
Title ON SPECTRAL MEASURES OF RANDOM JACOBI MATRICES

Author(s) Duy, Trinh Khanh

Citation Osaka Journal of Mathematics. 2018, 55(4), p.
595-617

Version Type VoR

URL https://doi.org/10.18910/70813

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Duy, T.K.
Osaka J. Math.
55 (2018), 595–617

ON SPECTRAL MEASURES OF RANDOM
JACOBI MATRICES

Trinh Khanh DUY

(Received October 5, 2016, revised March 22, 2017)

Abstract
The paper studies the limiting behaviour of spectral measures of random Jacobi matrices of

Gaussian, Wishart and MANOVA beta ensembles. We show that the spectral measures con-
verge weakly to a limit distribution which is the semicircle distribution, Marchenko-Pastur
distributions or Kesten-McKay distributions, respectively. The Gaussian fluctuation around the
limit is then investigated.

1. Introduction

1. Introduction
Three classical random matrix ensembles on the real line, Gaussian beta ensembles,

Wishart beta ensembles and MANOVA beta ensembles, are now realized as eigenvalues of
certain random Jacobi matrices. For instance, the following random Jacobi matrices whose
components are independent and distributed as

Hn,β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1

b1 a2 b2
. . .

. . .
. . .

bn−1 an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼ 1√

nβ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 (0, 2) χ(n−1)β

χ(n−1)β  (0, 2) χ(n−2)β
. . .

. . .
. . .

χβ  (0, 2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
are matrix models of (scaled) Gaussian beta ensembles for any β > 0. Here  (μ, σ2) de-
notes the normal (or Gaussian) distribution with mean μ and variance σ2, and χk denotes the
chi distribution with k degrees of freedom. Namely, the eigenvalues of Hn,β are distributed
as Gaussian beta ensembles,

(λ1, . . . , λn) ∝ |Δ(λ)|β exp
(
− nβ

4

n∑
i=1

λ2
i

)
,

where Δ(λ) =
∏

i< j(λ j − λi) denotes the Vandermonde determinant.
Three special values of beta, β = 1, 2 and 4, correspond to Gaussian orthogonal, unitary

and symplectic ensembles (GOE, GUE and GSE) in which the above formula describes
the joint distribution of eigenvalues of random matrices with real, complex and quaternion
entries, respectively. As a generalization, Gaussian beta ensembles were originally defined
as ensembles of points on the real line whose joint density function is given as above. They
can be also viewed as the equilibrium measure of a one dimensional Coulomb log-gas at
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the inverse temperature β. Using the idea of tridiagonalizing a GOE matrix, Dumitriu and
Edelman [6] introduced the model Hn,β for Gaussian beta ensembles. In the same paper,
they also gave a matrix model for Wishart beta ensembles. A model for MANOVA beta
ensembles was discovered later by Killip and Nenciu [11].

One of main objects in random matrix theory is to study the limiting behaviour of the
empirical distribution of eigenvalues

Ln =
1
n

n∑
i=1

δλi ,

where δ denotes the Dirac measure. For Gaussian beta ensembles, as n tends to infinity, the
empirical distributions converge weakly, almost surely, to the semicircle distribution, which
is well known as Wigner’s semicircle law. The convergence means that for any bounded
continuous function f on R,

〈Ln, f 〉 = 1
n

n∑
i=1

f (λi)→ 〈sc, f 〉 almost surely as n→ ∞,

with sc denoting the semicircle distribution, a probability measure supported on [−2, 2] with
density sc(x) = (2π)−1

√
4 − x2. A fluctuation around the limit was also investigated. To be

more precise, it was shown that for a ‘nice’ test function f ,

n(〈Ln, f 〉 − E[〈Ln, f 〉]) =
n∑

i=1

( f (λi) − 〈sc, f 〉) d→ (0, a2
f ),

where a2
f can be written as a quadratic functional of f . There are several ways to prove

those results. See Johansson [10] for an approach based on joint density function, Dumitriu
and Edelman [7] and Dumitriu and Paquette [8] for a combinatorial approach based on the
random Jacobi matrix models. Since GOE and GUE have their original matrix models, we
can see more approaches in books [1, 15]. Note that the idea in the last section of this paper
is also applicable to study such Gaussian fluctuation. Using the idea, we can show that the
class of ‘nice’ test functions for which the above central limit theorem holds contains at least
differentiable functions whose derivative is continuous of polynomial growth.

The spectral measures of random Jacobi matrices associated with those beta ensembles
have been investigated recently. The weak convergence to a limit distribution, a central limit
theorem for moments and large deviations have been established [5, 9, 13]. The spectral
measure of a finite Jacobi matrix, a symmetric tridiagonal matrix of the form,

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1

b1 a2 b2
. . .

. . .
. . .

bn−1 an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (ai ∈ R, bi > 0),

is defined to be a unique probability measure μ on R satisfying

〈μ, xk〉 = 〈Jke1, e1〉 = Jk(1, 1), k = 0, 1, . . . ,

where e1 = (1, 0, . . . , 0)t ∈ Rn. Let {λ1, . . . , λn} be the eigenvalues of J and {v1, . . . , vn} be
the corresponding eigenvectors which are chosen to be an orthonormal basis of Rn. Then
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the spectral measure μ can be written as

μ =

n∑
i=1

q2
i δλi , qi = |vi(1)|.

Note that the eigenvalues {λi} are distinct and the weights {q2
i } are all positive. Moreover,

a finite Jacobi matrix of size n is one-to-one correspondence with a probability measure
supported on n real points.

Let μn be the spectral measure of Hn,β,

μn =

n∑
i=1

q2
i δλi .

In this case, and in all three beta ensembles in the paper, the weights {q2
i } are independent

of eigenvalues and have Dirichlet distribution with parameters (β/2, . . . , β/2) (or symmetric
Dirichlet distribution with parameter β/2). The distribution of {q2

i } is the same as that of the
vector

( χ2
β,1∑n

i=1 χ
2
β,i

, . . . ,
χ2
β,n∑n

i=1 χ
2
β,i

)
,

where {χ2
β,i}ni=1 is an i.i.d. sequence of random variables having chi-squared distributions with

β degrees of freedom. In connection with empirical distributions, Nagel [14] showed that as
n tends to infinity, the Kolmogorov distance between Ln and μn converges almost surely to
zero. Thus the spectral measures and the empirical distributions converge to the same limit.
Moreover, the limiting behaviour of spectral measures of Jacobi matrices can be read off
from the convergence of their entries. For Gaussian beta ensembles, it is clear that

Hn,β →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1
1 0 1
. . .
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =: J f ree, almost surely as n→ ∞.

Here the convergence means the piecewise convergence of entries. The non-random Jacobi
matrix J f ree is called the free Jacobi matrix whose spectral measure is nothing but the semi-
circle distribution [16, Section 1.10]. Consequently the spectral measures μn, and hence,
the empirical distributions Ln, converge weakly, almost surely, to the semicircle distribution.
This result may be regarded as a strong law of large numbers for spectral measures.

A natural problem now is to study the fluctuation of spectral measures around the limit, or
a central limit theorem for 〈μn, f 〉 with a ‘nice’ function f . In a work which is not so related
to random matrix theory, Dette and Nagel [5] derived a central limit theorem for moments
{〈μn, xk〉} of spectral measures. The result covers Gaussian, Wishart beta ensembles and
MANOVA beta ensembles with fixed parameters. The aim of this paper is to reconsider the
central limit theorem. We propose a universal approach which can be easily applied to all
three beta ensembles. The idea is that for a polynomial test function, when n is large enough,
〈μn, p〉 = p(Hn,β)(1, 1) is a polynomial of finite variables. Then the central limit theorem
follows from the limiting behaviour of entries of Jacobi matrices. Furthermore, by a relation
between spectral measures and empirical measures, we obtain an explicit formula for the
limit variance and can extend the central limit theorem to a large class of test functions. Our
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main result for Gaussian beta ensembles can be stated as follows.

Theorem 1.1. (i) The spectral measures μn converge weakly, almost surely, to the
semicircle distribution as n→ ∞, that is, for any bounded continuous function f ,

〈μn, f 〉 =
n∑

i=1

q2
i f (λi)→ 〈sc, f 〉 almost surely as n→ ∞.

(ii) For a function f with continuous derivative of polynomial growth,
√

nβ√
2

(〈μn, f 〉 − E[〈μn, f 〉]) d→ (0, σ2( f )) as n→ ∞,

where σ2( f ) = 〈sc, f 2〉 − 〈sc, f 〉2 = Varsc[ f ]. Here ‘
d→’ denotes convergence in

distribution or weak convergence of random variables.

The results for Wishart and MANOVA beta ensembles are analogous where the semicircle
distribution is replaced by Marchenko-Pastur distributions and Kesten-McKay distributions,
respectively.

The Kolmogorov distance, the metric which implies the weak convergence, between two
measures μ and ν on the real line with distribution functions Fμ and Fν, respectively, is
defined by

dK(μ, ν) = sup
x∈R
|Fμ(x) − Fν(x)|.

Here Fμ(x) = μ((−∞, x]). As mentioned above, for fixed β > 0, the Kolmogorov distance
between the empirical distributions Ln and the spectral measures μn converges to zero almost
surely as n tends to infinity. For the proof, we only need properties that both measures
are support on the set of eigenvalues and that the weights {q2

i } have symmetric Dirichlet
distribution with parameter β/2 [14, Theorem 4.2]. Consequently, the following strong law
of large numbers for empirical distributions holds.

Corollary 1.2. For all three beta ensembles in this paper, as n → ∞, the empirical
distributions Ln converge weakly, almost surely, to the same limit as the spectral measures.

The paper is organized as follows. In the next section, we consider general random Jacobi
matrices and derive the weak convergence of spectral measures as well as the central limit
theorem for polynomial test functions. Applications to Gaussian, Wishart and MANOVA
beta ensembles are then investigated in turn. The last section is devoted to extend the central
limit theorem to a larger class of test functions.

2. Limiting behaviour of spectral measures of random Jacobi matrices

2. Limiting behaviour of spectral measures of random Jacobi matrices
Let us begin by introducing some spectral properties of (non random) Jacobi matrices. A

semi-infinite Jacobi matrix is a symmetric tridiagonal matrix of the form

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1 b1

b1 a2 b2
. . .
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , where ai ∈ R, bi > 0.

To a Jacobi matrix J, there exists a probability measure μ such that



SpectralMeasures of Random JacobiMatrices 599

〈μ, xk〉 =
∫
R

xkdμ = 〈Jke1, e1〉, k = 0, 1, . . . ,

where e1 = (1, 0, . . . , )t ∈ 	2. Then μ is unique, or μ is determined by its moments, if and
only if, J is an essentially self-adjoint operator on 	2. If the parameters {ai} and {bi} are
bounded, or more generally, if

∑
b−1

i = ∞, then J is essentially self-adjoint [16, Corollary
3.8.9]. In case of uniqueness, we call μ the spectral measure of J, or of (J, e1). See [4,
Chapter 2] or [16, Section 3.8] for more details on Jacobi matrices.

When J is a finite Jacobi matrix of order n, then the spectral measure μ is supported on
the eigenvalues {λi} of J with weights {q2

i } = {vi(1)2},

μ =

n∑
i=1

q2
i δλi .

Here {v1, . . . , vn} are the corresponding eigenvectors which are chosen to be an orthogonal
basis of Rn. The eigenvalues {λi}ni=1 are distinct and the weights {q2

i }ni=1 are all positive [4,
Proposition 2.40].

We are now in a position to study the convergence of spectral measures of Jacobi matri-
ces. Recall that spectral measures are defined by their moments. Does the convergence of
moments imply the weak convergence of probability measures? The following lemma gives
us the answer. It is a classical result which can be found in some textbooks in probability
theory.

Lemma 2.1. Assume that {μn}∞n=1 and μ are probability measures on R such that for all
k = 0, 1, . . . ,

〈μn, xk〉 → 〈μ, xk〉 as n→ ∞.
Assume further that the measure μ is determined by its moments. Then μn converges weakly
to μ as n → ∞. Moreover, if f is a continuous function of polynomial growth, that is, there
is a polynomial p such that | f (x)| ≤ p(x) for all x ∈ R, then we also have

〈μn, f 〉 → 〈μ, f 〉 as n→ ∞.
Proof. The first part of this lemma is a well-known moment problem [2, Theorem 30.2].

The second part follows by a truncated argument. For the sake of completeness, we give
proof here. Assume that the sequence {μn} converges weakly to μ and that 〈μn, p〉 converges
to 〈μ, p〉 for all polynomials p. Let f be a continuous function which is dominated by a
polynomial p, | f (x)| ≤ p(x) for all x ∈ R. For M > 0, write fM for the truncated function

fM(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−M, if f (x) ≤ −M,

f (x), if | f (x)| ≤ M,

M, if f (x) ≥ M.

Then it is clear that | f − fM | ≤ p− pM, where pM is the truncated function of p. Thus by the
triangle inequality,

|〈μn, f 〉 − 〈μ, f 〉| ≤ |〈μn, f − fM〉| + |〈μn, fM〉 − 〈μ, fM〉| + |〈μ, f − fM〉|
≤ 〈μn, p − pM〉 + |〈μn, fM〉 − 〈μ, fM〉| + 〈μ, p − pM〉
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= 〈μn, p〉 − 〈μn, pM〉 + |〈μn, fM〉 − 〈μ, fM〉| + 〈μ, p − pM〉.
As n → ∞, the first term converges to 〈μ, p〉 by the assumption, the second term converges
to 〈μ, pM〉 and the third term converges to 0 because pM and fM are bounded continuous
functions. Therefore

lim sup
n→∞

|〈μn, f 〉 − 〈μ, f 〉| ≤ 2〈μ, p − pM〉.

Finally, by letting M → ∞, 〈μ, p − pM〉 → 0 by the monotone convergence theorem. The
lemma is proved. �

To random probability measures, we deal with two types of convergence, almost sure
convergence and convergence in probability. A result for almost sure convergence is a direct
consequence of the above deterministic result. However, it is not the case for convergence
in probability. When the limit measure has compact support, the following result on con-
vergence in probability of random measures can be derived by a method of polynomials
approximation, see subsection 2.1.2 in [1], for instance.

Lemma 2.2. Let {μn}∞n=1 be a sequence of random probability measures and μ be a non-
random probability measure which is determined by its moments. Assume that any moment
of μn converges almost surely to that of μ, that is, for any k = 0, 1, . . . ,

〈μn, xk〉 → 〈μ, xk〉 a.s. as n→ ∞.
Then as n → ∞, the sequence of measures {μn} converges weakly, almost surely, to μ,
namely, for any bounded continuous function f ,

〈μn, f 〉 → 〈μ, f 〉 a.s. as n→ ∞.
The convergence still holds for a continuous function f of polynomial growth. An analogous
result holds for convergence in probability.

Proof. The case of almost sure convergence is a direct consequence of Lemma 2.1. In-
deed, for k ≥ 1, let

Ak = {ω : 〈μn(ω), xk〉 → 〈μ, xk〉 as n→ ∞}.
Then P(Ak) = 1 by the assumption. Therefore P(A :=

⋂∞
k=1 Ak) = 1. Applying Lemma 2.1

to the sequence of probability measures {μn(ω)}, for ω ∈ A, yields the desired result.
Next we consider the case of convergence in probability. The idea here is to use the

following criterion for convergence in probability [2, Theorem 20.5]: a sequence {Xn} con-
verges to X in probability if and only if for every subsequence {Xn(m)}, there is a further sub-
sequence {Xn(mk)} that converges almost surely to X. Let f be a continuous function which is
dominated by some polynomial. Given a subsequence {n(m)}, the aim now is to find a subse-
quence n(mk) such that {〈μn(mk), f 〉} converges almost surely to 〈μ, f 〉. Let {n(0,m) = n(m)}.
For k ≥ 1, using the necessary condition in the criterion, we can find a subsequence {n(k,m)}
of {n(k − 1,m)} such that

〈μn(k,m), xk〉 → 〈μ, xk〉 a.s. as n→ ∞.
By selecting the diagonal, we get a subsequence {n(mk) = n(k, k)} for which all moments
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of {μn(mk)} converge almost surely to the corresponding moments of μ. Consequently, the
sequence {μn(mk)} converges weakly, almost surely, to μ by the first part of this lemma, which
implies that {〈μn(mk), f 〉} → 〈μ, f 〉 almost surely. The proof is complete. �

Let us now explain the main idea of this paper. Consider the sequence of random Jacobi
matrices

Jn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(n)
1 b(n)

1
b(n)

1 a(n)
2 b(n)

2
. . .

. . .
. . .

b(n)
n−1 a(n)

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and let μn be the spectral measure of (Jn, e1). Assume that each entry of Jn converges almost
surely to a non random limit as n→ ∞, that is, for any fixed i, as n→ ∞,

(1) a(n)
i → āi; b(n)

i → b̄i a.s.

Here we require that āi and b̄i are non random and b̄i > 0. Assume further that the spec-
tral measure of (J∞, e1), denoted by μ∞, is unique, where J∞ is the infinite Jacobi matrix
consisting of {āi} and {b̄i},

J∞ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ā1 b̄1

b̄1 ā2 b̄2
. . .
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Then the measure μ∞ is determined by its moments, and hence we get the following result.

Theorem 2.3. The spectral measures μn converge weakly, almost surely, to the limit mea-
sure μ∞ as n → ∞. If in the assumption (1), convergence in probability is assumed instead
of almost sure convergence, then the spectral measures μn converge weakly, in probability,
to μ∞ as n→ ∞.

Remark 2.4. These results may be referred to as weak and strong laws of large numbers
for spectral measures of random Jacobi matrices. They are natural results which may be
found somewhere. For instance, the strong law was mentioned in [14].

Proof. Let p be a polynomial of degree m. When n is large enough, 〈μn, p〉 = p(Jn)(1, 1)
is a polynomial of {a(n)

i , b
(n)
i }i=1,...,� m

2 
. Therefore, as n→ ∞,

〈μn, p〉 → 〈μ∞, p〉 almost surely (resp. in probability),

which implies the weak convergence of μn by Lemma 2.2. �

Next, we consider the second order of the convergence of spectral measures, or a type of
central limit theorem. It turns out that the central limit theorem for polynomial test functions
is a direct consequence of a joint central limit theorem for entries of Jacobi matrices. Indeed,
assume that there are random variables {ηi} and {ζi} defined on the same probability space
such that for some fixed r > 0, for any i, as n→ ∞,
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(2)
ã(n)

i = nr(a(n)
i − āi)

d→ ηi,

b̃(n)
i = nr(b(n)

i − b̄i)
d→ ζi.

Moreover, we assume that the joint weak convergence holds. This means that any finite
linear combination of ã(n)

i and b̃(n)
i converges weakly to the corresponding linear combination

of ηi and ζi as n→ ∞, namely, for any real numbers ci and di,∑
f inite

(ciã
(n)
i + dib̃

(n)
i )

d→
∑
f inite

(ciηi + diζi).

From now on, both conditions (1) and (2) will be written in a compact form

Jn ≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ā1 b̄1

b̄1 ā2 b̄2
. . .
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
1
nr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
η1 ζ1
ζ1 η2 ζ2
. . .
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

or in term of entries

a(n)
i ≈ āi +

1
nr ηi,

b(n)
i ≈ b̄i +

1
nr ζi.

Let f be a polynomial of 2k variables (a1, . . . , ak, b1, . . . , bk). For simplicity, we write
f (ai, bi) instead of f (a1, . . . , ak, b1, . . . , bk).

Lemma 2.5. (i) As n→ ∞,

nr
(

f (a(n)
i , b

(n)
i ) − f (āi, b̄i)

)
−

k∑
i=1

(
∂ f
∂ai

(āi, b̄i)ã
(n)
i +

∂ f
∂bi

(āi, b̄i)b̃
(n)
i

)
→ 0

in probability.

(ii) As n→ ∞,

nr
(

f (a(n)
i , b

(n)
i ) − f (āi, b̄i)

) d→
k∑

i=1

(
∂ f
∂ai

(āi, b̄i)ηi +
∂ f
∂bi

(āi, b̄i)ζi

)
.

Proof. Write

a(n)
i = āi +

1
nr ã(n)

i ; b(n)
i = b̄i +

1
nr b̃(n)

i .

Then use the Taylor expansion of f (a(n)
i , b

(n)
i ) at (āi, b̄i) with noting that the Taylor expansion

of a polynomial consists of finitely many terms,

f (a(n)
i , b

(n)
i ) = f (āi, b̄i) +

1
nr

k∑
i=1

(
∂ f
∂ai

(āi, b̄i)ã
(n)
i +

∂ f
∂bi

(āi, b̄i)b̃
(n)
i

)
+

∑ ∗.

Each term in the finite sum
∑ ∗ has the following form,
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c(α, β)
k∏

i=1

(a(n)
i − āi)αi(b(n)

i − b̄i)βi ,

where {αi} and {βi} are non negative integers and
∑k

i=1(αi+βi) ≥ 2. Therefore, when that term
is multiplied by nr, it converges to 0 in distribution, and hence, in probability by Slutsky’s
theorem.

By using Slutsky’s theorem again, we see that (ii) is a consequence of (i). The proof is
complete. �

Let p be a polynomial of degree m > 0. Then there is a polynomial of 2�m
2 
 variables

such that for n > m/2,

〈μn, p〉 = p(Jn)(1, 1) = f (a(n)
1 , . . . , a

(n)
� m

2 
, b
(n)
1 , . . . , b

(n)
� m

2 
).

Therefore, by Lemma 2.5, we obtain the central limit theorem for polynomial test functions.

Theorem 2.6. For any polynomial p, nr (〈μn, p〉 − 〈μ∞, p〉) converges weakly to a limit
ξ∞(p) as n→ ∞.

Since we do not assume that all moments of {a(n)
i } and {b(n)

i } are finite, even the expectation
of 〈μn, p〉, E[〈μn, p〉] may not exist. Thus we need further assumptions to ensure the conver-
gence of mean and variance in the central limit theorem above. Our assumptions are based
on the following basic result in probability theory (the corollary following Theorem 25.12
in [2]).

Lemma 2.7. Assume that the sequence {Xn} converges weakly to a random variable X. If
for some δ > 0,

sup
n
E[|Xn|2+δ] < ∞,

then E[Xn] → E[X] and Var[Xn] → Var[X] as n → ∞. In general, if Xn converges to X in
probability and for q ≥ 1 and δ > 0,

sup
n
E[|Xn|q+δ] < ∞,

then Xn converges to X in Lq.

We make the following assumptions
(i) all moments of {a(n)

i } and {b(n)
i } are finite and in addition, the convergences in (1) also

hold in Lq for all q < ∞, which is equivalent to the following conditions

(3) sup
n
E[|a(n)

i |k] < ∞, sup
n
E[|b(n)

i |k] < ∞, for all k = 1, 2, . . . ;

(ii) E[ηi] = 0,E[ζi] = 0, and for some δ > 0,

(4) sup
n
E[|ã(n)

i |2+δ] < ∞, sup
n
E[|b̃(n)

i |2+δ] < ∞.

Lemma 2.8. As n→ ∞,

n2r
E

[(
f (a(n)

i , b
(n)
i ) − f (āi, b̄i)

)2
]
→ Var

⎡⎢⎢⎢⎢⎢⎢⎣
k∑

i=1

(
∂ f
∂ai

(āi, b̄i)ηi +
∂ f
∂bi

(āi, b̄i)ζi

)⎤⎥⎥⎥⎥⎥⎥⎦ ,(5)
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nr
(
E[ f (a(n)

i , b
(n)
i )] − f (āi, b̄i)

)
→ 0,(6)

n2r Var
[
f (a(n)

i , b
(n)
i )

]
→ Var

⎡⎢⎢⎢⎢⎢⎢⎣
k∑

i=1

(
∂ f
∂ai

(āi, b̄i)ηi +
∂ f
∂bi

(āi, b̄i)ζi

)⎤⎥⎥⎥⎥⎥⎥⎦ .(7)

Proof. It is just a direct consequence of Lemma 2.7. �

We state now a slightly different form of the central limit theorem for polynomial test
functions.

Theorem 2.9. Under assumptions (1)–(4), for any polynomial p, as n→ ∞,

〈μn, p〉 → 〈μ∞, p〉 almost surely and in Lq for all q < ∞;

nr(〈μn, p〉 − E[〈μn, p〉]) d→ ξ∞(p).

Moreover, E[ξ∞(p)] = 0 and

n2r Var[〈μn, p〉]→ Var[ξ∞(p)] as n→ ∞.

3. Gaussian beta ensembles or β-Hermite ensembles

3. Gaussian beta ensembles or β-Hermite ensembles
Let Hn,β be a random Jacobi matrix whose elements are independent (up to the symmetric

constraint) and are distributed as

Hn,β =
1√
nβ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 (0, 2) χ(n−1)β

χ(n−1)β  (0, 2) χ(n−2)β
. . .

. . .
. . .

χβ  (0, 2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then the eigenvalues {λi} of Hn,β have Gaussian beta ensembles [6], that is,

(λ1, λ2, . . . , λn) ∝ |Δ(λ)|β exp
(
− nβ

4

n∑
i=1

λ2
j

)
.

The weights {wi} = {q2
i } are independent of {λi} and have Dirichlet distribution with param-

eters (β/2, . . . , β/2), that is,

(w1, . . . , wn−1) ∝
n∏

i=1

w
β
2−1
i 1{w1+···+wn−1<1,wi>0}, wn = 1 − (w1 + · · · + wn−1).

Recall that the distribution of {wi} is the same as that of the vector
( χ2

β,1∑n
i=1 χ

2
β,i

, . . . ,
χ2
β,n∑n

i=1 χ
2
β,i

)
,

with {χ2
β,i}ni=1 being i.i.d. sequence of random variables having chi-squared distributions with

β degrees of freedom.

Lemma 3.1. (i) As k → ∞,
χk√

k
→ 1 in probability and in Lq for all q < ∞.
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A sequence {χkn/
√

kn} converges almost sure to 1, if
∑∞

n=1 e−εkn < ∞ for any ε > 0.
(ii) As k → ∞,

√
k
(
χk√

k
− 1

)
= (χk −

√
k)

d→

(
0,

1
2

)
.

Proof. The convergence in probability and a central limit theorem are standard results.
Let us prove the almost sure convergence part. For almost sure convergence, usually there is
some relation between random variables in the sequence. If there is no relation, the following
criterion, a direct consequence of the Borel-Cantelli lemma, becomes useful. The sequence
Xn converges almost surely to x as n→ ∞, if for any ε > 0,

∞∑
n=1

P(|Xn − x| > ε) < ∞.

For the proof here and later for Beta distributions, we use the following bounds (see
Lemma 4.1 in [14])

P

(∣∣∣∣∣χ
2
k

k
− 1

∣∣∣∣∣ > ε
)
≤ 2e−

kε2
8 ,

P (|Beta(x, y) − E[Beta(x, y)]| > ε) ≤ 4e−
ε2
128

x3+y3

xy .

Here Beta(x, y) denotes the beta distribution with parameters x and y. Then the proof follows
immediately from the criterion above. �

Since the Jacobi parameters {ai, bi} of Hn,β are independent, it follows that joint conver-
gence in distribution holds. Thus we can write

Hn,β ≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1
1 0 1
. . .
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
1√
βn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 (0, 2)  (0, 1

2 )
 (0, 1

2 )  (0, 2)  (0, 1
2 )

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

The nonrandom Jacobi matrix in the above expression is called the free Jacobi matrix, de-
noted by J f ree, whose spectral measure is the semicircle distribution

sc(x) =
1

2π

√
4 − x2, (−2 ≤ x ≤ 2).

There are several ways to derive that fact. For example, in the theory of orthogonal poly-
nomials on the real line, it is derived from the relation of Chebyshev polynomials of the
second kind [16, Section 1.10]. One can also calculate moments and show that they match
moments of the semicircle distribution. However, we introduce here a method to find the
spectral measure by calculating its Stieltjes transform, which is applicable to the next two
cases.

Let J be a Jacobi matrix with bounded coefficients,

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1 b1

b1 a2 b2
. . .
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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Then the spectral measure μ is unique and has compact support. Let S μ be the Stieltjes
transform of μ,

S μ(z) =
∫

dμ(x)
x − z

.

In the theory of Jacobi matrices, the Stieljes transform S μ is called an m-function,

S μ(z) = m(z) = 〈(J − z)−1e1, e1〉 = (J − z)−1(1, 1).

For bounded Jacobi matrix J, the m-function is an analytic function on C \ I, for some
bounded interval I ⊂ R, Im m(z) > 0, if Im z > 0, and m(z̄) = m(z).

Let J1 be a Jacobi matrix obtained by removing the top row and left-most column of J and
let m1(z) be the m-function of J1. Then the following relation holds (see [16, Theorem 3.2.4])

(8) − 1
m(z)

= z − a1 + b2
1m1(z).

When ai ≡ a and bi ≡ b, then m1(z) = m(z), and hence m(z) satisfies the following equation

− 1
m(z)

= z − a + b2m(z),

which is equivalent to a quadratic form

b2m(z)2 + (z − a)m(z) + 1 = 0.

In particular, by solving the above equation with a = 0 and b = 1, we obtain the explicit
formula for the m-function of the free Jacobi matrix,

mf ree(z) = −1
2

(
z −

√
z2 − 4

)
,

where the branch of the square-root is chosen to ensure that Im m(z) > 0, if Im z > 0.
Then the spectral measure μ of J∞ can be easily calculated by an inverse formula ([1, Theo-
rem 2.4.3])

μ(I) = lim
ε↘0

1
π

∫
I
Im m(x + iε)dx,

provided that I is an open interval with neither endpoint on an atom of μ. Moreover, when
the limit limε↘0 Im m(x + iε) exists and is finite for all x ∈ R, the measure μ has density
given by

μ(x) = lim
ε↘0

1
π

Im m(x + iε).

The spectral measure of the free Jacobi matrix is now easily derived from the above formula.
Back to the case ai ≡ a and bi ≡ b, and denote by ma,b(z) its m-function. Then

(9) ma,b(z) = (Ja,b − z)−1(1, 1) = (bJ f ree + a − z)−1(1, 1) =
1
b

mf ree(
z − a

b
).

Here
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Ja,b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a b
b a b
. . .
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , J f ree = J0,1.

Here is the main result in this section.

Theorem 3.2. The spectral measure μn of Hn,β converges weakly, almost surely, to the
semicircle distribution as n→ ∞. Moreover, for any polynomial p, as n→ ∞,

√
nβ√
2

(〈μn, p〉 − 〈sc, p〉) d→ (0, σ2
p),

where σ2
p is a constant.

Remark 3.3. Here we implicitly assume that the parameter β is fixed. However, the result
still holds if β varies and nβ → ∞. In this case, by our method, the spectral measures μn

converge weakly, in probability, to the semicircle distribution because we do not require the
rate of convergence of nβ to infinity.

4. Wishart beta ensembles or β-Laguerre ensembles

4. Wishart beta ensembles or β-Laguerre ensembles
Let G be an m× n matrix whose entries are i.i.d. standard Gaussian  (0, 1) random vari-

ables. Then for m ≥ n, (m−1GtG) is a Wishart real matrix whose eigenvalues are distributed
as

(λ1, . . . , λn) ∝ |Δ(λ)|
n∏

i=1

λ
1
2 (m−n+1)−1
i exp

(
− m

2

n∑
i=1

λi

)
, λi > 0.

Note that Wishart complex matrices are defined similarly by considering i.i.d. complex
Gaussian matrices G. The eigenvalues also a nice density formula similar as above. Then
Wishart beta ensembles are defined to be ensembles of n points on (0,∞) with the following
joint probability density function

(λ1, . . . , λn) ∝ |Δ(λ)|β
n∏

i=1

λ
β
2 (m−n+1)−1
i exp

(
− mβ

2

n∑
i=1

λi

)
.

Here we only require that n − 1 < m ∈ R.
Dumitriu and Edelman [6] gave the following matrix model for Wishart beta ensembles.

For n ∈ N and m > n− 1, let Bβ be a bidiagonal matrix whose elements are independent and
are distributed as

Bβ =
1√
mβ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χβm
χβ(n−1) χβm−β

. . .
. . .

χβ χβm−β(n−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let Lm,n,β = BβBt
β. Then the eigenvalues of Lm,n,β are distributed as Wishart beta ensembles.

Moreover, the weights {wi} in the spectral measures of Lm,n,β have Dirichlet distribution with
parameters (β/2, . . . , β/2) and are independent of {λi}. For empirical distributions, the weak
convergence to Marchenko-Pastur distributions and a central limit theorem for polynomial
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test functions were established, see [7] and the references therein.
Denote by {ci}ni=1 and {d j}n−1

j=1 the diagonal and the sub-diagonal of the matrix
√

mβBβ.
Then

Lm,n,β =
1

mβ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c2
1 c1d1

c1d1 c2
2 + d2

1 c2d2
. . .

. . .
. . .

cn−1dn−1 c2
n + d2

n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Lemma 4.1. For fixed i, as n→ ∞ with n/m→ γ ∈ (0, 1),

ci√
mβ
=
χβ(m−i+1)√

mβ
≈ 1 +

√
γ√
nβ
ηi, ηi ∼ (0,

1
2

),

di√
mβ
=
χβ(n−i)√

mβ
≈ √γ +

√
γ√
nβ
ζi, ζi ∼ (0,

1
2

),

c2
i

mβ
≈ 1 +

√
γ√
nβ

2ηi,
d2

i

mβ
≈ γ +

√
γ√
nβ

2ζi,

cidi

mβ
≈ √γ +

√
γ√
nβ

(
√
γηi + ζi).

Consequently, as n→ ∞ and n/m→ γ ∈ (0, 1), we can write

Lm,n,β ≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

√
γ√

γ 1 + γ
√
γ

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
√
γ√
nβ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2η1

√
γη1 + ζ1√

γη1 + ζ1 2(η2 + ζ1)
√
γη2 + ζ2

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Here {ηi} and {ζi} are two i.i.d. sequences of  (0, 1
2 ) random variables.

For γ ∈ (0, 1), let

MPγ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

√
γ√

γ 1 + γ
√
γ

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and denote its m-function by mγ(z). When the first row and the left-most column are re-
moved, we obtain the Jacobi matrix J1+γ,

√
γ. Then it follows from the relations (8) and (9)

that

mγ(z) = − 1

z − 1 +
√
γmf ree(

z−(1+γ)√
γ

)

= − 1

z − 1 −
√
γ

2

(
z−(1+γ)√
γ
−

√
( z−(1+γ)√

γ
)2 − 4

)

=
1 − γ − z +

√
(z − λ+)(z − λ−)
2γz

,

where λ± = (1 ± √γ)2. By taking the limit limε↘0 π
−1 Im mγ(x + iε), we get the density

of the spectral measure of MPγ, which coincides with the density of the Marchenko-Pastur
distribution with parameter γ ∈ (0, 1),
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mpγ(x) =
1

2πγx

√
(λ+ − x)(x − λ−), (λ− < x < λ+).

Theorem 4.2. The spectral measure μn of Lm,n,β conveges weakly, almost surely, to the
Marchenko-Pastur distribution with parameter γ as n → ∞, n/m → γ ∈ (0, 1). Moreover
for any polynomial p,

√
nβ√
2

(〈μn, p〉 − 〈mpγ, p〉) d→ (0, σ2
p),

where σ2
p is a constant.

5. MANOVA beta ensembles or β-Jacobi ensembles

5. MANOVA beta ensembles or β-Jacobi ensembles
Let W1 = Gt

1G1 and W2 = Gt
2G2 be two independent real Wishart matrices with G1

(resp. G2) being an m1 × n (resp. m2 × n) matrix whose entries are i.i.d. standard Gaussian
 (0, 1) random variables. Assume that m1,m2 ≥ n. Then the eigenvalues (λ1, . . . , λn) of
the matrix W1(W1 +W2)−1 (or of the Hermitian matrix (W1 +W2)−1/2W1(W1 +W2)−1/2) are
distributed according to the following joint probability density function with β = 1 ([12,
Theorem 3.3.4])

(λ1, . . . , λn) ∝ |Δ(λ)|β
n∏

i=1

λ
β
2 (m1−n+1)−1
i (1 − λi)

β
2 (m2−n+1)−1,(10)

= |Δ(λ)|β
n∏

i=1

λa
i (1 − λi)b, λi ∈ [0, 1].

For general β > 0, the above joint density is referred to as MANOVA beta ensembles or
β-Jacobi ensembles with parameters (a, b), where a, b > −1.

A matrix model for β-Jacobi ensembles is given as follows. Let a, b > −1 be fixed. Let
p1, . . . , p2n−1 be independent random variables distributed as

pk ∼
⎧⎪⎪⎨⎪⎪⎩

Beta
(

2n−k
4 β,

2n−k−2
4 β + a + b + 2

)
, k even,

Beta
(

2n−k−1
4 β + a + 1, 2n−k−1

4 β + b + 1
)
, k odd.

Here recall that Beta(x, y) denotes the beta distribution with parameters x, y. Define

ak = p2k−2(1 − p2k−3) + p2k−1(1 − p2k−2),

bk =
√

p2k−1(1 − p2k−2)p2k(1 − p2k−1),

where p−1 = p0 = 0, and form a random Jacobi matrix Jn,β(a, b) as

Jn,β(a, b) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1

b1 a2 b2
. . .

. . .
. . .

bn−1 an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then the eigenvalues (λ1, . . . , λn) of Jn,β(a, b) are distributed as the β-Jacobi ensembles (10)
(cf. [11]). The weights {wi} = {q2

i } are independent of {λi} and have Dirichlet distribution
with parameters (β/2, . . . , β/2). We are interested in studying β-Jacobi ensembles in the
regime that a(n)/( nβ

2 ) → κa ∈ [0,∞) and b(n)/( nβ
2 ) → κb ∈ [0,∞). The limiting behaviour
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of empirical distributions in that regime was studied in [8].
We need the following properties of beta distributions.

Lemma 5.1. Let {xk} and {yk} be two sequences of positive real numbers such that as
k → ∞

xk

k
→ x > 0,

yk

k
→ y > 0.

Then the following asymptotic behaviours of the beta distribution Beta(xk, yk) hold.

(i) As k → ∞,

Beta(xk, yk)→ x
x + y

in probability and in Lq for all q < ∞.

The almost sure convergence also holds.
(ii) As k → ∞,

√
k
(
Beta(xk, yk) − xk

xk + yk

)
d→ (0, xy(x + y)−3).

Moreover, if (xky − yk x)/
√

k → 0 as k → ∞, then

√
k
(
Beta(xk, yk) − x

x + y

)
d→ (0, xy(x + y)−3).

Proof. Let Xk and Yk be two independent random variables distributed as χ2
2xk

and χ2
2yk

,
respectively. Then

Beta(xk, yk) d
=

Xk

Xk + Yk
.

For chi-squared distribution, we have

χ2
k

k
→ 1 in probability as k → ∞.

Therefore

Xk

Xk + Yk
=

Xk
2xk

2xk
2k

Xk
2xk

2xk
2k +

Yk
2yk

2yk
2k

→ x
x + y

in probability as k → ∞.

The convergence in Lq is clear because beta distributions are bounded by 1. For the almost
sure convergence, see the proof of Lemma 3.1.

Next we consider the central limit theorem for beta distributions. It also follows from the
following central limit theorem for chi-squared distribution√

k
2

(χ2
k

k
− 1

)
d→ (0, 1) as k → ∞.

Indeed, if we write
√

k
(

Xk

Xk + Yk
− xk

xk + yk

)
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=

(
yk
k

√
xk√
k

)√
xk

(
Xk
2xk
− 1

)
−

(
xk
k

√
yk√
k

)√
yk

(
Yk
2yk
− 1

)
(

xk
k +

yk
k

) (
Xk
2k +

Yk
2k

) ,

then as k → ∞, the numerator converges in distribution to  (0, xy(x+y)) because Xk and Yk

are independent while the denominator converges in probability to (x + y)2. Thus we obtain
(ii). �

Lemma 5.2. As n→ ∞ with a(n) = nβ
2 κa + o((nβ)1/2) and b(n) = nβ

2 κb + o((nβ)1/2),

p2k ≈ Beta
(nβ

2
,

nβ
2

(1 + κa + κb)
)
≈ 1

2 + κa + κb
+

1√
nβ

 (0, σ2
even),

p2k−1 ≈ Beta
(nβ

2
(1 + κa),

nβ
2

(1 + κb)
)
≈ 1 + κa

2 + κa + κb
+

1√
nβ

 (0, σ2
odd).

As a consequence,

a(n)
1 = p1 ≈ 1 + κa

2 + κa + κb
+

1√
nβ

 =: A1 +
1√
nβ

 ,

b(n)
1 =

√
p1 p2(1 − p1) ≈

√
(1 + κa)(1 + κb)

(2 + κa + κb)3/2 +
1√
nβ

 =: B1 +
1√
nβ

 ,

a(n)
k = p2k−2(1 − p2k−3) + p2k−1(1 − p2k−2)

≈ 1 + κb + (1 + κa)(1 + κa + κb)
(2 + κa + κb)2 +

1√
nβ

 =: A +
1√
nβ

 , k ≥ 2,

b(n)
k =

√
p2k−1(1 − p2k−2)p2k(1 − p2k−1)

≈
√

(1 + κa)(1 + κb)(1 + κa + κb)
(2 + κa + κb)2 +

1√
nβ

 =: B +
1√
nβ

 , k ≥ 2.

Here  denotes a normal distribution with mean 0 and positive variance. The joint asymp-
totic also holds.

Proof. For fixed k, as n → ∞, the asymptotic for pk follows from Lemma 5.1. The as-
ymptotic for a(n)

k follows from Lemma 2.5 because it is a polynomial of {p2k−3, p2k−2, p2k−1}.
The asymptotic for b(n)

k is a consequence of the following fact. If Xn → c � 0 in proba-

bility and
√

n(Xn − c)
d→ (0, σ2) as n→ ∞, then

√
n(

√
Xn −

√
c) =

√
n(Xn − c)√
Xn +

√
c

d→  (0, σ2)
2
√

c
=

(
0,
σ2

4c

)
.

The joint asymptotic is clear. �

Therefore, in the regime that a(n) = nβ
2 κa + o((nβ)1/2) and b(n) = nβ

2 κb + o((nβ)1/2), the
limit Jacobi matrix is of the form

J∞ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 B1

B1 A B
B A B
. . .
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where A1, B1, A and B are defined in the above lemma. We use relations (8) and (9) again to
derive an explicit formula for the m-function of J∞,

m(z) =
κa
2z
+

κb
2(z − 1)

− (2 + κa + κb)
√

(z − u−)(z − u+)
2z(z − 1)

,

where

(11) u± = A ± 2B =
(√

(1 + κa)(1 + κa + κb) ± √1 + κb
2 + κa + κb

)2

.

Note that 0 ≤ u− < u+ ≤ 1. The density of the spectral measure of J∞ can be easily
calculated by the inverse formula,

kmu,u+(x) =
2 + κa + κb

2π

√
(x − u−)(u+ − x)

x(1 − x)
, (u− < x < u+).

It coincides with the density of the Kesten-McKay distribution with parameters (u−, u+) (see
[9, Section 7.6]) because

1
2

(
1 − √u−u+ −

√
(1 − u−)(1 − u+)

)
=

1
2 + κa + κb

.

When κa = κb = 0, then u− = 0 and u+ = 1, we get the arcsine distribution.
Therefore, we obtain the limiting behaviour of the spectral measures of β-Jacobi ensem-

bles.

Theorem 5.3. As n → ∞ with a(n) = nβ
2 κa + o((nβ)1/2) and b(n) = nβ

2 κb + o((nβ)1/2), the
spectral measure μn of Jn,β(a(n), b(n)) converges weakly, almost surely, to the Kesten-McKay
distribution with parameters (u−, u+). For any polynomial p,

√
nβ√
2

(〈μn, p〉 − 〈kmu−,u+ , p〉)→ (0, σ2
p),

where σ2
p is a constant.

Remark 5.4. In different regimes, the weak convergence of both empirical distributions
and spectral measures was considered in [14], in which the limit distribution is the
Marchenko-Pastur distribution or the semicircle distribution.

6. Extend the central limit theorem to a large class of test functions

6. Extend the central limit theorem to a large class of test functions
For all three beta ensembles in this paper, the spectral measure μn can be written as

μn =

n∑
i=1

wiδλi ,

where the weights {wi} are independent of the eigenvalues {λi} and have Dirichlet distribu-
tion with parameters (β/2, . . . , β/2). Recall that as a consequence of Theorem 2.9, for any
polynomial p, as n→ ∞,

〈μn, p〉 → 〈μ∞, p〉 almost surely and in Lq for q ≥ 1,
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√
nβ√
2

(〈μn, p〉 − E[〈μn, p〉]) d→ (0, σ2
p),

where

σ2
p = lim

n→∞
nβ
2

Var[〈μn, p〉],
and μ∞ denotes the limit distribution.

One can easily show that

E[wi] =
1
n
,E[w2

i ] =
β + 2

n(nβ + 2)
,E[wiw j] =

β

n(nβ + 2)
, (1 ≤ i � j ≤ n).

Therefore for any test function f , the following relations hold

E[〈μn, f 〉] = E[〈Ln, f 〉],(12)

Var[〈μn, f 〉] = βn
βn + 2

Var[〈Ln, f 〉] + 2
nβ + 2

(
E[〈μn, f 2〉] − E[〈μn, f 〉]2

)
.(13)

The mean of a random measure μ, denoted by μ̄, is defined to be a probability measure
satisfying

〈μ̄, f 〉 = E[〈μ, f 〉],
for all bounded continuous function f . Moreover, the above relation still holds for any
continuous function f with E[〈μ, | f |〉] < ∞. It follows from (12) that L̄n = μ̄n, and hence,
L̄n = μ̄n converges weakly to μ∞ as n→ ∞. Thus for any continuous function of polynomial
growth,

〈μ̄n, f 〉 → 〈μ∞, f 〉 as n→ ∞.
Denote by C(R) the set of continuous functions on R and let

 = { f ∈ C(R) : n Var[〈Ln, f 〉]→ 0, 〈μ̄n, f 〉 → 〈μ∞, f 〉, 〈μ̄n, f 2〉 → 〈μ∞, f 2〉}.
Then  is a linear space containing all polynomials. It follows from the variance relation
(13) that for f ∈ ,

lim
n→∞

nβ
2

Var[〈μn, f 〉] = 〈μ∞, f 2〉 − 〈μ∞, f 〉2 =: σ2( f ).

Next, we use the following result to extend the central limit theorem to any test function
in .

Lemma 6.1 ([2, Theorem 25.5]). Let {Yn}n and {Xn,k}k,n be real-valued random variables.
Assume that

(i) Xn,k
d→ Xk as n→ ∞;

(ii) Xk
d→ X as k → ∞;

(iii) for any ε > 0, limk→∞ lim supn→∞ P(|Xn,k − Yn| ≥ ε) = 0.

Then Yn
d→ X as n→ ∞.
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Theorem 6.2. For f ∈ ,
√

nβ√
2

(〈μn, f 〉 − E[〈μn, f 〉]) d→ (0, σ( f )2),

where σ2( f ) = 〈μ∞, f 2〉 − 〈μ∞, f 〉2 = Varμ∞[ f ].

Proof. Let f ∈ . Since μ∞ has compact support, we can find a sequence of polynomials
{pk} converging to f uniformly in the support of μ∞. Thus

σ2(pk)→ σ2( f ) as k → ∞.
Let

Yn =

√
nβ√
2

(〈μn, f 〉 − E[〈μn, f 〉]),

Xn,k =

√
nβ√
2

(〈μn, pk〉 − E[〈μn, pk〉]).

We only need to check three conditions in Lemma 6.1. Conditions (i) and (ii) are clear. For
the condition (iii), note that ( f − pk) ∈ , and thus

lim
n→∞Var[Xn,k − Yn] = 〈μ∞, ( f − pk)2〉 − 〈μ∞, ( f − pk)〉2,

which tends to zero as k → ∞. Therefore, for any ε > 0,

lim
k→∞

lim sup
n→∞

P(|Xn,k − Yn| ≥ ε) ≤ lim
k→∞

lim sup
n→∞

1
ε2 Var[Xn,k − Yn] = 0.

The theorem is proved. �

Lemma 6.3. For the Gaussian and Wishart beta ensembles, the class  contains at least
all functions whose derivative is continuous of polynomial growth. For the MANOVA beta
ensembles, the class  contains at least all differentiable functions with continuous deriva-
tive on [0, 1], provided that the parameters a(n) and b(n) are positive and a(n) + b(n) → ∞
as n→ ∞.

The idea of proof is taken from [8]. The key tool is the following result.

Lemma 6.4 ([3, Proposition 2.1]). Let dν = e−Vdx be a probability measure supported on
an open convex set Ω ⊂ Rn. Assume that V is twice continuously differentiable and strictly
convex on Ω. Then for any locally Lipschitz function F on Ω,

Varν[F] =
∫

F2dν −
(∫

Fdν
)2

≤
∫
〈Hess(V)−1∇F,∇F〉dν

≤
∫

1
λmin(Hess(V))

|∇F|2dν,

where Hess(V) denotes the Hessian of V and λmin(A) denote the smallest eigenvalue of A.

Proof of Lemma 6.3. Let us consider the Gaussian beta ensembles case first. Here we
consider the ordered eigenvalues λ1 < · · · < λn. Let Ω = {(λ1, . . . , λn) : λ1 < λ2 < · · · <
λn} ⊂ Rn. Then the joint probability density function can be written in the form e−V on Ω
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with

V = const +
nβ
4

n∑
i=1

λ2
i −
β

2

∑
i� j

log |λ j − λi|.

It follows that
∂V
∂λi
=

nβ
2
λi − β

∑
j�i

1
λi − λ j

,

and hence

∂2V
∂λ2

i

=
nβ
2
+ β

∑
j�i

1
(λi − λ j)2 ,

∂2V
∂λi∂λ j

= −β 1
(λi − λ j)2 .

By the Gershgorin circle theorem, the smallest eigenvalue of Hess(V) is at least nβ/2,

λmin(Hess(V)) ≥ nβ
2
.

Therefore for any locally Lipschitz function F,

(14) Varν[F] ≤ 2
nβ

∫
|∇F|2dν.

Now let f be a continuous function on R with continuous derivative and let

F(λ1, . . . , λn) =
1
n

n∑
i=1

f (λi)(= 〈Ln, f 〉).

Then it follows from (14) that

(15) Var[〈Ln, f 〉] ≤ 2
n2β

∫
〈Ln, ( f ′)2〉dν = 2

n2β
〈L̄n, ( f ′)2〉 = 2

n2β
〈μ̄n, ( f ′)2〉.

Therefore when f has continuous derivative of polynomial growth, as n→ ∞,

〈μn, ( f ′)2〉 → 〈sc, ( f ′)2〉.
Consequently, n Var[〈Ln, f 〉] → 0, and thus the class  contains all functions f which have
continuous derivative of polynomial growth.

For MANOVA beta ensembles, by similar argument we arrive at the following inequality

Var[〈Ln, f 〉] ≤ 1
n(a(n) + b(n))

〈μ̄n, ( f ′)2〉,

provided that the parameters a(n) and b(n) are positive. Thus if a(n) + b(n) tends to infinity,
we also have

n Var[〈Ln, f 〉]→ 0 as n→ ∞,
for all functions f which have continuous derivative on [0, 1].

The Wishart beta ensembles are little different because we do not have a uniform estimate
for λmin(Hess(V)). In this case we are working on Ω = {(λ1, . . . , λn) : 0 < λ1 < λ2 < · · · <



616 T.K. Duy

λn} ∈ Rn with

V = const +
mβ
2

n∑
i=1

λi − a
n∑

i=1

log λi − β2
∑
i� j

log |λ j − λi|.

Here a = β2 (m − n + 1) − 1. Therefore

∂2V
∂λ2

i

=
a
λ2

i

+ β
∑
j�i

1
(λi − λ j)2 ,

∂2V
∂λi∂λ j

= −β 1
(λi − λ j)2 .

By the Gershgorin circle theorem again, we get the following bound

λmin(Hess(V)) ≥ a
λ2

n
.

Consequently,

Varν[F] ≤ 1
a

∫
λ2

n|∇F|2dν,

and hence,

Var[〈Ln, f 〉] ≤ 1
a
E

[
λ2

max

n
〈Ln, ( f ′)2〉

]
.

Here λmax denotes the largest eigenvalue. Assume that f ′ is dominated by some polynomial.
Then 〈Ln, ( f ′)2〉 is bounded in L2 because of (13). In addition,

E

[
λ4

max

n2

]
≤ 1

n
E[〈Ln, x4〉] = 1

n
〈μ̄n, x4〉 → 0 as n→ ∞.

Finally, recall that a = (β/2)(m− n+ 1)− 1, which behaves like β2 ( 1
γ
− 1)n in the regime that

n/m→ γ ∈ (0, 1). Thus

n Var[〈Ln, f 〉]→ 0 as n→ ∞.
The proof is complete. �
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