � 1;

(2) d (P, t) = 1+3t + t2 and d � 2;

(3) d (P, t) = 1+2t +2t2 and d � 2;

(4) d (P, t) = 1+ t +3t2 and d � 3;

45



(5) d (P, t) = 1+ t +2t2 + t3 and d � 3;

(6) d (P, t) = 1+ t + t2 +2t3 and d � 5;

(7) d (P, t) = 1+ t + t2 + t3 + t4 and d � 4.

Then we know that the conditions (1),(3),(5) and (7) satisfy the condition of Theorem
4.1. This completes the proof.
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Chapter 5

Gorenstein simplices and the

associated finite abelian groups

In this chapter, to work towards a classification of the Gorenstein simplices, we discuss
a characterization of Gorenstein simplices in terms of their associated finite abelian
groups. In Section 5.1, we recall the Hermite normal form matrices and some of their
properties. In Section 5.2, we prove that a class of simplices arising from Hermite
normal form matrices are Gorenstein (Theorem 5.6). Using this result, we characterize
Gorenstein simplices whose normalized volume is a prime number. In fact, we will
prove the following.

Theorem 5.1 ([91, Theorem 0.1]). Let p be a prime number and D⇢Rd a d-dimensional
lattice simplex with normalized volume p. Suppose that D is not a lattice pyramid
over any lower-dimensional simplex. Then D is Gorenstein of index r if and only

if d = rp� 1 and LD is generated by
✓

1
p
, . . . ,

1
p

◆
. In this case, one has d (D, t) =

1+ tr + t2r + · · ·+ t(p�1)r.

In Section 5.3, we extend these results by characterizing Gorenstein simplices whose
normalized volume equals p2 and pq, where p and q are prime numbers with p 6= q. In
fact, we will prove the following theorems.

Theorem 5.2 ([91, Theorem 0.2]). Let p be a prime number and D⇢Rd a d-dimensional
lattice simplex with normalized volume p2. Suppose that D is not a lattice pyramid over
any lower-dimensional lattice simplex. Then D is Gorenstein of index r if and only if
one of the followings is satisfied:
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1. There exists an integer s with 0  s  d �1 such that rp2 �1 = (d � s)+ ps and

LD is generated by

0

BB@
1
p
, . . . ,

1
p| {z }

s

,
1
p2 , . . . ,

1
p2

| {z }
d�s+1

1

CCA for some ordering of the vertices of

D.

2. d = rp � 1 and there exist an integer s with 1  s  d � 1 and integers 1 
a1, . . . ,as�1  p�1 such that LD is generated by

0

@
2� Â

1is�1
ai

p
,
a1 +1

p
, . . . ,

as�1 +1
p

,0,
1
p
, . . . ,

1
p

1

A

and 0

BBB@

✓
Â

1is�1
ai

◆
�1

p
,

p�a1

p
, . . . ,

p�as�1

p
,

1
p
,0, . . . ,0

1

CCCA

for some ordering of the vertices of D.

Theorem 5.3 ([91, Theorem 0.3]). Let p and q be prime numbers with p 6= q and
D ⇢ Rd a d-dimensional lattice simplex with normalized volume pq. Suppose that D is
not a lattice pyramid over any lower-dimensional lattice simplex. Then D is Gorenstein
of index r if and only if there exist nonnegative integers s1,s2,s3 with s1+s2+s3 = d+1
such that the following conditions are satisfied:

1. rpq = s1q+ s2 p+ s3;

2. LD is generated by

0

BB@
1
p
, . . . ,

1
p| {z }

s1

,
1
q
, . . . ,

1
q| {z }

s2

,
1
pq

, . . . ,
1
pq| {z }

s3

1

CCA for some ordering of the

vertices of D.

Moreover, we give a class of Gorenstein simplices whose normalized volumes equal
a power of a prime number (Theorem 5.13). Finally, in Section 5.4, we compute the
volume of the associated dual reflexive simplices of the Gorenstein simplices described
in Sections 5.2 and 5.3.

5.1 Hermite normal form matrices and lattice simplices

In this section, we recall some basic facts about Hermite normal form matrices. For
positive integers d and m, we denote by Herm(d,m) the finite set of lower triangular
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matrices H = (hi j)1i, jd 2Zd⇥d
�0 with determinant m satisfying hi j < hii for all i > j. It

is well known that for any M 2Zd⇥d with determinant m2Z>0 there exist a unimodular
matrix U 2Zd⇥d and a Hermite normal form matrix H 2Herm(d,m) such that MU =H.
Let D⇢Rd be a lattice simplex of dimension d with normalized volume m and v0, . . . ,vd
the vertices of D, and let V be the d ⇥ d matrix whose ith row is vi � v0. Then one
has |det(V )|= m and we may assume that det(V ) = m. Hence there exist a unimodular
matrix U 2Zd⇥d and a Hermite normal form matrix H 2Herm(d,m) such that VU =H.
In particular, D is unimodularly equivalent to the lattice simplex whose vertices are the
origin of Rd and all rows of H.

Let H = (hi j)1i, jd 2Zd⇥d
�0 be a Hermite normal form matrix and set `(H) = |{i | hii >

1}|. We then say that H has `(H) nonstandard rows. Let D(H) be the lattice simplex
whose vertices are the origin of Rd and all rows of H, and set s = max{i | hii > 1}. If
D(H) is not a lattice pyramid over any lower-dimensional lattice simplex, then s = d. In
[40], lattice simplices arising from Hermite normal form matrices are discussed.

5.2 Hermite normal form matrices with one nonstan-

dard row

For a sequence of integers A = (a1, . . . ,ad�1,ad) with 1  a1, . . . ,ad�1  ad , we set
D(A) = conv({v0, . . . ,vd})⇢ Rd , where

vi =

8
>>>><

>>>>:

0, if i = 0,
ei, if 1  i  d �1,
d�1

Â
j=1

(ad �a j)e j +aded, if i = d.

Namely, D(A) is a lattice simplex arising from a Hermite normal form matrix with
one nonstandard row. In particular, the lattice simplices D(A) are exactly the lattice
simplices with one unimodular facet.

At first, we give the equations of the supporting hyperplanes of facets of D(A).

Lemma 5.4. For 0  i  d, let Fi be the facet of D(A) whose vertices are v0, . . . ,vi�1,
vi+1, . . . ,vd and Hi the supporting hyperplane of Fi. Then one has

• H0 = {(x1, . . . ,xd) 2 Rd : ad
d�1
Â
j=1

x j +(1�
d�1
Â
j=1

(ad �a j))xd = ad};

• Hi = {(x1, . . . ,xd) 2 Rd : �adxi +(ad �ai)xd = 0}, 1  i  d �1;

• Hd = {(x1, . . . ,xd) 2 Rd : �xd = 0}.
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It is easy to compute LD(A) for the simplex D(A), as demonstrated with the following
lemma.

Lemma 5.5. Let a0 be an integer with 1  a0  ad such that ad | (a0 + · · ·+ ad�1 +

1). Then the finite abelian group LD(A) is generated by
✓

a0

ad
,

a1

ad
, . . . ,

ad�1

ad
,

1
ad

◆
. In

particular, D(A) is not a lattice pyramid over any lower-dimensional lattice simplex if
and only if 1  a0,a1, . . . ,ad�1 < ad.

Proof. Set

(l0, . . . ,ld) =

✓
a0

ad
,

a1

ad
, . . . ,

ad�1

ad
,

1
ad

◆
2 (R/Z)d+1.

Then one has

d

Â
i=0

li(vi,1) = (b1, . . . ,bd�1,1,
a0 + · · ·+ad�1 +1

ad
) 2 Zd+1,

where for 1 i d�1, bi =min{1,ad �ai}. Hence we know that (l0, . . . ,ld) is an ele-
ment of LD(A). Since the normalized volume of D(A) is ad and the order of (l0, . . . ,ld)

is ad , LD(A) is generated by (l0, . . . ,ld). Moreover, by Lemma 2.8, it is follows that
D(A) is not a lattice pyramid over any lower-dimensional lattice simplex if and only if
1  a0,a1, . . . ,ad�1 < ad .

The following theorem characterizes exactly when the simplices D(A) are Gorenstein.

Theorem 5.6 ([91, Theorem 2.3]). Suppose that 1  a0, . . . ,ad�1 < ad. Then D(A) is
Gorenstein of index r if and only if the following conditions are satisfied:

• For 0  i  d �1, ai | ad;

• rad = a0 + · · ·+ad�1 +1.

In order to prove this theorem, we show the following lemma.

Lemma 5.7. Suppose that 1  a0, . . . ,ad�1 < ad, rad = a0 + · · ·+ ad�1 + 1 and for
0  i  d �1, ai | ad. Then D(A) is Gorenstein of index r. Moreover, the vertices of the
associated dual reflexive simplex are the following lattice points:

• �ed;

• �ad

ai
ei +

ad �ai

ai
ed for 1  i  d �1;

• ad

a0

d�1
Â
j=1

e j +
(r�d +1)ad �a0

a0
ed.
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Proof. Since ad(d � 1) + (1�Âd�1
j=1(ad � a j)) = rad � a1 < rad , by Lemma 5.4, we

know that t = (1, . . . ,1) is an interior lattice point of rD(A). Set D = rD(A)� t. Then by
Lemma 5.4, the equations of supporting hyperplanes of facets of D are as follows:

• �xd = 1;

• �adxi +(ad �ai)xd = ai, 1  i  d �1;

• ad
d�1
Â
j=1

x j +(1�
d�1
Â
j=1

(ad �a j))xd = a0.

Hence by Lemma 2.7, D is reflexive and we can obtain the vertices of D_.

Now, we prove Theorem 5.6.

Proof of Theorem 5.6. Let t = (t1, . . . , td) 2 Rd be the unique interior lattice point of
rD(A) and D0 = rD(A)� t. Then for each i, one has ti � 1. By Lemma 5.4, the equation
�xd = td is a supporting hyperplane of a facet of D0. Hence by Lemma 2.7, w0 =

�ed/td is a vertex of (D0)_. Therefore, we obtain td = 1. If for some i, ti � 2, then
(t1, . . . , ti�1, ti�1, ti+1, . . . , td�1,1) is the interior lattice point of rD(A). Since (t1, . . . , td)
is the unique interior lattice point of rD(A), one has t1 = · · · = td�1 = 1. Therefore, by
Lemma 2.7, the following points are the vertices of (D0)_:

wi =

8
>>>>>>>><

>>>>>>>>:

� ed, if i = 0,

� ad

ai
ei +

ad �ai

ai
ed, if 1  i  d �1,

ad

a

d�1

Â
j=1

e j +

1�
d�1
Â
j=1

(ad �a j)

a
ed, if i = d,

where a = rad �Âd�1
j=1 a j �1. Since the origin of Rd belongs to the interior of D0, we

obtain a > 0. Moreover, D0 is reflexive, by Lemma 2.7, it is known that a divides
ad . Hence one has 1  a < ad . Therefore, since ad | (a+ a1 + · · ·+ ad�1 + 1) and
1  a0 < ad , we obtain a = a0. By Lemma 5.7, this completes the proof.

By Lemmas 2.7 and 5.7, we can prove Theorem 5.6.

Remark 5.8. If D(A) is Gorenstein of index 1, then D(A) is unimodularly equivalent
to a lattice polytope D = conv({e1, . . . ,ed,�Âd

i=1 ai�1ei}). In [17], properties of this
polytope D are discussed.

We obtain Theorem 5.1 as a special case of Theorem 5.6.
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Proof of Theorem 5.1. Since the normalized volume of D is a prime number, there exists
a sequence of integers A = (a1, . . . ,ad�1, p) with 1  a1, . . . ,ad�1  p such that D is
unimodularly equivalent to D(A). Let a0 be an integer with 1  a0  p such that p |
(a0 + · · ·+ ad�1 + 1). Since D is not a lattice pyramid over any lower-dimensional
simplex, by Lemma 5.5, one has 1  a0, . . . ,ad�1 < p. Hence, by Theorem 5.6, D(A) is
Gorenstein of index r if and only if a0 = · · · = ad�1 = 1 and d = rp� 1. Therefore, D

is Gorenstein of index r if and only if d = rp�1 and LD is generated by
✓

1
p
, . . . ,

1
p

◆
.

5.3 The case when Vol(D) = p2
or Vol(D) = pq

Let s,d be positive integers with 1  s < d, and let A = (a1, . . . ,as) and B = (b1, . . . ,bd)

be sequences of integers with 0  a1, . . . ,as�1 < as and 0  b1, . . . ,bd�1 < bd . Set
D(A,B) = conv({v0, . . . ,vd})⇢ Rd , where

vi =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

0, if i = 0,
ei, if 1  i  s�1,

s

Â
j=1

a je j, if i = s,

ei, if s+1  i  d �1,
d

Â
j=1

b je j, if i = d.

Then D(A,B) is a lattice simplex arising from a Hermite normal form matrix with two
nonstandard rows.

We give the equations of the supporting hyperplanes of facets of D(A,B).

Lemma 5.9. Assume that bs = 0. For 0  i  d, let Fi be the facet of D(A,B) whose
vertices are v0, . . . ,vi�1,vi+1, . . . ,vd and Hi the supporting hyperplane of Fi. Then one
has

• H0 =

8
><

>:

(x1, . . . ,xd) 2 Rd :
asbd Â

1 jd�1
j 6=s

x j +bd(1� Â
1 js�1

a j)xs +as(1� Â
1 jd�1

j 6=s

b j)xd = asbd

9
>=

>;
;

• Hi = {(x1, . . . ,xd) 2 Rd : �asbdxi +aibdxs +asbixd = 0}, 1  i  s�1;

• Hs = {(x1, . . . ,xd) 2 Rd : �xs = 0};

• Hi = {(x1, . . . ,xd) 2 Rd : �bdxi +bixd = 0}, s+1  i  d �1;
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• Hd = {(x1, . . . ,xd) 2 Rd : �xd = 0}.

Let p,q be prime numbers with p 6= q. In this section, we characterize Gorenstein sim-
plices whose normalized volume equals p2 and pq. In particular, we prove Theorems
5.2 and 5.3.

We prove the following lemma.

Lemma 5.10. Let p and q be prime numbers and set as = p and bd = q. Suppose
that D(A,B) is Gorenstein of index r. Then we have bs = 0 or bs = q� 1. Moreover,
if bs = q� 1, then there exists a sequence of integers C = (c1, . . . ,cd�1, pq) with 1 
c1, . . . ,cd�1  pq such that D(A,B) and D(C) are unimodularly equivalent.

Proof. The following two equations define supporting hyperplanes of two facets of
rD(A,B):

• �xd = 0;

• �qxs +bsxd = 0.

Let t = (t1, . . . , td) 2 Rd be the unique interior lattice point of rD(A,B). Then ti �
1 for each i. Set D = rD(A,B)� t. Then the followings are equations of supporting
hyperplanes of facets of D:

• �xd = td;

• �qxs +bsxd = qts �bstd .

By Lemma 2.7, �ed

td
and

�qes +bsed

qts �bstd
are vertices of D_. Hence since D is reflexive, we

know that td = 1 and
q

qts �bs
is an integer. Therefore, we have ts = 1 and bs 2 {0,q�1}.

Suppose that bs = q�1. Then we know
✓

l0

pq
,

pq�a1 � pb1

pq
, . . . ,

pq�as�1 � pbs�1

pq
,

1
pq

,
q�bs+1

q
, . . . ,

q�bd�1

q
,
1
q

◆

is an element of LD(A,B), where l0 is an integer with 0  l0  pq�1 such that the sum
of all entries of this element is an integer. Hence by Lemma 5.5, there exists a sequence
of integers C = (c1, . . . ,cd�1, pq) with 1  c1, . . . ,cd�1  pq such that D(A,B) and D(C)

are unimodularly equivalent.

At first, we characterize Gorenstein simplices with normalized volume p2. In order to
prove Theorem 5.2, we show the following lemma.
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Lemma 5.11. Let p be a prime number and set as = bd = p and bs = 0. Suppose that
d = rp�1 and for 1  i  s�1, ai +bi = p�1 and for s+1  i  d �1, bi = p�1.
Then D(A,B) is Gorenstein of index r. Moreover, the vertices of the associated dual
reflexive simplex are the following lattice points:

• �ed;

• �pei +aies +bied for 1  i  s�1;

• �es;

• �pei +bied for s+1  i  d �1;

• p Â
1 jd�1

j 6=s

e j +(1� Â
1 js�1

a j)es +(1� Â
1 jd�1

j 6=s

b j)ed.

Proof. Since

p(d �2)+(1� Â
1 js�1

a j)+(1� Â
1 jd�1

j 6=s

b j) = d = rp�1 < rp,

by Lemma 5.4, we know that t = (1, . . . ,1) is an interior lattice point of rD(A,B). Set
D= rD(A,B)�t. Then by Lemma 5.4, the equations of supporting hyperplanes of facets
of D are as follows:

• �xd = 1;

• �pxi +aixs +bixd = 1, 1  i  s�1;

• �xs = 1;

• �pxi +bixd = 1, s+1  i  d �1;

• p Â
1 jd�1

j 6=s

x j +(1� Â
1 js�1

a j)xs +(1� Â
1 jd�1

j 6=s

b j)xd = 1.

Hence by Lemma 2.7, D is reflexive and we can obtain the vertices of D_.

Now, we prove Theorem 5.2.

Proof of Theorem 5.2. First notice that, by Theorem 5.6, the case of Hermite normal
form matrices with one nonstandard row are captured in the statement (1). Hence, we
consider the case of Hermite normal form matrices with two nonstandard rows. Let s,d
be positive integers with s < d, and let A = (a1, . . . ,as�1, p) and B = (b1, . . . ,bd�1, p) be
sequences of integers with 0 a1, . . . ,as�1,b1, . . . ,bd�1 < p. Assume that D(A,B) is not
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a lattice pyramid over any lower-dimensional lattice simplex and D(A,B) is Gorenstein
of index r. Then for 1  i  s� 1, we have (ai,bi) 6= (0,0) and for s+ 1  i  d � 1,
we have bi 6= 0. By Lemma 5.10, we only need to consider the case where bs = 0. If for
some 1  i  s�1, ai = 0, then D(A,B) is unimodularly equivalent to D(A0,B0), where

A0 = (a1, . . . ,ai�1,ai+1, . . . ,as�1, p)

and
B0 = (b1, . . . ,bi�1,bi+1, . . . ,bs�1,0,bi,bs+1, . . . ,bd�1, p).

Hence we may assume that a1, . . . ,as�1 � 1. Let t = (t1, . . . , td) 2 Rd be the unique
interior lattice point of rD(A,B), and set D0 = rD(A,B)� t. Then by Lemma 5.9, the
equations of supporting hyperplanes of facets of D0 are as follows:

• �xd = td;

• �pxi +aixs +bixd = pti �aits �bitd , 1  i  s�1;

• �xs = ts;

• �pxi +bixd = pti �bitd , s+1  i  d �1;

• p Â
1 jd�1

j 6=s

x j +(1� Â
1 js�1

a j)xs +(1� Â
1 jd�1

j 6=s

b j)xd

= rp� p Â
1 jd�1

j 6=s

t j � (1� Â
1 js�1

a j)ts � (1� Â
1 jd�1

j 6=s

b j)td .

Hence by Lemma 2.7, it is known that �ed/td and �es/ts are vertices of (D0)_. There-
fore, since D0 is reflexive, we obtain ts = td = 1. Similarly, since pti � ai � bi > 0 and
pti�ai�bi divides p,ai and bi, and since (ai,bi) 6= (0,0), we have that pti�ai�bi = 1.
Hence, for any 1  i  s�1, we have ti = 1 and p�ai�bi = 1. Moreover, since bi 6= 0
for any s+1  i  d �1, we have that ti = 1 and p�bi = 1. We then obtain

rp� p Â
1 jd�1

j 6=s

t j � (1� Â
1 js�1

a j)� (1� Â
1 jd�1

j 6=s

b j) = rp�d.

Since rp�d > 0 and rp�d divides p, we have rp�d = 1 or rp�d = p.

Assume that rp� d = p. Then since p | (1�Â1 js�1 a j), we know that LD(A,B) is
generated by ✓

0,
a1 +1

p
, . . . ,

as�1 +1
p

,0,
1
p
, . . . ,

1
p

◆

and ✓
0,

p�a1

p
, . . . ,

p�as�1

p
,

1
p
,0, . . . ,0

◆
.
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Therefore, by Lemma 2.8, D(A,B) is a lattice pyramid over a lower-dimensional lattice
simplex. Thus one has rp�d = 1. Then it follows that LD(A,B) is generated by

0

@
2� Â

1is�1
ai

p
,
a1 +1

p
, . . . ,

as�1 +1
p

,0,
1
p
, . . . ,

1
p

1

A

and 0

BBB@

✓
Â

1is�1
ai

◆
�1

p
,

p�a1

p
, . . . ,

p�as�1

p
,

1
p
,0, . . . ,0

1

CCCA
.

By Lemma 5.11, this completes the proof.

Next, we characterize Gorenstein simplices with normalized volume pq. In order to
prove Theorem 5.3, we show the following lemma.

Lemma 5.12. Let p and q be prime numbers with p 6= q and set as = p and bd = q.
Assume that k = rpq� p(d � s)� qs 2 {p,q}. Then D(A,B) is Gorenstein of index r.
Moreover, the vertices of the associated dual reflexive simplex are the following lattice
points:

• �ed;

• �pei +(p�1)es for 1  i  s�1;

• �es;

• �qei +(q�1)ed for s+1  i  d �1;

• (c1, . . . ,cd),

where

ci =

8
>>>>><

>>>>>:

q(1� (s�1)(p�1))
k

, if i = s,

p(1� (d � s�1)(q�1)
k

, if i = d,
pq
k
, otherwise.

Proof. Since pq(d�2)+q(1�(p�1)(s�1))+ p(1�(q�1)(d�s�1)) = p(d�s)+
qs < rpq, by Lemma 5.9, it follows that t = (1, . . . ,1) 2 Zd is an interior lattice point
of rD(A,B). Hence by Lemma 5.9, the equations of supporting hyperplanes of facets of
D0 = rD(A,B)� t are as follows:

• �xd = 1;
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• �pqxi +(p�1)qxs = 1, 1  i  s�1;

• �xs = 1;

• �qxi +(q�1)xd = 1, s+1  i  d �1;

• pq Â
1 jd�1

j 6=s

x j +q(1� (p�1)(s�1))xs + p(1� (q�1)(d � s�1)xd

= rpq� p(d � s)�qs.

If rpq� p(d � s)� qs = p, then p | s. Hence, p | (1� (p� 1)(s� 1)). Moreover, if
rpq� p(d � s)� qs = q, then q | (d � s), and so q | (1� (d � s� 1)(q� 1). Thus by
Lemma 2.7, D0 is reflexive and we can obtain the vertices of (D0)_.

Now, we prove Theorem 5.3.

Proof of Theorem 5.3. The case when s3 � 1 follows from Theorem 5.6 since this case
corresponds to the Hermite normal form matrices with one nonstandard row. Hence,
we consider the case of Hermite normal form matrices with two nonstandard rows.
Let s,d be positive integers with s < d and p,q prime numbers with p 6= q, and we
let A = (a1, . . . ,as�1, p) and B = (b1, . . . ,bd�1,q) be sequences of integers with 0 
a1, . . . ,as�1 < p and 0  b1, . . . ,bd�1 < q. Assume that D(A,B) is not a lattice pyramid
over any lower-dimensional lattice simplex and D(A,B) is Gorenstein of index r. Then
for 1  i  s�1, we have (ai,bi) 6= (0,0) and for s+1  i  d�1, we have bi 6= 0. By
Lemma 5.10, we need only consider the case where bs = 0.

Let t = (t1, . . . , td) 2 Rd be the unique interior lattice point of rD(A,B). Analogous to
the proof in Theorem 5.2, we have ti = 1 for each i and so we set D0 = rD(A,B)� t. Then
by Lemma 5.9, the equations of supporting hyperplanes of facets of D0 are as follows:

• �xd = 1;

• �pqxi +aiqxs + pbixd = pq� pbi �aiq, 1  i  s�1;

• �xs = 1;

• �qxi +bixd = q�bi, s+1  i  d �1;

• pq Â
1 jd�1

j 6=s

x j +q(1� Â
1 js�1

a j)xs + p(1� Â
1 jd�1

j 6=s

b j)xd

= rpq� pq(d �2)�q(1� Â
1 js�1

a j)� p(1� Â
1 jd�1

j 6=s

b j).
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Since D0 is reflexive, by Lemma 2.7, for 1  i  s�1 we have pq� pbi�aiq 2 {1, p,q}
and for s+1 i d�1 we have bi = q�1. If for some 1 i s�1, pq� pbi�aiq= 1,
then since

a =

0

BBBB@

 
s�1
Â
j=1

b j

!
� (d � s)

q
,
q�b1

q
, . . . ,

q�bs�1

q
,0,

1
q
, . . . ,

1
q

1

CCCCA

and

b =

0

BBBB@

 
s�1
Â
j=1

a j

!
�1

p
,

p�a1

p
, . . . ,

p�as�1

p
,

1
p
,0, . . . ,0

1

CCCCA

are elements of LD(A,B), we know that the ith entry of a+ b equals
1
pq

. Hence this

is the case where s3 � 1. If for some 1  i  s� 1, pq� pbi � aiq = p, then since
(ai,bi)= (0,q�1), it follows that D(A,B) is unimodularly equivalent to D(A0,B0), where

A0 = (a1, . . . ,ai�1,ai+1 . . . ,as�1, p)

and
B0 = (b1, . . . ,bi�1,bi+1, . . . ,bs�1,0,bi,bs+1, . . . ,bd�1,q).

Hence we may assume that for any 1  i  s� 1, we have that pq� pbi � aiq = q. In
particular, (ai,bi) = (p�1,0). Then we know that an element

0

BBB@
� p(d � s)+qs

pq
,

1
p
, . . . ,

1
p| {z }

s

,
1
q
, . . . ,

1
q| {z }

d�s

1

CCCA

of (R/Z)d+1 generates LD. Moreover, we obtain

1� Â
1 js�1

a j =�p(s�1)+ s,

1� Â
1 jd�1

j 6=s

b j =�q(d � s�1)+(d � s),

and

rpq� pq(d �2)�q(1� Â
1 js�1

a j)� p(1� Â
1 jd�1

j 6=s

b j) = rpq� p(d � s)�qs.
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Since D0 is reflexive, by Lemma 2.7, it follows that rpq� p(d � s)�qs 2 {1, p,q, pq}.
By Lemma 2.8, we know that rpq� p(d� s)�qs 6= pq. If rpq� p(d� s)�qs = 1, we

have
�s
p

+
�d + s

q
=

�rpq+1
pq

. Hence, this is again the case where s3 � 1. Therefore,

we may just consider the case where rpq� p(d � s)�qs 2 {p,q}. However, it is clear
that this case satisfies the statement (2). By Lemma 5.12, this completes the proof.

By Theorem 5.6, we can construct Gorenstein simplices whose normalized volume is
equal p`, where p is a prime number and ` is a positive integer. Finally, we give other
examples of Gorenstein simplices whose normalized volume equals p`. These sim-
plices arise from Hermite normal form matrices with ` nonstandard rows. In particular,
Theorem 5.2 (2) is the motivation for the following theorem.

Theorem 5.13 ([91, Theorem 3.5]). Let p be a prime number, and let d and ` be positive
integers with ` d, and let 1  s1 < s2 < · · ·< s` = d be positive integers. For 1  i  k
and 0  j  d, we set

R/Z 3 gi j =

8
>>>>>>>>>><

>>>>>>>>>>:

�
d

Â
k=1

gik, if j = 0,

p�ai j

p
, if 1  j  si �1 and j 6= s1, . . . ,si�1,

1
p
, if j = si,

0, otherwise,

where each ai j is a positive integer with 1  ai j  p� 1. Suppose that there exists
an integer r with d = rp� 1, and for 1  j  d � 1 with j 6= s1, . . . ,s`, there exists a
positive integer t j such that Âi ai j = t j p�1. If D ⇢ Rd is a d-dimensional simplex such
that LD is generated by (g10, . . . ,g1d), . . . ,(g`0, . . . ,g`d), then D is Gorenstein of index r
and Vol(D) = p`.

Proof. Set D = conv({v0, . . . ,vd})⇢ Rd , where

vi =

8
>>>><

>>>>:

0, if i = 0,
ei, if i 6= 0,s1, . . . ,s`,

Â
1 j<sk

j 6=s1,...,sk�1

ai je j + pesk , if i = sk.

Then D ⇢ Rd is a d-dimensional simplex such that Vol(D) = p` and LD is generated by
(g10, . . . ,g1d), . . . ,(g`0, . . . ,g`d). Let s0 = 0. Then the equations of supporting hyper-
planes of facets of rD are as follows:

• �xsk = 0, for k = 1, . . . ,`;
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• �pxi +Â`
j=k+1 a jixs j = 0, for sk < i < sk+1;

• p Â
1 j<s`

j 6=s1,...,s`�1

x j + Â
1k`

0

B@

0

B@1� Â
1 j<sk

j 6=s1,...,sk�1

ak j

1

CAxsk

1

CA= rp.

Let t
0 = (t 01, . . . , t

0
d) be a lattice point of Rd , where

t 0i =

(
1, if i = s1, . . . ,s`,

ti, if i 6= s1, . . . ,s`.

Now, we claim t 0 is an interior lattice point of rD. Indeed, for sk < i < sk+1, we have

�pti +
`

Â
j=k+1

a ji =�1 < 0

and

p Â
1 j<s`

j 6=s1,...,s`�1

t j + Â
1k`

0

BB@1� Â
1 j<sk

j 6=s1,...,sk�1

ak j

1

CCA= d = rp�1 < rp.

Now set D0 = rD� t
0. Then the equations of supporting hyperplanes of facets of D0 are

as follows:

• �xsk = 1, for k = 1, . . . ,`;

• �pxi +
`
Â

j=k+1
a jixs j = 1, for sk < i < sk+1;

• p Â
1 j<s`

j 6=s1,...,s`�1

x j + Â
1k`

0

B@

0

B@1� Â
1 j<sk

j 6=s1,...,sk�1

ak j

1

CAxsk

1

CA= 1.

Hence by Lemma 2.7, D0 is reflexive, and so D is Gorenstein of index r.

Remark 5.14. Let D be the Gorenstein simplex as in Theorem 5.13. Then the vertices
of the associated dual reflexive simplex of D are following lattice points:

• �esk , for k = 1, . . . ,`;

• �pei +
`
Â

j=k+1
a jies j , for sk < i < sk+1;

• p Â
1 j<s`

j 6=s1,...,s`�1

e j + Â
1k`

0

B@

0

B@1� Â
1 j<sk

j 6=s1,...,sk�1

ak j

1

CAesk

1

CA.
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5.4 Volume of the associated dual reflexive simplex

In this section, we compute the volume of the associated dual reflexive simplices of
the Gorenstein simplices we constructed in Sections 5.2 and 5.3. We first consider
the case of Gorenstein simplices arising from Hermite normal form matrices with one
nonstandard row.

Theorem 5.15 ([91, Theorem 4.1]). Let D(A) ⇢ Rd be a d-dimensional Gorenstein
simplex of index r as in Theorem 5.6 and set D = rD(A)� (1, . . . ,1). For 0  i  d �1,
we set bi = ad/ai. Then we have Vol(D_) = r ’d�1

j=0 bi.

Proof. By Lemma 5.7, we know that D_ = conv({w0, . . . ,wd}), where

wi =

8
>>>>>><

>>>>>>:

� ed, if i = 0,

� ad

ai
ei +

ad �ai

ai
ed, if 1  i  d �1,

ad

a0

d�1

Â
j=1

e j +
(r�d +1)ad �a0

a0
ed, if i = d.

It is easy show D_ is unimodularly equivalent to a d-dimensional simplex D0 whose
vertices v

0
0, . . . ,v

0
d are the following:

v
0
i =

8
>>>><

>>>>:

0, if i = 0,
�biei, if 1  i  d �1,

b0

d�1

Â
j=1

e j + rb0ed, if i = d.

Hence we have Vol(D_) = r ’d�1
j=0 bi, as desired.

From this theorem, we immediately obtain the following corollary.

Corollary 5.16. Let D ⇢ Rd be a d-dimensional Gorenstein simplex of index r whose
normalized volume equals a prime number p. Suppose that D is not a lattice pyramid
over any lower-dimensional lattice simplex and the unique interior lattice point of rD is
the origin of Rd. Then we have Vol((rD)_) = rpd.

Next, we consider the case of Gorenstein simplices with normalized volume p2, where
p is a prime number. By Theorem 5.15, we can compute the volume of the associated
dual reflexive simplices of the Gorenstein simplices in Theorem 5.2 (1).

The Gorenstein simplices in Theorem 5.2 (2) are included in the Gorenstein simplices
in Theorem 5.13. Hence, we consider the case of the Gorenstein simplices in Theorem
5.13. In fact, we can obtain the following Theorem.
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Theorem 5.17 ([91, Theorem 4.3]). Let D ⇢ Rd be a d-dimensional Gorenstein poly-
tope of index r as in Theorem 5.13 such that the unique interior lattice point of rD is the
origin in Rd. Then we have Vol((rD)_) = rpd�`+1.

Proof. By Remark 5.14, (rD)_ is the convex hull of the following lattice points:

• �esk , for k = 1, . . . ,`;

• �pei +
`
Â

j=k+1
a jies j , for sk < i < sk+1;

• p Â
1 j<s`

j 6=s1,...,s`�1

e j + Â
1k`

0

B@

0

B@1� Â
1 j<sk

j 6=s1,...,sk�1

ak j

1

CAesk

1

CA.

So we set

U =

0

BBB@

1 0 · · · 0 t 01
...

...
...

...
0 0 · · · 1 t 0d�1
0 0 · · · 0 t 0d

1

CCCA
2 Zd⇥d.

Since t 0d = t` = 1, it follows that U is unimodular. Letting D0 = fU((rD)_+ ed), we
know that D0 is the convex hull of the following lattice points:

• 0;

• �esk , for k = 1, . . . ,`�1;

• �pei +
`�1
Â

j=k+1
a jies j , for sk < i < sk+1;

• p Â
1 j<s`

j 6=s1,...,s`�1

e j + Â
1k`�1

0

B@

0

B@1� Â
1 j<sk

j 6=s1,...,sk�1

ak j

1

CAesk

1

CA+ rped .

Hence we have Vol(D0) = rpd�`+1, as desired.

Corollary 5.18. Let p be a prime number, and let D ⇢ Rd be a d-dimensional Goren-
stein simplex of index r whose normalized volume equals p2.
(1) Suppose that D and s satisfy the condition of Theorem 5.2 (1) and the unique interior
lattice point of rD is the origin in Rd. Then we have Vol((rD)_) = rp2d�s.
(2) Suppose that D satisfies the condition of Theorem 5.2 (2) and the unique interior
lattice point of rD is the origin in Rd. Then we have Vol((rD)_) = rpd�1.
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Finally, we consider the case of Gorenstein simplices whose normalized volume equals
pq, where p and q are prime numbers with p 6= q.

Theorem 5.19 ([91, Theorem 4.5]). Let p and q be prime integers with p 6= q and D ⇢
Rd a d-dimensional Gorenstein simplex of index r whose normalized volume equals pq.
Suppose that D is not a lattice pyramid over any lower-dimensional lattice simplex and
the unique interior lattice point of rD is the origin in Rd. Then we have Vol((rD)_) =
rps1+s3�1qs2+s3�1, where s1,s2,s3 are nonnegative integers which satisfy the conditions
of Theorem 5.3.

Proof. First, assume that s3 � 1. Then by Theorem 5.15, we obtain Vol((rD)_) =
rps1+s3�1qs2+s3�1.

Next, assume that s3 = 0. Then by the condition (1) of Theorem 5.3, we know that
(s1,s2) 6= (1,d) and (s1,s2) 6= (d,1). Moreover, by the condition (2) of Theorem 5.3
and the normalized volume of D, we have (s1,s2) 6= (d +1,0) and (s1,s2) 6= (0,d +1).
Hence, we have s1,s2 � 2. Since LD is generated by

0

BB@
1
p
, . . . ,

1
p| {z }

s1

,
1
q
, . . . ,

1
q| {z }

s2

1

CCA ,

we may assume that rD = rD(A,B)� (1, . . . ,1), where

A = (p�1, . . . , p�1| {z }
s1�1

, p)

and
B = (0, . . . ,0| {z }

s1

,q�1, . . . ,q�1| {z }
s2�2

,q).

Then by Lemma 5.12, we know that (rD)_ = conv({w0, . . . ,wd}) where

wi =

8
>>>>>>><

>>>>>>>:

� ed, if i = 0,
� pei +(p�1)es1 , if 1  i  s1 �1,
� ei, if i = s1,

�qei +(q�1)ed, if s1 +1  i  d �1,
(c1, . . . ,cd), if i = d,

and

ci =

8
>>><

>>>:

q(1� (s1 �1)(p�1))
p

, if i = s1,

1� (d � s1 �1)(q�1), if i = d,

q, otherwise.
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It is easy show (rD)_ is unimodularly equivalent to a d-dimensional simplex D0 whose
vertices v

0
0, . . . ,v

0
d are the following:

v
0
i =

8
>>>>>>><

>>>>>>>:

0, if i = 0,
� (p�1)ei + pes1 , if 1  i  s1 �1,
� ei, if i = s1,

�qei, if s1 +1  i  d �1,
(c1, . . . ,cd�1,c1 + · · ·+ cd +1), if i = d,

Since c1 + · · ·+ cd +1 = rq, we have that Vol((rD)_) = rps1�1qs2�1, as desired.
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Chapter 6

Gorenstein simplices with a given

d -polynomial

In Corollary 5.1, it is shown that if D is a Gorenstein simplex whose normalized volume
Vol(D) is a prime number p, then its d -polynomial is of the form

d (D, t) = 1+ tk + · · ·+ t(p�1)k,

where k � 1 is a positive integer. Once the fact became known, we cannot escape from
the temptation to achieve the study on the following problem:

Problem 6.1. Given positive integers k � 1 and v � 1, classify the Gorenstein simplices
with the d -polynomial 1+ tk + · · ·+ t(v�1)k.

In particular, in Problem 6.1, when k � 2, the targets are Gorenstein empty simplices.
In this chapter, we focus on Problem 6.1.

This chapter is organized as follows. We devote Section 6.1 to discuss lower bounds
on the dimensions of Gorenstein simplices with a given d -polynomial of Problem 6.1
and, in addition, to classify the Gorenstein simplices when the lower bounds are held
(Theorem 6.2). The highlight of this chapter is Section 6.2, where a complete answer of
Problem 6.1 when v is either p2 or pq, where p and q are distinct prime integers (The-
orems 6.5 and 6.6). Finally, in Section 6.3, we will discuss the number of Gorenstein
simplices, up to unimodular equivalence, with a given d -polynomial of Problem 6.1.

6.1 Existence

In this section, we prove that for positive integers k � 1 and v � 1, there exists a lattice
simplex with the d -polynomial 1+ tk + t2k + · · ·+ t(v�1)k. Moreover, we give a lower
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bound and an upper bound on the dimension of such a lattice simplex which is not a
lattice pyramid. In fact, we obtain the following theorem.

Theorem 6.2 ([52, Theorem 2.1]). Let k and v be positive integers. Then there exists a
lattice simplex D ⇢Rd of dimension d whose d -polynomial is 1+ tk+ t2k+ · · ·+ t(v�1)k.
Furthermore, if D is not a lattice pyramid over any lower-dimensional lattice simplex,
then one has vk� 1  d  4(v� 1)k� 2. In particular, the lower bound holds if and
only if LD is generated by (1/v, . . . ,1/v).

Proof. We assume that there exists a lattice simplex D ⇢ Rd of dimension d whose d -
polynomial is 1+ tk + t2k + · · ·+ t(v�1)k. Let x = (x0, . . . ,xd) 2 LD be an element such
that ht(x) = (v�1)k. Then we have that ht(�x)� k. Hence since ht(x)+ht(�x) d+
1, we obtain d � vk�1. From Lemma 2.4, if D is not a lattice pyramid over any lower-
dimensional lattice simplex, then one has d  4(v�1)k�2. Now, we assume that d =

vk�1. Since for each i, one has 0 xi  (v�1)/v, we obtain ht(x) (d+1)(v�1)/v=
(v�1)k. Hence for each i, it follows that xi = (v�1)/v. Therefore LD is generated by
(1/v, . . . ,1/v). Then it is easy to show that d (D, t) = 1 + tk + t2k + · · ·+ t(v�1)k, as
desired.

6.2 Classification

In this section, we give a complete ansewer of Problem 6.1 for the case that v is the
product of two prime integers. First, we consider the case where v is a prime inte-
ger. Corollary 5.1 says that for each positive integers k and v, if v is a prime integer,
then there exists just one lattice simplex up to unimodular equivalence such that its d -
polynomial equals 1+ tk + t2k + · · ·+ t(v�1)k. By the following proposition, we know
that if v is not a prime integer, then there exist at least two such simplices up to unimod-
ular equivalence.

Proposition 6.3. Given positive integers k, v and a proper divisor u of v, let D ⇢ Rd be
a lattice simplex of dimension d such that LD is generated by

0

B@u/v, . . . ,u/v| {z }
(v�1)k

,1/v, . . . ,1/v| {z }
uk

1

CA 2 (R/Z)(v+u�1)k.

Then one has d (D, t) = 1+ tk + t2k + · · ·+ t(v�1)k.
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Proof. Set x=

0

B@u/v, . . . ,u/v| {z }
(v�1)k

,1/v, . . . ,1/v| {z }
uk

1

CA and y=(v/u)x=

0

B@0, . . . ,0| {z }
(v�1)k

,1/u, . . . ,1/u| {z }
uk

1

CA.

Then we obtain ht(x) = uk and ht(y) = k. Moreover, it follows that

LD = {ix+ jy 2 (R/Z)d+1 : i = 0, . . . ,v/u�1, j = 0, . . . ,u�1}.

For any integers 0  i  v/u�1 and 0  j  u�1, one has

ht(ix+ jy) = iht(x)+ jht(y) = (iu+ j)k.

Hence, it follows from Lemma 2.9 that d (D, t) = 1+ tk + t2k + · · ·+ t(v�1)k, as desired.

Furthermore, the following proposition can immediately be obtained by Lemma 2.9.

Proposition 6.4. Given positive integers v1,v2 and k, let D1 ⇢ Rd1 and D2 ⇢ Rd2 be
lattice simplices of dimension d1 and d2 such that d (D1, t) = 1+ tk + t2k + · · ·+ t(v1�1)k

and d (D2, t) = 1+ tv1k + t2v1k + · · ·+ tv1(v2�1)k. Let D ⇢ Rd1+d2+1 be a lattice simplex
of dimension d1 +d2 +1 such that

LD = {(x,y) 2 (R/Z)d1+d2+2 : x 2 LD1 ,y 2 LD2}.

Then one has d (D, t) = 1+ tk + t2k + · · ·+ t(v1v2�1)k. In particular, if neither D1 nor D2
is not a lattice pyramid, then D is not a lattice pyramid.

Now, we consider Problem 6.1 for the case that v is p2 or pq, where p and q are prime
integers with p 6= q. The following theorems are the main results of this chapter.

Theorem 6.5 ([52, Theorem 3.4]). Let p be a prime integer and k a positive integer,
and let D ⇢ Rd be a lattice simplex of dimension d whose d -poynomial is 1+ tk + t2k +

· · ·+t(p2�1)k. Suppose that D is not a lattice pyramid over any lower-dimensional lattice
simplex. Then one of the followings is satisfied:

(1) d = p2k�1;

(2) d = p2k+(p�1)k�1;

(3) d = p2k+ pk�1.

Moreover, in each case, a system of generators of the finite abelian group LD is the set
of row vectors of the matrix which can be written up to permutation of the columns as
follows:

(1) (1/p2 · · · 1/p2) 2 (R/Z)1⇥p2k;
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(2)

0

B@1/p · · · 1/p| {z }
(p2�1)k

1/p2 · · · 1/p2
| {z }

pk

1

CA 2 (R/Z)1⇥(p2+p�1)k;

(3)

0

B@
1/p · · · 1/p 0 · · · 0

0 · · · 0| {z }
pk

1/p · · · 1/p| {z }
p2k

1

CA 2 (R/Z)2⇥p(p+1)k.

Theorem 6.6 ([52, Theorem 3.5]). Let p and q be prime integers with p 6= q and k a
positive integer, and let D ⇢Rd be a lattice simplex of dimension d whose d -poynomial
is 1+ tk + t2k + · · ·+ t(pq�1)k. Suppose that D is not a lattice pyramid over any lower-
dimensional lattice simplex. Then one of the followings is satisfied:

(1) d = pqk�1;

(2) d = pqk+ pk�1;

(3) d = pqk+qk�1;

(4) d = pqk+(p�1)k�1;

(5) d = pqk+(q�1)k�1.

Moreover, in each case, the finite abelian group LD is generated by one element which
can be written up to permutation of the coordinates as follows:

(1) (1/(pq), . . . ,1/(pq)) 2 (R/Z)pqk;

(2)

0

B@1/p, . . . ,1/p| {z }
pk

,1/q, . . . ,1/q| {z }
pqk

1

CA 2 (R/Z)p(q+1)k;

(3)

0

B@1/q, . . . ,1/q| {z }
qk

,1/p, . . . ,1/p| {z }
pqk

1

CA 2 (R/Z)(p+1)qk;

(4)

0

B@1/q, . . . ,1/q| {z }
(pq�1)(k+1)

,1/(pq), . . . ,1/(pq)| {z }
p(k+1)

1

CA 2 (R/Z)(pq+p�1)(k+1);

(5)

0

B@1/p, . . . ,1/p| {z }
(pq�1)(k+1)

,1/(pq), . . . ,1/(pq)| {z }
q(k+1)

1

CA 2 (R/Z)(pq+q�1)(k+1).

Remark 6.7. The lattice simplices in Theorems 6.5 and 6.6 can be constructed by Propo-
sitions 6.3 and 6.4.
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Before proving these theorems, we give the vertex representations of Gorenstein sim-
plices in Theorems 6.5 and 6.6. Given a sequence A = (a1, . . . ,ad) of integers, let
D(A) ⇢ Rd be the lattice simplex described in Section 5.2. Given sequences A =

(a1, . . . ,as) and B = (b1, . . . ,bd) of integers with 1  s < d, let D(A,B) ⇢ Rd be the
lattice simplex described in Section 5.3.

Corollary 6.8. Let p be a prime integer and k a positive integer, and let D ⇢ Rd be a
lattice simplex of dimension d whose d -poynomial is 1+ tk + t2k + · · ·+ t(p2�1)k. Sup-
pose that D is not a lattice pyramid over any lower-dimensional lattice simplex. Then D
is unimodularly equivalent to one of D(A1), D(A2) and D(A3,B3), where

(1) A1 = (1, . . . ,1| {z }
p2k�2

, p2);

(2) A2 =

0

B@1, . . . ,1| {z }
pk�1

, p, . . . , p| {z }
(p2�1)k�1

, p2

1

CA;

(3) A3 =

0

B@p�1, . . . , p�1| {z }
pk�1

, p

1

CA, B3 =

0

B@0, . . . ,0| {z }
pk

, p�1, . . . , p�1| {z }
p2k�2

, p

1

CA.

Corollary 6.9. Let p and q be prime integers with p 6= q and k a positive integer, and
let D ⇢Rd be a lattice simplex of dimension d whose d -poynomial is 1+ tk + t2k + · · ·+
t(pq�1)k. Suppose that D is not a lattice pyramid over any lower-dimensional lattice
simplex. Then D is unimodularly equivalent to one of D(A1), D(A2,B2), D(A3,B3), D(A4)

and D(A5), where

(1) A1 = (1, . . . ,1| {z }
pqk�2

, pq);

(2) A2 =

0

B@p�1, . . . , p�1| {z }
pk�1

, p

1

CA, B2 =

0

B@0, . . . ,0| {z }
pk

,q�1, . . . ,q�1| {z }
pqk�2

,q

1

CA;

(3) A3 =

0

B@q�1, . . . ,q�1| {z }
qk�1

,q

1

CA, B3 =

0

B@0, . . . ,0| {z }
qk

, p�1, . . . , p�1| {z }
pqk�2

, p

1

CA;

(4) A4 =

0

B@1, . . . ,1| {z }
pk�1

, p, . . . , p| {z }
(pq�1)k�1

, pq

1

CA;

(5) A5 =

0

B@1, . . . ,1| {z }
qk�1

, q, . . . ,q| {z }
(pq�1)k�1

, pq

1

CA.
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In order to prove Theorems 6.5 and 6.6, we use the following lemma.

Lemma 6.10. Let v and k be positive integers, and let D ⇢ Rd be a lattice simplex
of dimension d whose d -polynomial equals 1 + tk + t2k + · · ·+ t(v�1)k. Assume that
x 2 (R/Z)d+1 is an element of LD such that ht(x) = k and set m = ord(x). Then by

reordering the coordinates, we obtain x =

0

@1/m, . . . ,1/m| {z }
s

,0, . . . ,0| {z }
d�s+1

1

A for some positive

integer s.

Proof. Since m = ord(x), x must be of a form (k1/m, . . . ,ks/m,0, . . . ,0) for a positive
integer s and integers 1  k1, . . . ,ks  m� 1 by reordering the coordinates. If there
exists an integer ki � 2 for some 1  i  s, then one has ki(m�1)/m � 1. Therefore, we
obtain ht((m�1)x)< (m�1)ht(x) = (m�1)k. Since m = ord(x), (m�1)x is different
from 0,x, . . . ,(m�2)x. We remark that for any a, b 2 (R/Z)d+1, one has ht(a+b) 
ht(a)+ht(b). This fact and the supposed d -polynomial imply that ht(tx) = tht(x) = tk
for any 1  t  m�1. This is a contradiction, as desired.

Finally, we prove Theorem 6.5 and Theorem 6.6.

Proof of Theorem 6.5. Theorem 5.2 implies that D is unimodularly equivalent to either
D1 or D2, where D1 and D2 are lattice simplices such that each system of generators of
LD1 and LD2 is the set of vectors of matrix as follows:

(i)

0

@1/p · · · 1/p| {z }
d�s+1

1/p2 . . . 1/p2
| {z }

s

1

A 2 (R/Z)1⇥(d+1);

(ii)
✓
(a0 +1)/p · · · (ad�2 +1)/p 0 1/p
(p�a0)/p · · · (p�ad�2)/p 1/p 0

◆
2 (R/Z)2⇥(d+1),

where s is a positive integer and 0  a0, . . . ,ad�2  p�1 are integers.

At first, we assume that D is unimodularly equivalent to D1. If s = d + 1, then one
has (d + 1)/p2 = k, hence, d = p2k� 1. This is the case (1). Now, we suppose that
s 6= d + 1. Let x be an element of LD1 with ht(x) = k. Then by Lemma 6.10, one has

x =

0

@0, . . . ,0| {z }
d�s+1

,1/p, . . . ,1/p| {z }
s

1

A, hence s = pk. Set y =

0

@1/p, . . . ,1/p| {z }
d�s+1

,1/p2, . . . ,1/p2
| {z }

s

1

A.

Since for any 1  m  p�1, ht(mx) = mk, we have ht(y) = pk. Hence it follows that
d � s+1 = p2k� k, namely, d = p2k+(p�1)k�1. This is the case (2).
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Next, we assume that D is unimodularly equivalent to D2. By Lemma 6.10, it follows
that for any 0  i  d �2, ai 2 {0, p�1}. Hence by reordering the coordinates of LD2 ,
we can assume that LD2 is generated by

x1 =

0

@1/p, . . . ,1/p| {z }
s

,0, . . . ,0| {z }
d�s+1

1

A ,x2 =

0

@0, . . . ,0| {z }
s

,1/p, . . . ,1/p| {z }
d�s+1

1

A ,

where 1  s  b(d + 1)/2c. Then since ht(x1) = k, one has s = pk. Moreover, since
ht(x2) = pk, we have d� s+1 = p2k, namely, d = p2k+ pk�1. Therefore, This is the
case (3).

Conversely, in each case, it is easy to show that d (D, t) = 1+ tk + t2k + · · ·+ t(p2�1)k, as
desired.

Proof of Theorem 6.6. By Theorem 5.3, we can suppose that LD is generated by

x =

0

@1/p, . . . ,1/p| {z }
s1

,1/q, . . . ,1/q| {z }
s2

,1/(pq), . . . ,1/(pq)| {z }
s3

1

A ,

where s1 + s2 + s3 = d + 1 with nonnegative integers s1,s2,s3. If s1 = s2 = 0, since
ht(x) = k, one has d = pqk�1. This is the case (1). If s3 = 0, we can assume that LD is
generated by

x1 =

0

@1/p, . . . ,1/p| {z }
s1

,0, . . . ,0| {z }
s2

1

A ,x2 =

0

@0, . . . ,0| {z }
s1

,1/q, . . . ,1/q| {z }
s2

1

A ,

with s1,s2 > 0. Then it follows that ht(x1) = k and ht(x2) = pk, or ht(x1) = qk and
ht(x2) = k. Assume that ht(x1) = k and ht(x2) = pk. Then one has s1 = pk and s2 = pqk.
Hence since d = pqk+ pk�1, this is the case (2). Similarly, we can show the case (3).

Next we suppose that s1,s2,s3 > 0. Let a be an element of LD such that ht(a) = k.
By Lemma 6.10, we know that ord(a) 6= pq. Hence, it follows that ord(a) equals p
or q. Now we assume that ord(a) = p. By Lemma 6.10 again, a must be of a form0

@1/p, . . . ,1/p| {z }
s1

,0, . . . ,0| {z }
s2

,1/p, . . . ,1/p| {z }
s3

1

A. Let b = (b1, . . . ,bd+1) be an element of LD

such that ht(b) = pk. If there exists an index 1  i  s1 such that bi = n/p with an
integer 1  n  p� 1, then ht(b+(p� 1)a) < ht(b)+ (p� 1)ht(a). Since b+(p�
1)a is different from 0,a,2a, . . . ,(p�1)a,b,b+a, . . . ,b+(p�2)a, this contradicts to
that dD(t) = 1+ tk + t2k + · · ·+ t(pq�1)k. Hence one obtains bi = 0 for any 1  i  s1.

Therefore, we can assume that b =

0

@0, . . . ,0| {z }
s1

,`/q, . . . ,`/q| {z }
s2

,m/q, . . . ,m/q| {z }
s3

1

A for some

71



positive integers `,m. Then whenever (g1,h1) 6= (g2,h2) with 0  g1,g2  p� 1 and
0  h1,h2  q�1, g1a+h1b and g2a+h2b are different elements of LD. Hence since
dD(t) = 1+ tk + t2k + · · ·+ t(pq�1)k, one has

ht(ga+hb) = ght(a)+hht(b)

for any 0  g  p � 1 and 0  h  q � 1. This implies that ` = m = 1. However
since (p�1)/p+(q�1)/q > 1, we have ht((p�1)a+(q�1)b)< (p�1)ht(a)+(q�
1)ht(b), a contradiction. Therefore, it does not follow s1,s2,s3 > 0.

Finally, we assume that s1 = 0 and s2 > 0. Then one has ht(qx) = k, hence, s3 = pk.
Moreover, since ht(x) = pk, we obtain s2 = (pq� 1)k. Therefore, this is the case (4).
Similarly, we can show the case (5).

Conversely, in each case, it is easy to see that d (D, t) = 1+ tk + t2k + · · ·+ t(pq�1)k, as
desired.

6.3 The number of Gorenstein simplices

In this section, we consider how many Gorenstein simplices which have a given d -
polynomial of Problem 6.1.

Given positive integers v and k, let N(v,k) denote the number of Gorenstein simplices,
up to unimodular equivalence, which are not lattice pyramids over any lower-dimensional
lattice simplex and whose d -polynomials equal 1+ tk + t2k + · · ·+ t(v�1)k. For example,
by Corollary 5.1, N(p,k) = 1 for any prime integer p. Moreover, from Theorems 6.5
and 6.6, N(p2,k) = 3 and N(pq,k) = 5 for any distinct prime integers p and q. How-
ever, in other case, it is hard to determine N(v,k). Therefore, our aim of this section is
to construct more examples of Gorenstein simplices of Problem 6.1 and to give a lower
bound on N(v,k).

The following theorem gives us more examples of Gorenstein simplces of Problem 6.1.

Theorem 6.11 ([52, Theorem 4.1]). Given a positive integer v, let D ⇢ Rd be a lattice
simplex of dimension d such that LD is generated by

0

@1/v1, . . . ,1/v1| {z }
s1

,1/v2, . . . ,1/v2| {z }
s2

, . . . ,1/vt , . . . ,1/vt| {z }
st

1

A 2 (R/Z)d+1,

where 1 < v1 < · · ·< vt = v and for any 1  i  t �1, vi | vi+1 and s1, . . . ,st are positive
integers. Then d (D, t) = 1+ tk + t2k + · · ·+ t(v�1)k with a positive integer k if and only
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if

si =

8
>>><

>>>:

⇣ vt

vi�1
�

vt

vi+1

⌘
k, 1  i  t �1

vt

vt�1
k, i = t,

where v0 = 1.

Proof. Let

x0 =

0

@1/v1, . . . ,1/v1| {z }
s1

,1/v2, . . . ,1/v2| {z }
s2

, . . . ,1/vt , . . . ,1/vt| {z }
st

1

A 2 (R/Z)d+1,

and for i = 1, . . . , t �1, we set xi = vix0. Then it follows that

LD =

(
t�1

Â
i=0

cixi : ci 2 Z�0,0  ci  vi+1/vi �1 for i = 0, . . . , t �1

)
.

Moreover, we obtain ht(xi) = Ât�i
j=1

vi

vi+ j
si+ j for i = 0, . . . , t �1. Since

ht(xi) = ht
⇣ vi

vi�1
xi�1

⌘
=

vi

vi�1
ht(xi�1)� si

for any 1  i  t � 1, it follows that for any 1  i  t � 1, si =
⇣ vt

vi�1
� vt

vi+1

⌘
k and

st =
vt

vt�1
k if and only if for any 0  i  t �1, ht(xi) =

vt

vi+1
k. Hence we should prove

that d (D, t)= 1+tk+t2k+ · · ·+t(v�1)k if and only if for any 0 i t�1, ht(xi)=
vt

vi+1
k.

At first, we assume that d (D, t) = 1 + tk + t2k + · · ·+ t(v�1)k. By Lemma 6.10, one
has ht(xt�1) = k. Suppose that for any n  i  t � 1, ht(xi) =

vt

vi+1
k with an integer

1  n  t�1. Then since ht(Ât�1
i=n(vi+1/vi�1)xi) = (vt/vn�1)k, there exists an integer

m with 0  m  n�1 such that ht(xm) =
vt

vn
k. Now, we assume that m < n�1. Set

L0 =

(
cmxm +

t�1

Â
i=n

cixi : 0  ci  vi+1/vi �1 for i = m,n,n+1, . . . , t �1

)
.

Then one has {ht(x) : x 2 L0}= { j(k+1) : j = 0, . . . ,(vm+1vt)/(vmvn)�1}. However,

ht(xm+1) = ht
⇣vm+1

vm
xm

⌘
<

vm+1

vm
ht(xm) =

⇣vm+1vt

vmvn

⌘
k.
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and xm+1 is not in L0, a contradiction. Hence we obtain ht(xi�1) =
vt

vi
k for any 0  i 

t �1.

Conversely, we assume that for any 0  i  t �1, ht(xi) =
vt

vi+1
k. Since for any ci with

0  ci  vi+1/vi�1, ht(Ât�1
i=0 cixi) = Ât�1

i=0 ciht(xi), one has d (D, t) = 1+ tk + t2k + · · ·+
t(v�1)k, as desired.

By Theorems 6.11, we can answer to Problem 6.1 when v is a power of a prime integer
and the associated finite abelian group is cyclic, namely, it is generated by one element.

Corollary 6.12. Let p be a prime integer, ` and k positive integers, and let D ⇢ Rd be
a lattice simplex of dimension d such that LD is cyclic and d (D, t) = 1+ tk + t2k + · · ·+
t(p`�1)k. Suppose that D is not a lattice pyramid over any lower-dimensional lattice
simplex. Then there exist positive integers 0 < `1 < · · ·< `t = ` and s1, . . . ,st such that
the following conditions are satisfied:

• It follows that

si =

(
(p`�`i�1 � p`�`i+1)k, 1  i  t �1

p`�`t�1k, i = t,

where `0 = 0;

• LD is generated by
0

@1/p`1 , . . . ,1/p`1
| {z }

s1

,1/p`2 , . . . ,1/p`2
| {z }

s2

, . . . ,1/p`t , . . . ,1/p`t

| {z }
st

1

A 2 (R/Z)d+1

for some ordering of the vertices of D.

Now, we consider to give a lower bound on N(v,k). Given positive integers v and k,
let M(v,k) denote the number of Gorenstein simplices, up to unimodular equivalence,
which are appeared in Theorem 6.11. Then one has N(v,k) � M(v,k). By Theorem
6.11, we can determine M(v,k) in terms of the divisor lattice of v. Given a positive
integer v, let Dv the set of all divisors of v, ordered by divisibility. Then Dv is a partially
ordered set, in particular, a lattice, called the divisor lattice of v. We call subset C ⇢ Dv

a chain of Dv if C is a totally ordered subset with respect to the induced order.

Corollary 6.13. Let v and k be positive integers. Then M(v,k) equals the number of
chains from a non-least element to the greatest element in Dv. In particular, one has
M(v,k) = Ân2Dv\{v}M(n,k).

This corollary says that M(v,k) depends on only the divisor lattice Dv. In particular, let-
ting v = pa1

1 · · · pat
t with distinct prime integers p1, . . . , pt and positive integers a1, . . . ,at ,

M(v,k) depends on only (a1, . . . ,at).
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Finally, we give examples of M(v,k).

Example 6.14. (1) Let v = p` with a prime integer p and a positive integer `. Then from
Corollary 6.13, we know that M(v,k) equals the number of subsets of {1, . . . ,`� 1}.
Hence one has M(v,k) = 2`�1.

(2) Let v = p1 · · · pt , where p1, . . . , pt are distinct prime integers. From Corollary 6.13,
we know that M(v,k) depends on only t. Now, let a(t) = M(v,k), where we define
a(0) = M(1,k) = 1. Then one has

a(t) = M(v,k) = Â
n2Dv\{v}

M(n,k) = 1+
t�1

Â
i=1

✓
t
i

◆
M(p1 · · · pi,k) =

t�1

Â
i=0

✓
t
i

◆
a(i).

We remark that a(t) is the well-known recursive sequence ([79, A000670]) which is
called the ordered Bell numbers or Fubini numbers.
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Chapter 7

Gorenstein polytopes with trinomial

d -polynomials

In this chapter, we finish the complete classification of all lattice polytopes that are not
lattice pyramids and whose d -polynomial is palindromic and has precisely three terms
(Theorem 7.6). In the case of degree two, this was already done by Batyrev and Juny
[8]. Here, we only consider the case when the degree is strictly larger than two. In
this situation, the lattice polytope is necessarily an empty simplex, and we can apply
methods and results of Batyrev and Hofscheier [6, 7]. Since the precise formulation
of Theorem 7.6 needs some more notation, let us describe here only two immediate
consequences. First, the complete characterization of palindromic d -trinomials:

Corollary 7.1. Let d � 2, m � 2 and k � 1 be integers. The polynomial 1+(m�2)tk +

t2k is the d -polynomial of a lattice polytope of dimension d if and only if the integers
k,m,d satisfy one of the following conditions:

(1) k = 1, 3  m  9 and d = 2;

(2) k = 1, 2  m  9 and d � 3;

(3) k � 2, m 2 {3,4,6,8} and d � 3k�1;

(4) k = 2`�3a, m = 2` and d � 4k�1, where a � 1 and `� 4;

(5) k = 3`�2a, m = 3` and d � 3k�1, where a � 1 and `� 3.

The case k = 1 was already known, as described in Section 2.6.

Secondly, Theorem 7.6 implies the following uniqueness result:

Corollary 7.2. A lattice simplex D that is not a lattice pyramid is uniquely determined
by its dimension and its d -polynomial if it is of the form 1+(m�2)tk + t2k with k � 2.
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Let us note that for k � 2 any of these lattice simplices that are not lattice pyramids have
dimension 3k�1 or 4k�1, see Theorem 7.6.

This chapter is organized as follows. In Section 7.1 we recall the notation and results
by Batyrev and Hofscheier. In Section 7.2 we present and prove the main result of this
chapter (Theorem 7.6): the classification of Gorenstein polytopes with d -trinomials of
degree � 3. Finally, in Section 7.3, we discuss a future problem.

7.1 The approach by Batyrev and Hofscheier

In this section, we summarize results by Batyrev and Hofscheier from [6] and [7] which
play a crucial role in our proof of Theorem 7.6.

First, let us describe their generalization of White’s theorem.

Theorem 7.3 ([6]). Let k � 2 and let D be a lattice simplex of dimension 2k� 1 with
Vol(D) = m which is not a lattice pyramid. Then the following statements are equiva-
lent:

(a) the d -polynomial of D is 1+(m�1)tk;

(b) D is isomorphic to the Cayley polytope D1 ⇤ · · ·⇤Dk of empty simplices Di ⇢Rk of
dimension 1;

(c) LD is cyclic and generated by (a1/m,(m�a1)/m, . . . ,ak/m,(m�ak)/m)2 (R/Z)2k

after reordering, where each 0 < ai  m/2 is an integer which is coprime to m.

Batyrev and Hofscheier use the language of linear codes to consider the case d > 2k�1.
A linear code over Fp with block length n is a subspace L of the finite vector space Fn

p
(where p is a prime). A 2 Fr⇥n

p (an r ⇥ n matrix with entries in Fp) is the generator
matrix of such an r-dimensional linear code L if the rows of A form a basis of L.

Definition 7.4. Fix a natural number r and a prime number p. Let n = (pr �1)/(p�1)
be the number of points in (r � 1)-dimensional projective space over Fp. Consider
the r ⇥ n matrix A 2 Fr⇥n

p whose columns consist of nonzero vectors from each 1-
dimensional subspace of Fr

p. Then A is the generator matrix of the simplex code of
dimension r over Fp with block length n.

Theorem 7.5 ([7]). Let d � 3 and let D be a lattice simplex of dimension d which is not
a lattice pyramid. Let the d -polynomial of D be 1+(m�1)tk for some m � 2 and 1 <

k < (d +1)/2. Then there exists a prime number p such that every non-trivial element
of LD has order p. In particular, LD can be identified with pLD ✓ {0, . . . , p�1}d+1, a
linear code over Fp with block length d + 1. The order m of LD is equal to pr, where
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the positive integer r is the dimension of the linear code pLD. The numbers p,d,k,r are
related by the equation

(pr � pr�1)(d +1) = 2k(pr �1). (7.1)

A generator matrix of the linear code pLD is given (up to permutation of the columns)
by the rows in the following r⇥ (d +1) matrix:

(A, . . . ,A) if p = 2, or (A,�A, . . . ,A,�A) if p > 2,

where A is the generator matrix of the r-dimensional simplex code over Fp and A (resp.
the pair (A,�A)) is repeated k/2r�2 (resp. k/pr�1) times if p = 2 (resp. if p > 2).

Let us note that also the converse of the theorem holds, so the linear codes defined
by the generator matrices given in the theorem correspond to lattice simplices with
d -polynomial 1+(pr �1)tk if the numerical condition (7.1) holds, see also [7, Propo-
sition 5.2].

7.2 The classification of lattice polytopes with palindromic

d -trinomials

If B is a matrix, we denote by (B,0) the matrix with one additional zero column. The
following is the main result in this chapter.

Theorem 7.6 ([54, Theorem 3.1]). Let m � 3 and k � 2 be integers and let D be a
(necessarily empty) lattice simplex of dimension d whose d -polynomial is 1 + (m �
2)tk + t2k. Assume that D is not a lattice pyramid over any lower-dimensional simplex.
Then the integers k,m,d satisfy one of the following:

(a) m 2 {3,4,6,8} and d = 3k�1 or m = 4 and d = 4k�1;

(b) k = 2`�3a, m = 2` and d = 2`�1a�1, where a � 1 and `� 3 with (a,`) 6= (1,3);

(c) k = 3`�2a, m = 3` and d = 3`�1a�1, where a � 1 and `� 2 with (a,`) 6= (1,2).

Moreover, in each case, a system of generators of the finite abelian group LD is the set
of row vectors of the matrix which can be written up to permutation of the columns as
follows:
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(a)

(1/3 1/3 · · · 1/3) 2 (R/Z)1⇥3k in the case m = 3;
0

@1/4 · · · 1/4| {z }
2k

1/2 · · · 1/2| {z }
k

1

A 2 (R/Z)1⇥3k in the case m = 4 with d = 3k�1;

0

B@
1/2 · · · 1/2
1/2 · · · 1/2
| {z }

2k

0 · · · 0
1/2 · · · 1/2
| {z }

2k

1

CA 2 (R/Z)2⇥4k in the case m = 4 with d = 4k�1;

0

@1/6 · · · 1/6| {z }
k

1/3 · · · 1/3| {z }
k

1/2 · · · 1/2| {z }
k

1

A 2 (R/Z)1⇥3k in the case m = 6;

0

B@
1/2 · · · 1/2
1/4 · · · 1/4
| {z }

k

0 · · · 0
1/4 · · · 1/4
| {z }

k

1/2 · · · 1/2
1/2 · · · 1/2
| {z }

k

1

CA 2 (R/Z)2⇥3k in the case m = 8.

(b)
 
(B(2)

`�1,0) (B(2)
`�1,0) · · · (B(2)

`�1,0)
1/2 · · · · · · 1/2

!
2 (R/Z)`⇥2`�1a,

where A(2)
`�1 2 {0,1}(`�1)⇥(2`�1�1) is the generator matrix of the simplex code over

F2 of dimension (`�1) with block length (2`�1�1) and B(2)
`�1 2 {0,1/2}(`�1)⇥(2`�1�1)

is the matrix all of whose entries are divided by 2 from those of A(2)
`�1, and where

in above matrix (B(2)
`�1,0) 2 {0,1/2}(`�1)⇥2`�1

is repeated a times.

(c)
 
(B(3)

`�1,�B(3)
`�1,0) (B(3)

`�1,�B(3)
`�1,0) · · · (B(3)

`�1,�B(3)
`�1,0)

1/3 · · · · · · 1/3

!
2 (R/Z)`⇥3`�1a,

where A(3)
`�1 2 {0,1,2}(`�1)⇥(3`�1�1)/2 is the generator matrix of the simplex code

over F3 of dimension (` � 1) with block length (3`�1 � 1)/2 and
B(3)
`�1 2 {0,1/3,2/3}(`�1)⇥(3`�1�1)/2 (resp. �B(3)

`�1 2 {0,2/3,1/3}(`�1)⇥(3`�1�1)/2)

is the matrix all of whose entries are divided by 3 from those of A(3)
`�1 (resp.

�A(3)
`�1), and where in above matrix (B(3)

`�1,�B(3)
`�1,0) 2 {0,1/3,2/3}(`�1)⇥3`�1

is repeated a times.

Example 7.7. In case (b) for k = 2 and `= 3 the rows of the following matrix generate
LD of size m = 8:
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0

@
1/2 0 1/2 0 1/2 0 1/2 0
0 1/2 1/2 0 0 1/2 1/2 0

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

1

A

In case (c) for k = 2 and ` = 2 the rows of the following matrix generate LD of size
m = 9:

✓
1/3 2/3 0 1/3 2/3 0
1/3 1/3 1/3 1/3 1/3 1/3

◆

In this section, we prove Theorem 7.6.

7.2.1 Preliminary results

For the proof of Theorem 7.6, we prepare some lemmas. Throughout this section, let D
be a lattice simplex of dimension d whose d -polynomial equals 1+(m�2)tk + t2k with
k � 2 and m � 3. Note that D is necessarily empty.

For x = (x0, . . . ,xd) 2 LD, let supp(x) = {i : xi 6= 0}. The following equality will be
used throughout:

|supp(x)|= ht(x)+ht(�x).

Lemma 7.8. Let x2LD be an element whose order is n and let 1 j  n�1 be coprime
to n. Then we have supp(x) = supp( jx). Hence,

ht(x)+ht((n�1)x) = ht( jx)+ht((n� j)x).

Proof. Let i2 supp(x), xi =
a
b 6= 0 with gcd(a,b) = 1. By the definition of n, we observe

that b divides an, so also n. Hence, gcd(b, j) = 1. Therefore, b does not divide ja, so
i 2 supp( jx).

Lemma 7.9. Let x 2 LD be the unique element with ht(x) = 2k. Then,

(a) for any y = (y0, . . . ,yd) 2 LD \{0,±x}, we have |supp(y)|= 2k;

(b) there is no integer j and y 2 LD \{0,±x} such that x = jy.

Proof. (a) Since ht(y) = k, ht(�y) = k, and y 6= x 6=�y, we have

2k = ht(y)+ht(�y) = |supp(y)|.
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(b) For any integer j and y 2 LD \ {0,±x}, since |supp(y)| = 2k by (a), we have
|supp( jy)| 2k. However, by |supp(x)|> ht(x) = 2k, x = jy never happens.

The following proposition is crucial for the proof of Theorem 7.6.

Proposition 7.10. Let D be a lattice simplex which is not a lattice pyramid whose d -
polynomial is 1+(m�2)tk+t2k with m� 3 and k � 2. Let x2LD be the unique element
with ht(x) = 2k. Then the order of x must be 2 or 3 or 4 or 6, and up to permutation of
coordinates x is given as follows:

• x = (1/2, . . . ,1/2) 2 (R/Z)4k when its order is 2;

• x = (2/3, . . . ,2/3) 2 (R/Z)3k when its order is 3;

• x = (3/4, . . . ,3/4| {z }
2k

,1/2, . . . ,1/2| {z }
k

) 2 (R/Z)3k when its order is 4;

• x = (5/6, . . . ,5/6| {z }
k

,2/3, . . . ,2/3| {z }
k

,1/2, . . . ,1/2| {z }
k

) 2 (R/Z)3k when its order is 6.

In particular, the dimension of D is 4k�1 if the order of x is 2 and 3k�1 otherwise.

Proof. Let m0 � 2 be the order of x. Suppose that m0 = 5 or m0 � 7. Then j(m0) > 2,
where j is the Eulerian j-function. In particular, there exists an integer 2  j  m0 �2
which is coprime to m0. By Lemma 7.8 and �x 6= x, we obtain

3k = ht(x)+ht((m0 �1)x) = ht( jx)+ht((m0 � j)x) = 2k,

implying that k = 0, a contradiction. Thus, m0  6 and m0 6= 5. Hence, m0 2 {2,3,4,6}.

m0 = 2: Then each xi is 1/2 or 0. From ht(x) = 2k, we have x = (1/2, . . . ,1/2| {z }
4k

,0, . . . ,0| {z }
s

)

after reordering. Fix y 2 LD \{0,x} and let q = |(supp(y)| \ supp(x)). Since |supp(x+
y)| = 2k by Lemma 7.9 (a), we have 2k = |supp(x+ y)| = 4k � k0 + q, where k0 =
|{i 2 supp(x)\ supp(y) : yi = 1/2}|. Hence, k0 � q = 2k. On the other hand, since
|supp(y)| = 2k, we also have k0+ q  2k. Thus, q  0, i.e., q = 0. This means that
supp(y) ⇢ supp(x). Hence, if s > 0, then D is a lattice pyramid by Lemma 2.8, a
contradiction. Thus s = 0 and we conclude that x = (1/2, . . . ,1/2) 2 (R/Z)4k.

m0 = 3: Then each xi is 1/3 or 2/3 or 0. It follows from ht(x) = 2k and ht(�x) =

k that x = (2/3, . . . ,2/3| {z }
3k

,0, . . . ,0| {z }
s

) after reordering. Fix y 2 LD \ {0,±x} and let q =

|(supp(y)| \ supp(x)). Since |supp(x+ y)| = 2k, we have 2k = |supp(x+ y)| = 3k�
k1 + q, where k1 = |{i 2 supp(x)\ supp(y) : yi = 1/3}|. Hence, k1 � q = k. Similarly,
since |supp(2x+ y)| = 2k, we have 2k = |supp(2x+ y)| = 3k � k2 + q, where k2 =
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|{i 2 supp(x)\ supp(y) : yi = 2/3}|. Hence, k2 � q = k. On the other hand, since
|supp(y)|= 2k, we also have k1 + k2 +q  2k = k1 + k2 �2q. Thus, q  0, i.e., q = 0,
implying that s = 0. Hence we conclude that x = (2/3, . . . ,2/3) 2 (R/Z)3k.

m0 = 4: Then each xi is 1/4 or 1/2 or 3/4 or 0. For j = 1,2,3, let q j = |{i : xi = j/4}|.
Since ht(x) = (q1 +2q2 +3q3)/4 = 2k, ht(2x) = (q1 +q3)/2 = k and ht(3x) = (3q1 +

2q2 +q3)/4 = k, we obtain q1 = 0, q2 = k and q3 = 2k, that is,

x = (3/4, . . . ,3/4| {z }
2k

,1/2, . . . ,1/2| {z }
k

,0, . . . ,0| {z }
s

)

after reordering. Fix y 2 LD \ { jx : j = 0,1,2,3} and let q = |(supp(y) \ supp(x))|.
Let k j = |{i 2 supp(x)\ supp(y) : xi = 3/4,yi = j/4}| for j = 1,2,3 and let k0 = |{i 2
supp(x)\supp(y) : xi = yi = 1/2}|. Since |supp(x+y)|= |supp(2x+y)|= |supp(3x+

y)|= 2k, we have the following:

• 2k = |supp(x+y)|= 2k� k1 + k� k0+q, i.e., k+q = k1 + k0;

• 2k = |supp(2x+y)|� 2k� k2 + k0+q, i.e., k0+q  k2;

• 2k = |supp(3x+y)|= 2k� k3 + k� k0+q, i.e., k+q = k3 + k0.

In particular, we have 2k+3q  k1+k2+k3+k0. On the other hand, since |supp(y)|=
2k, we have k1 + k2 + k3 + k0+q  2k. Thus we obtain

2k+4q  k1 + k2 + k3 + k0+q  2k.

This means q= 0, and thus, s= 0. Hence we conclude that x=(3/4, . . . ,3/4| {z }
2k

,1/2, . . . ,1/2| {z }
k

)2

(R/Z)3k after reordering.

m0 = 6: Then each xi is 1/6,1/3,1/2,2/3,5/6 or 0. For j = 1,2,3,4,5, let q j = |{i :
xi = j/6}|. Then

ht(x) = (q1 +2q2 +3q3 +4q4 +5q5)/6 = 2k,

ht(2x) = (q1 +2q2 +q4 +2q5)/3 = k,

ht(3x) = (q1 +q3 +q5)/2 = k,

ht(4x) = (2q1 +q2 +2q4 +q5)/3 = k and
ht(5x) = (5q1 +4q2 +3q3 +2q4 +q5)/6 = k.

Thus q1 = q2 = 0 and q3 = q4 = q5 = k, that is,

x = (5/6, . . . ,5/6| {z }
k

,2/3, . . . ,2/3| {z }
k

,1/2, . . . ,1/2| {z }
k

,0, . . . ,0| {z }
s

)
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after reordering. Fix y 2 LD \{ jx : j = 0,1,2,3,4,5} and let q = |(supp(y)\ supp(x))|.
Let

k j = |{i 2 supp(x)\ supp(y) : xi = 5/6,yi = j/6}| for j = 1,2,3,4,5,
k0j = |{i 2 supp(x)\ supp(y) : xi = 2/3,yi = j/3}| for j = 1,2,

k00 = |{i 2 supp(x)\ supp(y) : xi = yi = 1/2}|.

Since |supp( jx+y)|= 2k for j = 1,2,3,4,5, we have the following:

• 2k = |supp(x+y)|= k� k1 + k� k01 + k� k00+q, i.e., k+q = k1 + k01 + k00;

• 2k = |supp(2x+y)|� k� k2 + k� k02 + k00+q, i.e., k00+q  k2 + k02;

• 2k = |supp(3x+y)|� k� k3 + k01 + k02 + k� k00+q, i.e., k01 + k02 +q  k3 + k00;

• 2k = |supp(4x+y)|� k� k4 + k� k01 + k00+q, i.e., k00+q  k4 + k01;

• 2k = |supp(5x+y)|= k� k5 + k� k02 + k� k00+q, i.e., k+q = k5 + k02 + k00.

By summing up these five inequalities, we have 2k+5q  k1 + · · ·+ k5 + k01 + k02 + k00.
On the other hand, since |supp(y)|= 2k, we have k1 + · · ·+ k5 + k01 + k02 + k00+q  2k.
Thus we obtain

2k+6q  k1 + · · ·+ k5 + k01 + k02 + k00+q  2k.

This means q = 0, and thus, s = 0. Hence we conclude that

x = (5/6, . . . ,5/6| {z }
k

,2/3, . . . ,2/3| {z }
k

,1/2, . . . ,1/2| {z }
k

) 2 (R/Z)3k

after reordering.

As a corollary of this proposition, we obtain the following:

Corollary 7.11. Let m � 3 and k � 2 be integers. Let D be a lattice polytope with
d (D, t) = 1+(m�2)tk + t2k. Assume that LD is a cyclic group. Then m must be 3 or 4
or 6. Moreover, the generator of LD looks as follows:

• (1/3, . . . ,1/3) 2 (R/Z)3k or its inverse when m = 3;

• (1/4, . . . ,1/4| {z }
2k

,1/2, . . . ,1/2| {z }
k

) 2 (R/Z)3k or its inverse when m = 4;

• (1/6, . . . ,1/6| {z }
k

,1/3, . . . ,1/3| {z }
k

,1/2, . . . ,1/2| {z }
k

) 2 (R/Z)3k or its inverse when m = 6.
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Proof. Let x 2 LD be the unique element with ht(x) = 2k. By Lemma 7.9 (b), x and its
inverse must be a generator of LD. On the other hand, by Proposition 7.10 and m � 3,
m is 3 or 4 or 6. The form of x follows directly from Proposition 7.10.

7.2.2 Proof of Theorem 7.6

Let D be an empty simplex whose d -polynomial equals 1+(m� 2)tk + t2k for given
integers m � 3 and k � 2.

By Corollary 7.11 we can assume that LD is not cyclic. Namely, we assume that there
is a group isomorphism

j : LD ! Z/m1Z⇥ · · ·⇥Z/m`Z,

where `� 2, mi 2 Z�2 and mi divides mi+1 for each 1  i  `�1.

Let x 2 LD be the unique element with ht(x) = 2k. Then there is x(i) 2 Z/miZ for
each 1  i  ` such that j(x) = (x(1), . . . ,x(`)) 2 Z/m1Z⇥ · · ·⇥Z/m`Z. Let S = {i 2
{1, . . . ,`} : x(i) 6= 0}. Then S 6= /0.

We will split the proof into two cases.

7.2.3 The case `� 3

First, we consider the case `� 3.

Assume that |S|> 1. Then there are q and q0 in S such that q 6= q0. Let

G = j�1(Z/m1Z⇥ · · ·⇥Z/mq�1Z⇥{0}⇥Z/mq+1Z⇥ · · ·⇥Z/m`Z).

Then G is a subgroup of LD not containing x. Let DG ⇢ Rd be a lattice simplex such
that LDG = G. Since we have ht(y) = k for each y 2 G \ {0}, the d -polynomial of DG
equals 1+(|G|�1)tk. Moreover, since `� 3, G is not cyclic. Although DG might be a
lattice pyramid, the structure of DG (equivalently, G) is known by Theorem 7.3 or 7.5.
Since G is not cyclic, DG is the case of Theorem 7.5. In particular, there are a prime
number p and a positive integer r such that G ⇠= (Z/pZ)r. Hence, m1 = · · · = mq�1 =

mq+1 = · · ·= m` = p and r = `�1. Similarly, let

G0 = j�1(Z/m1Z⇥ · · ·⇥Z/mq0�1Z⇥{0}⇥Z/mq0+1Z⇥ · · ·⇥Z/m`Z).

Then the same discussion as above shows that there is a prime number p0 such that
m1 = · · · = mq0�1 = mq0+1 = · · · = m` = p0. Since ` � 3 and q 6= q0, we conclude that
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m1 = · · · = m` = p(= p0), that is, LD ⇠= (Z/pZ)`. Moreover, since the order of x 2 LD
is 2 or 3 or 4 or 6 by Proposition 7.10, p should be 2 or 3. Therefore,

LD ⇠= (Z/2Z)` or LD ⇠= (Z/3Z)`.

In each case, there is another isomorphism j 0 : LD ! (Z/bZ)`, where b = 2 or b = 3,
such that j 0(x) = (0, . . . ,0,1) 2 (Z/bZ)`.

Hence, we can assume the case |S| = 1. By Lemma 7.9 (b) and |S| = 1, j(x) gener-
ates one direct factor of j(LD) and so does j(�x). For the remaining direct factors,
the same discussions as above can be applied. Therefore, j(LD) must be one of the
following (non-cyclic) groups:

(i) (Z/2Z)`;

(ii) (Z/2Z)`�1 ⇥Z/4Z;

(iii) (Z/2Z)`�1 ⇥Z/6Z;

(iv) (Z/3Z)`;

(v) (Z/3Z)`�1 ⇥Z/6Z.

Here, we assume that j(x) belongs to the last direct factor.

By the discussions below, we verify the cases (i) and (iv) can happen but the cases (ii),
(iii) and (v) never happen.

The case (i): Let us consider the subgroup G0 = j�1((Z/2Z)`�1 ⇥ {0}) of LD, where
x 62G0. Then it follows that we have ht(y)= k for each y2G0\{0}. By Theorem 7.5, we
know the system of generator of G0 as follows: let D0 be the lattice simplex of dimension
d0  d which is not a lattice pyramid such that LD0 = G0 after taking (d � d0)-repeated
lattice pyramids. Then the system of generators of LD0 is the set of the row vectors of
the matrix

(B(2)
`�1, . . . ,B

(2)
`�1),

where A(2)
`�1 2 {0,1}(`�1)⇥(2`�1�1) is the generator matrix of the simplex code over F2

of dimension (`� 1) with block length (2`�1 � 1) and B(2)
`�1 2

�
0, 1

2
 (`�1)⇥(2`�1�1) is

the matrix all of whose entries are divided by 2 from those of A(2)
`�1, and where B(2)

`�1 2�
0, 1

2
 (`�1)⇥2`�1

is repeated k/2`�3 times.

Let a = k/2`�3. Then k = 2`�3a and a � 1. By Theorem 7.5, we know the relation

2`�2(d0+1) = 2k(2`�1 �1) = 2`�2a(2`�1 �1).
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Thus d0+1 = a(2`�1 �1).

On the other hand, since the order of x is 2 in this case, we have |supp(x)|= 4k = d+1
by Proposition 7.10. Therefore,

d +1� (d0+1) = 2`�1a�a(2`�1 �1) = a.

Consequently, in this case, we have m = 2`, k = 2`�3a and d = 4k�1 = 2`�1a�1 with
a� 1 and `� 3 and the system of generators of LD is the set of row vectors of the matrix

 
(B(2)

`�1,0) (B(2)
`�1,0) · · · (B(2)

`�1,0)
1/2 1/2 · · · 1/2

!
2 (R/Z)`⇥4k

up to permutation of the columns. This is the case (b) of Theorem 7.6.

The cases (ii) and (iii): Let G0 be the same thing as the case (i) above.

Since the order of x is 4 or 6, we have d+1= 3k by Proposition 7.10. Take y 2 G0\{0}.
Since the order of y is 2, we have y=(1/2, . . . ,1/2| {z }

2k

,0, . . . ,0| {z }
k

)2 (R/Z)3k after reordering.

By |supp(x+y)|= 2k, |{i 2 supp(x)\ supp(y) : xi = 1/2}| should be k. Similarly, for
y
0 2 G0 \{0} with y 6= y

0, one has |{i 2 supp(x)\ supp(y0) : xi = 1/2}|= k. Recall that
|{i 2 supp(x) : xi = 1/2}| = k by Proposition 7.10. Thus, |supp(x+ y+ y

0)| = 3k, a
contradiction.

The case (iv): Let us consider the subgroup G0 = j�1((Z/3Z)`�1 ⇥{0}) of LD, where
x 62 G0. Let D0 be a lattice simplex of dimension d0  d which is not a lattice simplex
such that LD0 = G0 after taking (d � d0)-repeated lattice pyramids. Then the system of
generators of LD0 is the set of the row vectors of the matrix

((B(3)
`�1,�B(3)

`�1), . . . ,(B
(3)
`�1,�B(3)

`�1)),

where A(3)
`�1 2 {0,1,2}(`�1)⇥(3`�1�1)/2 is the generator matrix of the simplex code over

F3 of dimension (`�1) with block length (3`�1�1)/2 and B(3)
`�1 2

�
0, 1

3 ,
2
3
 (`�1)⇥(3`�1�1)/2

(resp. �B(3)
`�1 2

�
0, 2

3 ,
1
3
 (`�1)⇥(3`�1�1)/2) is the matrix all of whose entries are divided

by 3 from those of A(3)
`�1 (resp. �A(3)

`�1), and where in above matrix (B(3)
`�1,�B(3)

`�1) 2�
0, 1

3 ,
2
3
 (`�1)⇥(3`�1�1) is repeated (k/3`�2) times.

Let a = k/3`�2. Then k = 3`�2a and a � 1. By Theorem 7.5, we know the relation

(3`�1 �3`�2)(d0+1) = 2k(3`�1 �1) = 2 ·3`�2a(3`�1 �1).

Thus d0+1 = a(3`�1 �1).
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Since the order of x is 3, we have |supp(x)|= 3k = d+1 by Proposition 7.10. Therefore,

d +1� (d0+1) = 3`�1a�a(3`�1 �1) = a.

Consequently, in this case, we have m = 3`, k = 3`�2a and d = 3k�1 = 3`�1a�1 with
a� 1 and `� 3 and the system of generators of LD is the set of row vectors of the matrix

 
(B(3)

`�1,�B(3)
`�1,0) (B(3)

`�1,�B(3)
`�1,0) · · · (B(3)

`�1,�B(3)
`�1.0)

1/3 1/3 · · · 1/3

!
2 (R/Z)`⇥3k

up to permutation of the columns. This is the case (c) of Theorem 7.6 with `� 3.

The case (v): Let G0 be the same thing as the case (iv).

Take y2G0\{0}. Then y= (1/3, . . . ,1/3| {z }
k

,2/3, . . . ,2/3| {z }
k

,0, . . . ,0| {z }
k

) after reordering. Since

]supp(x+y) = 2k, |{i 2 supp(x)\ supp(y) : xi = 2/3,yi = 1/3}| should be k. Thus, we
have supp(x+2y) = 3k, a contradiction.

7.2.4 The case `= 2

Next, we consider the case `= 2.

Let G1 = j�1(Z/m1Z⇥ {0}) and G2 = j�1({0}⇥Z/m2Z). Clearly, either G1 or G2
does not contain x, say, G1. Then we have ht(y) = k for each y 2 G1 \{0}. By Theorem
7.3, G1 is generated by (a1/mq,(mq �a1)/mq, . . . ,ak/mq,(mq �ak)/mq,0, . . . ,0) 2 G1
after reordering, where mq = |G1| and each ai is an integer with 0 < ai  mq/2 which
is coprime to mq. Let g = (a1/mq,(mq � a1)/mq, . . . ,ak/mq,(mq � ak)/mq,0, . . . ,0) 2
(R/Z)d+1.

Let j(x) = (x(1),x(2)) 2 Z/m1Z⇥Z/m2Z, where 0  x(i)  mi �1 for i = 1,2.

The case where the order of x is 2: Then x = (1/2, . . . ,1/2) 2 (R/Z)4k and d +1 = 4k
by Proposition 7.10. Since |supp(x+ g)| = 2k, we obtain that mq = 2 and ai = 1 for
each i.

Assume that x(1) 6= 0 and x(2) 6= 0. Let g1 and g2 be the generators of G1 and G2,
respectively, such that x = x(1)g1 + x(2)g2. Since |supp(x(1)g1)| = |supp(x(2)g2)| =
2k and x = (1/2, . . . ,1/2) 2 (R/Z)4k, g1 and g2 look like (1/2, . . . ,1/2| {z }

2k

,0, . . . ,0| {z }
2k

) after

reordering and we also have x(1) = x(2) = 1. In particular, j(LD) = (Z/2Z)2. Thus
there is another isomorphism j 0 : LD ! (Z/2Z)2 such that j 0(x) = (0,1) 2 (Z/2Z)2.
Hence we can deduce the case where x(1) = 0 or x(2) = 0.
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Assume that x(1) = 0 or x(2) = 0. Then x generates one direct factor of LD. Hence the
system of generators of LD is the set of row vectors of the matrix

0

B@
1/2 · · · 1/2
1/2 · · · 1/2
| {z }

2k

0 · · · 0
1/2 · · · 1/2
| {z }

2k

1

CA 2 (R/Z)2⇥4k

after reordering. This is the case (a) with m = 4 and d = 4k�1 of Theorem 7.6.

The case where the order of x is 3: Then x = (2/3, . . . ,2/3) 2 (R/Z)3k by Proposition
7.10. Since |supp(x+g)|= 2k, we obtain mq = 3 and ai = 1 for each i.

Assume that x(1) 6= 0 and x(2) 6= 0. By the similar discussions to the above, we see that
j(LD) = (Z/3Z)2. Thus there is another isomorphism j 0 : LD ! (Z/3Z)2 such that
j 0(x) = (0,1) 2 (Z/3Z)2. Hence we can deduce the case where x(1) = 0 or x(2) = 0.

Assume that x(1) = 0 or x(2) = 0. Then each of x and �x generates one direct factor of
LD. Hence we obtain that the system of generators of LD is the set of row vectors of the
matrix

0

B@
1/3 · · · 1/3
1/3 · · · 1/3
| {z }

k

2/3 · · · 2/3
1/3 · · · 1/3
| {z }

k

0 · · · 0
1/3 · · · 1/3
| {z }

k

1

CA 2 (R/Z)2⇥3k.

This is the case (c) with `= 2 of Theorem 7.6.

The case where the order of x is 4: Then x = (3/4, . . . ,3/4| {z }
2k

,1/2, . . . ,1/2| {z }
k

) 2 (R/Z)3k by

Proposition 7.10. Let k j = |{i 2 supp(x)\ supp(g) : xi = 3/4,gi = j/4}| for j = 1,2,3
and k0 = |{i 2 supp(x)\ supp(g) : xi = gi = 1/2}|. Since |supp(x+ g)| = |supp(2x+

g)|= |supp(3x+g)|= 2k, similar to the proof of Proposition 7.10, we obtain k1 + k0 =
k3 + k0 = k and k2 � k0. Thus we have k1 + k2 + k3 + k0 � 2k. On the other hand, since
|supp(g)| = 2k, we also have k1 + k2 + k3 + k0  2k. Hence k1 + k2 + k3 + k0 = 2k.
Moreover, since |supp(2x+ 2g)| = 2k, one has |supp(2x+ 2g)| = 2k� k1 � k3 = 2k.
Thus k1 = k3 = 0. Hence it follows from k1 + k0 = k3 + k0 = k that k2 = k0 = k. In
particular, g looks like (1/2, . . . ,1/2| {z }

2k

,0, . . . ,0| {z }
k

) 2 (R/Z)3k after reordering and has order

2.

Assume that x(1) 6= 0 and x(2) 6= 0. each generator of G1 and G2 has order 2, we obtain
that LD ⇠= (Z/2Z)2. However, (Z/2Z)2 does not contain any element with order 4, a
contradiction.
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Hence x(1) = 0 or x(2) = 0. Then each of x and �x generates one direct factor of LD.
Thus we see that the system of generators of LD is the set of row vectors of the matrix

0

B@
1/2 · · · 1/2
1/4 · · · 1/4
| {z }

k

0 · · · 0
1/4 · · · 1/4
| {z }

k

1/2 · · · 1/2
1/2 · · · 1/2
| {z }

k

1

CA 2 (R/Z)2⇥3k.

This is the case (a) with m = 8 of Theorem 7.6.

The case where the order of x is 6: Then x=(5/6, . . . ,5/6| {z }
k

,2/3, . . . ,2/3| {z }
k

,1/2, . . . ,1/2| {z }
k

)2

(R/Z)3k by Proposition 7.10. Let

k j = |{i 2 supp(x)\ supp(g) : xi = 5/6,gi = j/6}| for j = 1,2,3,4,5,
k0j = |{i 2 supp(x)\ supp(g) : xi = 2/3,gi = j/3}| for j = 1,2,

k00 = |{i 2 supp(x)\ supp(g) : xi = gi = 1/2}|.

Since |supp(x+g)|= · · ·= |supp(5x+g)|= 2k, similar to the proof of Proposition 7.10,
we see that k1 + · · ·+ k5 + k01 + k02 + k00 � 2k. On the other hand, since |supp(g)| = 2k,
we also have k1 + · · ·+k5 +k01 +k02 +k00  2k. Hence, k1 + · · ·+k5 +k01 +k02 +k00 = 2k.

Moreover, since |supp(x+2g)|= |supp(x+4g)|= 2k, one also has

2k = |supp(x+2g)|= k+ k� k02 + k and 2k = |supp(x+4g)|= k+ k� k01 + k.

Hence k = k01 = k02. Then it follows that 2k = k01 + k02  |{i 2 supp(x) : xi = 2/3}| = k,
a contradiction.

Therefore, we conclude that the order of x is never 6 when LD has exactly two direct
factors. This finishes the proof of Theorem 7.6.

7.3 Future work

It is known [31] that there exists a function f in terms of the degree k and the leading
coefficient b of an d -polynomial of a lattice polytope D such that Vol(D)  f (b,k). In
the situation of Corollary 7.1 (where b = 1) one observes that D satisfies m  9k. In
other words,

Vol(D) 9
2

deg(D).

Moreover, equality implies k = 1 and so as described in (2) above D is isomorphic
to a lattice pyramid over conv({(0,0),(3,0),(0,3)}). Now, having seen how Scott’s
theorem could be generalized from dimension two to degree two [89], we make the
following guess about a more general class of d -trinomials:
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Conjecture 7.12. Let D be a lattice polytope with d -polynomial 1+atk+bt2k and b� 2.
Then a+b+1  (4b+4)k, or equivalently,

Vol(D) 4b+4
2

deg(D).
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Part II

Constructions of new classes of

reflexive polytopes
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Chapter 8

Introduction to Gröbner bases

In this part, we will consider constructions of new classes of reflexive polytopes. Re-
flexive polytopes are interesting objects in commutative algebra, combinatorics, toric
geometry and mirror symmetry. Hence, to find large classes of reflexive polytopes is an
important problem.

In order to show that a lattice polytope is reflexive, we use the theory of Gröbner bases
and toric ideals. In this chapter, we recall basic materials and notation on toric ideals.

Let K[x] = K[x1, . . . ,xn] be the polynomial ring in n variables over a field K with each
degxi = 1 and let Mn denote the set of monomials in the variables x1, . . . ,xn. We say
that a monomial xa1

1 · · ·xan
n divides xb1

1 · · ·xbn
n if one has ai  bi for all 1  i  n. Recall

that a partial order on a set P is a relation  on P such that for all x,y,z 2 P one has

(i) x  x (reflexivity);

(ii) x  y and y  x ) x = y (antisymmetry);

(iii) x  y and y  z ) x  z (transitivity).

It is custom to write x < y if x  y and x 6= y. A partially ordered set (poset, for short)
is a set P with a partial order  on P. A total order on P is a partial order  on P such
that, for any two elements x and y belonging to P, one has either x  y or y  x. We
recall that a monomial order on K[x] is a total order < on Mn such that

(i) 1 < u for all 1 6= u 2 Mn;

(ii) if u,v 2 Mn and u < v, then nw < vw for all w 2 Mn.

We give an example of a monomial order. Let <rev be the total order on Mn by setting
xa1

1 xa2
2 · · ·xan

n <rev xb1
1 xb2

2 · · ·xbn
n if either (i) Ân

i=1 ai < Ân
i=1 bi, or (ii) Ân

i=1 ai = Ân
i=1 bi and
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the rightmost nonzero component of the vector (b1�a1,b2�a2, . . . ,bn�an) is negative.
Then <rev is a monomial order on K[x] and is called the reverse lexicographic order on
K[x] induced by the ordering xn <rev · · · <rev x1. A reverse lexicographic order is also
called a graded reverse lexicographic order.

We will work with a fixed monomial order < on K[x]. Let f be a polynomial in K[x].
The initial monomial in<( f ) of f with respect to < is the biggest monomial with respect
to <. Let I be a nonzero ideal of K[x]. The monomial ideal generated by {in<( f ) : 0 6=
f 2 I} is called the initial ideal of I with respect to < and is written as in<(I). In
general, even if I = h{ fl}l2Li, it is not necessarily true that in<(I) coincides with
h{in<( fl )}l2Li.

Definition 8.1. Let I be a nonzero ideal of K[x]. A finite set of nonzero polynomials
{g1, . . . ,gs} with each gi 2 I is said to be a Gröbner basis of I with respect to < if in<(I)
is generated by the monomials in<(g1), . . . , in<(gs).

It is known that a Gröbner basis of I with respect to < exists. Moreover, a Gröbner basis
of I generates the ideal I.

Lemma 8.2. Let I be an ideal of K[x] and G a Gröbner basis of with respect to some
monomial order. Then G is a generating set of I.

Next, we introduce the two associated graded ring of lattice polytopes. Let K[t±1,s] =
K[t±1

1 , . . . , t±1
N ,s] the Laurent polynomial ring in N + 1 variables over a field K. If a =

(a1, . . . ,aN) 2 ZN , then t
as is the Laurent monomial ta1

1 · · · taN
N s 2 K[t±1,s]. In particular

t
0s = s. Let P ⇢ RN be a lattice polytope of dimension d and P \ZN = {a1, . . . ,an}.

Then, the toric ring K[P] of P is defined by

K[P] = K[{t
as : a 2 P \ZN}]⇢ K[t±1,s],

and the Ehrhart ring EK(P) of P is defined by

EK(P) = K[{t
asm : a 2 mP \ZN ,m � 1}]⇢ K[t±1,s].

We regard K[P] and EK(P) as graded K-algebras by setting each deg(tasm) = m.
Then we know that the Hilbert function of EK(P) coincides with the Ehrhart poly-
nomial of P . The toric ideal IP of P is the kernel of a surjective homomorphism
p : K[x1, . . . ,xn]! K[P] defined by p(xi) = t

ai s for 1  i  n. It is known that IP is
generated by homogeneous binomials. See, e.g., [87]. Now, we give a useful result of
Gröbner bases of the toric ideals of lattice polytopes.

Lemma 8.3 ([73, (0.1), p. 1914]). Work with the same situation as above. A finite set
G of IP is a Gröbner basis of IP with respect to < if and only if p(u) 6= p(v) for all
u /2 ({in<(g) : g 2 G }) and v /2 h{in<(g) : g 2 G }i with u 6= v.
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Please refer [39, Chapters 1 and 5] and [87] for more details on Gröbner bases and toric
ideals.

Now, we recall an important class of lattice polytopes. We say that a lattice polytope
P ⇢ RN of dimension d possesses the integer decomposition property if, for each in-
teger k � 1 and for each a 2 kP \ZN , there exist a1, . . . ,ak belonging to P \ZN with
a = a1 + · · ·+ak. Clearly, P possesses the integer decomposition property if and only
if K[P] = EK(P). In this case, the Hilbert function of K[P] coincides with the Ehrhart
polynomial of P . The integer decomposition property is particularly important in the
theory and application of integer programing [77, §22.10]. Moreover, a lattice polytope
which possesses the integer decomposition property is normal and very ample. These
properties play important roles in algebraic geometry.

Finally, we give indispensable lemmata for this part. Let < be a monomial order on
K[x] and in<(IP) the initial ideal of IP with respect to <. The initial ideal in<(IP) is
called squarefree if in<(IP) is generated by squarefree monomials.

Lemma 8.4 ([44, Lemma 1.1]). Let P ⇢ Rd be a lattice polytope of dimension d such
that the origin of Rd is contained in its interior and P \Zd = {a1, . . . ,an}. Suppose
P is spanning and there exists an ordering of the variables xi1 < · · · < xin for which
ai1 = 0 such that the initial ideal in<(IP) of the toric ideal IP with respect to the reverse
lexicographic order < on the polynomial ring K[x1, . . . ,xn] induced by the ordering is
squarefree. Then P is a reflexive polytope which possesses the integer decomposition
property.

Lemma 8.5 ([35, Corollary 6.1.5]). Let S be a polynomial ring and I ⇢ S a graded ideal
of S. Let < be a monomial order on S. Then S/I and S/in<(I) have the same Hilbert
function.

The structure of the rest of Part II

The organization of the rest of this part is as follows. In Chapter 9, we will give several
new classes of reflexive polytopes with the integer decomposition propery arising from
finite posets. In Chapter 10, we will give a class of reflexive polytopes with the integer
decomposition propery arising from perfect graphs. In Chapter 11, we will give two
classes of reflexive polytopes with the integer decomposition propery arising from finite
posets and perfect graphs. In Chapters 9, 10 and 11, we use the technique on Göbner
bases. In Chapter 12, we will give a classes of reflexive polytopes arising from finite
simple graph by using Matrix Theory. Finally, in Chapter 13, we will construct higher-
dimensional self dual reflexive polytopes.
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Chapter 9

Reflexive polytopes arising from posets

In this chapter, we give several large classes of reflexive polytope arising from finite
posets. In particular, these reflexive polytopes possess the integer decomposition prop-
erty.

In order to give classes of reflexive polytopes, we introduce two constructions of lattice
polytopes. Given two lattice polytopes P ⇢ RN and Q ⇢ RN of dimension d, we set
the lattice polytopes G(P,Q)⇢ RN and W(P,Q)⇢ RN+1 with

G(P,Q) = conv{P [ (�Q)},

W(P,Q) = conv{(P ⇥{1})[ (�Q⇥{�1})}.

If P = Q, then we will write G(P) = G(P,P) and W(P) = W(P,P). We remark
that the origin of Rn is always a relative interior lattice point of G(P) and the origin of
Rn+1 is always a relative interior lattice point of W(P). Assume that P and Q are full-
dimensional, namely, N = d. Then G(P,Q) and W(P,Q) are also full-dimensional.
In particular, each of P ⇥{1} and �Q⇥{�1} is a facet of W(P,Q).

In this chapter, the study on G(P,Q) and W(P,Q) will be done when each of P
and Q is an order polytope and a chain polytope, which are lattice polytopes arising
from finite posets. This chapter is organized as follows. In Section 9.1, we recall some
terminologies of finite posets and introduce order polytopes and chain polytopes. In
Section 9.2, we consider G(P,Q) when each of P and Q is an order polytope and a
chain polytope. Finally, in section 9.3, we consider W(P,Q) when each of P and Q
is an order polytope and a chain polytope.
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9.1 Two poset polytopes

In this section, we recall some terminologies of finite posets and introduce two lattice
polytopes arising from finite posets. Let P= {p1, . . . , pd} denote a finite poset. A subset
I of P is called a poset ideal of P if pi 2 I and p j 2 P together with p j  pi guarantee
p j 2 I. Note that the empty set /0 and itself P are poset ideals of P. Let J (P) denote
the set of poset ideals of P. A subset A of P is called an antichain of P if pi and p j

belonging to A with i 6= j are incomparable. In particular, the empty set /0 and each
1-elemant subsets {p j} are antichains of P. Let A (P) denote the set of antichains of
P. For a poset ideal I of P, we write max(I) for the set of maximal elements of I. In
particular, max(I) is an antichain. A linear extension of P is a permutation s = i1i2 · · · id
of [d] = {1,2, . . . ,d} which satisfies ia < ib if pia < pib in P. Let e(P) denote the number
of linear extensions of P.

Stanley [81] introduced two classes of lattice polytopes arising from finite posets, order
polytopes and chain polytopes. The order polytope OP of P is defined to be the convex
polytope consisting of those (x1, . . . ,xd) 2 Rd such that

(1) 0  xi  1 for 1  i  d;

(2) xi � x j if pi  p j in P.

The chain polytope CP is defined to be the convex polytope consisting of those (x1, . . . ,xd)2
Rd such that

(1) xi � 0 for 1  i  d;

(2) xi1 + · · ·+ xik  1 for every maximal chain pi1 < · · ·< pik of P.

It then follows that both order polytopes and chain polytopes are lattice polytopes of
dimension d. For each subset I ⇢ P, we define the (0,1)-vectors r(I) = Âpi2I ei. In
particular r( /0) is the origin 0 of Rd . In [81, Corollary 1.3 and Theorem 2.2], it is
shown that

{the set of vertices of OP}= {r(I) : I 2 J (P)},

{the set of vertices of CP}= {r(A) : A 2 A (P)}.

Next, we consider the Ehrhart polynomials of order polytopes and chain polytopes. In
fact, OP and CP have the same Ehrhart polynomial. Moreover, every lattice point in
kOP corresponds an order preserving map j : P ! [k+ 1]. Counting order preserving
maps is classical [84, Sect. 3.15]. The order polynomial WP(k) of P counts the number
of order preserving maps into k-chains.
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Lemma 9.1 ([81, Theorem 4.1 and Corollary 4.2]). Let P = {p1, . . . , pd} be a finite
poset. Then for every n > 0one has

WP(k+1) = LOP(k) = LCP(k).

In particular, e(P) = Vol(OP) = Vol(CP).

Finally, we consider the toric ideals of order polytopes and chain polytopes. Recall
that a lattice polytope P is called compressed ([88]) if all its ”pulling triangulations”
are unimodular. If P is spanning, then P is compressed if and only if every reverse
lexicographic initial ideal of IP is squarefree ([87]). It follows from [72, Theorem 1.1]
that all order polytopes and all chain polytope are compressed and possess the integer
decomposition property. Moreover, each of IOP and ICP possesses a squarefree quadratic
initial ideal. Let K[O] = K[{xI}I2J (P)] and K[C ] = K[{xmax(I)}I2J (P)] denote the
polynomial rings over K, and define the surjective ring homomorphisms pO and pC by
the following:

• pO : K[O]! K[OP] by setting pO(xI) = t
r(I)s;

• pC : K[C ]! K[CP] by setting pC (xmax(I)) = t
r(max(I))s,

where I 2 J (P). Then the toric ideal IOP (resp. ICP) is the kernel of pO (resp. pC ).

Next, we introduce monomial orders <O and <C , and GO and GC which are the sets
of binomials. Let <O denote a reverse lexicographic order on K[O] satisfying xI <O xJ

if I ⇢ J, anf let <C denote a reverse lexicographic order on K[C ] satisfying xmax(I) <C

xmax(J) if I ⇢ J, where I and J are poset ideals of P, Let GO be the set of the following
binomials:

xIxJ � xI[JxI\J,

and GC the set of the following binomials:

xmax(I)xmax(J)� xmax(I[J)xmax(I⇤J),

where I and J are poset ideals of P which are incomparable in J (P) and I ⇤ J is the
poset ideal of P generated by max(I \ J)\ (max(I)[max(J)).

Lemma 9.2 ([36]). Work with the same situation as above. Then GO is a Gröbner basis
of IOP with respect to <O .

Lemma 9.3 ([42]). Work with the same situation as above. Then GC is a Gröbner basis
of ICP with respect to <C .

From these facts, it follows that each of OP and CP possesses a regular, flag, unimodular
triangulation. (Recall that a flag complex is a simplicial complex any of its nonface is
an edge.) Furthermore, toric ideals of order polytopes naturally appear in algebraic
geometry (e.g., [18]) and in representation theory (e.g., [96]).
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9.2 Type G

In this section, we consider G(OP,OQ), G(OP,CQ) and G(CP,CQ) for finite posets P =

{p1, . . . , pd} and Q = {q1, . . . ,qd}.

9.2.1 When are they reflexive?

In this subsection, we discuss when G(OP,OQ), G(OP,CQ) and G(CP,CQ) are reflexive
polytope. In fact, we show the following theorem.

Theorem 9.4 ([43, 45, 46]). Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite posets.

(1) ([43, Corollary 2.2]) If P and Q possess a common linear extension, then the
lattice polytope G(OP,OQ) is a reflexive polytope which possesses the integer
decomposition property.

(2) ([46, Corollary 1.2]) The lattice polytope G(OP,CQ) is a reflexive polytope which
possesses the integer decomposition property.

(3) ([45, Corollary 1.3]) The lattice polytope G(CP,CQ) is a reflexive polytope which
possesses the integer decomposition property.

Let

K1[OO] = K[{xI} /0 6=I2J (P)[{yJ} /0 6=J2J (Q)[{z}],
K1[OC ] = K[{xI} /0 6=I2J (P)[{ymax(J)} /0 6=J2J (Q)[{z}],
K1[C C ] = K[{xmax(I)} /06=I2J (P)[{ymax(J)} /0 6=J2J (Q)[{z}]

denote the polynomial rings over K, and define the surjective ring homomorphisms
p1

OO , p1
OC and p1

C C by the following:

• p1
OO : K1[OO]! K[G(OP,OQ)] by setting

p1
OO(xI) = t

r(I)s, p1
OO(yJ) = t

�r(J)s and p1
OO(z) = s,

• p1
OC : K1[OC ]! K[G(OP,CQ)] by setting

p1
OC (xI) = t

r(I)s, p1
OC (ymax(J)) = t

�r(max(J))s and p1
OC (z) = s,

• p1
C C : K1[C C ]! K[G(CP,CQ)] by setting

p1
C C (xmax(I)) = t

r(max(I))s, p1
C C (ymax(J)) = t

�r(max(J))s and p1
C C (z) = s
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where /0 6= I 2 J (P) and /0 6= J 2 J (Q). Then the toric ideal IG(OP,OQ) of G(OP,OQ)

is the kernel of p1
OO . Similarly, the toric ideal IG(OP,�CQ) (resp. IG(CP,CQ)) is the kernel

of p1
OC (resp. p1

C C ).

Next, we introduce monomial orders <1
OO , <1

OC and <1
C C and G 1

OO , G 1
OC and G 1

C C
which are the sets of binomials.

Let <1
OO denote a reverse lexicographic order on K1[OO] satisfying

• z <1
OO yJ <1

OO xI;

• xI0 <
1
OO xI if I0 ⇢ I;

• yJ0 <
1
OO yJ if J0 ⇢ J,

and G 1
OO ⇢ K[OO] the set of the following binomials:

(G1) xIxI0 � xI[I0xI\I0;

(G2) yJyJ0 � yJ[J0yJ\J;

(G3) xIyJ � xI\{pi}yJ\{qi},

and let <1
OC denote a reverse lexicographic order on K1[OC ] satisfying

• z <1
OC ymax(J) <

1
OC xI;

• xI0 <
1
OC xI if I0 ⇢ I;

• ymax(J0) <
1
OC ymax(J) if J0 ⇢ J,

and G 1
OC ⇢ K1[OC ] the set of the following binomials:

(G4) xIxI0 � xI[I0xI\I0;

(G5) ymax(J)ymax(J0)� ymax(J[J0)ymax(J⇤J0);

(G6) xIymax(J)� xI\{pi}ymax(J)\{qi},

and let <1
C C denote a reverse lexicographic order on K1[C C ] satisfying

• z <1
C C ymax(J) <

1
C C xmax(I);

• xmax(I0) <
1
C C xmax(I) if I0 ⇢ I;
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• ymax(J0) <
1
C C ymax(J) if J0 ⇢ J,

and G 1
C C ⇢ K1[C C ] the set of the following binomials:

(G7) xmax(I)xmax(I0)� ymax(I[I0)ymax(I⇤I0);

(G8) ymax(J)ymax(J0)� ymax(J[J0)ymax(J⇤J0);

(G9) xmax(I)ymax(J)� xmax(I)\{pi}ymax(J)\{qi},

where

• x /0 = y /0 = z;

• I and I0 are poset ideals of P which are incomparable in J (P);

• J and J0 are poset ideals of Q which are incomparable in J (Q);

• pi is a maximal element of I and qi is a maximal element of J.

Proposition 9.5 ([43]). Work with the same situation as above. If P and Q possess a
common linear extension, then the origin of Rd is contained in the interior of G(OP,OQ)

and G 1
OO is a Gröbner basis of IW(OP,OQ) with respect to <1

OO .

Proposition 9.6. Work with the same situation as above. Then G 1
OC is a Gröbner basis

of IG(OP,CQ) with respect to <1
OC .

Proof. It is clear that G 1
OC ⇢ IG(OP,CQ). We note that the initial monomial of each of

the binomials (G4), (G5) and (G6) with respect to <1
OC is its first monomial. Let

in<1
OC

(G 1
OC ) denote the set of initial monomials of binomials belonging to G 1

OC . It
follows from Lemma 8.3 that, in order to show that G 1

OC is a Gröbner basis of IG(OP,CQ)

with respect to <1
OC , we must prove the following assertion: If u and v are monomials

belonging to K1[OC ] with u 6= v such that u 62 hin<1
OC

(G 1
OC )i and v 62 hin<1

OC
(G 1

OC )i,
then p1

OC (u) 6= p1
OC (v).

Let u,v 2 K1[OC ] be monomials with u 6= v. Write

u = zaxx1
I1
· · ·xxa

Ia
yn1

max(J1)
· · ·ynb

max(Jb)
, v = za 0

xx 0
1

I01
· · ·xx 0

a0
I0a0

yn 0
1

max(J01)
· · ·yn 0

b0
max(J0b0)

,

where

• a � 0, a 0 � 0;

• I1, . . . , Ia, I01, . . . , I
0
a0 2 J (P)\{ /0};
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• J1, . . . ,Jb,J01, . . . ,J
0
b0 2 J (Q)\{ /0};

• x1, . . . ,xa,n1, . . . ,nb,x 0
1, . . . ,x 0

a0 ,n
0
1, . . . ,n 0

b0 > 0,

and where u and v are relatively prime with u 62 hin<1
OC

(G 1
OC )i and v 62 hin<1

OC
(G 1

OC )i.
Note that either a = 0 or a 0 = 0. Hence we may assume that a 0 = 0. Thus

u = zaxx1
I1
· · ·xxa

Ia
yn1

max(J1)
· · ·ynb

max(Jb)
, v = xx 0

1
I01
· · ·xx 0

a0
I0a0

yn 0
1

max(J01)
· · ·yn 0

b0
max(J0b0)

.

By using (G4) and (G5), it follows that

• I1 ( I2 ( · · ·( Ia and J1 ( J2 ( · · ·( Jb;

• I01 ( I02 ( · · ·( I0a0 and J01 ( J02 ( · · ·( J0b0 .

Furthermore, by virtue of Lemmas 9.2 and 9.3, it suffices to discuss u and v with
(a,a0) 6= (0,0) and (b,b0) 6= (0,0).

Since Ia 6= I0a0 , we may assume that Ia \ I0a0 6= /0. Then there exists a maximal element pi⇤

of Ia with pi⇤ /2 I0a0 .

Now, suppose that p1
OC (u) = p1

OC (v). Then we have

Â
I2{I1,...,Ia}

pi2I

xI � Â
J2{J1,...,Jb}
qi2max(J)

nJ = Â
I02{I01,...,I

0
a0}

pi2I0

x 0
I0 � Â

J02{J01,...,J
0
b0}

qi2max(J0)

n 0
J0 .

for all 1  i  d by comparing the degree of ti. Since pi⇤ /2 I0a0 , one has

Â
I2{I1,...,Ia}

pi⇤2I

xI � Â
J2{J1,...,Jb}

qi⇤2max(J)

nJ =� Â
J02{J01,...,J

0
b0}

qi⇤2max(J0)

n 0
J0  0.

Moreover, since pi⇤ is belonging to Ia, we also have

Â
I2{I1,...,Ia}

pi⇤2I

xI > 0.

Hence there exists an integer c with 1  c  b such that qi⇤ is a maximal element of Jc.
Therefore we have xIaymax(Jc) 2 hin<1

OC
(G 1

OC )i, but this is a contradiction.

Proposition 9.7. Work with the same situation as above. Then G 1
C C is a Gröbner basis

of IG(CP,CQ) with respect to <1
C C .

Proof. We can show that the assertion follows by a similar way in the proof of Propo-
sition 9.6.

103



Finally, we show Theorem 9.4.

Proof of Theorem 9.4. It is easy to show that G(OP,OQ), G(OP,CQ) and G(CP,CQ) are
spanning. By Lemma 8.4 and Propositions 9.5, 9.6 and 9.7, the assertion follows.

9.2.2 Their d -polynomials and volumes

In this subsection, we discuss their d -polynomials and volumes of G(OP,OQ), G(OP,CQ)

and G(CP,CQ).

First, we show the following theorem.

Theorem 9.8 ([45, Theorem 1.1]). Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite
posets. Then we have

d (G(OP,CQ), t) = d (G(CP,CQ), t).

In particular, the volume of G(OP,CQ) is the same as that of G(CP,CQ). Moreover, if P
and Q possess a common linear extension, then we have

d (G(OP,OQ), t) = d (G(OP,CQ), t) = d (G(CP,CQ), t).

In this case, these polytopes have the same volume.

Here, we put
R1

OO := K1[OO]/in<1
OO

(IG(OP,OQ)),

R1
OC := K1[OC ]/in<1

OC
(IG(OP,CQ)),

R1
C C := K1[C C ]/in<1

C C
(IG(CP,CQ)).

In order to prove Theorem 9.8, we show the following proposition.

Proposition 9.9. Work with the same situation as above. Then the ring R1
OC is isomor-

phic to the ring R1
C C . Moreover, if P and Q possess a common linear extension, then

these rings R1
OO , R1

OC and R1
C C are isomorphic.

Proof. From Propositions 9.6 and 9.7, we have

R1
OC

⇠=
K1[OC ]

h{xIxI0 ,ymax(J)ymax(J0),xIymax(J) : I, I0,J and J0 satisfy (⇤)}i ,

R1
C C

⇠=
K1[C C ]

h{xmax(I)xmax(I0),ymax(J)ymax(J0),xmax(I)ymax(J) : I, I0,J and J0 satisfy (⇤)}i ,

where the condition (⇤) is the following:
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• I and I0 are poset ideals of P which are incomparable in J (P);

• J and J0 are poset ideals of Q which are incomparable in J (Q);

• There exists 1  i  d such that pi is a maximal element of I and qi is a maximal
element of J.

Hence it is easy to see that the ring homomorphism j : R1
OC ! R1

C C by setting j(xI) =

xmax(I), j(ymax(J)) = ymax(J) and j(z) = z is an isomorphism. Therefore, one has R1
OC

⇠=
R1

C C . Similarly, if P and Q possess a common linear extension, then from Proposition
9.5, we have

R1
OO

⇠=
K1[OO]

h{xIxI0 ,yJyJ0 ,xIyJ : I, I0,J and J0 satisfy (⇤)}i .

Moreover, we can see that the ring homomorphism j 0
: R1

OO ! R1
OC by setting j 0

(xI) =

xI , j 0
(yJ) = ymax(J) and j 0

(z) = z is an isomorphism. Hence one has R1
OO

⇠= R1
OC

⇠=
R1

C C .

Now, we can prove Theorem 9.8

Proof of Theorem 9.8. From Theorem 9.4, we have that both G(OP,CQ) and G(CP,CQ)

possess the integer decomposition property. Hence the Ehrhart polynomial of G(OP,CQ)

(resp. G(CP,CQ)) is equal to the Hilbert function of K[G(OP,CQ)] (resp. K[G(CP,CQ)]).
By Proposition 9.9, R1

OC and R1
C C have the same Hilbert function. Hence K[G(OP,CQ)]

and K[G(CP,CQ)] also have the same Hilbert function. Therefore we have the desired
conclusion.

If P and Q possess a common linear extension, G(OP,OQ) also possesses the integer
decomposition property from Theorem 9.8. Therefore, by the same argument, we have
the desired conclusion.

We immidiately obtain the following corollary.

Corollary 9.10. Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite posets. Then we
have

d (G(OP,CQ), t) = d (G(OQ,CP), t).

In particular, these polytopes have the same volume.

As the end of this section, we give an example that P and Q do not have any common
linear extension.
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Example 9.11. Let P = {p1 < p2} and Q = {q2 < q1} be chains. It is clear that P and
Q have no common linear extension. Then

d (G(OP,OQ), t) = 1+2t,

d (G(OP,CQ), t) = d (G(CP,CQ), t) = 1+2t + t2.

9.2.3 A volume formula

In this subsection, we give a formula for the volume of G(CP,CQ) in terms of the un-
derlying finite posets. For finite posets P and Q with P\Q = /0, the ordinal sum P�Q
of P and Q is the finite poset on P[Q such that s  t in P�Q if (a) s, t 2 P and s  t
in P, or (b) s, t 2 Q and s  t in Q, or (c) s 2 P and t 2 Q. Then we have A (P�Q) =

A (P)[A (Q). Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd}. Given a subset W of [d],
we define the induced subposet of P on W to be the finite poset PW = {pi : i 2W} such
that pi  p j in PW if and only if pi  p j in P. For W ⇢ [d], we let DW (P,Q) be the
ordinal sum of PW and QW , where W = [d]\W . Note that |DW (P,Q)|= d and we have
A (DW (P,Q)) =A (PW )[A (QW ). Let W = {i1, . . . , ik}⇢ [d] and W = {ik+1, . . . , id}⇢
[d] with W [W = [d]. Then we have DW (P,Q) = {pi1 , . . . , pik ,qik+1 , . . . ,qid}. Also, we
let R = {r1, . . . ,rd} be the finite poset such that ri  r j if (a) i, j 2 W and pi  p j in
DW (P,Q), or (b) i, j 2 W and qi  q j in DW (P,Q), or (c) i 2 W, j 2 W and pi  q j in
DW (P,Q). We call a permutation s = i1i2 · · · id of [d] a linear extension of DW (P,Q), if s
is a linear extension of R, and we write e(DW (P,Q)) for the number of linear extensions
of DW (P,Q), i.e., e(DW (P,Q))= e(R). For A⇢DW (P,Q), we define the (�1,0,1)-vector
r 0(A) = Âpi2A ei �Âq j2A e j and we set

C 0
DW (P,Q) = conv({r 0(A) | A 2 A (DW (P,Q))}).

First, we will show the following lemma.

Lemma 9.12. Work with the same situation as above. Then C 0
DW (P,Q) and CR are uni-

modularly equivalent. Moreover we have

Vol(C 0
DW (P,Q)) = e(DW (P,Q)).

Proof. Let U = (ui j)1i, jd 2 Zd⇥d be a unimodular matrix such that

ui j =

8
><

>:

1, if i = j and i 2W,

�1, if i = j and i 2W ,

0, if i 6= j.

Then C 0
DW (P,Q) = fU(CR), where R is the finite poset defined by the above. This says

that C 0
DW (P,Q) and CR are unimodularly equivalent. Hence since the normalized volume
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of CR is equal to e(R), We have

Vol(C 0
DW (P,Q)) = Vol(CR) = e(R) = e(DW (P,Q)),

as desired.

Let P ⇢ Rd be a lattice polytope. Then we write V (P) for the vertex set of P , and
for W ⇢ [d], we set

PW = {(x1, . . . ,xd) 2 P : if i 2W,xi � 0 and if j 2W ,x j  0},

VW (P) = {(x1, . . . ,xd) 2V (P) : if i 2W, xi � 0 and if j 2W , x j  0}.

The following is the key proposition in this subsection.

Proposition 9.13. Work with the same situation as above. Then we have

G(CP,CQ) =
[

W⇢[d]

C 0
DW (P,Q).

In particular, for any subset W ⇢ [d], we have

G(CP,CQ)W = C 0
DW (P,Q).

Proof. For any W ⇢ [d], we have

VW (G(CP,CQ)) =V (C 0
DW (P,Q))\{0}

since A (DW (P,Q)) = A (PW )[A (QW ). Hence it follows that

G(CP,CQ)W � conv(VW (G(CP,CQ))[{0}) = C 0
DW (P,Q).

Moreover, we obtain
G(CP,CQ)�

[

W⇢[d]

C 0
DW (P,Q).

We will show that for any x,y2V (G(CP,CQ)) and a,b2R with a+b= 1,a� 0 and b�
0, there exists W ⇢ [d] such that ax+ by 2 C 0

DW (P,Q). This shows that
S

W⇢[d]C
0
DW (P,Q)

contains any edge of G(CP,CQ), hence, we have

G(CP,CQ)⇢
[

W⇢[d]

C 0
DW (P,Q).

When x,y 2 CP or x,y 2 (�CQ), it clearly follows. Let

A1 = {pi1 , . . . , pi` , pi`+1 , . . . , pim}
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and
A2 = {qi1 , . . . ,qi` ,qim+1 , . . . ,qin}

be antichains of A (P) and A (Q), and we set x = r(A1) and y = �r(A2). We should
show the case a� b. Let W = {i1, . . . , im}⇢ [d] and c= a�b. Then A0

1 = {pi1 , . . . , pim},
A0

2 = {pi`+1 , . . . , pim} and A0
3 = {qim+1 , . . . ,qin} are antichains of DW (P,Q). We set x

0 =

r 0(A0
1),y

0 = r 0(A0
2) and z

0 = r 0(A0
3). Then we have ax+ by = cx

0+ by
0+ bz

0 and c+
2b = 1. Hence ax+by 2 C 0

DW (P,Q).

Therefore, we have
G(CP,CQ) =

[

W⇢[d]

C 0
DW (P,Q).

In particular,
G(CP,CQ)W = C 0

DW (P,Q).

as desired.

Now, we give a formula for the volume of G(CP,CQ) in terms of the underlying posets.
In particular, the following theorem is immediately given Lemma 9.12 and Proposition
9.13.

Theorem 9.14 ([92, Theorem 1.3]). Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite
posets. Then we have

Vol(G(CP,CQ)) = Â
W⇢[d]

e(DW (P,Q)).

Moreover, by using Theorems 9.8 and 9.14, one obtains the following corollary.

Corollary 9.15. Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite posets. Then we
have

Vol(G(OP,CQ)) = Â
W⇢[d]

e(DW (P,Q)).

Moreover, if P and Q have a common linear extension, then we have

Vol(G(OP,OQ)) = Â
W⇢[d]

e(DW (P,Q)).

Remark 9.16. By the proof of Proposition 9.13, for any W ⇢ [d], G(CP,CQ)W is a lattice
polytope. However, G(OP,OQ)W and G(OP,CQ)W are not always lattice polytopes. In
fact, let P = {p1, p2} be a 2-element chain with p1  p2 and Q = {q1,q2} a 2-element
chain with q1  q2. Then for W = {1}, we know that G(OP,OQ)W and G(OP,CQ)W are
not lattice polytopes. This means that we can not prove Corollary 9.15 by means of a
proof similar to that of Theorem 9.14.

We give a few examples.
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Example 9.17. Let P and Q be the finite posets with the Haase diagrams shown in the
following:

P:

t
tt

p1

p3p2 A

A

A

A

�

�

�

�

Q:

t
tt

q1

q3q2 A

A

A

A

�

�

�

�

Then G(CP,CQ) is centrally symmetric, i.e., for each facet F of G(CP,CQ), �F is a
facet of G(CP,CQ). For each subset W of {1,2,3}, the Haase diagram of DW (P,Q) is
presented in the following:

D{1,2,3}(P,Q):

t
tt

p1

p3p2 A

A

A

A

�

�

�

�

D{1,2}(P,Q):

t
t
t

q3

p1

p2

D{1,3}(P,Q):

t
t
t

q2

p1

p3

D{2,3}(P,Q):

t
tt

q1

p3p2 A

A

A

A

�

�

�

�

D{1}(P,Q):

t
tt

p1

q3q2

A

A

A

A

�

�

�

�

D{2}(P,Q):

t
t
t

q1

q3

p2

D{3}(P,Q):

t
t
t

q1

q2

p3

D /0(P,Q):

t
tt

q1

q3q2 A

A

A

A

�

�

�

�

Hence we have
Vol(G(CP,CQ)) = 4⇥1+4⇥2 = 12.

Example 9.18. Let P= {p1, . . . , pd} be a d-element antichain and Q= {q1, . . . ,qd} a d-
element chain with q1 < · · ·< qd . For W ⇢ [d], we will compute the volume of C 0

DW (P,Q).
We set W = {1, . . . ,k}. Then PW is a k-element antichain and QW is a (d � k)-element
chain. Hence we have

C 0
DW (P,Q) = conv({[0,1]k ⇥{0}d�k,�ek+1, . . . ,�ed})

and Vol(C 0
DW (P,Q)) = k!. Therefore, we obtain

Vol(G(CP,CQ)) =
d

Â
k=0

✓
d
k

◆
k!

=
d

Â
k=0

d!
k!
.
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For a positive integer d, we write a(d) for the total number of arrangements of a d-
element set. Then we have

Vol(G(CP,CQ)) = a(d).

Next, as an application of Proposition 9.13 we will compute the equations of the sup-
porting hyperplanes of facets and dual polytopes of G(CP,CQ). We begin by recall-
ing these features for the chain polytopes which were originally studied in [81]. Let
P = {p1, . . . , pd} be a finite poset. Then there are two types of the equations of the
supporting hyperplanes of facets for the chain polytope CP:

• for each element pi of P, xi = 0,

• for each maximal chain C of P, Âpi2C xi = 1.

We write M (P) for the set of maximal chains of P. Then the number of facets of CP

equals |M (P)|+d.

The next lemma follows immediately from Lemma 9.12.

Lemma 9.19. Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite posets, and let W ⇢
[d]. Then there are three types of the equations of the supporting hyperplane of facets
for C 0

DW (P,Q)):

• for each element pi of DW (P,Q), xi = 0,

• for each element q j of DW (P,Q), �x j = 0,

• for each maximal chain C of DW (P,Q), Âpi2C xi �Âq j2C x j = 1.

Now, we characterize the equations of the supporting hyperplanes of facets of G(CP,CQ)

in terms of the underlying posets. Namely, we prove the following theorem.

Theorem 9.20 ([92, Theorem 2.2]). Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite
posets. The equations of the supporting hyperplanes of facets for G(CP,CQ) are given
as

Â
pi2C

xi � Â
q j2C

x j = 1

for each W ⇢ [d] and for each maximal chain C of DW (P,Q). Moreover, the number of
facets of G(CP,CQ) equals |

S
W⇢[d]M (DW (P,Q))|.

Proof. We let W be a subset of [d] and let C be a maximal chain of DW (P,Q). Then by
Lemma 9.19, FC = HC \C 0

DW (P,Q) is a facet of C 0
DW (P,Q), where HC is the hyperplane

{(x1, . . . ,xd) 2 Rd : Â
pi2C

xi � Â
q j2C

x j = 1}
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in Rd . We let y = (y1, . . . ,yd) be an interior point of FC. Then by Lemma 9.19, we
know yi > 0 if i 2 W and y j < 0 if j 2 W . Hence for any W 0 ⇢ [d] with W 6= W 0,
we have y /2 C 0

DW 0(P,Q). Therefore, it follows that y does not belong to the interior of
GC (P),C (Q). By Proposition 9.13, HC \G(CP,CQ) is a facet of G(CP,CQ).

Since G(CP,CQ) is reflexive, from Lemma 2.7 the equation of the supporting hyperplane
of each facet of G(CP,CQ) is of the form a1x1+ · · ·+adxd = 1 with each ai 2 Z. Hence
the equations of the supporting hyperplanes of facets for G(CP,CQ) are given as

Â
pi2C

xi � Â
q j2C

x j = 1

for each W ⇢ [d] and for each maximal chain C of DW (P,Q), as desired.

Remark 9.21. For some finite posets P = {p1, . . . , pd} and Q = {q1, . . . ,qd}, we have

Â
W⇢[d]

|M (DW (P,Q))| 6= |
[

W⇢[d]

M (DW (P,Q))|.

For instance, let P = {p1, p2, p3} and Q = {q1,q2,q3} be 3-element antichains. For
W1 = {1}, C1 = {p1,q3} is a maximal chain of DW1(P,Q). Then for W2 = {1,2}, C1 is
also a maximal chain of DW2(P,Q). Hence we have

Â
W⇢[d]

|M (DW (P,Q))|> |
[

W⇢[d]

M (DW (P,Q))|.

By using Lemma 2.7 and Theorem 9.20, one has the following corollary.

Corollary 9.22. Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite posets. Then we
have

V (G(CP,CQ)
_) =

[

W⇢[d]

{r 0(C) 2 Rd : C 2 M (DW (P,Q))}.

Namely,

G(CP,CQ)
_ = conv

0

@ [

W⇢[d]

{r 0(C) 2 Rd : C 2 M (DW (P,Q))}

1

A .

We end this subsection with a pair of examples demonstrating Theorem 9.20 and Corol-
lary 9.22.

Example 9.23. Let P and Q be the finite posets as in Example 9.18. We fix W =

{i1, . . . , ik}⇢ [d]. Then we have

M (DW (P,Q)) = {{pis ,qik+1 , . . . ,qid} : 1  s  k}
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and |M (DW (P,Q))|= k. Hence

|
[

W⇢[d]

M (DW (P,Q))|=
d

Â
k=1

✓
d
k

◆
k+1

= d ·2d�1 +1.

Example 9.24. Let P and Q be the finite posets as in Example 9.17. Then by Corollary
9.22, the vertices of G(CP,CQ)_ are the following:

±(1,1,0),±(1,0,1),±(1,�1,0),±(1,1,�1),±(1,�1,1),±(1,0,�1).

Moreover, there do not exist finite posets P0 and Q0 with |P0| = |Q0| = 3 such that
G(CP,CQ)_ and G(CP0 ,CQ0) are unimodularly equivalent. Indeed, since G(CP,CQ)_

is centrally symmetric and the number of its vertices equals 12, each of P0 and Q0 needs
to have just 7 antichains. However, there exists no 3-element partially ordered set which
has just 7 antichains.

9.2.4 When are they smooth Fano?

In this subsection, we consider the characterization problem of finite posets yield smooth
Fano polytopes. First, we recall several classes of lattice polytopes related to reflexive
polytopes. Let P ⇢ Rd be a lattice polytope of dimension d containing the origin of
Rd in its interior.

• P is called Fano, if the vertices are primitive lattice points.

• P is called canonical Fano, if int(P)\Zd = {0}.

• P is called terminal Fano, if P \Zd = {0}[V (P).

• P is called smooth Fano, if the vertices of any facet of P form a Z-basis of Zd .

It is known that Fano polytopes correspond to toric Fano varieties, smooth Fano poly-
topes to nonsingular toric Fano varieties and canonical (respectively terminal) Fano
polytopes to toric Fano varieties with canonical (respectively terminal) singularities.
Moreover simplicial Fano polytopes are associated to Q-factorial toric Fano varieties.
In particular, each smooth Fano polytope is a simplicial reflexive polytope, and each
reflexive polytope is a canonical Fano polytope.

Let P ⇢ Rd be a Fano polytope.

• We call P centrally symmetric if P =�P .
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• We call P pseudo-symmetric if there exists a facet F of P such that �F is also
its facet. Note that every centrally symmetric polytope is pseudo-symmetric.

• A del Pezzo polytope of dimension 2k is a convex polytope

V2k = conv({±e1, . . .± e2k,±(e1 + · · ·+ e2k)}).

Note that del Pezzo polytopes are centrally symmetric smooth Fano polytopes.

• A pseudo del Pezzo polytope of dimension 2k is a convex polytope

Ṽ2k = conv({±e1, . . .± e2k,e1 + · · ·+ e2k}).

Note that pseudo del Pezzo polytopes are pseudo-symmetric smooth Fano poly-
topes.

• Let us that P splits into P1 and P2 if the convex hull of two Fano polytopes
P1 ⇢ Rd1 and P2 ⇢ Rd2 with d = d1 +d2, i.e., by renumbering

P = conv({(a1,0),(0,a2) 2 Rd : a1 2 P1,a2 2 P2}).

Then we write P = P1 �P2.

There is well-known fact on the characterization of centrally symmetric or pseudo-
symmetric smooth Fano polytopes.

• Any centrally symmetric smooth reflexive polytope splits into copies of the closed
interval [�1,1] or a del Pezzo polytope [95].

• Any pseudo-symmetric smooth reflexive polytope splits into copies of the closed
interval [�1,1] or a del Pezzo polytope or pseudo del Pezzo polytope [26, 95].

Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite posets. In this subsection, we con-
sider when each of G(OP,OQ), G(OP,CQ) and G(CP,CQ) is a smooth Fano polytope.

First, we consider when G(CP,CQ) is smooth Fano. For 1  i  d, we set Ai(P) = {I 2
A (P) : |I|= i}.

Theorem 9.25 ([45, Theorem 2.1]). Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite
posets. Then the following conditions are equivalent:

(i) G(CP,CQ) is simplicial;

(ii) G(CP,CQ) is smooth Fano;

(iii) G(CP,CQ) splits into copies of the closed interval [�1,1] or a del Pezzo 2-polytope
or a pseudo del Pezzo 2-polytope;
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(iv) For any I1, I2 2 A2(P) with I1 6= I2, I1 \ I2 = /0 and for any J1,J2 2 A2(Q) with
J1 6= J2, J1\J2 = /0, and for any I 2A2(P) and for any J 2A2(Q), |{i : pi 2 I,qi 2
J}| 6= 1.

Proof. ((i) ) (iv)) Let pi1 < pi2 < · · · < pis be a maximal chain of P. Then xi1 + xi2 +

· · ·+ xis = 1 is the equation of the supporting hyperplane of a facet of CP, in particular,
this is a facet of G(CP,CQ). Since G(CP,CQ) is simplicial, this facet is a (d�1)-simplex.
Hence there exist just d � s antichains I1, . . . , Id�s 2 A (P) \A1(P) such that for each
Ik, |{pi1 , pi2 , . . . , pis}\ Ik| = 1. Since for each j 2 P\{pi1 , pi2 , . . . , pis}, there exists i 2
{pi1 , pi2 , . . . , pis} such that {i, j} is an antichain of P, for each j 2 P\{pi1 , pi2 , . . . , pis},
there exists just one i 2 {pi1 , pi2 , . . . , pis} such that {i, j} is an antichain of P. Then for
k � 3, Ak(P) = /0.

First, we assume that there exist I1, I2 2 A2(P) with I1 6= I2 such that I1 \ I2 6= /0. Let
I1 = {pi1 , pi2} and I2 = {pi1 , pi3}. Then we know that {pi2 , pi3} is not an antichain of
P. Indeed, if {pi2 , pi3} is an antichain of P, then {pi1 , pi2 , pi3} is also an antichain of
P. Hence there exists a maximal chain p j1 < p j2 < · · ·< p jt of P such that {pi2 , pi3}⇢
{p j1 , p j2 . . . , p jt}. Then since {pi1 , pi2} and {pi1 , pi3} are antichains of P, a facet whose
equation is x j1 + x j2 + · · ·+ x jt = 1 of G(CP,CQ) is not a (d �1)-simplex.

Next, we assume that for any I1, I2 2A2(P) with I1 6= I2, I1\ I2 = /0, and for any J1,J2 2
A2(Q) with J1 6= J2, J1 \ J2 = /0, and there exist I 2 A2(P) and J 2 A2(Q) such that
|{i : pi 2 I,qi 2 J}| = 1. We let I = {pi1 , pi2} and J = {qi1 ,qi3}. Then xi2 � xi3 =

1 is the equation of the supporting hyperplane of a face of G(CP,CQ) and this face
is not simplex. Indeed, we set H = {(x1, . . . ,xd) 2 Rd : xi2 � xi3 = 1} and H + =

{(x1, . . . ,xd) 2Rd : xi2 �xi3  1}. Then every vertex of G(CP,CQ) belongs to H +, and

r({pi1 , pi2}),r({pi2}),�r({qi1 ,qi3}),�r({qi3}) 2 H .

Since
(r({pi1 , pi2})� (�r({qi3}))) = (r({pi2})� (�r({qi3})))

� (�r({qi1 ,qi3})� (�r({qi3}))),

this face is not a simplex.

((iv) ) (iii)) We assume that

A2(P) = {{p1, p2}, . . . ,{p2k�1, p2k},{p2k+1, p2k+2}, . . . ,{p2k+2l�1, p2k+2l}},

A2(Q)= {{q1,q2}, . . . ,{q2k�1,q2k},{q2k+2l+1,q2k+2l+2}, . . . ,{q2k+2l+2m�1,q2k+2l+2m}},

where k, l and m are nonnegative integers with 2k+ 2l + 2m  d. Then it follows that
G(CP,CQ) is the convex full of ±e1, . . . ,±ed and ±(e1 + e2), . . . ,±(e2k�1 + e2k) and
e2k+1 + e2k+2, . . . ,e2k+2l�1 + e2k+2l and �(e2k+2l�1 + e2k+2l+2), . . . ,�(e2k+2l+2m�1 +

e2k+2l+2m). Hence G(CP,CQ) splits into copies of the closed interval [�1,1] or a del
Pezzo 2-polytope or a pseudo del Pezzo 2-polytope.
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((iii) ) (ii) )(i)) Since G(CP,CQ) splits into copies of the closed interval [�1,1] or
a del Pezzo 2-polytope or a pseudo del Pezzo 2-polytope, G(CP,CQ)is smooth Fano.
Moreover, in general, any smooth Fano polytope is simplicial.

Next, we consider when G(OP,CQ) is smooth Fano.

Theorem 9.26 ([45, Theorem 2.2]). Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite
posets. Then the following conditions are equivalent:

(i) G(OP,CQ) is simplicial;

(ii) G(OP,CQ) is smooth Fano;

(iii) J (P) = {{pi1},{pi1 , pi2}, . . . ,{pi1 , . . . , pid}} or
J (P) = {{pi1},{pi2},{pi1 , pi2}, . . . ,{pi1 , . . . , pid}}, and
A (Q) = {{qi1},{qi2}, . . . ,{qid}} or
A (Q) = {{qi1},{qi2}, . . . ,{qid},{qi1 ,qi2}}.

Proof. ((i) ) (iii)) We may assume that pi1 is a minimal element of P and J 0(P) =
{{pi1},{pi1 , pi2}, . . . ,{pi1 , . . . , pid}}⇢ J (P). Then xi1 = 1 is the equation of the sup-
porting hyperplane of a facet of OP, in particular, this is a facet of G(OP,CQ). Since
G(OP,CQ) is simplicial, this facet is a (d � 1)-simplex. Hence there is no poset ideal
I 2 J (P) such that pi1 2 I and I /2 J 0(P). If there exists I 2 J (P) such that pi1 /2 I,
there exists a minimal element pi j 2 I of P. Then since {{pi1 , pi j}} is a poset ideal of
P, we have j = 2. Hence we know that J (P) = {{pi1},{pi1 , pi2}, . . . ,{pi1 , . . . , pid}}
or J (P) = {{pi1},{pi2},{pi1 , pi2}, . . . ,{pi1 , . . . , pid}}. Also, by the proof of Theorem
9.25, we may assume that for any J1,J2 2 A2(Q) with J1 6= J2, J1 \ J2 = /0.

We assume that J (P) = {{pi1},{pi1 , pi2}, . . . ,{pi1 , . . . , pid}}. If {qi j ,qik} is an an-
tichain of Q with 2  j < k, then xi1 � xik = 1 is the equation of the supporting hy-
perplane of a face of G(OP,CQ) and this face is not a simplex. Indeed, we set H1 =

{(x1, . . . ,xd) 2 Rd : xi1 � xik = 1} and H +
1 = {(x1, . . . ,xd) 2 Rd : xi1 � xik  1}. Then

every vertex of G(OP,CQ) belongs to H +
1 . Also, one has

r({pi1}),r({pi1 , pi2}), . . . ,r({pi1 , . . . , pik�1}),�r({qik}),�r({qi j ,qik}) 2 H1.

Since
(�r({qik})�r({pi1})) = (�r({qi j ,qik})�r({pi1}))

+(r({pi1 , . . . , pi j})�r({pi1}))
� (r({pi1 , . . . , pi j�1})�r({pi1})),

this face is not a simplex. If {qi1 ,qi j} is an antichain of Q with 3 j, then �xi1 +2xi2 = 1
is the equation of a supporting hyperplane of a face of G(OP,CQ) and this face is not
a simplex. Indeed, we set H2 = {(x1, . . . ,xd) 2 Rd : � xi1 + 2xi2 = 1} and H +

2 =

115



{(x1, . . . ,xd) 2 Rd : � xi1 +2xi2  1}. Then each vertex of G(OP,CQ) belongs to H +
2 .

Also, one has

r({pi1 , pi2}), . . . ,r({pi1 , . . . , pid}),�r({qi1}),�r({qi1 ,qi j}) 2 H2.

Hence since the face G(OP,CQ)\H2 has d +1 vertices, this face is not a simplex.

We assume that J (P) = {{pi1},{pi2},{pi1 , pi2}, . . . ,{pi1 , . . . , pid}}. If {qi j ,qik} is an
antichain of Q with 2  j < k, then similarly, xi1 �xik = 1 is the equation of a supporting
hyperplane of a face of G(OP,CQ) and this face is not a simplex. If {qi1 ,qi j} is an
antichain of Q with 3 j, then xi2 �xi j = 1 is the equation of a supporting hyperplane of
a face of G(OP,CQ) and this face is not a simplex. Indeed, we set H3 = {(x1, . . . ,xd) 2
Rd : xi2 � xi j = 1} and H +

3 = {(x1, . . . ,xd) 2 Rd : xi2 � xi j  1}. Then every vertex of
G(OP,CQ) belongs to H +

3 , and one has

r({pi2}),r({pi1 , pi2}), . . . ,r({pi1 , . . . , pi j�1}),�r({qi j}),�r({qi1 ,qi j}) 2 H3.

Since

(r({pi2})�r({pi1 , pi2 , pi3})) = (r({pi1 , pi2})�r({pi1 , pi2 , pi3}))
+(�r({qi1 ,qi j})�r({pi1 , pi2 , pi3})
� (�r({qi j})�r({pi1 , pi2 , pi3})),

)

this face is not a simplex.

((iii) ) (ii)) If P ⇢ Rd is a smooth Fano polytope of dimension d, the lattice polytope

P 0 = conv(P [{e1 + e2 + · · ·+ ed+1,�ed+1})⇢ Rd+1

is also smooth Fano. Moreover, if d = 2, then G(OP,CQ) is smooth Fano. Hence for
d � 2, we know that G(OP,CQ) is smooth.

((ii) )(i)) In general, any smooth Fano polytope is simplicial.

Finally, we consider when G(OP,OQ) is smooth Fano.

Theorem 9.27 ([45, Theorem 2.3]). Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite
posets. Assume that P and Q have a common linear extention. Then the following
conditions are equivalent:

(i) G(OP,OQ) is simplicial;

(ii) G(OP,OQ) is smooth Fano;

(iii) J (P) = {{pi1},{pi1 , pi2}, . . . ,{pi1 , . . . , pid}} or
J (P) = {{pi1},{pi2},{pi1 , pi2}, . . . ,{pi1 , . . . , pid}}, and
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J (Q) = {{qi1},{qi1 ,qi2}, . . . ,{qi1 , . . . ,qid}} or
J (Q) = {{qi1},{qi2},{qi1 ,qi2}, . . . ,{qi1 , . . . ,qid}}.

Proof. ((i) ) (iii)) By the proof of Theorem 9.26, We have J (P) = {{pi1},{pi1 , pi2},
. . . ,{pi1 , . . . , pid}} or J (P) = {{pi1},{pi2},{pi1 , pi2}, . . . ,{pi1 , . . . , pid}}. Also, we
have J (Q)= {{q j1},{q j1 ,q j2}, . . . ,{q j1 , . . . ,q jd}} or J (Q)= {{q j1},{q j2},{q j1 ,q j2},
. . . ,{q j1 , . . . ,q jd}}. Since P and Q have a common linear extention, we may assume that
for any 1  k  d, ik = jk.

((iii) ) (ii)) If P ⇢ Rd is a smooth Fano polytope of dimension d, the lattice polytope

P 0 = conv(P [{±(e1 + e2 + · · ·+ ed+1)})⇢ Rd+1

is also smooth Fano. Also, if d = 2, then G(OP,OQ) is smooth Fano. Hence for d � 2,
we know that G(OP,OQ) is smooth Fano.

((ii) )(i)) In general, any smooth Fano polytope is simplicial.

Theorem 9.28 ([45, Theorem 3.1]). Let d � 3 and P= {p1, . . . , pd} and Q= {q1, . . . ,qd}
be finite posets. Assume that G(OP,OQ), G(OP,CQ) and G(CP,CQ) are smooth Fano.
Then G(OP,OQ) and G(CP,CQ) are unimodularly equivalent. However, G(OP,CQ) is
not unimodularly equivalent to these polytopes. Moreover, if P 6= Q, then G(OQ,CP) is
also smooth Fano and is not unimodularly equivalent to G(OP,CQ).

Proof. Let P1,P2 be the finite posets as follows.

P1:

t

t
t

qqq
pid

pi2

pi1

P2:

t

t
tt

qqq
pid

pi3

pi2pi1 A

A

A

A

�

�

�

�

By Theorem 9.27, G(OP,OQ) is smooth Fano if and only if P,Q 2 {P1,P2}. Also when
P,Q 2 {P1,P2}, G(OP,CQ) and G(CP,CQ) are smooth Fano by Theorems 9.25 and 9.26.
Hence it follows that G(OP,OQ), G(OP,CQ) and G(CP,CQ) are smooth Fano if and only
if P,Q 2 {P1,P2}. We can assume that i j = j for any 1  j  d.

We should consider the following four cases.
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(The case P = Q = P1) G(OP,OQ) and G(CP,CQ) are unimodularly equivalent, in par-
ticular, these polytopes are centrally symmetric. However, since G(OP,CQ) is not cen-
trally symmetric, G(OP,CQ) is not unimodularly equivalent to these polytopes.

(The case P = Q = P2) Similarly, G(OP,OQ) and G(CP,CQ) are unimodularly equiva-
lent, and G(OP,CQ) is not unimodularly equivalent to these polytopes.

(The case P = P1 and Q = P2) G(OP,OQ) and G(CP,CQ) are unimodularly equiva-
lent, in particular, these polytopes are pseudo-symmetric. However, G(OP,CQ) is not
unimodularly equivalent to these polytopes, since it follows that |{v 2 V (G(OP,CQ)) :
�v 2V (G(OP,CQ))}| 6= |{v 2V (G(OP,OQ)) : �v 2V (G(OP,OQ))}|, where we write
V (P) for the vertex set of a polytope P .

(The case P = P2 and Q = P1) Similarly, G(OP,CQ) is not unimodularly equivalent to
G(OP,OQ) and G(CP,CQ). Moreover, G(OP,CQ) and G(OQ,CP) are not unimodularly
equivalent. Indeed, we assume that these polytopes are unimodularly equivalent. Then
there exists a unimodular matrix U 2Zd⇥d such that G(OP,CQ) = fU(G(OQ,CP)). Also
for v 2 {±e1,±(e1 + e2)}, there exists v

0 2 {±e1,±e2} such that fU(v) = v
0.

If fU(e1) = e1 and fU(e1 + e2) = e2, we have

U =

0

BBBBB@

1 0 0 · · · 0
�1 1 0 · · · 0
u31 u32 u33 · · · u3d

...
...

... . . . ...
ud1 ud2 ud3 · · · udd

1

CCCCCA
2 Zd⇥d.

Then fU(�e2) = e1 � e2 /2V (G(O(P),�C (Q))).

If fU(e1) = e1 and fU(e1 + e2) =�e2, we have

U =

0

BBBBB@

1 0 0 · · · 0
�1 �1 0 · · · 0
u31 u32 u33 · · · u3d

...
...

... . . . ...
ud1 ud2 ud3 · · · udd

1

CCCCCA
2 Zd⇥d.

Then fU(e1 + e2 + e3) = (u31,u32 � 1,u33, . . . ,u3d) and fU(�e3) = (�u31, . . . ,�u3d).
Since G(OP,CQ) is a (�1,0,1)-polytope, u32 = 0 or 1. Then fU(e1 + e2 + e3) =�e2 or
fU(�e3) =�e2, a contradiction.
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If fU(e1) =�e1 and fU(e1 + e2) = e2, we have

U =

0

BBBBB@

�1 0 0 · · · 0
1 1 0 · · · 0

u31 u32 u33 · · · u3d
...

...
... . . . ...

ud1 ud2 ud3 · · · udd

1

CCCCCA
2 Zd⇥d.

Then fU(e1 + e2 + e3) = (u31,u32 + 1,u33, . . . ,u3d) and fU(�e3) = (�u31, . . . ,�u3d).
Since G(OP,CQ) is a (�1,0,1)-polytope, u32 = 0 or �1. Then fU(e1 + e2 + e3) = e2 or
f (�e3) = e2, a contradiction.

If fU(e1) =�e1 and fU(e1 + e2) =�e2, we have

U =

0

BBBBB@

�1 0 0 · · · 0
1 �1 0 · · · 0

u31 u32 u33 · · · u3d
...

...
... . . . ...

ud1 ud2 ud3 · · · udd

1

CCCCCA
2 Zd⇥d.

Then fU(�e2) =�e1 + e2 /2V (G(OP,CQ)).

Therefore, G(OP,CQ) and G(OQ,CP) are not unimodularly equivalent.

By Theorems 9.8 and 9.28, the following corollary immidiately follows.

Corollary 9.29. For any d � 3, there exist smooth Fano polytopes P and Q such that
the following conditions satisfied:

• P and Q have the same Ehrhart polynomial.

• P and Q are not unimodularly equivalent.

Now, we recall the following fact.

Lemma 9.30 ([16, Theorem 1]). Let P1 be a d1-dimensional reflexive polytope in Rd1

and P2 a d2-dimensional lattice polytope in Rd2 with 0 2 int(P1). Then one has

d (P1 �P2, t) = d (P1, t)d (P2, t).

In particular,
Vol(P1 �P2) = Vol(P1)Vol(P2).

We let l,m,n be nonnegative integers and

P = (�lL)� (�mṼ2)� (�nV2),
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where L is the closed interval [�1,1]. Since Vol(L) = 2,Vol(Ṽ2) = 5 and Vol(V2) = 6,
we have Vol(P) = 2l ·5m ·6n.

Finally, we consider the volume of each of G(OP,OQ), G(OP,CQ) and G(CP,CQ) when
these polytopes are smooth Fano. Let P1 and P2 be the finite posets as in the proof of
Theorem 9.28.

Example 9.31. (i) Let P = Q = P1. Then G(CP,CQ) is unimodularly equivalent to
�dL. Hence we know the normalized volume of each of G(OP,OQ), G(OP,CQ) and
G(CP,CQ) is equal to 2d by Theorem 9.8.

(ii) Let P = Q = P2. Then G(CP,CQ) is unimodularly equivalent to (�d�2L)�V2.
Hence the normalized volume of each of G(OP,OQ), G(OP,CQ) and G(CP,CQ) is equal
to 2d�2 ·6.

(iii) Let P = P1 and Q = P2. Then G(CP,CQ) is unimodularly equivalent to (�d�2L)�
Ṽ2. Hence the normalized volume of each of G(OP,OQ), G(OP,CQ) and G(CP,CQ) is
equal to 2d�2 ·5. In particular, the normalized volume of G(OQ,OP) is also 2d�2 ·5.

9.3 Type W

In this section, we consider W(OP,OQ), W(OP,CQ) and W(CP,CQ) for finite posets
P = {p1, . . . , pd} and Q = {q1, . . . ,qd}.

9.3.1 When are they reflexive?

In this subsection, we discuss when W(OP,OQ), W(OP,CQ) and W(CP,CQ) are reflexive
polytope. In fact, we show the following theorem.

Theorem 9.32 ([49, Theorem 1.3]). Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite
posets.

(1) If P and Q possess a common linear extension, then the lattice polytope W(OP,OQ)

is a reflexive polytope which possesses the integer decomposition property.

(2) The lattice polytope W(OP,CQ) is a reflexive polytope which possesses the integer
decomposition property.

(3) The lattice polytope W(CP,CQ) is a reflexive polytope which possesses the integer
decomposition property.
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Now, for finite posets P = {p1, . . . , pd} and Q = {q1, . . . ,qd}, let

K2[OO] = K[{xI}I2J (P)[{yJ}J2J (Q)[{z}],
K2[OC ] = K[{xI}I2J (P)[{ymax(J)}J2J (Q)[{z}],
K2[C C ] = K[{xmax(I)}I2J (P)[{ymax(J)}J2J (Q)[{z}]

denote the polynomial rings over K, and define the surjective ring homomorphisms
p2

OO , p2
OC and p2

C C by the following:

• p2
OO : K2[OO]! K[W(OP,OQ)] by setting

p2
OO(xI) = t

r(I[{d+1})s, p2
OO(yJ) = t

�r(J[{d+1})s and p2
OO(z) = s,

• p2
OC : K2[OC ]! K[W(OP,CQ)] by setting

p2
OC (xI) = t

r(I[{d+1})s, p2
OC (ymax(J)) = t

�r(max(J)[{d+1})s and p2
OC (z) = s,

• p2
C C : K2[C C ]! K[W(CP,CQ)] by setting

p2
C C (xmax(I))= t

r(max(I)[{d+1})s, p2
C C (ymax(J))= t

�r(max(J)[{d+1})s and p2
C C (z)=

s

where I 2 J (P) and J 2 J (Q). Then the toric ideal IW(OP,OQ) of W(OP,OQ) is the
kernel of p2

OO . Similarly, the toric ideal IW(OP,CQ) (resp. IW(CP,CQ)) is the kernel of p2
OC

(resp. p2
C C ).

Next, we introduce monomial orders <2
OO , <2

OC and <2
C C and G 2

OO , G 2
OC and G 2

C C
which are the set of binomials. Let <2

OO denote a reverse lexicographic order on
K2[OO] satisfying

• z <2
OO yJ <2

OO xI;

• xI0 <
2
OO xI if I0 ⇢ I;

• yJ0 <
2
OO yJ if J0 ⇢ J,

and G 2
OO ⇢ K2[OO] the set of the following binomials:

(O1) xIxI0 � xI[I0xI\I0;

(O2) yJyJ0 � yJ[J0yJ\J;

(O3) xIyJ � xI\{pi}yJ\{qi};

(O4) x /0y /0 � z2,

and let <2
OC denote a reverse lexicographic order on K2[OC ] satisfying
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• z <2
OC ymax(J) <

2
OC xI;

• xI0 <
2
OC xI if I0 ⇢ I;

• ymax(J0) <
2
OC ymax(J) if J0 ⇢ J,

and G 2
OC ⇢ K2[OC ] the set of the following binomials:

(O5) xIxI0 � xI[I0xI\I0;

(O6) ymax(J)ymax(J0)� ymax(J[J0)ymax(J⇤J0);

(O7) xIymax(J)� xI\{pi}ymax(J)\{qi};

(O8) x /0y /0 � z2,

and let <2
C C denote a reverse lexicographic order on K2[C C ] satisfying

• z <2
C C ymax(J) <

2
C C xmax(I);

• xmax(I0) <
2
C C xmax(I) if I0 ⇢ I;

• ymax(J0) <
2
C C ymax(J) if J0 ⇢ J,

and G 2
C C ⇢ K2[C C ] the set of the following binomials:

(O9) xmax(I)xmax(I0)� ymax(I[I0)ymax(I⇤I0);

(O10) ymax(J)ymax(J0)� ymax(J[J0)ymax(J⇤J0);

(O11) xmax(I)ymax(J)� xmax(I)\{pi}ymax(J)\{qi};

(O12) x /0y /0 � z2,

where

• I and I0 are poset ideals of P which are incomparable in J (P);

• J and J0 are poset ideals of Q which are incomparable in J (Q);

• pi is a maximal element of I and qi is a maximal element of J.

Proposition 9.33. Work with the same situation as above. If P and Q possess a common
linear extension, then the origin of Rd+1 is contained in the interior of W(OP,OQ) and
G 2

OO is a Gröbner basis of IW(OP,OQ) with respect to <2
OO .
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Proof. Set P0 = {pd+1}�P and Q0 = {qd+1}�Q. Then we have

J (P0) = { /0}[{I [{pd+1} : I 2 J (P)},

J (Q0) = { /0}[{J[{qd+1} : J 2 J (Q)}.

Hence we know that W(OP,CQ) = G(OP0 ,OQ0). By [43], we can easily show if P and Q
possess a common linear extension, then the origin of Rd+1 is contained in the interior
of W(OP,OQ) and G 2

OO is a Gröbner basis of IW(OP,OQ) with respect to <2
OO, as desired.

Proposition 9.34. Work with the same situation as above. Then G 2
OC is a Gröbner basis

of IW(OP,CQ) with respect to <2
OC .

Proof. It is clear that G 2
OC ⇢ IW(OP,CQ). We note that the initial monomial of each of

the binomials (O5) – (O8) with respect to <2
OC is its first monomial. Let in<2

OC
(G 2

OC )

denote the set of initial monomials of binomials belonging to G 2
OC . It follows from

Lemma 8.3 that, in order to show that G 2
OC is a Gröbner basis of IW(OP,CQ) with respect

to <2
OC , we must prove the following assertion: If u and v are monomials belonging to

K2[OC ] with u 6= v such that u 62 hin<2
OC

(G 2
OC )i and v 62 hin<2

OC
(G 2

OC )i, then p2
OC (u) 6=

p2
OC (v).

Let u,v 2 K[OC ] be monomials with u 6= v. Write

u = zaxx1
I1
· · ·xxa

Ia
yn1

max(J1)
· · ·ynb

max(Jb)
, v = za 0

xx 0
1

I01
· · ·xx 0

a0
I0a0

yn 0
1

max(J01)
· · ·yn 0

b0
max(J0b0)

,

where

• a � 0, a 0 � 0;

• I1, . . . , Ia, I01, . . . , I
0
a0 2 J (P);

• J1, . . . ,Jb,J01, . . . ,J
0
b0 2 J (Q);

• x1, . . . ,xa,n1, . . . ,nb,x 0
1, . . . ,x 0

a0 ,n
0
1, . . . ,n 0

b0 > 0,

and where u and v are relatively prime with u 62 hin<2
OC

(G 2
OC )i and v 62 hin<2

OC
(G 2

OC )i.
Thus By using (O5) and (O6), it follows that

• I1 ( I2 ( · · ·( Ia and J1 ( J2 ( · · ·( Jb;

• I01 ( I02 ( · · ·( I0a0 and J01 ( J02 ( · · ·( J0b0 .
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Now, suppose that p2
OC (u) = p2

OC (v). Then we have

Â
I2{I1,...,Ia}

pi2I

xI � Â
J2{J1,...,Jb}
qi2max(J)

nJ = Â
I02{I01,...,I

0
a0}

pi2I0

x 0
I0 � Â

J02{J01,...,J
0
b0}

qi2max(J0)

n 0
J0 .

for all 1  i  d by comparing the degree of ti.

Assume that (a,a0) 6= (0,0) and Ia \ I0a0 6= /0. Then there exists a maximal element pi⇤ of
Ia with pi⇤ /2 I0a0 . Since pi⇤ /2 I0a0 , one has

Â
I2{I1,...,Ia}

pi⇤2I

xI � Â
J2{J1,...,Jb}

qi⇤2max(J)

nJ =� Â
J02{J01,...,J

0
b0}

qi⇤2max(J0)

n 0
J0  0.

Moreover, since pi⇤ is belonging to Ia, we also have

Â
I2{I1,...,Ia}

pi⇤2I

xI > 0.

Hence there exists an integer c with 1  c  b such that qi⇤ is a maximal element of Jc.
Therefore we have xIaymax(Jc) 2 hin<2

OC
(G 2

OC )i, but this is a contradiction. By consider-
ing the case where (a,a0) 6= (0,0) and I0a0 \ Ia 6= /0, it is known that one of the followings
is satisfied:

• (a,a0) = (1,0), Ia = /0;

• (a,a0) = (0,1), Ia0 = /0;

• (a,a0) = (0,0).

Then we have
Â

J2{J1,...,Jb}
qi2max(J)

nJ = Â
J02{J01,...,J

0
b0}

qi2max(J0)

n 0
J0 .

for all 1  i  d. Assume that (b,b0) 6= (0,0) and Jb \ J0b0 6= /0. Then there exists a
maximal element qi0 of Jb with qi0 /2 J0b0 . Since qi0 /2 J0b0 , one has

0 < Â
J2{J1,...,Jb}
qi02max(J)

nJ 6= Â
J02{J01,...,J

0
b0}

qi02max(J0)

n 0
J0 = 0,

but this is a contradiction. By considering the case where (b,b0) 6= (0,0) and J0b0 \Jb 6= /0,
it is known that one of the followings is satisfied:

• (b,b0) = (1,0),Jb = /0;
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• (b,b0) = (0,1),J0b0 = /0;

• (b,b0) = (0,0).

Hence one has u = zaxx
/0 yn

/0 and v = za 0
xx 0

/0 yn 0
/0 , where x ,x 0,n ,n 0 � 0. Since x /0y /0 2

hin<2
OC

(G 2
OC )i and since u and v are relatively prime, we may assume that n = x 0 = 0.

Thus u = zaxx
/0 and v = za 0

yn 0
/0 . Note that either a = 0 or a 0 = 0. Hence by comparing

the degree of td+1, it is known that x = n 0 = a = a 0 = 0, contradiction.

Proposition 9.35. Work with the same situation as above. Then G 2
CC is a Gröbner basis

of IW(CP,CQ) with respect to <2
CC .

Proof. We can show that the assertion follows by a similar way in the proof of Propo-
sition 9.35.

Finally, we show Theorem 9.32.

Proof of Theorem 9.32. It is easy to show that W(OP,OQ), W(OP,CQ) and W(CP,CQ)

are spanning. By Lemma 8.4 and Propositions 9.33, 9.34, 9.35, the assertion follows.

9.3.2 Their d -polynomials and volumes

In this subsection, we consider combinatorial properties of these polytopes, especially,
the d polynomials and the volume of W(OP,CQ), W(OP,CQ) and W(OP,CQ), for finite
posets P = {p1, . . . , pd} and Q = {q1, . . . ,qd}. In fact, we show the following theorem.

Theorem 9.36 ([49, Theorem 1.4]). Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite
poset. We set P0 = {pd+1}�P and Q0 = {qd+1}�Q. If P and Q possess a common lin-
ear extension, then all of W(OP,OQ), W(OP,CQ), W(CP,CQ), G(OP0 ,OQ0), G(OP0 ,CQ0)

and G(CP0 ,CQ0) have the same d polynomial. In particular, these polytopes have the
same volume.

Here, we put
R2

OO := K2[OO]/in<2
OO

(IW(OP,OQ)),

R2
OC := K2[OC ]/in<2

OC
(IW(OP,CQ)),

R2
C C := K2[C C ]/in<2

C C
(IW(CP,CQ)).

Proposition 9.37. Work with the same situation as above. If P and Q possess a common
linear extension, then these rings R2

OO , R2
OC and R2

C C are isomorphic.
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Proof. By Proposition 9.33, 9.34 and 9.35, we have

R2
OO

⇠=
K2[OO]

h{xIxI0 ,yJyJ0 ,xIyJ,x /0y /0 | I, I0,J and J0 satisfy (⇤)}i ,

R2
OC

⇠=
K2[OC ]

h{xIxI0 ,ymax(J)ymax(J0),xIymax(J),x /0y /0 | I, I0,J and J0 satisfy (⇤)}i ,

R2
C C

⇠=
K2[C C ]

h{xmax(I)xmax(I0),ymax(J)ymax(J0),xmax(I)ymax(J),x /0y /0 | I, I0,J and J0 satisfy (⇤)}i ,

where the condition (⇤) is the following:

• I and I0 are poset ideals of P which are incomparable in J (P);

• J and J0 are poset ideals of Q which are incomparable in J (Q);

• There exists 1  i  d such that pi is a maximal element of I and qi is a maximal
element of J.

Hence it is easy to see that the ring homomorphism j : R2
OC ! R2

C C by setting j(xI) =

xmax(I), j(ymax(J)) = ymax(J) and j(z) = z is an isomorphism. Similarly, if P and Q
possess a common linear extension, we can see that the ring homomorphism j 0

: R2
OO !

R2
OC by setting j 0

(xI) = xI , j 0
(yJ) = ymax(J) and j 0

(z) = z is an isomorphism. Hence it
is known that R2

OO
⇠= R2

OC
⇠= R2

C C , as desired.

Now, we prove Theorem 9.36.

Proof of Theorem 9.36. By Theorem 9.32, it is known that that W(OP,OQ), W(OP,CQ)

and W(CP,CQ) possess the integer decomposition property. Hence the Ehrhart polyno-
mial of W(OP,OQ) (resp. W(OP,CQ) and W(CP,CQ)) is equal to the Hilbert function
of K[W(OP,OQ)] (resp. K[W(OP,CQ)] and K[W(CP,CQ)]). By Proposition 9.37, ROO ,
ROC and RC C have the same Hilbert function. Hence by Lemma 8.5, K[W(OP,OQ)],
K[W(OP,CQ)] and K[W(CP,CQ)] also have the same Hilbert function. On the other
hand, in the proof of Proposition 9.33, it is known that W(OP,OQ)=G(OP0 ,OQ0). Hence
by Theorem 9.8, we have the desired conclusion.

Finally, we give a combinatorial formula to compute the volume of these polytopes in
terms of the underlying finite posets P and Q.

By Theorems 9.14 and 9.36, we obtain the following theorem.
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Theorem 9.38 ([49, Theorem 3.4]). Let P = {p1, . . . , pd} and Q = {q1, . . . ,qd} be finite
posets, and set P0 = {pd+1}�P and Q0 = {qd+1}�Q. If P and Q possess a common
linear extension, then we have

Vol(W(CP,CQ)) = Â
W⇢[d+1]

e(DW (P0,Q0)).

9.3.3 Examples

In this subsection, we give some curious examples of reflexive polytopes.

First, we consider a difference of the class of G(P,Q) and the class of W(P,Q). It is
known that the class of W(OP,OQ) is included in that of G(OP,OQ).

Example 9.39. Let P be the finite poset as follows,

P: t
t

t
t
tt

p6p5

p4p3

p2p1

@

@

@

@

�

�

�

�

�

�

�

�

@

@

@

@

For any finite poset P0 with 7 elements, it is known that the f -vector of W(CP,CP) is
not equal to that of G(OP0 ,OP0) and G(CP0 ,CP0). Hence W(CP,CP) is not unimodularly
equivalent to G(OP0 ,OP0) and G(CP0 ,CP0).

By this example, we know that the class of W(CP,CQ) is not included in that of G(OP,OQ),
G(OP,CQ) and G(CP,CQ). Similarly, the class of W(OP,CQ) is included in none of the
above classes. This fact says that the class of W(OP,CQ) and that of W(CP,CQ) are new
classes of reflexive polytopes which possess the integer decomposition property.

Example 9.40. Let P be the finite poset as in Example 9.39 and P0 = {p7}�P. Also,
we let P1,P2 and P3 be the finite posets as follows:
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P1: t
t

t
t

tt

p6p5

p4p3

p2p1

p7t

@

@

@

@

�

�

�

�
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A
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A
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A

A

A

�

�

�

�

�

�

�

�

P2: t

t

t

t
tt

p6p5

p4p3

p2p1

p7t

�

�

�

�

@

@

@

@

A

A

A

A

A

A

A

A

�

�

�

�

�

�

�

�

P3:

t
t

t
t
tt

p6p5

p4p3

p2p1

p7t

@

@

@

@

�

�

�

�

�

�

�

�

@

@

@

@
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A

A

A

�

�

�

�

Then we have

G(CP0 ,CP0) = G(CP1 ,CP1) = G(CP2 ,CP2) = G(CP3 ,CP3).

Hence it is known that the 11 reflexive polytopes

W(OP,OP),W(OP,CP),W(CP,CP),

G(OP0 ,CP0),G(CP0 ,CP0),

G(OP1 ,OP1),G(OP2 ,OP2),G(OP3 ,OP3),

G(OP1 ,CP1),G(OP2 ,CP2),G(OP3 ,CP3)

possess the integer decomposition property and have the same Ehrhart polynomial.
However, these polytopes are not unimodularly equivalent each other.

By these five classes of reflexive polytopes with the integer decomposition property, we
can obtain several interesting examples. From this example, one of the future problem
is to discuss how many reflexive polytopes which have the same d -polynomial.

Finally, we give some examples of this problem.

Example 9.41. Let P ⇢ Rd be the reflexive polytope of dimension d whose vertices
are followings:

e1, . . . ,ed,�e1 � · · ·� ed.

Then we have d (P, t) = 1+ t + · · ·+ td . On the other hand, every reflexive polytope of
dimension d whose d -polynomial is equal to 1+ t+ · · ·+ td is unimodularly equivalemt
to P .

Example 9.42. By checking any reflexive polytopes of dimension 2, we obtain follow-
ings:

• The number of reflexive polytopes whose d -polynomials equal 1+ t + t2 is 1;
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• The number of reflexive polytopes whose d -polynomials equal 1+2t + t2 is 3;

• The number of reflexive polytopes whose d -polynomials equal 1+3t + t2 is 2;

• The number of reflexive polytopes whose d -polynomials equal 1+4t + t2 is 4;

• The number of reflexive polytopes whose d -polynomials equal 1+5t + t2 is 2;

• The number of reflexive polytopes whose d -polynomials equal 1+6t + t2 is 3;

• The number of reflexive polytopes whose d -polynomials equal 1+7t + t2 is 1.
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Chapter 10

Reflexive polytopes arising from

perfect graphs

In this chapter, the study on G(P,Q) and W(P,Q) will be done when each of P and
Q is stable set polytopes, which are lattice polytopes arising from finite simple graphs.
This chapter is organized as follows. In Section 10.1, we recall what perfect graphs are
and finite posets and introduce the stable set polytopes of finite simple graphs. In Sec-
tion 10.2, we give a class of reflexive polytope with the integer decomposition property
which arise from perfect graphs. In Section 10.3, we consider the d -polynomials and
volumes of these reflexive polytopes. Finally, in Section 10.4, we give some curious
examples.

10.1 Perfect graphs and stable set polytopes

In this section, we recall what perfect graphs are and finite posets and introduce the
stable set polytopes of finite simple graphs. Let G be a finite simple graph on the
vertex set [d] and E(G) the set of edges of G. (A finite graph G is called simple if
G possesses no loop and no multiple edge.) A subset W ⇢ [d] is called stable if, for
all i and j belonging to W with i 6= j, one has {i, j} 62 E(G). We remark that a stable
set is often called an independent set. A clique of G is a subset W ⇢ [d] which is a
stable set of the complementary graph G of G. The clique number w(G) of G is the
maximal cardinality of cliques of G. The chromatic number c(G) of G is the smallest
integer t � 1 for which there exist stable set W1, . . . ,Wt of G with [d] = W1 [ · · ·[Wt .
In general, it follows that w(G)  c(G). A finite simple graph G is said to be perfect
([20]) if, for any induced subgraph H of G including G itself, one has w(H) = c(G).
The perfect graphs include many important classes of graphs, for example, chordal
graphs and comparability graphs. Moreover, it is known that the complementary graph
of a perfect graph is perfect ([20]). This characterization of perfect graphs is called the
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perfect graph theorem. Recently, a stronger characterization of perfect graphs, which is
called the strong perfect graph theorem, is known. An odd hole is an induced odd cycle
of length � 5 and an odd antihole is the complementary graph of an odd hole.

Lemma 10.1 ([20, Strong Perfect Graph Theorem]). A finite simple graph G is perfect
if and only if G has no odd hole and no odd antihole as induced subgraph.

Next, we introduce the stable set polytopes of finite simple graphs. Let S(G) denote
the set of stable sets of G. One has /0 2 S(G) and {i} 2 S(G) for each i 2 [d]. The
stable set polytope QG ⇢ Rd of G is the (0,1)-polytope which is the convex hull of
{r(W ) : W 2 S(G)} in Rd . Then the dimension QG is equal to d. It is known that
every chain polytope is a stable set polytope. In fact, let P = {p1, . . . , pd} be a finite
poset. Then its comparability graph GP is the finite simple graph on [d] such that
{i, j} 2 E(GP) if and only if pi < p j or p j < pi. Then a stable set of GP corresponds
to an antichain of P. Moreover, one has CP = QGP . Since every comparability graph is
perfect, the class of chain polytopes is contained in the class of the stable set polytopes
of perfect graphs. Finally, we give a characterization of perfect graphs in terms of the
stable set polytopes.

Lemma 10.2 ([72, Example 1.3 (c)]). Let G be a finite simple graph on [d]. Then G is
perfect if and only if QG is compressed.

10.2 Squarefree Gröbner basis

In this section, we give a class of reflexive polytope with the integer decomposition
property which arise from perfect graphs. In fact, we show the following.

Theorem 10.3 ([50, Theorem 1.1]). Let G1 and G2 be finite simple graphs on [d].

(a) ([74]) The following conditions are equivalent:

(i) The lattice polytope G(QG1 ,QG2) is reflexive;

(ii) The lattice polytope G(QG1 ,QG2) is reflexive and possesses the integer de-
composition property;

(iii) Both G1 and G2 are perfect.

(b) The following conditions are equivalent:

(i) The lattice polytope W(QG1 ,QG2) possesses the integer decomposition prop-
erty;

(ii) The lattice polytope W(QG1 ,QG2) is reflexive and possesses the integer de-
composition property;
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(iii) Both G1 and G2 are perfect.

In order to prove this theorem, we recall the toric ideals of integer matrices. Let
K[t±1,s] = K[t±1

1 , . . . , t±1
d ,s] denote the Laurent polynomial ring in d+1 variables over

a field K. For an integer vector a 2 Zd , let a
> be its transpose vector. Given an integer

d ⇥n matrix A = (a>1 , . . . ,a
>
n ), where a

>
j = (a1 j, . . . ,ad j)

> is the jth column of A, then
we define the toric ring K[A] of A as follows:

K[A] = K[ta1s, . . . , tans]⇢ K[t±1,s].

Let K[x] = K[x1, . . . ,xn] be the polynomial ring in n variables over K and define the
surjective ring homomorphism p : K[x]! K[A] by setting p(x j) = t

a j s for j = 1, . . . ,n.
The toric ideal of A is the kernel IA of p .

Let Zd⇥n
�0 denote the set of d ⇥n integer matrices (ai j) 1id

1 jn
with each ai j � 0. In [74],

the concept that A 2Zd⇥n
�0 and B 2Zd⇥m

�0 are of of harmony is introduced. For an integer

vector a = (a1, . . . ,ad) 2 Zd , let a
(+) = (a(+)

1 , . . . ,a(+)
d ),a(�) = (a(�)

1 , . . . ,a(�)
d ) 2 Zd

�0

where a(+)
i = max{0,ai} and a(�)

i = max{0,�ai}. Note that a = a
(+)� a

(�) holds in
general. Given A 2 Zd⇥n

�0 and B 2 Zd⇥m
�0 such that the zero vector 0

>
d is a column in each

of A and B, we say that A and B are of harmony if the following condition is satisfied:
Let a

> be a column of A and b
> that of B. Let c = a�b 2 Zd . If c = c

(+)� c
(�), then

(c(+))> is a column vector of A and (c(�))> is a column vector of B.

Now we prove the following theorem.

Theorem 10.4 ([50, Theorem 2.1]). Let A=(a>1 , . . . ,a
>
n )2Zd⇥n

�0 and B=(b>
1 , . . . ,b

>
m)2

Zd⇥m
�0 , where an = bm = 0d 2 Zd, be of harmony. Let K[x] = K[x1, . . . ,xn] and K[y] =

K[y1, . . . ,ym] be the polynomial rings over a field K. Suppose that in<A(IA)⇢ K[x] and
in<B(IB)⇢ K[y] are squarefree with respect to reverse lexicographic orders <A on K[x]

and <B on K[y] respectively satisfying the condition that

• xi <A x j if for each 1  k  d aki  ak j.

• xn is the smallest variable with respect to <A.

• ym is the smallest variable with respect to <B.

Let (�B,A)⇤ denote the (d +1)⇥ (n+m+1) integer matrix

✓
�b

>
1 · · · �b

>
m a

>
1 · · · a

>
n 0

>
d

�1 · · · �1 1 · · · 1 0

◆
.

Then the toric ideal I(�B,A)⇤ of (�B,A)⇤ possesses a squarefree initial ideal with respect
to a reverse lexicographic order whose smallest variable corresponds to the column
0
>
d+1 of (�B,A)⇤.
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Proof. Let I(�B,A)⇤ ⇢K[x,y,z] =K[x1, . . . ,xn,y1, . . . ,ym,z] be the toric ideal of (�B,A)⇤

defined by the kernel of

p⇤ : K[x,y,z]! K[(�B,A)⇤]⇢ K[t±1
1 , . . . , t±1

d+1,s]

with p⇤(z) = s, p⇤(xi) = t
aitd+1s for i= 1, . . . ,n and p⇤(y j) = t

�b j t�1
d+1s for j = 1, . . . ,m.

Assume that the reverse lexicographic orders <A and <B are induced by the orderings
xn <A · · · <A x1 and ym <B · · · <B y1. Let <rev be the reverse lexicographic order on
K[x,y,z] induced by the ordering

z <rev xn <rev · · ·<rev x1 <rev ym <rev · · ·<rev y1.

In general, for an integer vector a = (a1, . . . ,ad) 2 Zd , we let supp(a) = {i : 1  i 
d,ai 6= 0}. Set the following:

E = {(i, j) : 1  i  n, 1  j  m, supp(ai)\ supp(b j) 6= /0}.

If c = ai �b j with (i, j) 2 E , then it follows that c
(+) 6= ai and c

(�) 6= b j. Since A and
B are of harmony, we know that (c(+))> is a column of A and (c(�))> is a column of B.
It follows that f = xiy j � xky` (6= 0) belongs to I(�B,A)⇤ , where c

(+) = ak and c
(�) = b`.

Then since for each 1  c  d, ack  aci, one has xk <A xi and in<rev( f ) = xiy j. Hence

{xiy j : (i, j) 2 E }⇢ in<rev(I(�B,A)⇤).

Moreover, it follows that xnym � z2 2 I(�B,A)⇤ and xnym 2 in<rev(I(�B,A)⇤). We set

M = {xnym}[{xiy j : (i, j) 2 E }[MA [MB (⇢ in<rev(I(�B,A)⇤)),

where MA (resp. MB) is the minimal set of squarefree monomial generators of in<A(IA)

(resp. in<B(IB)). Let G be a finite set of binomials belonging to I(�B,A)⇤ with M =

{in<rev( f ) : f 2 G }.

Now, we prove that G is a Gröbner base of I(�B,A)⇤ with respect to <rev. By the
following fact ([73, (0.1), p. 1914]) on Gröbner bases, we must prove the follow-
ing assertion: If u and v are monomials belonging to K[x,y,z] with u 6= v such that
u /2 h{in<(g) : g 2 G }i and v /2 h{in<(g) : g 2 G }i, then p⇤(u) 6= p⇤(v).

Suppose that there exists a nonzero irreducible binomial g = u � v be belonging to
I(�B,A)⇤ such that u /2 h{in<(g) : g 2 G }i and v /2 h{in<(g) : g 2 G }i. Write

u =

 

’
p2P

xip
p

! 

’
q2Q

y jq
q

!
, v = za

 

’
p02P0

x
i0p0
p0

! 

’
q02Q

y
j0q0
q0

!
,

where P and P0 are subsets of [n], Q and Q0 are subsets of [m], a is a nonnegative
integer, and each of ip, jq, i0p0 , j0q0 is a positive integer. Since g = u�v is irreducible, one
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has P\P0 = Q\Q0 = /0. Furthermore, by the fact that each of xiy j with (i, j) 2 E can
divide neither u nor v, it follows that

 
[

p2P
supp(ap)

!
\
 

[

q2Q
supp(bq)

!
=

0

@ [

p02P0
supp(ap0)

1

A\

0

@ [

q02Q0
supp(bq0)

1

A= /0.

Hence, since p⇤(u) = p⇤(v), it follows that

Â
p2P

ipap = Â
p02P0

i0p0ap0 , Â
q2Q

jqbq = Â
q02Q0

j0q0bq0 .

Let x = Âp2P ip, x 0 = Âp02P0 i0p0 , n = Âq2Q jq, and n 0 = Âq02Q0 j0q0 . Then x +n = x 0+

n 0+a . Since a � 0, it follows that either x � x 0 or n � n 0. Assume that x > x 0. Then

h = ’
p2P

xip
p � xx�x 0

n

 

’
p02P0

x
i0p0
p0

!

belongs to IA and I(�B,A)⇤ . If h 6= 0, then in<A(h) = in<rev(h) = ’p2P xip
p divides u, a

contradiction. Hence P = {n} and Q = /0. If x = x 0, then the binomial

h0 = ’
p2P

xip
p � ’

p02P0
x

i0p0
p0

belongs to IA and I(�B,A)⇤ . Moreover, if h0 6= 0, then either ’p2P xip
p or ’p02P0 x

i0p0
p0 must

belong to in<A(IA) and in<rev(I(�B,A)⇤). This contradicts the fact that each of u and v can
be divided by none of the monomials belonging to M . Hence h0 = 0 and P = P0 = /0.
Similarly, Q = {m} and Q0 = /0, or Q = Q0 = /0. Hence we know that g = xk

ny`m � za ,
where k and ` are nonnegative integers. Since u cannot be divided by xnym, it follows
that g = 0, a contradiction. Therefore, G is a Gröbner base of in<rev(I(�B,A)⇤) with
respect to <rev.

Let P ⇢ Rd be a lattice polytope of dimension d with P \Zd = {a1, . . . ,an}. Set
A = (a>1 , . . . ,a

>
n ). Then the toric ring K[P] and the toric ideal IP of P coincide with

K[A] and IA. By Lemma 8.4 and Theorem 10.4, we obtain the following corollary.

Corollary 10.5. Work with the same situation as in Theorem 10.4. Let P ⇢ Rd+1 be
the lattice polytope of dimension d +1 with

P \Zd+1 = {(a1,1), . . . ,(an,1),(�b1,�1), . . . ,(�bm,�1),0d+1} .

Suppose that 0d+1 2 Zd+1 belongs to the interior of P and P is spanning. Then P is
a reflexive polytope which possesses the integer decomposition property.

Finally, we prove Theorem 10.3.
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Proof of Theorem 10.3. For a finite simple graph G on [d], let AS(G) be the matrix whose
columns are those (r(W ))> with W 2 S(G). If W 2 S(G), then each subset of W is
also a stable set of G. This means that S(G) is a simplicial complex on [d]. Hence
it is easy to show that AS(G1) and AS(G2) are of harmony. Moreover, by Lemma 10.2,
for any perfect graph G, QG is compressed. Let P ⇢ Rd+1 be the convex hull of
{±(e1 + ed+1), . . . ,±(ed + ed+1),±ed+1}. Then it follows that 0d+1 2 Zd+1 belongs to
the interior of P and P is spanning. Moreover, we have P ⇢ W(QG1 ,QG2). This
implies that 0d+1 2 Zd+1 belongs to the interior of W(QG1 ,QG2) and W(QG1 ,QG2) is
spanning. On the other hand, one has

W(QG1 ,QG2)\{(a1, . . . ,ad+1) 2 Rd+1 : ad+1 = 0}= 1
2
(QG1 �QG2)⇥{0}.

Since
1
2
(QG1 �QG2)\Zd = {0d}, we obtain

W(QG1 ,QG2)\Z
d+1 =

n
(a,1) : a 2 QG1 \Zd

o
[
n
(�b,�1) : b 2 QG2 \Zd

o
[{0d+1}.

Hence, by Corollary 10.5, if G1 and G2 are perfect, W(QG1 ,QG2) is a reflexive polytope
which possesses the integer decomposition property.

Next, we prove that if G1 is not perfect, then W(QG1 ,QG2) does not possess the integer
decomposition property. Assume that G1 is not perfect and W(QG1 ,QG2) possesses the
integer decomposition property. By Lemma 10.1, G1 possesses either an odd hole or an
odd antihole. Suppose that G1 possesses an odd hole C of length 2`+ 1, where ` � 2.
By renumbering the vertex set, we may assume that the edge set of C is {{i, i+1} : 1 
i  2`}[{1,2`+1}. Then the maximal stable sets of C in [2`+1] are

S1 = {1,3, . . . ,2`�1},S2 = {2,4, . . . ,2`}, . . . ,S2`+1 = {2`+1,2,4, . . . ,2`�2}

and each i 2 [2`+ 1] appears ` times in the above list. For 1  i  2`+ 1, we set
vi = Â j2Si e j + ed+1. Then one has

a =
v1 + · · ·+v2`+1 +(�ed+1)

`
= e1 + · · ·+ e2`+1 +2ed+1.

Since 2 < (2`+ 2)/`  3, a 2 3W(QG1 ,QG2)\Zd+1. Hence there exist a1,a2,a3 2
W(QG1 ,QG2)\Zd+1 such that a = a1 + a2 + a3. Then we may assume that a1,a2 2
QC ⇥{1} and a3 = 0d+1. However, since the maximal cardinality of the stable sets of
C in [2`+1] equals `, a contradiction.

Suppose that G1 possesses an odd antihole of length 2`+1, where `� 2. Similarly, we
may assume that the edge set of C is {{i, i+ 1} : 1  i  2`}[ {1,2`+ 1}. Then the
maximal stable sets of C are the edges of C. For 1  i  2`, we set wi = ei+ei+1+ed+1
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and set w2`+1 = e1 + e2`+1 + ed+1. Then one has

b =
w1 + · · ·+w2`+1 +(�ed+1)

2
= e1 + · · ·+ e2`+1 + `ed+1

and b 2 (`+ 1)W(QG1 ,QG2). Hence there exist b1, . . . ,b`+1 2 W(QG1 ,QG2)\Zd+1

such that b = b1 + · · ·+ b`+1. Then we may assume that b1, . . . ,b` 2 QC ⇥ {1} and
b`+1 = 0d+1. However, since the maximal cardinality of the stable sets of C in [2`+1]
equals 2, a contradiction.

Therefore, if W(QG1 ,QG2) possesses the integer decomposition property, then G1 and
G2 are perfect, as desired.

It would, of course, be of interest to find a complete characterization for W(QG1 ,QG2)

to be reflexive. For a finite simple graph G on [d], W(QG) is called the Hansen polytope
of G. This polytope possesses nice properties (e.g., centrally symmetric and 2-level) and
is studied in [27, 75]. Especially, in [27], it is shown that if G is perfect, then W(QG)

is reflexive. Theorem 10.6 (b) says that G is perfect if and only if the Hansen polytope
W(QG) possesses the integer decomposition property.

10.3 d -polynomials

In this section, we consider the d -polynomials and the volumes of W(QG1 ,QG2) and
G(QG1 ,QG2) for perfect graphs G1 and G2. The suspension of a finite simple graph G
on [d] is the finite simple graph bG on [d+1] with E( bG) = E(G)[{{i,d+1} : i 2 [d]}.
Our main theorem of this section is the following.

Theorem 10.6 ([50, Theorem 1.2]). Let G1 and G2 be finite perfect simple graphs on
[d]. Then one has

d (W(QG1 ,QG2), t) = d (G(QcG1
,QcG2

), t) = (1+ t)d (G(QG1 ,QG2), t).

Thus in particular

Vol(W(QG1 ,QG2)) = Vol(G(QcG1
,QcG2

)) = 2 ·Vol(G(QG1 ,QG2)).

We obtain this Theorem from the following.

Theorem 10.7 ([50, Theorem 3.1]). Work with the same situation as in Theorem 10.4.
Let P ⇢ Rd be the lattice polytope with P \Zd = {a1, . . . ,an} and Q ⇢ Rd the lat-
tice polytope with Q\Zd = {b1, . . . ,bm}. Suppose that G(P,Q) and W(P,Q) are
spanning,

G(P,Q)\Zd = {a1, . . . ,an�1,�b1, . . . ,�bm�1,0d}

136



and

W(P,Q)\Zd+1 = {(a1,1), . . . ,(an,1),(�b1,�1), . . . ,(�bm,�1),0d+1} .

Then we obtain
d (W(P,Q),l ) = (1+l )d (G(P,Q),l ).

In particular,
Vol(W(P,Q)) = 2 ·Vol(G(P,Q)).

Proof. Set R = conv({G(P,Q)⇥ {0},±ed+1}). Then it follows from [12, Theorem
1.4] that d (R, t) = (1+t)d (G(P,Q), t). Moreover, by [74, Theorem 1.1] and Theorem
10.4, R and W(P,Q) possess the integer decomposition property. Hence we should
show that K[R] and K[W(P,Q)] have the same Hilbert function.

Now, use the same notation as in the proof of Theorem 10.4. Then we have

K[x,y,z]
in<ref(IW(P,Q))

=
K[x,y,z]
hM i .

Set

a
0
i =

8
>><

>>:

(ai,0), 1  i  n�1,

ed+1, i = n,

0d+1, i = n+1,

and b
0
j =

8
>><

>>:

(bi,0), 1  j  m�1,

ed+1, j = m,

0d+1, j = m+1.

Then it is easy to show that A0 = (a0>1 , . . . ,a0>n+1) and B0 = (b0>
1 , . . . ,b0>

m+1) are of har-
mony. Moreover, in<B0 (IB0)⇢K[y1, . . . ,ym+1] and in<A0 (IA0)⇢K[x1, . . . ,xn+1] are square-
free with respect to reverse lexicographic orders <A0 on K[x1, . . . ,xn+1] and <B0 on
K[y1, . . . ,ym+1] induced by the orderings xn+1 <A0 xn <A0 · · ·<A0 x1 and ym+1 <B0 ym <B0

· · ·<B0 y1. Now, we introduce the following:

E 0 = {(i, j) : 1  i  n, 1  j  m, supp(a0i)\ supp(b0
j) 6= /0}.

Then we have E 0 = E [{(n,m)}. Let MA0 (resp. MB0) be the minimal set of squarefree
monomial generators of in<A0 (IA0) (resp. in<B0 (IB0)). Then it follows that MA0 = MA
and MB0 = MB. This says that M = E 0 [MA0 [MB0 . By the proof of [74, Theorem
1.1], we obtain in<rev(IR) = hM i ⇢ K[x,y,z]. Hence it follows that

K[x,y,z]
in<rev(IW(P,Q))

=
K[x,y,z]

in<rev(IR)
.

Therefore, K[R] and K[W(P,Q)] have the same Hilbert function, as desired.

Now, we prove Theorem 10.6.
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Proof of Theorem 10.6. For any finite simple graph G on [d], we have S( bG) = S(G)[
{d + 1}. Hence it follows that G(QcG1

,QcG2
) = conv({G(QG1 ,QG1)⇥ {0},±ed+1}).

Therefore, by Theorem 10.7, we obtain

d (W(QG1 ,QG2 , t) = d (G(QcG1
,QcG2

), t) = (1+ t)d (G(QG1 ,QG2), t),

as desired.

10.4 Examples

In this section, we give some curious examples of G(QG1 ,QG2) and W(QG1 ,QG2).
First, the following example says that even though G1 and G2 are not perfect graphs,
W(QG1 ,QG2) may be reflexive.

Example 10.8. Let G be the finite simple graph as follows:

G: t

tt

t tA

A

A

A

A

�

�

�

�

�@

@

@

@

@

�

�

�

�

�

Namely, G is a cycle of length 5. Then G is not perfect. Hence G(QG,QG) is not
reflexive. However, W(QG,QG) is reflexive. In fact, we have

d (G(QG,QG), t) = 1+15t +60t2 +62t3 +15t4 + t5,

d (W(QG,QG), t) = 1+16t +75t2 +124t3 +75t4 +16t5 + t6.

Moreover, G(QG,QG) possesses the integer decomposition property, but W(QG,QG)

does not possess the integer decomposition property.

For this example, G(QG,QG) possesses the integer decomposition property. Next ex-
ample says that if G1 and G2 are not perfect, G(QG1 ,QG2) may not possess the integer
decomposition property.

Example 10.9. Let G be a finite simple graph whose complementary graph G is as
follows:
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G: t t
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Then G is not perfect. Hence G(QG,QG) is not reflexive. However, W(QG,QG) is
reflexive. Moreover, in this case, G(QG,QG) and W(QG,QG) do not possess the integer
decomposition property.

For any finite simple graph G with at most 6 vertices, W(QG,QG) is always reflexive.
However, in the case of finite simple graphs with more than 6 vertices, we obtain a
different result.

Example 10.10. Let G be the finite simple graph as follows:

G: t t t

t

t

t t@

@

@

@

@

�

�

�

�

�

Namely, G is a cycle of length 7. Then G is not perfect. Hence G(QG,QG) is not
reflexive. Moreover, W(QG,QG) is not reflexive. In fact, we have

d (G(QG,QG), t) = 1+49t +567t2 +1801t3 +1799t4 +569t5 +49t6 + t7,

d (W(QG,QG), t) = 1+50t +616t2 +2370t3 +3598t4 +2368t5 +618t6 +50t7 + t8.

Finally, we show that even though the Ehrhart d -polynomial of W(QG1 ,QG2) coin-
cides with that of G(QcG1

,QcG2
), W(QG1 ,QG2) may not be unimodularly equivalent to

G(QcG1
,QcG2

).
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Example 10.11. Let G be the finite simple graph as follows:

G: t t

tt

t t
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H
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�
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H
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H
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H
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H
H

H

Namely, G is a (2,2,2)-complete multipartite graph. Then G is perfect. Hence we know
that W(QG,QG) and G(Q bG,Q bG) have the same Ehrhart d -polynomial and the same
volume. However, W(QG,QG) has 54 facets and G(Q bG,Q bG) has 432 facets. Hence,
W(QG,QG) and G(Q bG,Q bG) are not unimodularly equivalent. Moreover, for any finite
simple graph G0 on {1, . . . ,7} except for bG, the Ehrhart d -polynomial of G(QG0 ,QG0)

is not equal to that of W(QG,QG).
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Chapter 11

Reflexive polytopes arising from

perfect graphs and posets

In this chapter, the study on G(P,Q) and W(P,Q) will be done, when P is the order
polytope OP of a finite poset P = {p1, . . . , pd} and Q is the stable set polytope QG
of a finite simple graph G on [d]. In particular, we give two new classes of reflexive
polytopes with the integer decomposition property which arise from order polytopes
and stable set polytopes. In fact, we show the following.

Theorem 11.1 ([51, Theorem 1.2]). Let G be a finite simple graph on [d]. Then the
following conditions are equivalent:

(i) G(OP,QG) is a reflexive polytope for some finite poset P = {p1, . . . , pd};

(ii) G(OP,QG) is a reflexive polytope for all finite poset P = {p1, . . . , pd};

(iii) W(OP,QG) possesses the integer decomposition property for some finite poset
P = {p1, . . . , pd};

(iv) W(OP,QG) possesses the integer decomposition property for all finite poset P =

{p1, . . . , pd};

(v) G is perfect.

Furthermore, if G is perfect, then each of G(OP,QG) and W(OP,QG) is a reflexive
polytope with the integer decomposition property for all finite poset P = {p1, . . . , pd}.

A proof of Theorem 11.1 will be given in Sections 11.1 and 11.2. Furthermore, in Sec-
tion 11.3, the discussion on d -polynomials of these reflexive polytopes will be achieved.
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11.1 Type G

In this section, we prove the equivalence (i) , (ii) , (v) of Theorem 11.1. In fact, we
prove the following proposition.

Proposition 11.2. Let G be a finite simple graph on [d]. Then the following conditions
are equivalent:

(i) G(OP,QG) is a reflexive polytope for some finite poset P = {p1, . . . , pd};

(ii) G(OP,QG) is a reflexive polytope for all finite poset P = {p1, . . . , pd};

(iii) G is perfect.

In particular, if G is perfect, then G(OP,QG) possesses the integer decomposition prop-
erty for all finite poset P = {p1, . . . , pd}.

Proof. ((iii) ) (ii)) Suppose that G is perfect. Let

K[OQ] = K[{xI} /0 6=I2J (P)[{yC} /0 6=C2S(G)[{z}]

denote the polynomial ring over K and define the surjective ring homomorphism p :
K[OQ]! K[G(OP,QG)]⇢ K[t±1

1 , . . . , t±1
d ,s] by the following:

• p(xI) = t
r(I)s, where /0 6= I 2 J (P);

• p(yC) = t
�r(C)s, where /0 6=C 2 S(G);

• p(z) = s.

Then the toric ideal IG(OP,QG) of G(OP,QG) is the kernel of p .

Let <OP and <QG denote reverse lexicographic orders on K[O] = K[{xI} /0 6=I2J (P) [
{z}] and K[Q] = K[{yC} /0 6=C2S(G)[{z}] satisfying

• z <OP xI and z <QG yC;

• xI0 <OP xI if I0 ⇢ I;

• yC0 <QG yC if C0 ⇢C,
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where I, I0 2 J (P) \ { /0} with I 6= I0 and C,C0 2 S(G) \ { /0} with C 6= C0. From Lem-
mas 9.2 and 10.2, we know that in<OP

(IOP) and in<QG
(IQG) are squarefree. Let MOP

and MQG be the minimal sets of squarefree monomial generators of in<OP
(IOP) and

in<QG
(IQG). Then Lemma 9.2, it follows that

MOP = {xIxI0 : I, I0 2 J (P), I * I0, I + I0}. (11.1)

Let < be a reverse lexicographic order on K[OQ] satisfying

• z < yC < xI;

• xI0 < xI if I0 ⇢ I;

• yC0 < yC if C0 ⇢C,

where I, I0 2 J (P)\{ /0} with I 6= I0 and C,C0 2 S(G)\{ /0} with C 6=C0, and set

M = MOP [MQG [{xIyC : I 2 J (P),C 2 S(G),max(I)\C 6= /0}.

Let G be a finite set of binomials belonging to IG(OP,QG) with M = {in<(g) : g 2 G }.

Now, we prove that G is a Gröbner base of IG(OP,QG) with respect to <. Suppose that
there exists a nonzero irreducible binomial f = u�v be belonging to IG(OP,QG) such that
u /2 h{in<(g) : g 2 G }i and v /2 h{in<(g) : g 2 G }i. Write

u =

 

’
1ia

x
µIi
Ii

! 

’
1 jb

y
nCj
Cj

!
, v = za

 

’
1ia0

x
µ 0

I0i
I0i

! 

’
1 jb0

y
n 0

C0
j

C0
j

!
,

where

• I1, . . . , Ia, I01, . . . , I
0
a0 2 J (P)\{ /0};

• C1, . . . ,Cb,C0
1, . . . ,C

0
b0 2 S(G)\{ /0};

• a,a0,b,b0 and a are nonnegative integers;

• µI,µ 0
I0 ,nC,n 0

C0 are positive integers.

By (11.1), we may assume that I1 ( · · · ( Ia and I01 ( · · · ( I0a0 . If (a,a0) = (0,0), then
in<QG

( f ) = in<( f ). Hence we have (a,a0) 6= (0,0). Assume that Ia \ Ia0 6= /0. Then there
exists a maximal element i of Ia such that i /2 Ia0 . Hence we have

Â
I2{I1,...,Ia}
i2max(I)

µI � Â
C2{C1,...,Cb}

i2C

nJ =� Â
C02{C0

1,...,C
0
b0}

i2C0

n 0
C0  0.

143



This implies that there exists a stable set C 2 {C1, . . . ,Cb} such that i 2C. Then xIayC 2
M , a contradiction. Similarly, it does not follow that Ia0 \ Ia 6= /0. Therefore, G is a
Gröbner base of IG(OP,QG) with respect to <.

Thus, by Lemma 8.4, it follows that G(OP,QG) is reflexive and possesses the integer
decomposition property.

((i) ) (iii)) Suppose that G is not perfect. By Lemma 10.1, G possesses either an odd
hole or an odd antihole. First, suppose that G possesses an odd hole C of length 2`+1,
where ` � 2. By renumbering the vertex set, we may assume that the edge set of C is
{{i, i+ 1} : 1  i  2`}[ {1,2`+ 1}. Then the hyperplane H 0 ⇢ Rd defined by the
equation z1 + · · ·+ z2`+1 = �` is a supporting hyperplane of G(OP,QG). Let F be a
facet of G(OP,QG) with H 0 \G(OP,QG) ⇢ F and a1z1 + · · ·+ adzd = 1 with each
ai 2R the equation of the supporting hyperplane H ⇢Rd with F ⇢H . The maximal
stable sets of C are

S1 = {1,3, . . . ,2`�1},S2 = {2,4, . . . ,2`}, . . . ,S2`+1 = {2`+1,2,4, . . . ,2`�2}

and each i 2 [2`+ 1] appears ` times in the above list. Since for each Si, we have
�Â j2Si a j = 1, it follows that �`(a1+ · · ·+a2`+1) = 2`+1. Hence a1+ · · ·+a2`+1 /2Z.
Therefore, G(OP,QG) is not reflexive.

Finally, we suppose that G possesses an odd antihole C of length 2`+ 1, where ` � 2.
Similarly, we may assume that the edge set of C is {{i, i+1} : 1  i  2`}[{1,2`+1}.
Then the hyperplane H 0 ⇢ Rd defined by the equation z1 + · · ·+ z2`+1 = �2 is a
supporting hyperplane of G(OP,QG). Let F be a facet of G(OP,QG) with H 0 \
G(OP,QG) ⇢ F and a1z1 + · · ·+ adzd = 1 with each ai 2 R the equation of the sup-
porting hyperplane H ⇢ Rd with F ⇢ H . Then since the maximal stable sets of C is
the edges of C, for each edge {i, j} of C, we have �(ai +a j) = 1. Hence it follows that
�2(a1 + · · ·+a2`+1) = 2`+1. Thus a1 + · · ·+a2`+1 /2 Z. Therefore, G(OP,QG) is not
reflexive, as desired.

Remark 11.3. Proposition 11.2 is a generalization of Theorem 9.4 (2).

11.2 Type W

In this section, we prove the equivalence (iii) , (iv) , (v) of Theorem 11.1. In fact,
we prove the following proposition.

Proposition 11.4. Let G be a finite simple graph on [d]. Then the following conditions
are equivalent:

(i) W(OP,QG) possesses the integer decomposition property for some finite poset
P = {p1, . . . , pd};
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(ii) W(OP,QG) possesses the integer decomposition property for all finite poset P =

{p1, . . . , pd};

(iii) G is prefect.

In particular, if G is perfect, then W(OP,QG) is reflexive for all finite poset P= {p1, . . . , pd}.

Proof. ((iii) ) (ii)) Suppose G is perfect. Let

K[OQ] = K[{xI}I2J (P)[{yC}C2S(G)[{z}]

denote the polynomial ring over K and define the surjective ring homomorphism p :
K[OQ]! K[W(OP,QG)]⇢ K[t±1

1 , . . . , t±1
d+1,s] by the following:

• p(xI) = t
r(I)td+1s, where I 2 J (P);

• p(yC) = t
�r(C)t�1

d+1s, where C 2 S(G);

• p(z) = s.

Then the toric ideal IW(OP,QG) of W(OP,QG) is the kernel of p .

Let <OP and <QG denote reverse lexicographic orders on K[O] = K[{xI}I2J (P)] and
K[Q] = K[{yC}C2S(G)] satisfying

• xI0 <OP xI if I0 ⇢ I;

• yC0 <QG yC if C0 ⇢C,

where I, I0 2 J (P) with I 6= I0 and C,C0 2 S(G) with C 6= C0, and MOP and MQG the
minimal sets of squarefree monomial generators of in<OP

(IOP) and in<QG
(IQG). Then

it follows that
MOP = {xIxI0 : I, I0 2 J (P), I * I0, I + I0}. (11.2)

Let < be a reverse lexicographic order on K[OQ] satisfying

• z < yC < xI;

• xI0 < xI if I0 ⇢ I;

• yC0 < yC if C0 ⇢C,
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where I, I0 2 J (P) with I 6= I0 and C,C0 2 S(G) with C 6=C0, and set

M = MOP [MQG [{xIyC : I 2 J (P),C 2 S(G),max(I)\C 6= /0}[{x /0y /0}.

Let G be a finite set of binomials belonging to IW(OP,QG) with M = {in<(g) : g 2 G }.

Now, we prove that G is a Gröbner base of IW(OP,QG) with respect to <. Suppose that
there exists a nonzero irreducible binomial f = u� v be belonging to IW(OP,QG) such
that u /2 h{in<(g) : g 2 G }i and v /2 h{in<(g) : g 2 G }i. Write

u =

 

’
1ia

x
µIi
Ii

! 

’
1 jb

y
nC j
Cj

!
, v = za

 

’
1ia0

x
µ 0

I0i
I0i

! 

’
1 jb0

y
n 0

C0
j

C0
j

!
,

where

• I1, . . . , Ia, I01, . . . , I
0
a0 2 J (P);

• C1, . . . ,Cb,C0
1, . . . ,C

0
b0 2 S(G);

• a,a0,b,b0 and a are nonnegative integers with (a,a0) 6= 0;

• µI,µ 0
I0 ,nC,n 0

C0 are positive integers.

By (11.2), we may assume that I1 ( · · ·( Ia and I01 ( · · ·( I0a0

By the same way of the proof of Proposition 11.2, we know that a = 0 and Ia0 = /0, or
a0 = 0 and Ia = /0. Suppose that a = 0 and Ia0 = /0. Then by focusing on the degree of
td+1 and s of p(u) and p(v), we have

� Â
1 jb

nCj = µ 0
/0 � Â

1 jb0
n 0

C0
j
,

Â
1 jb

nCj = a +µ 0
/0 + Â

1 jb0
n 0

C0
j
.

Hence 0 = a +2µ 0
/0 > 0, a contradiction.

Suppose that a0 = 0 and Ia = /0. Then we have

µ /0 � Â
1 jb

nCj =� Â
1 jb0

n 0
C0

j
,

µ /0 + Â
1 jb

nCj = a + Â
1 jb0

n 0
C0

j
.

Hence one obtains 2µ /0 = a . By focusing on yµ /0
/0 · f , it is easy to show that

f 0 =

 

’
1 jb

y
nCj
Cj

!
� yµ /0

/0

 

’
1 jb0

y
n 0

C0
j

C0
j

!
2 IW(OP,QG).
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Since x /0y /0 2 M , for each i, Ci 6= /0. Hence in<( f 0) = ’1 jb y
nCj
Cj

and in<( f 0) divides
u, a contradiction. Therefore, G is a Gröbner base of IW(OP,QG) with respect to <.

Thus, by Lemma 8.4, it follows that W(OP,QG) is reflexive and possesses the integer
decomposition property.

((i) ) (iii)) We can prove this by the same way of Theorem 10.3.

Remark 11.5. Proposition 11.4 is a generalization of Theorem 9.32 (2).

11.3 d -polynomials

In this section, we discuss the d -polynomials of G(OP,QG) and W(OP,QG) for a finite
poset P = {p1, . . . , pd} and a perfect graph G on [d].

The following theorem is the main result of this section.

Theorem 11.6 ([51, Theorem 1.4]). Let P = {p1, . . . , pd} be a finite poset and G a
perfect graph on [d]. Then we have

d (G(OP,QG), t) = d (G(CP,QG), t),

d (W(OP,QG), t) = d (W(CP,QG), t),

d (W(OP,QG), t) = (1+ t) ·d (G(OP,QG), t).

Proof. Let
K[C Q] = K[{xmax(I)} /0 6=I2J (P)[{yC} /0 6=C2S(G)[{z}]

denote the polynomial ring over K and define the surjective ring homomorphism p :
K[C Q]! K[G(CP,QG)]⇢ K[t±1

1 , . . . , t±1
d ] by the following:

• p(xmax(I)) = t
r(max(I))s, where /0 6= I 2 J (P);

• p(yC) = t
�r(C)s, where /0 6=C 2 S(G);

• p(z) = s.

Then the toric ideal IG(CP,QG) of G(CP,QG) is the kernel of p .

Let <CP and <QG denote reverse lexicographic orders on K[C ] =K[{xmax(I)} /0 6=I2J (P)[
{z}] and K[Q] = K[{yC} /0 6=C2S(G)[{z}] satisfying

• z <CP xmax(I) and z <QG yC;
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• xmax(I0) <CP xmax(I) if I0 ⇢ I;

• yC0 <QG yC if C0 ⇢C,

where I, I0 2 J (P) \ { /0} with I 6= I0 and C,C0 2 S(G) \ { /0} with C 6= C0. Then from
Lemma 9.3, we know that in<CP

(ICP) is squarefree. Let MCP and MQG be the minimal
sets of squarefree monomial generators of in<CP

(ICP) and in<QG
(IQG). Then from 9.3,

it follows that

MCP = {xmax(I)xmax(I0) : I, I0 2 J (P), I * I0, I + I0}. (11.3)

Let <C Q be a reverse lexicographic order on K[x,y,z] satisfying

• z <C Q yC <C Q xmax(I);

• xmax(I0) <C Q xmax(I) if I0 ⇢ I;

• yC0 <C Q yC if C0 ⇢C,

where I, I0 2 J (P)\{ /0} with I 6= I0 and C,C0 2 S(G)\{ /0} with C 6=C0, and set

MC Q = MCP [MQG [{xmax(I)yC : I 2 J (P),C 2 S(G),max(I)\C 6= /0}.

Let G be a finite set of binomials belonging to IG(CP,QG) with MC Q = {in<C Q(g) : g 2
G }. By the same way of the proof of Proposition 11.2, we can prove that G is a Gröbner
base of IW(CP,QG) with respect to <C Q.

Now, use the same notation as in the proof of Proposition 11.2. Set

ROQ =
K[OQ]

hMOQi ,RC Q =
K[C Q]

hMC Qi .

Then the Hilbert function of K[G(OP,QG)] equals that of ROQ, and the Hilbert function
of K[G(CP,QG)] equals that of RC Q. Moreover, it is easy to see that the ring homo-
morphism j : ROQ ! RC Q by setting j(xI) = xmax(I),j(yC) = yC and j(z) = z is an
isomorphism. Hence since G(OP,QG) and G(CP,QG) possess the integer decomposi-
tion property, we have

d (G(OP,QG), t) = d (G(CP,QG), t).

Similarly, we obtain

d (W(OP,QG), t) = d (W(CP,QG), t).
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Moreover, since the chain polytope CP is a stable set polytope of a perfect graph, by
Theorem 10.6, it follows that

d (W(OP,QG), t) = (1+ t) ·d (G(OP,QG), t),

as desired.

Remark 11.7. In Theorems 9.8 and 9.36, for any finite posets P and Q on [d], it is
proved that d (G(OP,CQ), t) = d (G(CP,CQ), t) and d (W(OP,CQ), t) = d (W(CP,CQ), t).
Therefore, Theorem 11.6 is a generalization of those results.
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Chapter 12

Reflexive polytopes arising from finite

simple graphs

It is known that every lattice polytope is unimodularly equivalent to a face of some
reflexive polytope ([29]). From this fact, in [29], the reflexive dimension of a lattice
polytope is introduced. For a lattice polytope P , its reflexive dimension is the smallest
integer r such that P is unimodularly equivalent to a face of a reflexive polytope of
dimension r. Computing the reflexive dimension of a lattice polytope is hard problem
in general. However, it is reasonable to determine the reflexive dimension of a (0,1)-
polytope. In fact, it follows from Chapters 9, 10 and 11 that if P is an order polytope, a
chain polytope or a stable set polytope, then its reflexive dimension equals dim(P)+1.
Hence, we ask the following question:

Question 12.1. For any (0,1)-polytope of dimension d, is its reflexive dimension equal
to d +1?

In Chapters 9, 10 and 11, by using technique on Grönbner bases, we give several classes
of reflexive polytopes. In fact, the order polytopes and the cain polytopes of finite posets
and the stable set polytopes of perfect graphs are compressed and, in particular, possess
the integer decomposition property. However, a (0,1)-polytope may not possess the
integer decomposition property. Hence we cannot solve this question for any (0,1)-
polytope by using the same methods. In this chapter, by using matrix theory, we show
this question is true for the edge polytopes of finite simple graphs, which necessarily do
not possess the integer decomposition property.

This chapter is organized as follows. In Section 12.1, we recall the definition of the
edge polytopes of finite simple graphs. In Section 12.2, we will give a new class of
reflexive polytopes arising from some class of lattice polytopes (Theorem 12.4). From
this result, we can show that every edge polytope is unimodularly equivalent to a facet
of some reflexive polytope (Corollary 12.6). Finally, in Section 12.3, we will give
a criterion to discuss when the reflexive polytopes arising from the edge polytope of
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connected finite simple graph described in Corollary 12.6 (Theorem 12.8) possess the
integer decomposition property.

12.1 Edge polytopes

In this section, we introduce the edge polytopes of finite simple graphs. Throughout this
section, we assume that every finite simple graph has no isolated vertices. Let G be a
simple graph on the vertex set V (G) = [d] and denote E(G) the edge set of G. The edge
polytope PG ⇢Rd of G is the convex hull of all vectors ei+e j such that {i, j} 2 E(G).
This means that the edge polytope of PG of G is the convex hull of all row vectors of
the incidence matrix AG of G, where AG is the matrix in {0,1}E(G)⇥[d] with

ae,v =

(
1 if v 2 e,

0 otherwise.

Moreover, the dimension of PG equals rank(A)�1. In fact,

Lemma 12.2 ([94, p. 57]). Let G be a finite simple graph on [d] and c0(G) the number
of connected bipartite components of G. Then the dimension of the edge polytope PG
of G equals d � c0(G)�1.

Every lattice polytope P is unimodularly equivalent to a full-dimensional lattice poly-
tope Q. We say that Q is a full-dimensional unimodularly equivalent copy of P . Some-
times it is convenient to work with full-dimensional lattice polytopes, i.e., lattice poly-
topes embedded in a space of their same dimension. However, the edge polytopes of
finite simple graphs are not full-dimensional from Lemma 12.2. Given an edge poly-
tope PG, one can easily get a full-dimensional unimodularly equivalent copy of PG by
considering the lattice polytope defined as the convex hull of the row vectors of AG with
some columns deleted. Indeed, let G1, . . . ,Gk be the connected bipartite components
of G. If k = 0, we can get a full-dimensional unimodularly equivalent copy of PG by
considering the lattice polytope defined as the convex hull of the rows of AG with one
column deleted. Assume that k � 1 and V1tV2 the bipartition of G1. Then we can get a
full-dimensional unimodularly equivalent copy of PG by considering the lattice poly-
topes defined as the convex hull of the row vectors of AG with the the columns i0, . . . , ik
deleted, where i0 2 V1, i1 2 V2 and for 2  j  k, i j is a vertex of G j. An example of
this can be observed in Example 12.3.

Example 12.3. Let G be the following finite simple graph with the incidence matrix of
AG.
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G: 1

2

4

3

5

6

e1 e3 e5

e2

e4t

t

t

t

t

t
AG =

0

BBBBB@

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
1 0 0 1 0 0
0 0 0 0 1 1

1

CCCCCA

Then by Lemma 12.2, PG ⇢ R6 is a lattice polytope of dimension 3. Let QG ⇢ R3

be the lattice polytope which is the convex hull of the row vectors of AG with the first,
second and fifth column deleted. Namely, QG is the convex hull of the row vectors of

A0
G =

0

BBBBB@

0 0 0
1 0 0
1 1 0
0 1 0
0 0 1

1

CCCCCA
.

Then QG is a full-dimensional unimodularly equivalent copy of PG.

12.2 Reflexive polytopes arising from edge polytopes

In this section, we construct reflexive polytopes which arise from the edge polytopes of
finite simple graphs. We show the following theorem:

Theorem 12.4 ([63, Theorem 2.1]). Let P,Q ⇢Rd be (0,1,2)-polytopes of dimension
d such that all of their vertices belong to

{0}[{ei : 1  i  d}[{ei + e j : 1  i  j  d}⇢ Rd.

If the origin of Rd+1 belongs to the interior of W(P,Q), then W(P,Q) is reflexive. In
particular, W(P) and W(Q) are reflexive.

For two d ⇥ d integer matrices A,B, we write A s B if B can be obtained from A by
some row and column operations over Z. In order to prove Theorem 12.4, we will need
the following proposition.

Proposition 12.5. Let A = (ai j)1i, jd 2 {0,1,2}d⇥d be a d ⇥ d integer matrix such
that each row vector ai = (ai1, . . . ,aid) of A satisfies the following conditions:

• aid = 1;

• |ai1 + · · ·+aid�1| 2.
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If det(A) 6= 0, then, for some integer 0  s  d,

A s

0

BBBBBBBBB@

1
1

CCCCCCCCCA

9
=

;s. . . 0
1

2

0 . . .
2

.

In this case, one has 2A�1 2 Zd⇥d.

Since the proof of Proposition 12.5 is rather technical, we save it until the end of this
section. We now prove Theorem 12.4 and discuss a quick corollary.

Proof of Theorem 12.4. Let F be a facet of W(P,Q). Then there exist d +1 vertices
v1, . . . ,vd+1 of W(P,Q) such that aff({v1, . . . ,vd+1})\W(P,Q) = F , where for a
subset A ⇢ Rd+1, aff(A) is the affine space generated by A. Since the origin of Rd+1

belongs to the interior of W(P,Q), there exist rational numbers a1, . . . ,ad+1 such that

aff({v1, . . . ,vd+1) = {(x1, . . . ,xd+1)} 2 Rd+1 : a1x1 + · · ·+ad+1xd+1 = 1}.

By Lemma 2.7, we need to show that a1, . . . ,ad+1 2 Z. Let V be the (d +1)⇥ (d +1)
integer matrix whose ith row vector is vi. Then we have det(V ) 6= 0 and

V

0

B@
a1
...

ad+1

1

CA=

0

B@
1
...
1

1

CA .

Hence each ai is the sum of all entries in the ith row vector of V�1. If v1, . . . ,vd+1
are vertices of P ⇥ {1}, then one has a1 = · · · = ad = 0 and ad+1 = 1. Similarly, if
v1, . . . ,vd+1 are vertices of �Q⇥{�1}, then one has a1 = · · ·= ad = 0 and ad+1 =�1.

Now, we assume that for some positive integer 1  k  d, v1, . . . ,vk are vertices of
P ⇥{1} and vk+1, . . . ,vd+1 are vertices of �Q⇥{�1}. Let W be a (d +1)⇥ (d +1)
integer matrix such that for 1  i  k, the ith row vector is vi and for k+1  j  d+1,
the jth row vector is �v j. Then one has det(W ) 6= 0 and

W

0

BBB@

0
...
0
1

1

CCCA
=

0

BBB@

1
...
1
1

1

CCCA
.

Hence for any 1  i  d + 1, the sum of all entries in the ith row vector of W�1 is an
integer. Moreover, for k+1  i  d +1, the ith column vector of V�1 is coincide with
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the ith column vector of W�1 times (�1). Thus, since 2W�1 is an integer matrix from
Proposition 12.5, we know that for any 1  i  d + 1, the sum of all entries in the ith
row vector of V�1 is an integer. Therefore, W(P,Q) is reflexive, as desired.

By Theorem 12.4, we can give a new class of reflexive polytopes arising from the edge
polytopes of finite simple graphs and we can determine the reflexive dimensions of the
edge polytopes of finite simple graphs.

Corollary 12.6. Let G be a finite simple graph on [N]. Then W(PG) is unimodularly
equivalent to some reflexive polytope. Moreover, PG is unimodularly equivalent to a
facet of W(PG).

Proof. Let d be the dimension of PG and P 0
G ⇢ Rd a full-dimensional unimodularly

equivalent copy of PG as defined in Section 12.1 (see Example 12.3). Then all of its
vertices of P 0

G belong to

{0}[{ei : 1  i  d}[{ei + e j : 1  i  j  d}⇢ Rd.

Hence, it follows from Theorem 12.4 that W(P 0
G) is reflexive. Moreover it is easy to see

that W(P 0
G) is a full-dimensional unimodularly equivalent copy of W(PG). Therefore,

we know that W(PG) is unimodularly equivalent to some reflexive polytope and PG is
unimodularly equivalent to a facet of W(PG).

We now end the section with a proof of Proposition 12.5.

Proof of Proposition 12.5. We prove this proposition by induction on d, i.e., the size
of A. When d = 1, the claim is trivial. Suppose that d > 1. We should show that for
a given d ⇥ d integer matrix A satisfying the assumption of the proposition, one can
obtain a matrix from A by some row and column operations over Z as the following:

A s

0

BBB@

1 0 · · · 0
0
... A0
0

1

CCCA
,

where A0 is a (d �1)⇥ (d �1) integer matrix satisfying the assumption of the proposi-
tion.

We will divide the proof into some cases. Note that by the assumption, no two row
vectors in A are the same, and each row vector ai of A is one of the following:

(Type 1) ai = (0, . . . ,0,1,0, . . . ,0,1,0, . . . ,0,1), i.e., for some 1  j1 < j2  d � 1,ai j1 =

ai j2 = aid = 1, and for other j,ai j = 0;
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(Type 2) ai = (0, . . . ,0,1,0, . . . ,0,1), i.e., for some 1  j1  d � 1,ai j1 = aid = 1, and for
other j,ai j = 0;

(Type 3) ai = (0, . . . ,0,2,0, . . . ,0,1), i.e., for some 1  j1  d�1,ai j1 = 2,aid = 1, and for
other j,ai j = 0;

(Type 4) ai = (0, . . . ,0,1), i.e., for any 1  j  d �1,ai j = 0, and aid = 1.

We can then divide the proof into the following cases:

(1) A does not have any row vectors of Type 1 and Type 2;

(2) A has at least one row vector of Type 2, but A has no row vectors of Type 1;

(3) A has at least one row vector of Type 1.

The case (1): Since each row vector of A is either Type 3 or Type 4 and since det(A) 6= 0,
one can obtain the following matrices subsequently from A by some row and column
operations over Z:

A s

0

BBBBBB@

2 1
. . . 0 ...

. . . ...
0 2 1

1

1

CCCCCCA
s

0

BBBBBB@

1
2 0

.. .

0 . . .
2

1

CCCCCCA
.

Thus, in this case, we can get the desired matrix from A by some row and column
operations over Z.
The case (2): Since A has at least one row vector of Type 2 and A does not have any row
vector of Type 1, one can obtain the following matrix Ã from A by interchanging some
rows and columns:

Ã =

0

BBBBBBBBB@

1 0 · · · 0 1
1

CCCCCCCCCA

9
>>>=

>>>;
r

0 1 · · · 0 1
... . . . ... 0 ...
0 0 · · · 1 1

C
,

where r � 1 and C is a (d�r)⇥d integer matrix such that each row vector is either Type
3 or Type 4. Now, by interchanging some row vectors of C if necessarily, we can assume
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the first column vector of C is (0, . . . ,0)> or (2,0, . . . ,0)>.If the first column vector of
C is (0, . . . ,0)>, we can obtain the below matrix from Ã by a column operation:

Ã =

0

BBBBBBBBBBBBB@

1
1

Ir 0 ...
1

0 1
0 1
... C0 ...
0 1

1

CCCCCCCCCCCCCA

s

0

BBBBBBBBBBBBB@

0
1

Ir 0 ...
1

0 1
0 1
... C0 ...
0 1

1

CCCCCCCCCCCCCA

=:

0

BBB@

1 0 · · · 0
0
... A0
0

1

CCCA
,

where Ir is the unit matrix of size r. Moreover, it is clear that A0 satisfies the assumption
of the proposition. Hence, by the inductive hypothesis, one obtains the desired matrix
from A.

Assume that the first column vector of C is (2,0, . . . ,0)>. Then we can obtain the below
matrices from Ã subsequently by some row and column operations over Z:

Ã =

0

BBBBBBBBBBBBB@

1
1

Ir 0 ...
1

2 0 · · · 0 1
0 1
... C00 ...
0 1

1

CCCCCCCCCCCCCA

s

0

BBBBBBBBBBBBB@

0
1

Ir 0 ...
1

2 0 · · · 0 �1
0 1
... C00 ...
0 1

1

CCCCCCCCCCCCCA

s

0

BBBBBBBBBBBBB@

0
1

Ir 0 ...
1

0 0 · · · 0 �1
0 1
... C00 ...
0 1

1

CCCCCCCCCCCCCA

s

0

BBBBBBBBBBBBB@

0
1

Ir 0 ...
1

0 0 · · · 0 1
0 1
... C00 ...
0 1

1

CCCCCCCCCCCCCA
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=:

0

BBB@

1 0 · · · 0
0
... A00
0

1

CCCA
.

Moreover, it is clear that A00 satisfies the assumption of the proposition. Hence, by
induction hypothesis, one obtain a desired matrix from A.
The case (3): Since A has at least one row vector of Type 1, we can obtain the following
matrix from A by interchanging some rows and columns of A:

Ã :=

0

BBBBB@

1 1 0 · · · 0 1

B
C

1

CCCCCA
,

where B is a m⇥ d integer matrix for some m � 0 such that each row vector is either
Type 1 or Type 2, and C is a (d �m� 1)⇥ d integer matrix such that each row vector
is either Type 3 or Type 4. We set l := d �m� 1. Let B{1,2} (resp. C{1,2}) denote the
submatrix consisting of the first and second column vectors of B (resp. C). Here, to
prove the claim, we divide into the following subcases:

(3-1) B{1,2} is a zero matrix;

(3-2) B{1,2} is not a zero matrix.

Note, in both subcases, by a permutation of first row and second row, we can assume

C{1,2} =

0

BBB@

c0 c1
0 c2
...

...
0 cl

1

CCCA
,

where either c0 = 2 and c1 = 0, or c0 = 0.
The subcase (3-1): In this case, if c0 = 0, then we can obtain the below matrix from Ã
by some column operations:
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Ã =

0

BBBBBBBBBB@

1 1 0 · · · 0 1
0 0 1
...

... B0 ...
0 0 1
0 c1 1
...

... C0 ...
0 cl 1

1

CCCCCCCCCCA

s

0

BBBBBBBBBB@

1 0 0 · · · 0 0
0 0 1
...

... B0 ...
0 0 1
0 c1 1
...

... C0 ...
0 cl 1

1

CCCCCCCCCCA

=:

0

BBB@

1 0 · · · 0
0
... A0
0

1

CCCA
.

Moreover, it is clear that A0 satisfies the assumption of the proposition. Hence, by the
inductive hypothesis, we obtain the desired matrix from A. Next, if c0 = 2 and c1 = 0,
then we can obtain the below matrices from Ã subsequently by some row and column
operations:

Ã =

0

BBBBBBBBBBBBB@

1 1 0 · · · 0 1
0 0 1
...

... B00 ...
0 0 1
2 0 0 · · · 0 1
0 c2 1
...

... C00 ...
0 cl 1

1

CCCCCCCCCCCCCA

s

0

BBBBBBBBBBBBB@

1 1 0 · · · 0 1
0 0 1
...

... B00 ...
0 0 1
0 �2 0 · · · 0 �1
0 c2 1
...

... C00 ...
0 cl 1

1

CCCCCCCCCCCCCA

s

0

BBBBBBBBBBBBB@

1 0 0 · · · 0 0
0 0 1
...

... B00 ...
0 0 1
0 �2 0 · · · 0 �1
0 c2 1
...

... C00 ...
0 cl 1

1

CCCCCCCCCCCCCA

s

0

BBBBBBBBBBBBB@

1 0 0 · · · 0 0
0 0 1
...

... B00 ...
0 0 1
0 2 0 · · · 0 1
0 c2 1
...

... C00 ...
0 cl 1

1

CCCCCCCCCCCCCA

=:

0

BBB@

1 0 · · · 0
0
... A00
0

1

CCCA
.

Moreover, it is clear that A00 satisfies the assumption of the proposition. Hence, by the
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inductive hypothesis, we obtain the desired matrix from A.
The subcase (3-2): Note, since det(A) 6= 0, each row vector of B{1,2} is (0,1), (1,0), or
(0,0). Thus, by some row permutations of Ã, and if necessary a permutation of the first
and second columns, we can assume

B{1,2} =

0

BBBBBBBBBBBBBBBB@

0 1
1

CCCCCCCCCCCCCCCCA

9
=

;p...
...

0 1
1 0

9
=

;q� p,...
...

1 0
0 0

9
=

;m�q...
...

0 0

where p � 1 and q� p � 0.

Let ã2 be the 2nd row vector of Ã. Then ã2 is either Type 1 or Type 2. If ã2 is Type 2,
we can obtain the below matrices from Ã subsequently by some row operations over Z
as the following:

Ã =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 0 · · · 0 1
0 1 0 · · · 0 1
0 1 1
...

...
...

0 1 1
1 0 1
...

... B0 ...
1 0 1
0 0 1
...

...
...

0 0 1
c0 c1 1
0 c2 1
...

... C0 ...
0 cl 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

s

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 · · · 0 0
0 1 0 · · · 0 1
0 1 1
...

...
...

0 1 1
1 0 1
...

... B0 ...
1 0 1
0 0 1
...

...
...

0 0 1
c0 c1 1
0 c2 1
...

... C0 ...
0 cl 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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s

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 · · · 0 0
0 1 0 · · · 0 1
0 1 1
...

...
...

0 1 1
0 0 1
...

... B0 ...
0 0 1
0 0 1
...

...
...

0 0 1
0 c1 1
0 c2 1
...

... C0 ...
0 cl 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=:

0

BBB@

1 0 · · · 0
0
... A0
0

1

CCCA
.

Moreover, it is clear that A0 satisfies the assumption of the proposition. Hence, by the
inductive hypothesis, we obtain the desired matrix from A.

Next assume that ã2 is Type 1. Note that ã2 is a row vector like (0,1,0, . . . ,0,1,0, . . . ,0,1).
By interchanging columns, we can assume ã2 = (0,1,1,0, . . . ,0,1). Then, we can ob-
tain the below matrices from Ã subsequently by some row and column operations over
Z as follows:

Ã =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 0 0 · · · 0 1
0 1 1 0 · · · 0 1
0 1 b2 1
...

...
...

...
0 1 bp 1
1 0 bp+1 1
...

...
... B00 ...

1 0 bq 1
0 0 bq+1 1
...

...
...

...
0 0 bm 1
c0 c1 c01 1
0 c2 c02 1
...

...
... C00 ...

0 cl c0l 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

s

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 �1 0 · · · 0 0
0 1 1 0 · · · 0 1
0 1 b2 1
...

...
...

...
0 1 bp 1
1 0 bp+1 1
...

...
... B00 ...

1 0 bq 1
0 0 bq+1 1
...

...
...

...
0 0 bm 1
c0 c1 c01 1
0 c2 c02 1
...

...
... C00 ...

0 cl c0l 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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s

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 · · · 0 0
0 1 1 0 · · · 0 1
0 1 b2 1
...

...
...

...
0 1 bp 1
1 0 bp+1 +1 1
...

...
... B00 ...

1 0 bq +1 1
0 0 bq+1 1
...

...
...

...
0 0 bm 1
c0 c1 c01 + c0 1
0 c2 c02 1
...

...
... C00 ...

0 cl c0l 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

s

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 · · · 0 0
0 1 1 0 · · · 0 1
0 1 b2 1
...

...
...

...
0 1 bp 1
0 0 bp+1 +1 1
...

...
... B00 ...

0 0 bq +1 1
0 0 bq+1 1
...

...
...

...
0 0 bm 1
0 c1 c01 + c0 1
0 c2 c02 1
...

...
... C00 ...

0 cl c0l 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=:

0

BBB@

1 0 · · · 0
0
... A00
0

1

CCCA
.

One can easily show A00 also satisfies the assumption of the proposition. Therefore, this
completes the proof by induction.

12.3 When do they possess the integer decomposition

property?

In this section, we discuss when the reflexive polytopes arising from the edge poly-
topes of connected finite simple graphs described in Corollary 12.6 possesses the inte-
ger decomposition property. First, we introduce a criterion to determine when the edge
polytopes of connected finite simple graphs possess the integer decomposition property.

Theorem 12.7 ([71, Corollarly 2.3]). Let G be a connected finite simple graph on [n].
Then PG possesses the integer decomposition property if and only if for any two odd
cycles C and C0 of G having no common vertex, there exists an edge of G joining a
vertex of C with a vertex of C0.

The following theorem gives a criterion to determine when the reflexive polytopes aris-
ing from the edge polytopes of connected finite simple graphs described in Corollary
12.6 possess the integer decomposition property.
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Theorem 12.8 ([63, Theorem 3.2]). Let G be a connected finite simple graph on [N].
Then W(PG) possesses the integer decomposition property if and only if G does not
contain two disjoint odd cycles.

In order to prove this theorem, we need the following lemma. Recall that a lattice poly-
tope is called unimodular if all its triangulations are unimodular, that is each simplex
has the normalized volume equal to 1. In particular, unimodular lattice polytopes are
compressed.

Lemma 12.9 ([70, Example 3.6 b]). Let G be a connected finite simple graph on [N].
Then PG is unimodular if and only if G done not contain two disjoint odd cycles.

Now, we prove Theorem 12.8.

Proof of Theorem 12.8. First, let us assume that G has two disjoint odd cycles C1 and
C2. Then it follows from Lemma 12.2 that the dimension of PG equals N � 1. More-
over, we can assume that V (C1) = [2k+1] and V (C2) = {2k+2, . . . ,2k+2`+2} with
some positive integers k and `. Let P 0

G ⇢ RN�1 be the full-dimensional unimodularly
equivalent copy of PG which is the convex hull of the row vectors of the incidence ma-
trix AG of G with (2k+ 2`+ 2)nd column deleted. Then W(P 0

G) is a full-dimensional
unimodularly equivalent copy of W(PG) and one has

W(P 0
G)\ZN = ((P 0

G ⇥{1})\ZN)[ ((�P 0
G ⇥{�1})\ZN)[{0N}.

We show that W(QG) does not possess the integer decomposition property. Set

x = e1 + · · ·+ e2k+1 � (e2k+2 + · · ·+ e2k+2`+1)+(k� `)eN 2 ZN .

Since e1 + e2, . . . ,e2k + e2k+1 and e1 + e2k+1 are vertices of P 0
G and since �e2k+2 �

e2k+3, . . . ,�e2k+2`� e2k+2`+1,�e2k+2`+1 and �e2k+2 are vertices of �P 0
G, it follows

that x 2 (k+ `+1)W(P 0
G)\ZN . Suppose that W(P 0

G) possesses the integer decompo-
sition property. Then there exist just k+m+1 lattice points x1, . . . ,xk+m+1 2 W(P 0

G)\
ZN such that x = x1+ · · ·+xk+`+1. For any vertex v of P 0

G⇥{1}, one has hv,e1+ · · ·+
e2k+1i 2 {0,1,2} and hv,e2k+2 + · · ·+ e2k+2`+1i 2 {0,1,2}. Hence since hx,e1 + · · ·+
e2k+1i= 2k+1 and hx,e2k+2 + · · ·+ e2k+2`+1i= 2`, we can assume that x1, . . . ,xk+1 2
P 0

G⇥{1} and xk+2, . . . ,xk+`+1 2�QG⇥{�1}. Then one has hx1+ · · ·+xk+`+1,eni=
k�`+1. Thus, x 6= x1+ · · ·+xk+`+1, a contradiction. Therefore, W(P 0

G) does not pos-
sess the integer decomposition property.

Conversely, assume that G does not have two disjoint odd cycles. Let P 0
G ⇢ Rd be

a full-dimensional unimodularly equivalent copy of PG defined in Section 12.1 (see
Example 12.3). Hence W(P 0

G) is a full-dimensional unimodularly equivalent copy of
W(PG) and one has

W(P 0
G)\Zd+1 = ((P 0

G ⇥{1})\Zd+1)[ ((�P 0
G ⇥{�1})\Zd+1)[{0d+1}.
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Let D be a pulling triangulation of W(P 0
G) such that all its maximal simplices contain

the origin of Rd+1. We will show that D is unimodular. Let s be a maximal simplex of
D. Then there exist d +1 lattice points x1, . . . ,xd+1 belonging to P 0

G ⇥{1} such that

s = conv({0d+1,v1, . . . ,vt ,�vt+1, . . . ,�vd+1})

with some integer 0  t  d + 1. It follows that the normalized volume of s equals
|det(V )|, where V is the (d+1)⇥ (d+1) integer matrix whose ith row vector is vi. Set

s 0 = conv({0d+1,v1, . . . ,vd+1}).

Then the normalized volume of s is equal to that of s 0. We show that the normalized
volume of s 0 is 1. Let t be the lattice simplex which is the convex hull of the row
vectors of V with the last column deleted. Then t is a simplex of dimension d all
of whose vertices belonging to P 0

G. By Lemma 12.9 and [39, Theorem 5.6.3], the
normalized volume of any maximal simplex all of whose vertices belonging to P 0

G is
1, that of t is also 1. Since Pyr(t) is unimodularly equivalent to s 0, the normalized
volume of s 0 equals 1. Hence D is unimodular.
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Chapter 13

New classes of self dual reflexive

polytopes

A reflexive polytope P is called self dual if P is unimodularly equivalent to its dual
polytope P_. This is an extremely rare property in reflexive polytopes, especially for
reflexive simplices. In this chapter, we give new classes of self dual reflexive polytopes.

This chapter is organized as follows. In Section 13.1, we will give a higher-dimensional
construction of self dual reflexive polytopes. In Sections 13.2 and 13.3, we will give
two classes of self dual reflexive simplices.

13.1 A higher-dimensional construction of self dual re-

flexive polytopes

In this section, we give a higher-dimensional construction of self dual reflexive poly-
topes.

For d � 2 and a lattice polytope P ⇢ Rd�1 of dimension d �1, we set

A (P) = P ⇥ [�1,1]⇢ Rd,

B(P) = conv({P ⇥{0},ed,�ed})⇢ Rd,

D(P) = conv({P ⇥ [�1,0],ed})⇢ Rd.

We recall that if P is reflexive, then A (P) and B(P) are also reflexive. Moreover,
we have A (P)_ = B(P_) and B(P)_ = A (P_). D(P) is an analogy between
A (P) and B(P).

At first, we show that if P is reflexive, then D(P) is a reflexive polytope of dimension
d.
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Proposition 13.1. For d � 2, let P ⇢Rd�1 be a reflexive polytope of dimension d�1.
Then D(P) is a reflexive polytope of dimension d. Moreover, D(P_) and D(P)_ are
unimodularly equivalent.

Proof. Let F1, . . . ,Fs be facets of P and for 1  i  s, and let Hi be the hyperplane
satisfying Fi =P\Hi. Then D(P) has 2s+1 facets. By Lemma 2.7, we can assume
that for 1  i  s,

Hi =
n

x 2 Rd�1 | hai,xi= 1
o
,

where ai 2 Zd�1. Set

F 0
i =

8
><

>:

conv({Fi ⇥{0} ,ed}) i = 1, . . . ,s,
Fi�s ⇥ [�1,0] i = s+1, . . . ,2s,

P ⇥{�1} i = 2s+1.

Then F 0
1, . . . ,F

0
2s+1 are facets of D(P). For 1  i  2s+1 let H 0

i be the hyperplane
satisfying F 0

i = D(P)\H 0
i . Then

H 0
i =

8
>>>><

>>>>:

n
x 2 Rd | h(ai,1),xi= 1

o
i = 1, . . . ,s,

n
x 2 Rd | h(ai�s,0),xi= 1

o
i = s+1, . . . ,2s,

n
x 2 Rd | h�ed,xi= 1

o
i = 2s+1.

Hence by Lemma 2.7, D(P) is a reflexive polytope of dimension d.

Moreover, since a1, . . . ,as are the vertices of P_, it clearly follows that D(P_) and
D(P)_ are unimodularly equivalent.

Next, we present a direct formula for the computation of the d -vector of D(P) in terms
of the d -vector of P .

Proposition 13.2. For d � 2, let P ⇢ Rd�1 be a lattice polytope of dimension d � 1
with the d -vector d (P) = (d0(P),d1(P), . . . ,dd�1(P)), and let

d (D(P)) = (d0(D(P)),d1(D(P)), . . . ,dd(D(P)))

be the d -vector of D(P). Then for i = 0,1, . . . ,d, we have

di(G(P)) = (i+1)di(P)+(d � i+1)di�1(P),

where d�1(P) = dd(P) = 0.

In order to prove Proposition 13.2, we use the following lemmas.
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Lemma 13.3. For d � 2, let P ⇢ Rd�1 be a lattice polytope of dimension d � 1 with
the d -vector d (P) = (d0(P),d1(P), . . . ,dd�1(P)). Set

Q = P ⇥ [0,1]⇢ Rd,

and we let d (Q) = (d0(Q),d1(Q), . . . ,dd(Q)) be the d -vector of Q. Then for i =
0,1, . . . ,d, we have

di(Q) = (i+1)di(P)+(d � i)di�1(P),

where d�1(P) = dd(P) = 0.

Proof. We know LQ(n) = (n+1) ·LP(n). Hence one has

d j(Q) =
j

Â
k=0

✓
d +1

k

◆
(�1)k( j� k+1) ·LP( j� k).

Since

d j(P) =
j

Â
k=0

✓
d
k

◆
(�1)k ·LP( j� k),

we obtain
( j+1)d j(P)+(d � j)d j�1(P) = d j(Q),

as desired.

Now, we prove Propsition 13.2.

Proof of Proposition 13.2. We set Q1 = Pyr(P) ⇢ Rd and Q2 = P ⇥ [�1,0]. Then
Q1 [Q2 = D(P) and Q1 \Q2 = P ⇥{0}. Hence we have

EhrD(P)(t) = EhrQ1(t)+EhrQ2(t)�EhrP(t).

By Lemma 2.9, (1� t) ·EhrQ1(t) = EhrP(t). Hence we have

EhrG(P)(t) = t ·EhrQ1(t)+EhrQ2(t).

Let d (Q1)= (d0(Q1),d1(Q1), . . . ,dd(Q1)) and d (Q2)= (d0(Q2),d1(Q2), . . . ,dd(Q2))

be the d -vectors of Q1 and Q2. By Lemmas 13.3 and 2.9, we have

di(Q1) =

(
di(P) i = 0, . . . ,d �1,
0 i = d,

and for i = 0, . . . ,d, we have

di(Q2) = (i+1)di(P)+(d � i)di�1(P),
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where d�1(P) = dd(P) = 1. Hence for i = 0, . . . ,d,

di(D(P)) = di�1(Q1)+di(Q2)

= di�1(P)+(i+1)di(P)+(d � i)di�1(P)

= (i+1)di(P)+(d � i+1)di�1(P),

as desired.

We give a higher-dimensional construction of self dual reflexive polytopes. By follow-
ing theorem, we obtain the construction.

Theorem 13.4 ([90, Theorem 2.7]). For d � 2, let P and Q⇢Rd�1 be lattice polytopes
of dimension d �1 such that each of them has at least one interior integer point. Then
we have the following properties:

(a) P and Q are unimodularly equivalent if and only if D(P) and D(Q) are uni-
modularly equivalent;

(b) d (P) = d (Q) if and only if d (D(P)) = d (D(Q)),

where d (P), d (Q), d (D(P)) and d (D(Q)) are the d -vectors of P , Q, D(P) and
D(Q).

Remark 13.5. For d � 2, let P ⇢ Rd�1 be a reflexive polytope of dimension d � 1.
Then by Proposition 13.1 and Theorem 13.4, we have the following properties:

(a) P is self dual if and only if D(P) is self dual;

(b) d (P) = d (P_) if and only if d (D(P)) = d (D(P)_),

where d (P), d (P_), d (D(P)) and d (D(P)_) are the d -vectors of P , Q, D(P)

and D(P)_.

Now, we prove Theorem 13.4.

Proof of Theorem 13.4. (a) Clearly, if P and Q are unimodularly equivalent, then
D(P) and D(Q) are unimodularly equivalent. Conversely, suppose that D(P) and
D(Q) are unimodularly equivalent. We can assume that the origin of Rd�1 belongs to
the interior of P and the interior of Q, and there exists a unimodular matrix U 2 Zd⇥d

such that D(Q) = fU(D(P)), where fU is the linear transformation in Rd defined by
U . Let v1, . . . ,vs be the vertices of P and w1, . . . ,ws be the vertices of Q, and let

U =

0

BBB@

u11 u12 · · · u1d
u21 u22 · · · u2d

...
...

...
ud1 ud2 · · · udd

1

CCCA
.
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Sinceed and �ed belong to D(P) and since for each (x1, . . . ,xd) 2 D(Q), we have
�1  xd  1, we know �1  udd  1. If udd = 0, then fU((vi,0)) and fU((vi,�1))
have a common dth coordinate for 1  i  s. Since D(Q) has just one vertex whose
dth coordinate equals 1 and since the dth coordinate of fU(ed) equals 0, there does
not exist a vertex v of D(P) such that fU(v) = ed , a contradiction. If vdd = �1, then
fU(ed) = �ed . However, ed is a vertex of D(P) but �ed is not a vertex of D(Q), a
contradiction. Hence udd = 1. Since fU(ed) = ed , we have

U =

0

BBB@

⇤
U 0 ...

⇤
0 · · · 0 1

1

CCCA
,

where U 0 2 Z(d�1)⇥(d�1) is a unimodular matrix. Then for each vi there exists a vertex
w ji of Q such that fU((vi,0)) = (w ji ,�1) and fU((vi,1)) = (w ji ,0). Hence for each
vi we have fU 0(vi) = w ji , where fU 0 is the linear transformation in Rd�1 defined by U 0.
Therefore, P and Q are unimodularly equivalent. (b) If d (P) = d (Q), by Proposition
13.2, we have d (D(P)) = d (D(Q)). Suppose that d (D(P)) = d (D(Q)). We set

d (P) = (d0(P),d1(P), . . . ,dd�1(P)),

d (Q) = (d0(Q),d1(Q), . . . ,dd�1(Q)).

By Proposition 13.2, for i = 1, . . . ,d �1, we have

(i+1)(di(P)�di(Q))+(d � i+1)(di�1(P)�di�1(Q)) = 0

Since d0(P) = d0(Q), for i = 0, . . . ,d � 1, we have di(P) = di(Q). Hence d (P) =

d (Q).

We let P ⇢ R2 be a reflexive polytope of dimension 2. Then the d -vector of P equals
the d -vector of P_ if and only if P is self dual. However, there exists a reflexive
polytope of dimension 3 whose d -vector equals the d -vector of the dual polytope such
that it is not self dual. We give an example of such a reflexive polytope.

Example 13.6 ([37, Example 35.11]). Let P ⇢ R3 be the reflexive polytope with the
vertices (�1,0,1), (�1,0,�1), (1,1,1), (1,1,�1), (0,�1,1) and (0,�1,�1). Then
P has 5 facets. Hence P_ has 5 vertices (0,0,1), (0,0,�1), (2,�1,0), (�1,2,0)
and (�1,�1,0). Therefore P and P_ are not unimodularly equivalent. However,
d (P) = d (P_) = (1,8,8,1).

By using Theorem 13.4 and Example 13.6, we obtain the following corollary.

Corollary 13.7. For each d � 3, there exists a reflexive polytope of dimension d such
that d (P) = d (P_) but P is not self dual.
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13.2 A new class of self dual reflexive simplices arising

from Sylvester Sequence

For d � 2, we let P be a reflexive polytope of dimension d. Clearly, D(P) is not
simplicial and not a simplex. In this section we consider self dual reflexive simplices.

First, we give an elementary number-theoretic notion.

Definition 13.8. The well-known recursive sequence ([79, A000058]) of pairwise co-
prime natural numbers b0 := 2, bn := 1+b0 · · ·bn�1(n� 1) is called Sylvester Sequence.
It starts as b0 = 2, b1 = 3, b2 = 7, b3 = 43, b4 = 1807.

It is known that a class of self dual reflexive simplices arising from Sylvester Sequence.

Example 13.9 ([66, Definition 4.6]). For d � 2, we let P be the d-dimensional lattice
simplex whose vertices vi 2 Rd, i = 0,1, . . . ,d, are of the form:

vi =

(
� (e1 + · · ·+ ed) i = 0,
bi�1ei �v0 i = 1, . . . ,d.

Then P is reflexive and we know that P and P_ are unimodularly equivalent, in
particular, Vol(P) = bd �1

For d � 2, we let P be a reflexive simplex of dimension d. It is known

(d +1)d+1  Vol(P)Vol(P_) (bd �1)2,

and if Vol(P) = bd � 1, then P is unimodularly equivalent the lattice simplex de-
scribed in Example 13.9, hence, P and P_ are unimodularly equivalent ([66, Theo-
rem C]). This implies that if P is a self dual reflexive simplex, then we have Vol(P)
bd �1.

In this section, we give a new class of self dual reflexive simplices arising from Selvester
Sequence. In fact,

Theorem 13.10 ([90, Theorem 3.2.]). For d � 3, let P be the d-dimensional lattice
simplex whose vertices vi 2 Rd, i = 0,1, . . . ,d, are of the form:

vi =

8
>>>>>>><

>>>>>>>:

�3e1 �2
d

Â
i=2

ei i = 0,

e1 i = 1,
e1 +2ei i = 2,3,
e1 +2bi�4ei i = 4, . . . ,d.
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Then P is reflexive and we know that P and P_ are unimodularly equivalent, in
particular, Vol(P)< bd �1.

In order to prove Theorem 13.10, we use the following lemma.

Lemma 13.11 ([79, A000058]). For each n � 0

1
b0

+
1
b1

+ · · ·+
1
bn

= 1�
1

b0 · · ·bn
.

Now, we prove Thorem 13.10.

Proof of Theorem 13.10. First, we show that P is reflexive. Let F0, . . . ,Fd be facets
of P , which are of the form:

Fi = conv({v0, . . . ,vi�1,vi+1, . . . ,vd}) 0  i  d,

and for 0  i  d, let Hi be a hyperplane satisfying Fi = P \Hi. Then

Hi =

8
<

:

n
(x1, . . . ,xd) 2 Rd : x1 = 1

o
i = 0,

n
(x1, . . . ,xd) 2 Rd : x1 �2xi = 1

o
i = 2, . . . ,d.

Also H1 =
�
(x1, . . . ,xd) 2 Rd : Âd

i=1 aixi = 1
 

, where

ai =

8
>>>>>><

>>>>>>:

� (4b0 · · ·bd�4 �1) i = 1,

4b0 · · ·bd�4

2
i = 2,3,

4b0 · · ·bd�4

2bi�4
i = 4, . . .d.

In fact, v0 2 H1 since

3(4b0 · · ·bd�4 �1)�4b0 · · ·bd�4 �4b0 · · ·bd�4 �
4b0 · · ·bd�4

b0
� · · ·�

4b0 · · ·bd�4

bd�4

=�3+4b0 · · ·bd�4(1� (
1
b0

+
1
b1

+ · · ·+
1

bd�4
))

=�3+4b0 · · ·bd�4
1

b0 · · ·bd�4
(Lemma 13.11)

=1.

Hence since ai 2 Z (1  i  d), by Lemma 2.7, P is reflexive.
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Next, we show that P and P_ are unimodularly equivalent. By Lemma 2.7, we obtain
that w0, . . . ,wd are vertices of P_, where

wi =

8
><

>:

e1 i = 0,
(a1, . . . ,ad) i = 1,
e1 �2ei i = 2, . . . ,d

We set a d ⇥d matrix

U =

0

BBBBBBBB@

1 2
2 2 1 1 · · · 1

1 �1
1 �b0
... . . .
1 �bd�4

1

CCCCCCCCA

2 Zd⇥d,

where all other terms are zero. Then by Lemma 13.11, we have

det(U) = det

0

@
1 2 0
2 2 1
0 1 �1

1

A(�1)d�3b0 · · ·bd�4 +(�1)d�2
d�4

Â
i=0

b0 · · ·bd�4

bi

= (�1)d�3b0 · · ·bd�4 +(�1)d�2
d�4

Â
i=0

b0 · · ·bd�4

bi

= (�1)d�3b0 · · ·bd�4(1�
d�4

Â
i=0

1
bi
)

= (�1)d�3.

Hence U is a unimodular matrix. Let fU be the linear transformation in Rd defined by
U . Then

fU(wi) =

8
>>>><

>>>>:

v2 i = 0,
v1 i = 1,
v0 i = 2,
vi i = 3, . . . ,d.

Hence P = fU(P_). Therefore we have P and P_ are unimodularly equivalent.

Finally, we show that Vol(P)< bd �1. If d = 3, then Vol(P) = 16 < 42 = b3�1. We
assume that d � 4. Since for each n � 1, bn > b0 = 2, for each n � 0, we have bn > 2n.
Hence since d � 4 and since Vol(P) = |2d�1(a1 �1)|= 2d+1b0 · · ·bd�4, we have

bd �1 = b0 · · ·bd�1 > 23d�6b0 · · ·bd�4 > 2d+1b0 · · ·bd�4 = Vol(P),

as desired.
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13.3 Self dual reflexive simplices with Eulerian polyno-

mials

In this section, we give another class of self dual reflexive simplices. In particular, their
d -polynomials coincide with Eulerian polynomials.

We recall the descent set of a permutation p = i1i2 · · · id of [d] = {1,2, . . . ,d} is D(p) =
{ j : i j > i j+1}⇢ [d �1]. The Eulerian polynomial of degree d �1 is the polynomial

Ad(t) = Â
p2Sd

tdes(p),

where Sd is the symmetric group on [d] and des(p) = |D(p)|. An alternative definition
of the Eulerian polynomial is via

•

Â
k=0

(1+ k)dtk =
Ad(t)

(1� t)d+1 .

We now define a class of reflexive simplices which are self dual. For d � 2, let Qd
denote the d�1 dimensional lattice simplex which is the convex hull of the row vectors
of 0

BBBBBBBB@

1 1 1 · · · 1
1�d 1 1 · · · 1

0 2�d 1 · · · 1

0 0 3�d . . . 1
...

... . . . . . . ...
0 0 · · · 0 �1

1

CCCCCCCCA

.

Let vi denote the (i�1)st row vector of the matrix.

We have the following theorem.

Theorem 13.12 ([47, Theorem 1]). For d � 2, we have Qd and Q_
d are unimodularly

equivalent.

It behooves us to give the equations of supporting hyperplanes of facets of the simplex
to compute its dual polytope.

Proposition 13.13. For 0  i  d � 1, let Fi be the facet of Qd whose vertices are
v0, . . . ,vi�1, vi+1, . . . ,vd�1 and Hi the supporting hyperplane of Fi. Then one has

• H0 = {x = (x1, . . . ,xd�1) 2 Rd�1 : �Âd�1
i=1 xi  1};

• Hd�k = {x = (x1, . . . ,xd�1) 2 Rd�1 : kxk �Âk�1
i=1 xi  1} for 1  k  d �1.
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Proof. It is sufficient to show that the vertices of Qd each satisfy precisely d �1 of the
halfspace inequalities with equality and satisfies the other inequalty strictly. Let fk(x) =

kxk �Âk�1
i=1 xi, and fd(x) = �Âd�1

i=1 xi. For a vertex v j, we have that fk(v j) = 1 for all
k 6= d � j. This follows, because if k < d � j, we have fk(v j) = (k)(1)�Âk�1

i=1 1 = 1, if
k > d � j with k 6= d, we have fk(v j) = (d � j)�Âd� j�1

i=1 1 = 1, and if k = d > d � j,
we have fd(v j) =�( j�d)�Âd� j�1

i=1 1 = 1. In the case of k = d� j, fd� j(v j) =�(d�
j)2 � (d�1� j)< 1 if j 6= 0 and j 6= d�1. For j = 0 we have fd(v0) = 1�d < 1 and
for j = d �1, we have f1(vd�1) =�1 < 1. Thus, this completes the proof.

By Lemma 2.7, and Proposition 13.13, it is clear that Q_
d =�Qd . Therefore, we have

shown Theorem 13.12.

Remark 13.14. We should note that Vol(Qd) = d!. For d � 4, it is immediate that
these polytopes are different than previously known self dual reflexive simplices given
in Example 13.9 and Theorem 13.10.

Moreover, the self dual reflexive simplex of Qd has an interesting d -polynomial and a
special triangulation.

Theorem 13.15. Let d � 2.
(i) We have d (Qd, t) = Ad(t), where Ad(t) is the Eulerian polynomial.
(ii) Qd has a regular, flag, unimodular triangulation.

Proof. It is well-known that P has a regular, flag, unimodular triangulation if and only
if Pyr(P) has a regular, flag, unimodular triangulation (cf. [22, Section 4.2]).

Let Rn denote the d-dimensional lattice simplex which is the convex hull of the row
vectors of 0

BBBBBBBB@

0 0 0 · · · 0
n 0 0 · · · 0
n n�1 0 · · · 0

n n�1 n�2 . . . ...
...

...
... . . . 0

n n�1 n�2 · · · 1

1

CCCCCCCCA

.

This polytope Rd is called a lecture hall polytope. Notice that Pyr(Qd) is unimodularly
equivalent to Rd . Let fRd be the polytope defined from Rd by removing the (d + 1)st
row and dth column, let Ud denote the (d�1)⇥ (d�1) upper triangular matrix defined
by (Ud)i j = 1 if i  j and (Ud)i j = 0 otherwise. Then we know that Qd is unimodularly
equivalent to � fUd (Qd � (e1 + · · ·+ ed�1)) = fRd. Hence it follows that Pyr(Qd) is
unimodularly equivalent to Rd .

It is known that for d � 2, d (Rd, t)=Ad(t) ([76]) and Rd has a regular, flag, unimodular
triangulation ([11]). Therefore, by Lemma 2.3, the assertion follows.
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