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Abstract
We give a direct geometric proof of a Danilov-type formula for toric origami manifolds by

using the localization of Riemann-Roch number.
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1. Introduction

1. Introduction
A symplectic toric manifold is a symplectic manifold on which a half dimensional torus

T acts in an effective Hamiltonian way. A famous theorem of Delzant [6] says that there is
one-to-one correspondence between the set of (compact connected) symplectic toric mani-
folds and the set of simple polytopes called Delzant polytopes (see [13]) via moment maps.
Therefore, several properties of symplectic toric manifolds, such as the symplectic volume
and the ring structure of the (equivariant) cohomology and so on, can be detected from the
Delzant polytopes. In view of the geometric quantization of symplectic manifolds we are
interested in the Riemann-Roch numbers. The Riemann-Roch number RR(M, L) is an invari-
ant of a compact symplectic manifold (M, ω) with a pre-quantizing line bundle (L,∇), a pair
consisting of a Hermitian line bundle L and a Hermitian connection ∇ whose curvature form
is equal to −√−1ω, which is defined as follows. We fix an ω-compatible almost complex
structure and then it determines a spinc-structure of M and we have a spinc-Dirac operator D
with coefficients in L. We define an integer RR(M, L) as the analytic index of the spinc-Dirac
operator:

RR(M, L) := ind(D).

If a compact Lie group G acts on M preserving all the data, ω, (L,∇) and D, then the
index becomes a virtual representation of G, an element of the character ring R(G). In this
case the Riemann-Roch number is called the Riemann-Roch character or the G-equivariant
Riemann-Roch number and is denoted by RRG(M, L). Such a procedure is called spinc-
quantization ([4][7][19]) nowadays and considered as a quantization of spinc-manifolds.
When (X, ω) is a symplectic toric manifold with the action of a torus T we can choose an
almost complex structure so that it is integrable and invariant under the action of the torus
T . Then L has a structure of a holomorphic line bundle and the Riemann-Roch number is
equal to the dimension of H0(X, L), the space of holomorphic sections of L. Moreover when
we consider a lift of the torus action to the pre-quantizing line bundle, RRT (X, L) = H0(X, L)
becomes a representation of the torus T . Classical theorem of Danilov [5] says that the
representation RRT (X, L) can be described in terms of the integral points in the Delzant
polytope. Precisely we have

RRT (X, L) =
⊕

ξ∈μ(M)∩t∗
Z

C(ξ),(1.1)

where μ is the moment map, t∗
Z

is the integral weight lattice in the dual of the Lie algebra
of T and C(ξ) is the representation of the torus associated with the integral weight ξ ∈ t∗

Z
.

Though Danilov’s original proof was based on an algebraic geometric setting, a proof in the
symplectic geometric setting is also known. See [14] for example.

A folded symplectic manifold introduced by Cannas da Silva, Guillemin and Woodward
in [3] is a pair consisting of an even-dimensional smooth manifold and a closed 2-form
which may degenerate in a transverse way and it is called the folded symplectic form. When
the degenerate locus (which becomes a hypersurface and called the fold) has a structure
of a circle bundle whose vertical tangent bundle coincides with the degenerate direction of
the folded symplectic form, the folded symplectic manifold is called an origami manifold.
By definition a folded symplectic manifold (resp. origami manifold) is a generalization of
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a symplectic manifold, and several notions and studies in symplectic geometry are gener-
alized to the folded symplectic (resp. origami) case, such as pre-quantizing line bundle,
Hamiltonian group action, moment map, convexity property and so on. It is known that a
folded symplectic manifold is not orientable in general, and hence it does not admit an al-
most complex structure, however, if it is orientable, then it admits a stable almost complex
structure as shown in [3, Theorem 2]. Since the stable almost complex structure determines
a spinc-structure, we can define its spinc-quantization by the index of spinc-Dirac operator.
If the folded symplectic manifold is equipped with a Hamiltonian group action, then it be-
comes a virtual representation and is also called the Riemann-Roch character. In particular
the spinc-quantization of a toric origami manifold is a virtual representation of the torus.

In this paper we give a proof of the following generalization of Danilov’s formula (1.1)
for spinc-quantization of toric origami manifolds by making use of the localization theorem
of index developed in [10, 11].

Theorem (Theorem 5.9). Let (M, ω) be an oriented toric origami manifold with the
action of a torus T and a T-equivariant pre-quantizing line bundle (L,∇). Then we have

RRT (M, L) =
⊕

ξ∈μ(M+)∩t∗
Z

C(ξ) −
⊕

ξ∈μ(M−)∩t∗
Z

C(ξ)

as elements in the character ring of T .

Precise statement and notations are explained in the subsequent sections. The formula itself
can be obtained as a consequence of the cobordism theorem [2, Theorem 4.1] and Danilov’s
formula (1.1) for symplectic toric manifolds. There is an another possible approach which
uses the theory of multi-fans introduced by Hattori and Masuda [15]. Masuda and Park
showed in [18] that one can associate a multi-fan for each oriented toric origami manifold.
In view of the theory of multi-fans the above formula can be considered as a special case
of the equivariant index formula [15, Theorem 11.1], which is based on the fixed point
formula. In contrast to these proofs, our proof is direct and geometric, which detects the
contribution of each lattice point directly. Once we construct a geometric structure which
we call an acyclic compatible system on an open subset of the manifold, then the index of
Dirac operator is localized at the complement of the open subset by the localization formula
in [11]. In this paper we construct an acyclic compatible system on the complement of the
inverse image of the lattice points and the fold for toric origami manifolds. It implies that
the Riemann-Roch character is equal to the sum of contributions of the lattice points and the
fold. We show that the contribution of the lattice point ξ is equal to C(ξ) with sign determined
by the orientation and the contribution of the fold is zero. Our proof does not rely on neither
the original Danilov’s formula nor the fixed point formula. In fact, as a special case, our
proof gives a new direct proof of Danilov’s formula for symplectic toric manifolds. Note
that there is an another generalization of the formula (1.1) by Karshon and Tolman [17].
They gave a formula for toric manifolds with a torus invariant presymplectic form. Though
their proof is based on the holomorphic structure of toric manifolds, our proof does not use
such rigid structure and it is topological and flexible.

This paper is organized as follows. In Section 2 we summarize several known facts about
folded symplectic manifolds, origami manifolds and toric origami manifolds, which we use
in this paper. The convexity theorem for toric origami manifolds (Theorem 2.5) is essen-
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tial for us. In Section 3 we discuss stable almost complex structures on folded symplectic
manifolds. We construct a Z/2-graded Clifford module bundle in terms of the stable almost
complex structure. In Section 4 we construct a structure of (good) compatible fibration on
toric origami manifolds, which is a family of torus fibrations (foliations) with specific com-
patibility condition introduced in [11]. The construction is based on an open covering of the
convex polytope associated with the natural stratification of the polytope with respect to the
dimension of the faces. Strictly speaking there exist cracks on which we can not extend the
compatible fibration keeping the compatibility condition. Though the crack causes an extra
contribution to the Riemann-Roch character, we show that it is equal to 0. In Section 5 we
construct a compatible system on the compatible fibration of the toric origami manifolds,
which is a family of Dirac-type operators along the fibers of the compatible fibration with
specific anti-commutativity. In [11] the authors had already constructed compatible system
for Hamiltonian torus manifolds, and our construction for the complement of the fold is
based on that. On the other hand a neighbourhood of the fold has a structure of a quotient
of the product of the fold and the cylinder with the standard folded symplectic structure by
a natural S 1-action. We use this structure to define the Dirac-type operator along fibers near
the fold. To discuss the localization it is essential to investigate the acyclicity of the com-
patible system. The fundamental property of the moment map says that it is acyclic outside
the lattice points and the fold. In Section 5.2 we explain the localization formula of the
Riemann-Roch character by making use of the acyclic compatible system. In Section 6 we
compute the local contributions of the crack, lattice points and the fold. We first consider
the symplectic toric case, i.e., origami manifolds with the empty fold, and compute the local
contribution. We use a decomposition of a neighbourhood of the fiber, the inverse image of
a lattice point, into the product of the cotangent bundle of the fiber and the normal direction
of the symplectic submanifold containing the fiber. We apply the product formula ([11, The-
orem 8.8]) to the neighbourhood of the fiber. The vanishing of the contribution from the fold
follows from the product structure of a neighbourhood of the fold. The last three sections are
appendixes. In Appendix A we give a brief summary of the theory of local index following
[11, 12] and [9]. In Appendix B we show a useful formula of local indices of vector spaces,
which will be essential in the proof of Lemma 6.2 and Lemma 6.3. In Appendix C we give
a direct computation of the local index of the folded cylinder and show that it is equal to 0.
We use this result to show that vanishing of the contribution from the fold.

2. Folded symplectic forms and toric origami manifolds

2. Folded symplectic forms and toric origami manifolds2.1. Folded symplectic forms and origami manifolds.
2.1. Folded symplectic forms and origami manifolds. In this section we recall basic

definitions and facts on folded symplectic manifolds and origami manifolds. Details can be
found in [2], [3], [16] and [18].

A folded symplectic form ω on a smooth 2n-dimensional manifold M is a closed 2-form
whose top power ωn vanishes transversally on a submanifold Z and whose restriction to Z
has maximal rank. In this case Z is a hypersurface in M and is called the folding hypersurface
or fold. The pair (M, ω) is called a folded symplectic manifold and the 2-form ω is called a
folded symplectic form. Let iZ : Z ↪→ M be the inclusion of Z into M. The restriction i∗Zω
determines a line field on Z, called the null foliation, whose fiber at z ∈ Z is ker(i∗Zωz).

Suppose that (M, ω) is an oriented folded symplectic manifold with non-empty fold Z.
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Then M � Z is not connected and has a decomposition M � Z = M+ � M−, where M+ (resp.
M−) is the union of connected components such that ωn|M+ agrees (resp. disagrees) with the
given orientation of M.

Definition 2.1. A folded symplectic manifold (M, ω) is called an origami manifold if
the null foliation ker(i∗Zω) is the vertical tangent bundle of a principal S 1-bundle structure
π : Z → B over Z with a compact base B.

Note that since B is compact the total space Z is also compact. As in the symplectic
reduction procedure, there is the unique symplectic form ωB on B satisfying π∗ωB = i∗Zω.
An analogue of Darboux’s theorem for folded symplectic forms says that near any point
p ∈ Z there exists a coordinate chart centered at p where the folded symplectic form ω can
be written as

x1dx1 ∧ dy1 + dx2 ∧ dy2 + · · · + dxn ∧ dyn.

In this local description, the fold Z is given by the equation x1 = 0 and the null foliation is
the line field spanned by ∂

∂y1
. This local description has a global variant.

Theorem 2.2 (Theorem 1 in [3]). Let (M, ω) be an oriented origami manifold with fold
Z → B. Fix a connection 1-form α of Z → B. Then there exists a neighbourhood  of Z
and an orientation preserving diffeomorphism ϕ : Z × (−ε, ε)→  such that

ϕ ◦ ι0 = ιZ
and

ϕ∗ω = p∗Zι
∗
Zω + d(t2 p∗Zα),

where ι0 : Z → Z × (−ε, ε) is the inclusion z �→ (z, 0) and pZ : Z × (−ε, ε)→ Z is the natural
projection.

Example 2.3. For a positive integer n let S 2n be the unit sphere in R2n ⊕ R = Cn ⊕ R with
coordinates x1, y1, · · · , xn, yn, h. Let ω be the restriction to S 2n of the 2-form dx1∧dy1+ · · ·+
dxn ∧ dyn on R2n ⊕ R. Then ω is a folded symplectic form on S 2n with the fold S 2n−1, the
equator sphere given by h = 0. The Hopf fibration S 1 ↪→ S 2n−1 → CPn−1 gives a structure
of origami manifold on (S 2n, ω).

2.2. Hamiltonian torus actions and toric origami manifolds.
2.2. Hamiltonian torus actions and toric origami manifolds. The action of a compact

Lie group G on an origami manifold (M, ω) is called Hamiltonian if it admits a moment map
μ, that is, a map μ : M → g∗ = Lie(G)∗ satisfying the conditions :
• μ is equivariant with respect to the given action of G on M and the coadjoint action of G
on g∗.
• for any v ∈ g we have d〈μ, v〉 = ι(vM)ω, where 〈·, ·〉 is the pairing between g∗ and g and
ι(vM)ω is the contraction of ω by the induced fundamental vector field vM.

Definition 2.4. A Hamiltonian torus origami manifold (M, ω, T, μ) (or M for short) is a
connected origami manifold (M, ω) equipped with an effective Hamiltonian action of a torus
T with a choice of a corresponding moment map μ. If the dimension of the torus T is half
of that of M, then we call (M, ω, T, μ) a toric origami manifold.
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If the fold Z is empty, a Hamiltonian torus origami manifold is a Hamiltonian torus man-
ifold in the usual sense. The following is an origami analogue of the famous convexity
theorem for Hamiltonian torus manifolds.

Theorem 2.5 (Theorem 3.2 in [2]). Let (M, ω, T, μ) be a connected compact origami
manifold with null fibration π : Z → B and a Hamiltonian torus action of a torus T with
moment map μ. Then :
(a) The image μ(M) is the union of a finite number of convex polytopes Δ1, · · · ,ΔN in the
dual of the Lie algebra t∗, each of which is the image of the moment map restricted to the
closure of a connected component of M � Z.
(b) Over each connected component Z′ of Z, the null fibration is given by a subgroup of
T if and only if μ(Z′) is a facet of each of the one or two polytopes corresponding to the
neighbourhood(s) of M � Z, and when those are two polytopes Δ1 and Δ2 there exists an
open subset Δ̃Z′ containing μ(Z′) such that Δ̃Z′ ∩ Δ1 = Δ̃Z′ ∩ Δ2.

We call such images μ(M) origami polytopes.

Example 2.6. Consider the origami manifold (S 2n, ω) given in Example 2.3. Let T :=
(S 1)n be the n-dimensional torus. Then the action of T on S 2n given by

(t1, . . . , tn) · (z1, . . . , z1, h) := (t1z1, . . . , tnzn, h)

for (t1, . . . , tn) ∈ T and (z1, . . . , z1, h) ∈ S 2n ⊂ Cn ⊕ R is Hamiltonian (in fact, toric) action
with the moment map μ : S 2n → Rn,

μ(z1, . . . , zn, h) :=
1
2

(|z1|2, . . . , |zn|2).

The image of μ is the union of two copies of the n-simplex, ξ1, · · · , ξn ≥ 0, ξ1+· · ·+ξn ≤ 1/2,
and the image of fold S 2n−1 is the “hypotenuse”, ξ1 + · · · + ξn = 1/2. See Figure 1 for the
case of n = 2.

=
⋃

Δ Δ1 Δ2

Fig.1. An origami polytope for S 4

3. Stable almost complex structure and Clifford module bundle

3. Stable almost complex structure and Clifford module bundle
Let (M, ω) be a 2n-dimensional oriented folded symplectic manifold with fold Z and  an

open neighbourhood of Z as in Theorem 2.2. Let M+ (resp. M−) be the union of connected
components of M � Z such that ωn|M+ agrees (resp. disagrees) with the given orientation of
M. In [3], it was shown that M has a stable almost complex structure. More precisely the
following holds.



A Danilov-Type Formula for Toric OrigamiManifolds 625

Theorem 3.1 (Theorem 2 in [3]). There exists an almost complex structure J̃ on the real
(2n + 2)-dimensional vector bundle T M ⊕ R2 , and a C-linear isomorphism

(T M ⊕ R2)|M� � T (M � ) ⊕ C.
Moreover, T M⊕R2 has a symplectic structure ω̃ which is canonical up to homotopy, and the
homotopy class of J̃ is unique provided J̃ is compatible with the natural symplectic structure
on T M ⊕ R2.

Remark 3.2. One can see in the proof of [3, Theorem 2] that the above J̃ has the following
properties.

(1) Let J be an almost complex structure on M � Z which is compatible with ω|M�Z .
Then one can construct J̃ so that the following equality holds.

(3.1)

⎧⎪⎪⎨⎪⎪⎩ J̃|M+� = J|M+� ⊕ (
√−1)

J̃|M−� = J|M−� ⊕ (−√−1).

(2) By using a connection of the principal S 1-bundle Z → B we have the splitting of
the tangent bundle TZ � π∗T B ⊕ TπZ, where TπZ is the tangent bundle along the
fiber, which is a real line bundle over Z. Since T is oriented, and hence, TZ is also
oriented, the fact that B is a symplectic manifold implies that TπZ is an orientable.
In particular, TπZ is trivial real line bundle. Under these identifications the almost
complex structure J̃| in Theorem 3.1 on T ⊕ R2 � π∗T B ⊕ TπZ ⊕ R ⊕ R2 can
be taken as the direct sum of almost complex structures on the symplectic vector
bundle π∗T B and the trivial bundle TπZ ⊕ R ⊕ R2 of real rank 4.

(3) If a compact Lie group G acts on (M, ω), then we can take J̃ to be G-invariant. In
fact we will use such an invariant J̃ in the subsequent sections.

By using J̃ and ω̃, we have a Riemannian metric on T M ⊕ R2, and T M is equipped with
the metric as a subbundle of T M⊕R2. Moreover the stable almost complex structure induces
a spinc-structure on M. Now we construct a Clifford module bundle over T M in terms of
this stable almost complex structure.

We first explain the construction for the vector space case. Let E be an even dimensional
Euclidean vector space. Suppose that a complex structure JẼ on Ẽ := E⊕Re which preserves
the metric on Ẽ is given for a non-negative (even) integer e. By using JẼ we have a Z/2-
graded Cl(Ẽ) = Cl(E) ⊗ Cl(Re)-module WẼ := ∧•

C
Ẽ, the exterior product algebra of the

Hermitian vector space Ẽ. The Clifford action of Cl(Ẽ) is defined by the wedge product
and the interior product. We define WE as the set of all linear maps from an irreducible
representation We of the Clifford algebra Cle := Cl(Re) to WẼ which commute with the
Clifford action of Cle,

WE := HomCle(We,WẼ),

where Cle acts on WẼ by using the inclusion Cle ↪→ Cl(E ⊕ Re). Note that WE is equipped
with the Clifford action of Cl(E) by

α · φ : v �→ αφ(v)
for α ∈ Cl(E) and v ∈ We using the inclusion Cl(E) ↪→ Cl(E ⊕ Re).
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Lemma 3.3. WE is an irreducible Z/2-graded Cl(E)-module.

Proof. Suppose that E is equipped with an almost complex structure JE and JẼ is the
direct sum of JE and the standard complex structure

√−1 on Re = Ce/2 (for a specific order
of the basis of Re). In this case, one can see that ∧•

C
Ẽ = ∧•

C
E ⊗ ∧•

C
R

e and

WE = HomCle(We,∧•CẼ) = ∧•
C

E ⊗ HomCle(We,∧•CRe) = ∧•
C

E.

It implies that WE is an irreducible Cl(E)-module. Since any complex structure on Ẽ is
homotopic to the direct sum JE ⊕

√−1 and the irreducible representation of Cl(E) is unique,
we complete the proof. �
By applying the above construction for an almost complex structure on T M ⊕ R2 we have

the Z/2-graded Cl(T M)-module bundle

(3.2) W := HomCl2 (W2,∧•C(T M ⊕ R2))

over M. Note that we have W |M±� � ∧•CT (M± �  ) by (3.1), which is the standard
Cl(T (M± �  ))-module bundle of M± �  . For any Hermitian line bundle L we have a
twisted Z/2-graded Cl(E)-module bundle WL := W ⊗ L.

Definition 3.4. For a compact oriented origami manifold (M, ω) without boundary and a
Hermitian line bundle L over M the Riemann-Roch number RR(M, L) is defined as the index
of spinc-Dirac operator which acts on the smooth sections of the Clifford module bundle WL:

RR(M, L) := ind(WL).

Remark 3.5. Since any two Dirac-type operators can be joined in the space of Dirac-type
operators the index RR(M, L) = ind(WL) does not depend on the choice of the Dirac-type
operators by the homotopy invariance of the analytic index.

4. Compatible fibration on toric origami manifolds

4. Compatible fibration on toric origami manifolds
In this section we construct a structure of good compatible fibration on toric origami

manifolds. The notion of good compatible fibration is a family of torus fibrations (or more
generally foliations) over an open covering of the manifold with some compatibility condi-
tion and is introduced in [11]. See also Definition A.2.

Assumption 4.1. In this section we consider a toric origami manifold (M, ω, T, μ) satisfy-
ing the following assumptions.

• M is connected, oriented, and compact without boundary.
• (M, ω, T, μ) satisfies the condition (b) in Theorem 2.5. Namely, the null foliation is

given by a subgroup of T .

Suppose that dim M = 2n. Let μ(M) =
⋃

i Δi be the union of convex polytopes associated
with the moment map μ : M → t∗. For each i let Δi = ΔZ∪⋃n

j=0
⋃mj

k=1 Δ
( j)
i,k be the stratification

of Δi, where we put1 ΔZ := μ(Z) and {Δ( j)
i,1 , · · · ,Δ( j)

i,mj
} is the set of all j-dimensional faces of

Δi for each j ∈ {0, · · · , n}. We take and fix a neighbourhood  := Z × (−ε, ε) of Z in M as

1Strictly speaking we consider each connected component of Z.
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in Theorem 2.2 for some small ε > 0, and we may assume that  = Z × [−ε, ε, ] and an
open neighbourhood Δ̃Z in Theorem 2.5(b) has the form Δ̃Z = μ( ).

The construction of the good compatible fibration is divided into two parts, fibrations near
the fold and fibrations outside the fold.

4.1. Torus actions near the fold.
4.1. Torus actions near the fold. We set  ′ := Z× (− ε2 , ε2 ). We take ε > 0 small enough

so that the S 1-action on Z can be extended to a free S 1-action on 
′. By using this S 1-action

we have an S 1-bundle structure on 
′ with the base space B × (− ε2 , ε2 ).

4.2. Torus actions outside the fold.
4.2. Torus actions outside the fold. We construct a family of torus actions on M �  .

We put Δ′i,Z := Δi � μ( ) and we first construct an open covering

Δ′i,Z =

⎛⎜⎜⎜⎜⎜⎜⎝
n⋃

j=0

mj⋃
k=1

Δ̃
( j)
i,k

⎞⎟⎟⎟⎟⎟⎟⎠
by the following procedure. See also Figure 2.

Δ
( j)
i,k

Δ
( j+1)
i,k′

Δ
( j+1)
i,k′′

Δ
(n)
i,1

Δ̃
( j)
i,kΔ̃

( j+1)
i,k′′

Δ̃
( j+1)
i,k′

Fig.2. Open covering outside the image of the fold

(0) For each k ∈ {1, · · · ,m0} take a small open neighbourhood Δ̃(0)
i,k of Δ(0)

i,k in Δ′i,Z so that
Δ̃

(0)
i,k ∩ Δ̃(0)

i,k′ = ∅ if k � k′.
(1) For each k ∈ {1, · · · ,m1} take a small open neighbourhood Δ̃(1)

i,k of⎛⎜⎜⎜⎜⎜⎜⎝Δ′i,Z �
m0⋃

k0=1

Δ̃
(0)
i,k0

⎞⎟⎟⎟⎟⎟⎟⎠ ∩ Δ(1)
i,k

in Δ′i,Z so that Δ̃(1)
i,k ∩ Δ̃(1)

i,k′ = ∅ if k � k′.
(2) For each k ∈ {1, · · · ,m2} take a small open neighbourhood Δ̃(2)

i,k of⎛⎜⎜⎜⎜⎜⎜⎜⎝Δ′i,Z �
1⋃

j=0

mj⋃
k j=1

Δ̃
( j)
i,k j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∩ Δ(2)
i,k

in Δ′i,Z so that Δ̃(2)
i,k ∩ Δ̃(2)

i,k′ = ∅ if k � k′.
...



628 H. Fujita

(n-1) For each k ∈ {1, · · · ,mn−1} take a small open neighbourhood Δ̃(n−1)
i,k of⎛⎜⎜⎜⎜⎜⎜⎜⎝Δ′i,Z �

n−2⋃
j=0

mj⋃
k j=0

Δ̃
( j)
i,k j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∩ Δ(n−1)
i,k

in Δ′i,Z so that Δ̃(n−1)
i,k ∩ Δ̃(n−1)

i,k′ = ∅ if k � k′.
(n) We set Δ̃(n)

i,1 := int(Δi) = int(Δ(n)
i ).

For a toric manifold M �Z it is well-known that for each i, j, k there exists a subtorus T ( j)
i,k

of T such that dim T ( j)
i,k = n − j and for any x ∈ μ−1(int(Δ( j)

i,k )) � Z the stabilizer subgroup
at x is equal to T ( j)

i,k . Particularly we have T (n)
i,1 = {e}. We take and fix a rational metric

of the Lie algebra t so that for each subspace h in t spanned by rational vectors one can
associate the orthogonal complement subgroup exp(h⊥) as a compact subgroup of T . Let G( j)

i,k
be the orthogonal complement subgroup associated with (the Lie algebra of) the stabilizer
subgroup T ( j)

i,k . Note that we have G(n)
i,1 = T . Define an open subset of M by M( j)

i,k := μ−1(Δ̃( j)
i,k ),

which has the natural G( j)
i,k -action and the following properties.

• Each G( j)
i,k acts on M( j)

i,k , and all orbits of G( j)
i,k -action have the maximal dimension

dim G( j)
i,k .

• If Δ̃( j)
i,k ∩ Δ̃( j′)

i,k′ � ∅, then we have G( j)
i,k ⊂ G( j′)

i,k′ or G( j)
i,k ⊃ G( j′)

i,k′ .

4.3. Good compatible fibration on toric origami manifolds.
4.3. Good compatible fibration on toric origami manifolds. By taking each open sub-

set small enough we may assume that  ′ ∩ M( j)
i,k = ∅ for all i, j, k with j � n. The union


′ ∪

⋃
i, j,k

M( j)
i,k is not an open covering of the whole M. There exist a family of compact sets,

which we call the crack CZ
i,k defined by

CZ
i,k := μ−1

(
μ( � ′) ∩ Δ(n−1)

i,k

)
.

ΔZ

Δ
(n−1)
i,k

μ( )

Δ
(n−1)
i,k′

μ(CZ
i,k)

μ(CZ
i,k′)

Fig.3. Crack near the fold

Though we do not know the way to extend the good compatible fibration across the crack,
we have the following.
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Proposition 4.2. A family of open subsets { ′,M( j)
i,k }i, j,k defines a structure of good com-

patible fibration (Definition A.2) on the complement M �
⋃

i,k CZ
i,k.

Example 4.3. Consider the toric origami manifold S 4 with the moment map μ : S 4 → R2

whose origami polytope is the union of two copies of the triangle, μ(S 4) = Δ = Δ1 ∪ Δ2.
The open covering { ′,M( j)

i,k }i, j,k consists of the inverse images of the following two copies
of 5 open subsets of Δ1 (= Δ2) for any small ε > 0 :

• Δ̃Z : small open neighbourhood of the hypotenuse ξ1 + ξ2 = 1/2.
• Δ̃(0)

1 = Δ̃
(0)
2 : small open ball of radius ε > 0 centered at (0, 0).

• Δ̃(1)
1,1 = Δ̃

(1)
2,1 : small open neighbourhood of the line segment, 0 ≤ ξ1 < ε, ε/2 ≤ ξ2 ≤

1 − ε.
• Δ̃(1)

1,2 = Δ̃
(1)
2,2 : small open neighbourhood of the line segment 0 ≤ ξ2 < ε, ε/2 ≤ ξ1 ≤

1 − ε.
• intΔ1 = intΔ2.

In this case the cracks consist of the inverse images of two compact subsets cZ
1,1 = cZ

2,1 and
cZ

1,2 = cZ
2,2 defined by

cZ
1,1

(
= cZ

2,1

)
: ξ1 = 0, 1 − ε ≤ ξ2 ≤ 1 − ε/2

and

cZ
1,2

(
= cZ

2,2

)
: ξ2 = 0, 1 − ε ≤ ξ1 ≤ 1 − ε/2.

Δ̃Z

Δ̃
(0)
i Δ̃

(1)
i,2

cZ
i,2

cZ
i,1

Δ̃
(1)
i,1

Fig.4. Covering of the S 4

5. Compatible system on toric origami manifolds

5. Compatible system on toric origami manifolds
In this section we construct a compatible system (of Dirac-type operators) on toric origami

manifolds. The notion of compatible system is introduced in [11], which is a family of Dirac-
type operators along leaves of compatible fibration and satisfies some anti-commutativity.
See also Definition A.4.

Assumption 5.1. In this section we consider a toric origami manifold (M, ω, T, μ) satisfy-
ing the following assumption.

• (M, ω, T, μ) satisfies Assumption 4.1.
• The de Rham cohomology class [ω] has an integral lift in H2(M,Z).
• A T -equivariant pre-quantizing line bundle (L,∇) is fixed. Namely, L is a T -

equivariant Hermitian line bundle over M and ∇ is a T -invariant Hermitian con-
nection whose curvature form is equal to −√−1ω.
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Together with the assumptions we may choose a stable almost complex structure J̃ as
in Theorem 3.1 so that the tangent bundle of each symplectic submanifold μ−1(int(Δ( j)

i,k )) is
preserved by J̃ for all i, j and k. Under the above assumption we use the Z/2-graded Clifford
module bundle WL as in the end of Section 3. As it is shown in Section 4, M �

⋃
i,k CZ

i,k has
a structure of good compatible fibration { ′,M( j)

i,k }i, j,k. Since {M( j)
i,k }i, j,k is a good compatible

fibration on an open toric manifold M � , we have a compatible system {D( j)
i,k }i, j,k on it as

in [11, Theorem 5.1]. Namely for each i, j, k we have the following.
• D( j)

i,k is a first order formally self-adjoint differential operator of degree-one, which
acts on the space of smooth sections of WL|M( j)

i,k
.

• D( j)
i,k contains only the differentials along the G( j)

i,k -orbits.
• For each x ∈ M( j)

i,k , the restriction of D( j)
i,k to the orbit G( j)

i,k · x is a Dirac-type operator
on the Z/2-graded Cl(T (G( j)

i,k · x))-module bundle WL|G( j)
i,k ·x.

• Let ũ be a G( j)
i,k -invariant section of the normal bundle to the orbit G( j)

i,k · x. Then D( j)
i,k

anti-commutes with the Clifford multiplication c(̃u) of ũ :

(5.1) D(k)
i,k c(̃u) + c(̃u)D(k)

i,k = 0.

Now we construct a differential operator DZ along the S 1-orbits on  . We first study the
product structure of W | . Hereafter we use the identification  = Z × (−ε, ε) � (Z × S 1 ×
(−ε, ε))/S 1 with respect to the diagonal S 1-action. According to Remark 3.2(2) we may
assume that the almost complex structure J̃| in Theorem 3.1 on T ⊕R2 � π∗T B⊕ TπZ ⊕
R⊕R2 is the direct sum of almost complex structures on the symplectic vector bundle π∗T B
and the trivial bundle TπZ ⊕ R ⊕ R2 of real rank 4. Then we have

W | = HomCl2 (W2,∧•C(T ⊕ R2)) = π∗(∧•
C

T B) ⊗ HomCl2 (W2,∧•C(TπZ ⊕ R3)).

On the other hand we have the commutative diagram of bundle maps

TπZ

��

q∗(TπZ) � p∗(TS 1)�� ��

��

TS 1

��
Z Z × S 1

q
��

p
�� S 1,

where p : Z × S 1 → S 1 is the projection to the S 1-factor and q : Z × S 1 → (Z × S 1)/S 1 � Z,
(z, t) �→ zt−1 is the quotient map with respect to the diagonal action of S 1. The isomorphism
in the middle column is given by the differential of the map S 1 → Z, t �→ zt−1 for z ∈ Z.
The commutative diagram implies that the vector bundle TπZ ⊕ R3 →  � (Z × S 1 ×
(−ε, ε))/S 1 can be obtained as a quotient bundle of p∗(TS 1) ⊕ R3 → Z × S 1 × (−ε, ε).
In particular HomCl2 (W2,∧•C(TπZ ⊕ R3)) →  can be obtained as a quotient bundle of
HomCl2 (W2,∧•C(TS 1 ⊕ R3))→ Z1 × S 1 × (−ε, ε), where the complex structure on TS 1 ⊕ R3

is given by the same formula for Bt as in the proof of [3, Theorem 2] under a trivialization.
Note that HomCl2 (W2,∧•C(TS 1 ⊕ R3)) has a structure of Z/2-graded Cl(TS 1 ⊕ R)-module
bundle over S 1 × (−ε, ε).

Now we decompose the line bundle L over  . Let (L0,∇) → S 1 × (−ε, ε) be the pre-
quantizing line bundle over the folded cylinder as in Appendix C.
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Proposition 5.2. If we take ε small enough, then the diffeomorphism ϕ : 
�→ Z× (−ε, ε)

as in Theorem 2.2 can be lifted to an isomorphism between L| →  and (L|Z � L0)/S 1 →
(Z × S 1 × (−ε, ε))/S 1 = Z × (−ε, ε).

Proof. Note that there exists the canonical isomorphism ϕ̃0 between ι∗ZL and
ι∗0

(
(L|Z � L0)/S 1

)
. Fix a Hermitian connection of (L|Z � L0)/S 1. Then the we have the

required isomorphism by using ϕ̃0 and the parallel transport. �

Summarising we have the following.

Proposition 5.3. Let WB,LB := ∧•
C

T B⊗ (L|Z/S 1) be a Z/2-graded Cl(T B)-module bundle
over B. Let W0,L0 := HomCl2 (W2,∧•C(TS 1 ⊕R3))⊗ L0 be a Z/2-graded Cl(TS 1 ⊕R)-module
bundle over S 1 × (−ε, ε) as in the above construction. The Z/2-graded Clifford module
bundle WL| →  is isomorphic to the quotient bundle of the tensor product π∗WB,LB ⊗
p∗W0,L0 → Z × S 1 × (−ε, ε) with respect to the diagonal S 1-action, where π : Z × S 1 ×
(−ε, ε)→ B and p : Z × S 1 × (−ε, ε)→ S 1 × (−ε, ε) are natural projections.

Let DS 1 be a Dirac-type operator along the S 1-orbits in S 1 × (−ε, ε), which acts on the
space of smooth sections of W0,L0 . See Appendix C for the explicit description of DS 1 . Let
εB be the map representing the Z/2-grading of WB,LB , i.e., εB(v) = (−1)deg(v)(v) for v ∈ WB,LB .
The product of operators εB ⊗ DS 1 is S 1-invariant, and it induces a differential operator DZ

acting on the smooth sections of W | through the isomorphism in Proposition 5.2. Since the
S 1-action on Z is given by a subgroup of T , DZ is a differential operator along the S 1-orbits
and satisfies the anti-commutativity as in (5.1).

Proposition 5.4. The family of differential operators {DZ ,D
( j)
i,k }i, j,k is a compatible system

on the compatible fibration defined by the torus actions {S 1
� 

′, G( j)
i,k � M( j)

i,k }i, j,k.

5.1. Acyclicity of the compatible system.
5.1. Acyclicity of the compatible system. In this section we determine the condition for

the compatible system {DZ ,D
( j)
i,k }i, j to be acyclic ([11, Definition 6.10] or Definition A.5).

Let g( j)∗
i,k be the dual of the Lie algebra of the subtorus G( j)

i,k and (g( j)∗
i,k )Z the integral weight

lattice of g( j)∗
i,k . Let ι( j)

i,k : g( j)
i,k → g be the inclusion of the Lie subalgebra. Note that the

composition μ( j)
i,k := (ι( j)∗

i,k ) ◦ μ : M( j)
i,k → g( j)∗

i,k is the moment map for the Hamiltonian G( j)
i,k -

action on M( j)
i,k . We put M( j)◦

i,k := M( j)
i,k � (μ( j)

i,k )−1((g( j)∗
i,k )Z).

Proposition 5.5. For each x ∈ M( j)◦
i,k , we have ker(D( j)

i,k |G( j)
i,k ·x) = 0.

Proof. Note that for each x ∈ M( j)
i,k the kernel of D( j)

i,k |G( j)
i,k ·x vanishes if and only if there are

no non-trivial global parallel sections of L|G( j)
i,k ·x. The proposition follows from the fact that

if there exists a global parallel section, then we have μ( j)
i,k (x) = ι( j)∗

i,k (μ(x)) lies in the integral
weight lattice (g( j)∗

i,k )Z. �

We may take ε > 0 small enough so that μ( ) = μ(Z × (−ε, ε)) does not contain any
integral lattice points outside μ(Z) = ΔZ . Then we have the following by the same argument
as that for Proposition 5.5.

Proposition 5.6. For each x ∈  ′ � Z, we have ker(DZ |S 1·x) = 0.



632 H. Fujita

We put V :=
(

′ ∪⋃

i, j,k M( j)◦
i,k

)
�

(
Z ∪⋃

i,k CZ
i,k

)
. Then M � V is compact. Since {S 1

�


′, G( j)

i,k � M( j)
i,k }i, j,k is a good compatible fibration one can see that the following two types

of the anti-commutators on the intersections are non-negative.
• D( j)

i,k D( j′)
i,k′ + D( j′)

i,k′ D
( j)
i,k on M( j)

i,k ∩ M( j′)
i,k′ , and

• DZD(n)
i,1 + D(n)

i,1 DZ on 
′ ∩ M(n)

i,1 .
See [11, Proposition 5.8, Lemma 5.9] for example. Together with Proposition 5.5 this fact
implies the following.

Proposition 5.7. The compatible system {DZ ,D
( j)
i,k }i, j,k is acyclic over V.

5.2. Localization formula and Danilov-type formula.
5.2. Localization formula and Danilov-type formula. As in Definition 3.4, the

Riemann-Roch number RR(M, L) is defined for any origami manifold (M, ω) with pre-
quantizing line bundle (L,∇). If (M, ω) is a toric origami manifold with the action of a
torus T , then the resulting index is an element of the character ring R(T ) of T . In this case
we call the index the equivariant Riemann-Roch number or Riemann-Roch character and is
denoted by RRT (M, L).

We use notations in the previous sections and assume Assumption 5.1. For each i, j(� n),
and k we may assume that

Δ̃
( j)
i,k ∩ intΔi ∩ t∗Z = ∅,

and we take and fix a T -invariant small open neighbourhood V ( j)
i,k of (μ( j)

i,k )−1((g( j)∗
i,k )Z) for each

i, j and k. By the above assumption one has that if j � n, then V ( j)
i,k ∩ μ−1(t∗

Z
) consists of the

inverse image of lattice points in the boundary ∂Δi = Δi � intΔi. We also take and fix a small
open neighbourhood VZ

i,k of the crack CZ
i,k so that it does not contain any integral points for

each i and k. Note that each open subset V ( j)
i,k ∩ V (resp. VZ

i,k ∩ V) with compact complement
V ( j)

i,k � V ( j)
i,k ∩ V = (μ( j)

i,k )−1((g( j)∗
i,k )Z)(⊃ M( j)

i,k ∩ μ−1(g∗
Z
)) (resp. VZ

i,k � VZ
i,k ∩ V = CZ

i,k) is equipped
with an acyclic compatible system by Proposition 5.7, and hence, the T -equivariant local
index indT (V ( j)

i,k ,V
( j)
i,k ∩ V) (resp. indT (VZ

i,k,V
Z
i,k ∩ V)) is defined (Theorem A.7) . As in the

same way one can define the T -equivariant local index for the fold, indT ( ′, ′ � Z), is
defined.

The localization formula (Theorem A.8) implies that the Riemann-Roch character is lo-
calized at μ−1(g∗

Z
) ∪ Z ∪⋃

i,k CZ
i,k ⊂ M � V as follows.

Theorem 5.8. Under Assumption 5.1 we have the localization formula of T-equivariant
index

RRT (M, L) = indT ( ′, ′ � Z) +
∑
i, j,k

indT (V ( j)
i,k ,V

( j)
i,k ∩ V) +

∑
i,k

indT (VZ
i,k,V

Z
i,k ∩ V).

By computing the contributions indT ( ′, ′ � Z) (Theorem 6.9), indT (V ( j)
i,k ,V

( j)
i,k ∩ V)

(Theorem 6.10, Theorem 6.11) and indT (VZ
i,k,V

Z
i,k ∩ V) (Theorem 6.12) in the subsequent

section, we have the following Danilov-type formula.

Theorem 5.9. Under Assumption 5.1 we have the following equality as elements in the
character ring R(T ).

(5.2) RRT (M, L) =
∑

ξ+∈μ(M+)∩t∗
Z

C(ξ+) −
∑

ξ−∈μ(M−)∩t∗
Z

C(ξ−),
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where for each ξ ∈ t∗
Z

we denote by C(ξ) the irreducible representation of T whose weight is
given by ξ.

To compute the local contributions in the subsequent sections, we will use the following
notations. We divide the collection of Delzant polytopes {Δi}i=1,··· ,N into two subsets,

{Δi}i=1,··· ,N = {Δ+i }i=1,··· ,N+ ∪ {Δ−i }i=1,··· ,N− ,

where N++N− = N and the sign is determined by the condition μ(M±) =
N±⋃
i=1

Δ±i . In a similar

way we also use notations Δ( j)±
i,k , V ( j)±

i,k , μ( j)±
i,k and g( j)±

i,k .
In terms of this notations the formula (5.2) can be rewritten as

RRT (M, L) =
∑
i, j,k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

ξ+∈intΔ( j)+
i,k ∩t∗Z

C(ξ+) −
∑

ξ−∈intΔ( j)−
i,k ∩t∗Z

C(ξ−)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Example 5.10. Consider the toric origami manifold (S 2n, ω), the unit sphere, with the

moment map μ : S 2n → Rn as in Example 2.6, whose origami polytope is the union of two
copies of the n-simplex, μ(S 2n) = Δ = Δ1 ∪ Δ2. Since μ((S 2n)+) ∩ t∗

Z
= μ((S 2n)−) ∩ t∗

Z
, one

has RRT (S 2n, L) = 0 for any T -equivariant pre-quantizing line bundle L.
Note that if we use the folded symplectic form kω for any positive constant k, then the

origami polytope for (S 2n, kω) is the similar extension with ratio k of the original origami
polytope. In this case one also has RRT (S 2n, Lk) = 0 for any T -equivariant pre-quantizing
line bundle Lk.

5.3. Comments on another possible approaches.
5.3. Comments on another possible approaches. The formula (5.2) in Theorem 5.9

itself can be obtained as a consequence of the cobordism theorem [2, Theorem 4.1] and
Danilov’s theorem for symplectic toric manifolds.

There is an another possible approach which uses the theory of multi-fans introduced in
[15]. The equivariant index formula [15, Theorem 11.1], which is based on the fixed point
formula, would be available to the left hand side of (5.2). In fact as it is shown in [18] one
can associate a multi-fan for each oriented toric origami manifold.

It would be possible to show the formula (5.2) by using the theory of transverse index
in [1][20]. In [1] it was shown that the Riemann-Roch character RRT (M, L) can be realized
as a perturbation of Dirac operator by the Clliford multiplication of the Kirwan vector field
of the moment map. By considering the perturbation RRT (M, L) is localized at the zero
locus of the Kirwan vector field, i.e., the fixed point set MT . Under Assumption 4.1, the
fold has a free S 1-action, and hence, there are no contributions of the fold to RRT (M, L). In
particular RRT (M, L) is the sum of contributions of the vertices of the image of the moment
map μ(M � Z). As in [21, Example 13] the contribution from a fixed point is infinite sum
of one dimensional representations of T in general. It implies that RRT (M, L) is expressed
as a cancellation of infinite sum of one dimensional representations. See also [8] for the
infinite dimensional nature of the transverse index and the finite dimensional nature of the
index theory in [10, 11].

In contrast to these approaches our proof is direct and geometric, which detects the contri-
bution of each lattice point directly and contains a new proof of original Danilov’s theorem
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as a special case.

6. Computation of local contributions

6. Computation of local contributions6.1. Toric case.
6.1. Toric case. In this subsection we consider the symplectic toric case, i.e., toric

origami manifolds with empty fold. We first summarize the set-up and notations.
Let X be a 2n-dimensional symplectic manifold equipped with a Hamiltonian torus action

of an n-dimensional torus G. We assume that there exists a G-equivariant pre-quantizing line
bundle LX → X. Let μX : X → g∗ = Lie(G)∗ and ΔX = μX(X) be the corresponding moment
map and the Delzant polytope. We take and fix an m-dimensional face Δ′ of ΔX and a point
ξ in the relative interior int(Δ′). Let F := μ−1

X (ξ) be the m-dimensional isotropic torus in X
and X′ := μ−1

X (Δ′) be the 2m-dimensional symplectic submanifold of X. We take and fix a
point x ∈ F ⊂ X′. Let H be the stabilizer subgroup at x with respect to G-action and H⊥ the
complementary orthogonal subtorus of H in G with respect to a rational metric of g. Note
that H (resp. H⊥) is an n − m-dimensional (resp. m-dimensional) subtorus of G. We denote
the inclusion map of Lie-algebra and its dual by ιH : Lie(H) = h → g and ι∗H : g∗ → h∗
respectively.

We first give following comments.
• Since the computation is purely local, we do not need the compactness of ΔX . In

fact we only use a part of the Delzant condition near ξ.
• We fix a G-invariant ω-compatible almost complex structure on X so that it also

induces a G-invariant ω-compatible almost complex structure on the inverse image
of each face of ΔX .
• F is a Lagrangian torus in the symplectic submanifold X′.
• F can be described as the orbit F = G · x = H⊥ · x.
• The intersection H ∩ H⊥ is a finite Abelian group.
• Since x is a fixed point with respect the H-action, the moment map image (ι∗H ◦
μ)(x) = ι∗H(ξ) of x with respect to the H-action is an element in the weight lattice h∗

Z
.

• The argument below still holds when there exists a finite subgroup of G which acts
trivially on X. In fact in the proof of Lemma 6.2 we deal with the symplectic toric
manifold X1 for which such a subgroup H ∩ H1 ∩ H⊥1 may exist.

If Y is a smooth manifold and Y ′ is its smooth submanifold, then we denote the normal
bundle of Y ′ in Y by νY(Y ′). We also denote the fiber at y ∈ Y ′ by νY(Y ′)y. There exists a
G-invariant tubular neighbourhood NF of F and G-equivariant diffeomorphism

NF � (νX(F)x ×G)/H = (νX(F)x × H⊥)/H ∩ H⊥,

where we use the G-action on the right hand side through the identification G = H · H⊥ =
(H × H⊥)/H ∩ H⊥ arising from the exact sequence

H ∩ H⊥ → H × H⊥ → H · H⊥ = G

h �→ (h, h−1), (h1, h2) �→ h1h2.

Since F is a Lagrangian torus in X′ we have

νX(F)x × H⊥ = νX(X′)x × νX′(F)x × H⊥ = νX(X′)x × T ∗x (H⊥ · x) × H⊥ = νX(X′)x × T ∗H⊥,

and hence, we have a G-equivariant isomorphism
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(6.1) NF � (νX(X′)x × T ∗H⊥)/H ∩ H⊥.

Now we describe the restriction LX |NF . We first define an H-equivariant line bundle
L1 := νX(X′)x × LX |x → νX(X′)x, where we regarded LX |x as a representation of H. Note
that νX(X′)x has a natural symplectic structure and L1 is equipped with a structure of pre-
quantizing line bundle with respect to the symplectic structure. Let L2 be the pull-back of
LX |NF with respect to the natural map T ∗H⊥ → (νX(X′)x × T ∗H⊥)/H ∩ H⊥, which is an
H × H⊥-equivariant line bundle over T ∗H⊥. Note that though H-action on T ∗H⊥ is triv-
ial, the action on L2 is non-trivial in general. We define an H⊥-equivariant line bundle
L̂2 → T ∗H⊥ by L̂2 := Hom(LX |x, L2). Then L̂2 is isomorphic to L2 as H⊥-equivariant line
bundle and the induced H-action on L̂2 is trivial. We have two line bundles with connec-
tion (L1 � L̂2)/H ∩ H⊥ and LX |NF over (νX(X′)x × T ∗H⊥)/H ∩ H⊥ = NF . The restrictions
of these two line bundles to the zero-section F in NF are isomorphic to each other as line
bundles with connection. The Darboux type theorem ([12, Proposition 7.11]) implies that
the G-equivariant isomorphism can be extended to a G-invariant neighbourhood of F.

Remark 6.1. Strictly speaking we have to consider the data on sufficiently small neigh-
bourhoods of the origin in νX(X′)x and the zero section H⊥ in T ∗H⊥ as a Lagrangian torus to
consider the above isomorphisms and the local indices in the subsequent argument, though,
we use the same notations νX(X′) and T ∗H⊥ to simplify the notations.

Let Δ1, . . . ,Δn−m be codimension one faces of ΔX such that Δ′ is the intersection of them,
Δ′ = Δ1 ∩ · · · ∩ Δn−m. For each l = 1, 2, . . . , n − m, let Hl be the circle subgroup of H
which acts trivially on the symplectic submanifold Xl := μ−1

X (Δl) and H⊥l the orthogonal
complement of Hl. If we choose any members Δl1 , . . . ,Δlα , then we have a locally free
action of the intersection H⊥l1 ∩ · · · ∩ H⊥lα = (Hl1 · · · · · Hlα)⊥ on a small neighbourhood of
the inverse image of the complement of a neighbourhood of the boundary ∂(Δl1 ∩ · · · ∩ Δlα)
in Δl1 ∩ · · · ∩ Δlα . Such a family of torus actions determines a good compatible fibration
as in Section 4.3. For each Hl we have the decomposition H⊥l = (H ∩ H⊥l ) · H⊥. On the
other hand there exists a natural action of the product H ×H⊥ on NF under the identification
(6.1). Then the above good compatible fibration is induced from the action of the subgroup
(H ∩ H⊥l ) × H⊥ in H × H⊥.

The G-equivariant local index indG(NF ,NF �F) is defined by using these structures and it
is equal to the H∩H⊥-invariant part of the H×H⊥-equivariant local index indH×H⊥(νX(X′)x×
T ∗H⊥, νX(X′)x × T ∗H⊥ � {0} × H⊥). For simplicity we use the following type of notations
for the equivariant local indices:

RRH(νX(X′)x) := indH(νX(X′)x, νX(X′)x � {0})
and

RRH⊥(T ∗H⊥) := indH⊥(T ∗H⊥, T ∗H⊥ � H⊥).

Lemma 6.2. RRH(νX(X′)x) = C(ι∗H(ξ)) = LX |x ∈ R(H).

Proof. The second equality follows from the property of the moment map and the Kostant
formula. We show the first equality by induction on n − m = dim(νX(X′)x)/2. If n − m = 1,
then the equality follows from the direct computation. See [22, Example 2.3] for exam-
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ple. Suppose that n − m is grater than 1 and the statement holds for any situation with
codimension n − m − 1. We consider the decomposition νX(X′) = νX(X1) ⊕ νX1 (X

′) and
H = H1 · (H ∩ H⊥1 ). According to the decomposition the H-action on νX(X′) factors the
action of the product of H1-action on νX(X1) and H ∩ H⊥1 -action on νX1 (X

′). By Propo-
sition B.2 we have that RRH(νX(X′)x) is equal to the H1 ∩ (H ∩ H⊥1 )-invariant part of the
product RRH1 (νX(X1)x) ⊗ RRH∩H⊥1 (νX1 (X

′)x). Note that H⊥1 -action on X1 gives a structure of
a symplectic toric manifold whose momentum polytope is ι∗H⊥1 (Δ1). By the assumption of
the induction we have RRH⊥1 (νX1 (X

′)x) = C(ι∗
H⊥1

(ξ)). By considering the subgroup H ∩ H⊥1 we

have RRH∩H⊥1 (νX1 (X
′)x) = C(ι∗

H∩H⊥1
(ξ)), and hence,

RRH1 (νX(X1)x) ⊗ RRH∩H⊥1 (νX1 (X
′)x) = C(ι∗H1

(ξ)) ⊗ C(ι∗
H∩H⊥1

(ξ)) = C(ι∗H1
(ξ)⊕ι∗

H∩H⊥1
(ξ)).

Note that under the natural isomorphism Lie(H1)∗ ⊕ Lie(H ∩ H⊥1 )∗ � h∗ we have ι∗H1
(ξ) ⊕

ι∗H∩H⊥1
(ξ) = ι∗H(ξ). As we noted in the beginning of this section ι∗H(ξ) is an element of the

weight lattice h∗
Z
, the H1×(H∩H⊥1 )-representationCι∗H1

(ξ)⊕ι∗
H∩H⊥1

(ξ) induces an H-representation

C(ι∗H(ξ)), and hence, it implies that RRH1 (νX(X1)x) ⊗ RRH∩H⊥1 (νX1 (X
′)x) decsends to an H-

representation. In particular the index RRH1 (νX(X1)x) ⊗ RRH∩H⊥1 (νX1 (X
′)x) is H1 ∩ H ∩ H⊥1 -

invariant, and we complete the proof. �

Let ιH⊥ : h⊥ → g be the inclusion and ι∗H⊥ its dual. We may assume that the moment map
image (ι∗H⊥ ◦ μ)(x) = ι∗H⊥(ξ) of x with respect to the H⊥-action is an element in the weight
lattice (h⊥)∗

Z
. Otherwise the compatible system on T ∗H is acyclic, and hence, the local index

RRH⊥(T ∗H⊥) is zero.

Lemma 6.3. RRH⊥(T ∗H⊥) = C(ι∗
H⊥ (ξ)) ∈ R(H⊥).

Proof. Since the H⊥-action on T ∗H⊥ is free, the induced good compatible fibration
(system) on T H⊥ consists of two open subsets, a small open neighbourhood of the zero-
section H⊥ and its complement. On the other hand by fixing a decomposition H⊥ = (S 1)m,
we have a product structure of compatible fibration and compatible system, where the S 1-
equivariant data is determined by the inclusion ιi : S 1 ↪→ (S 1)m = H⊥ to the ith factor for
i = 1, · · · ,m. By applying Proposition B.2 the local index RRH⊥(T ∗H⊥) is equal to the prod-
uct of RRS 1 (T ∗S 1) defined the structure induced form ιi’s. Then the lemma follows from the
computation of RRS 1 (T ∗S 1) (See [12, Proposition 5.3] for example.). �

Together with the product formula, Lemma 6.2 and Lemma 6.3 imply the following.

Proposition 6.4. We have the equality

RRH×H⊥(νX(X′)x × T ∗H⊥) = C(ι∗H(ξ)⊕ι∗
H⊥ (ξ)) ∈ R(H × H⊥).

Theorem 6.5. indG(NF ,NF � F) � 0 if and only if ξ ∈ g∗
Z
, and if ξ ∈ g∗

Z
, then we have

indG(NF ,NF � F) = C(ξ).

Proof. As we explained, indG(NF ,NF � F) is equal to the H ∩ H⊥-invariant part of
RRH×H⊥(νX(X′)x × T ∗H⊥) which is represented by a one-dimensional representation of H ×
H⊥. Suppose that the invariant part is non-zero. Then the one-dimensional representation
RRH×H⊥(νX(X′)x×T ∗H⊥) descends to a representation of G. Since h∗⊕h⊥∗ is isomorphic to g∗
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by ι∗H ⊕ ι∗H⊥ , the invariant part is equal to the point ι∗H(ξ)⊕ ι∗H⊥(ξ) = ξ ∈ g∗
Z

by Proposition 6.4.
Conversely if ξ ∈ g∗

Z
, then RRH×H⊥(νX(X′)x × T ∗H⊥) represents a point in g∗

Z
, and hence, a

representation of G. In particular we have indG(NF ,NF � F) � 0 as the H ∩ H⊥-invariant
part. �

Definition 6.6. A G-orbit F is called a Bohr-Sommerfeld orbit (BS-orbit for short) if
there exists a non-trivial global parallel section on the restriction (LX ,∇)|F .

Proposition 6.7. A G-orbit F is BS-orbit if and only if indG(NF ,NF � F) � 0.

Proof. We fix the decomposition H⊥ = (S 1)m as in the proof of Lemma 6.3. The computa-
tion in [10, Remark 6.10] says that RRS 1 (T ∗S 1) is isomorphic to the space of parallel sections
Γpar(S 1, ι∗i L̂2|S 1 ) for each i = 1, · · · ,m. By the product structure of (T H⊥, L̂2) near the zero
section, the space of parallel sections Γpar(H⊥, L̂2|H⊥) is generated by a constant section and
isomorphic to the product of Γpar(S 1, ι∗i L̂2|S 1 ) � RRS 1 (T ∗S 1). It implies that Γpar(H⊥, L̂2|H⊥)
is isomorphic to RRH⊥(T ∗H⊥) as H⊥-representation. Similarly by considering the restriction
to the origin, we have that the one-dimensional representation RRH(νX(X′)x) is isomorphic
to LX |x as H-representation. Then we have that RRH(νX(X′)x) ⊗ RRH⊥(T ∗H⊥) is isomorphic
to Γpar({0} × H⊥, LX |x ⊗ L̂2|H⊥) as H × H⊥-representation.

If F is a BS-orbit, then there exists a non-trivial global parallel section sF : F → L|F . By
considering the pull-back we have a non-trivial global parallel section s̃F : H⊥ → LX |x ⊗
L̂2|H⊥ , which is H ∩ H⊥-invariant, and hence, it implies indG(NF ,NF � F) � 0.

Conversely suppose that indG(NF ,NF�F) � 0. Then by the isomorphism RRH(νX(X′)x)⊗
RRH⊥(T ∗H⊥) � Γpar({0}×H⊥, LX |x⊗L̂2|H⊥) there exists an H∩H⊥-invariant non-trivial global
parallel sections of LX |x ⊗ L̂2|H⊥ . It induces a non-trivial global parallel section sF of LX |F
by the natural map H⊥ → H⊥ · x = F. �

When we consider the situation in Section 5.2 we have∑
ξ∈Δi

indT (NF ,NF � F) =
∑

j,k

indT (V ( j)+
i,k ,V

( j)+
i,k ∩ V).

As a particular case we have a proof of Danilov’s theorem for symplectic toric manifolds.

Theorem 6.8. If X is a closed symplectic toric manifold with pre-quantizing line bundle
L, then we have the following equality of the G-equivariant Riemann-Roch number.

RRG(X, L) =
∑
ξ∈(ΔX)Z

C(ξ).

6.2. Contribution from the fold.
6.2. Contribution from the fold. In the subsequent subsections we consider the toric

origami case as in Theorem 5.9. In this subsection we compute the contribution from the
folded part, indT ( ′, ′ � Z).

Theorem 6.9. We have

indT ( ′, ′ � Z) = 0

as a T-equivariant index.
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Proof. As it is showed in Proposition 5.3 and by definition of DZ , the acyclic compatible
system on 

′
� Z has a natural product structure between them on B and S 1 × (−ε/2, ε/2),

and hence, its local index indT ( ′, ′ � Z) is equal to the product of them in the sense
of the product formula [11, Theorem 8.8]. On the other hand the compatible system on
S 1 × (−ε/2, ε/2) is the one associated with the natural folded structure on it, and it will be
shown in Appendix C that its local index is equal to 0. See Proposition C.2. These facts
imply indT ( ′, ′ � Z) = 0. �

6.3. Contribution from the positive unfolded part.
6.3. Contribution from the positive unfolded part. We compute the contribution from

the unfolded part of the positive orientation, indT (V ( j)+
i,k ,V

( j)+
i,k � (μ( j)+

i,k )−1((g( j)∗
i,k )Z)). Since

V ( j)+
i,k is away from the fold Z, the local situation is same as that for the genuine toric case,

and hence, we can apply Theorem 6.5.

Theorem 6.10. We may choose Δ̃( j)+
i,k small enough so that Δ̃( j)+

i,k ∩ t∗Z = intΔ( j)+
i,k ∩ t∗Z. Then

we have

indT (V ( j)+
i,k ,V

( j)+
i,k � (μ( j)+

i,k )−1((g( j)∗
i,k )Z)) =

∑
ξ∈intΔ( j)+

i,k ∩t∗Z

C(ξ).

Proof. Since the compatible system {DZ ,D
( j)
i,k }i, j,k is acyclic on V , the complement of the

inverse images of lattice points, the excision formula implies that the T -equivariant local
index indT (V ( j)+

i,k ,V
( j)+
i,k � (μ( j)+

i,k )−1((g( j)∗
i,k )Z)) is equal to the sum of contributions of the inverse

image of the lattice point which is contained in V ( j)+
i,k . Each inverse image has a neighbour-

hood of the form NF as in Subsection 6.1, and hence, the contribution of the lattice point ξ
is the representation corresponding to the lattice point C(ξ). �

6.4. Contribution from the negative unfolded part.
6.4. Contribution from the negative unfolded part. We compute the contribution from

the unfolded part of the negative orientation, indT (V ( j)−
i,k ,V

( j)−
i,k � (μ( j)−

i,k )−1((g( j)∗
i,k )Z)). The sit-

uation is same as that for the positive unfolded part up to the orientation. The difference
appears only in the Z/2-grading of the Clifford module bundle. Namely the Z/2-grading
in the negative case is opposite to the positive case, and hence, the resulting index has the
opposite sign. The proof of the following theorem can be shown by the similar way for the
proof of Theorem 6.10.

Theorem 6.11. We may choose Δ̃( j)−
i,k small enough so that Δ̃( j)−

i,k ∩ t∗Z = intΔ( j)−
i,k ∩ t∗Z. Then

we have

indT (V ( j)−
i,k ,V

( j)−
i,k � (μ( j)−

i,k )−1((g( j)∗
i,k )Z)) = −

∑
ξ∈intΔ( j)−

i,k ∩t∗Z

C(ξ).

6.5. Contribution from the crack.
6.5. Contribution from the crack. We compute the contribution from the crack,

indT (VZ
i,k,V

Z
i,k ∩ V) = indT (VZ

i,k,V
Z
i,k � CZ

i,k), and show that it is equal to 0. Note that each
VZ

i,k has two components VZ
i,k ∩ M+ and VZ

i,k ∩ M−. Then the open subsets VZ
i,k ∩ M+ and

VZ
i,k ∩ M− are isomorphic to each other as open symplectic toric manifolds up to their orien-

tations.

Theorem 6.12. We have the equality

indT (VZ
i,k,V

Z
i,k �CZ

i,k) = 0
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as T-equivariant indices for each i and k.

Proof. Since VZ
i,k ∩ M+ and VZ

i,k ∩ M− are isomorphic up to their orientations we have

indT (VZ
i,k,V

Z
i,k�CZ

i,k) = indT (VZ
i,k∩M+,VZ

i,k∩M+�CZ
i,k)+indT (VZ

i′,k′ ∩M−,VZ
i,k∩M−�CZ

i,k) = 0.

�

Appendix A. Acyclic compatible systems and their local indices

Appendix A. Acyclic compatible systems and their local indices
In this appendix we give a brief summary of some definitions of compatible fibration,

acyclic compatible system and their local indices following [11, 12] and [9]. We adopt
combinations of definitions in [11] and [12]. Let V be a smooth manifold.

Definition A.1. A compatible fibration on V is a collection of the data {Vα,Fα}α∈A con-
sisting of an open covering {Vα}α∈A of V and a foliation Fα on Vα with compact leaves which
satisfies the following properties.

(1) The holonomy group of each leaf of Fα is finite.
(2) For each α and β, if a leaf L ∈ Fα has non-empty intersection L ∩ Vβ � ∅, then,

L ⊂ Vβ.

Definition A.2. A compatible fibration {Vα,Fα}α∈A on V is called good if for all α and β
with Vα ∩ Vβ � ∅ the following condition (i) or (ii) holds.

(i) For each leaf Lα ∈ Fα, there exists a leaf Lβ ∈ Fβ such that Lα ⊂ Lβ.
(ii) For each leaf Lβ ∈ Fβ, there exists a leaf Lα ∈ Fα such that Lβ ⊂ Lα.

Let (V, g) be a Riemannian manifold, W a Cl(TV)-module bundle over V . Suppose that
V is equipped with a compatible fibration {Vα,Fα}α∈A. We impose the following conditions
on the Riemannian metric g.

Assumption A.3. Let να = {u ∈ TVα | g(u, v) = 0 for all v ∈ TFα} be the normal bundle
of Fα. Then, g|να is invariant under holonomy, and gives a transverse invariant metric on να.

Definition A.4. A compatible system on ({Vα,Fα},W) is a data {Dα}α∈A satisfying the
following properties.

(1) Dα : Γ(W |Vα)→ Γ(W |Vα) is an order-one formally self-adjoint differential operator.
(2) Dα contains only the derivatives along leaves of Fα.
(3) Dα is a Dirac-type operator along leaves. Namely the principal symbol of Dα is

given by the composition of the dual of the natural inclusion ια : TFα → TVα and
the Clifford multiplication c : T ∗Fα � TFα ⊂ TVα → End(W |Vα) .

(4) For a leaf L ∈ Fα let ũ ∈ Γ(να|L) be a section of να|L parallel along L. ũ acts on W |L
by the Clifford multiplication c(̃u). Then Dα and c(̃u) anti-commute each other, i.e.

0 = {Dα, c(̃u)} := Dα ◦ c(̃u) + c(̃u) ◦ Dα

as an operator on W |L.

As in [11, Lemma 3.4] for each leaf L ∈ Fα we have a small open tubular neighbourhood
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VL of L and the finite covering qL : ṼL → VL such that the induced foliation on ṼL is a
bundle foliation with the projection πL : ṼL → ŨL.

Definition A.5. A compatible system {Dα}α∈A on ({Vα,Fα},W) is said to be acyclic if it
satisfies the following conditions.

(1) The Dirac-type operator q∗LDα|π−1
L (̃b) has zero kernel for each α ∈ A, leaf L ∈ Fα and

b̃ ∈ ŨL.
(2) If Vα∩Vβ � ∅, then the anti-commutator {Dα,Dβ} := DαDβ+DβDα is a non-negative

operator on Vα ∩ Vβ.

As in [11, Section 5] we can construct such structures, good compatible fibration and
compatible system, on Hamiltonian torus manifolds. Though the good compatible fibrations
form a nice class, we have to generalize it to treat the product of such structures.

Definition A.6. Suppose that a compact Lie group G acts on a Riemannian manifold V in
an isometric way. Let {Vα,Fα}α∈A be a compatible fibration on V . If the following conditions
are satisfied, then we call the compatible fibration a G-tangential compatible fibration (or
tangential compatible fibration for short).

• {Vα}α∈A is a G-invariant open covering of V .
• Each leaf L of Fα has positive dimension for all α ∈ A.
• For each leaf L of Fα there exists some x ∈ Vα such that L is contained in the G-orbit

G · x.
A compatible system on a G-tangential compatible fibration is called G-tangential com-

patible system (or tangential compatible system for short).

Any non-trivial torus action induces a good compatible fibration, which is a tangential
compatible fibration. Moreover the product of two such good compatible fibrations is a
tangential compatible fibration which is not good in general.

Theorem A.7 (Theorem 7.2 and Proposition 7.3 in [11],Theorem 3.7 in [9]). Suppose
that V is an open subset of M whose complement is compact. If V is equipped with a G-
tangential acyclic compatible system {Vα,Fα,Dα}α∈A, then we can define the local index

ind(M, {Vα,Fα,Dα}α∈A,W) = ind(M,V,W) = ind(M,V) ∈ Z,
which satisfies the excision formula, sum formula and product formula.

Let us briefly recall the definition of the local index ind(M,V,W). Let D : Γ(W)→ Γ(W)
be a Dirac-type operator. We consider the perturbation Dt := D + t

∑
α∈A ραDαρα for t � 1,

where {ρα}α∈A is a family of smooth cut-off functions which is constant along leaves of
Fα and satisfies some estimates as in [11, Subection 4.1]. Such a perturbation Dt gives a
Fredholm operator on the space of L2-sections of W. The local index ind(M,V) is defined as
the analytic index of Dt for t � 1. The excision formula implies the following localization
formula of Dirac-type operator.

Theorem A.8. Suppose that M is compact without boundary and an open subset V of M
is equipped with a G-tangential acyclic compatible system. Then the index of any Dirac-
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type operator ind(W) is localized at the complement M � V. Namely we have

ind(W) = ind(M,V).

Appendix B. A formula of local indices of vector spaces

Appendix B. A formula of local indices of vector spaces
In this appendix we give a formula of equivariant local indices of vector spaces. For

l = 1, 2 let Gl be an ml-dimensional torus and Rl an ml-dimensional Hermitian vector space
on which Gl acts unitary and effective way. We put the following assumptions for l = 1, 2.

Assumption B.1. (1) A Gl-tangential equivariant compatible fibration (Definition A.6) on
R×l := Rl � {0} is given.
(2) For the compatible fibration in (1), a Gl-tangential equivariant acyclic compatible system
on R×l is given.

By the assumption we have two equivariant local indices indG1 (R1,R×1 ) and indG2 (R2,R×2 ).
Now we fix ε > 0 small enough and define two compatible fibrations and acyclic compatible
systems on the product R := R1 × R2.

Define two subsets R′ and R′′ of R by

R′ := {(v1, v2) ∈ R | |v1| > ε, |v2| < ε},
and

R′′ := {(v1, v2) ∈ R | |v1| < ε, |v2| > ε}.
We consider a structure of G1-tangential (resp. G2-tangential) compatible fibration on R′

(resp. R′′) induced from the first (resp. second) factor. We also define a subset R∞ of R by

R∞ := {(v1, v2) ∈ R | |v1| > ε/2, |v2| > ε/2},
which is also equipped with a compatible fibration and compatible system arising from the
product structure. Then the union R̃∞ := R′ ∪ R′′ ∪ R∞ gives an open covering of the
complement of a compact neighbourhood of the origin of R. Note that the above compatible
fibration and compatible system define a G1×G2-tangential equivariant compatible fibration

R1

R2

ε/2 ε

ε

ε/2

R′

R′′ R∞

Fig.5. Open covering R̃∞.
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and acyclic compatible system on R̃∞, and hence, we have the equivariant local index

indG1×G2 (R, R̃∞).

For l = 1, 2 define open subsets Rl,0 and Rl,∞ of Rl by

Rl,0 := {v ∈ Rl | |v| < ε},
and

Rl,∞ := {v ∈ Rl | |v| > ε/2|}.
We set Rprod

∞ := (R1,∞×R2,0)∪(R1,0×R2,∞)∪(R1,∞×R2,∞), which gives an open covering of a
complement of a compact neighbourhood of the origin of R. We consider the trivial fibration
on Rl,0 and the Gl-tangential compatible fibration on Rl,∞. The product of these structures
induces a G1×G2-tangential equivariant compatible fibration and acyclic compatible system
on Rprod

∞ , and hence, we have the equivariant local index

indG1×G2 (R,R
prod
∞ ).

R1

R2

ε/2 ε

ε

ε/2

R1,∞ × R2,0

R1,0 × R2,∞ R1,∞ × R2,∞

Fig.6. Open covering Rprod
∞ .

Proposition B.2. We have the following equality among equivariant local indices.

indG1×G2 (R, R̃∞) = indG1×G2 (R,R
prod
∞ ) = indG1 (R1,R×1 ) ⊗ indG2 (R2,R×2 ) ∈ R(G1 ×G2).

Proof. The first equality follows from the cobordism invariance of local index ([9, The-
orem 7.1]). In fact the union of these two acyclic compatible systems on R̃∞ and Rprod

∞ is
also G1 × G2-tangential acyclic compatible system. The second equality follows from the
product formula ([11, Theorem 8.8]). �

Appendix C. Local index of folded cylinder

Appendix C. Local index of folded cylinder
In this appendix we consider a natural folded symplectic structure on the cylinder and

several geometric structures on it, which plays important role in the study of local property
of the neighbourhood of the fold in a folded symplectic manifold. We consider a perturbation
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of the Dirac operator and give the direct computation of the L2-kernel of the perturbed Dirac
operator. We show that the L2-kernel is trivial, in particular, the local index is equal to 0.

For any ε > 0, a folded symplectic structure on a cylinder (of finite length) Mε := (−ε, ε)×
S 1 is given by a closed 2-form 2rdr ∧ dθ, where (r, θ) is a coordinate function on Mε. Here
we use the opposite orientation of the cylinder as that in Section 5 and subsequent argument
for conventional reason. The standard S 1-action on the S 1-factor is Hamiltonian (in fact it
is toric origami) with the moment map (r, θ) �→ r2. Moreover the trivial line bundle L0 with
connection d − 2π

√−1r2dθ and the trivial lift of the S 1-action to the fiber direction gives an
S 1-equivariant pre-quantizing line bundle over Mε. To give a computation of the local index
of this toric origami manifold, we need a Clifford module bundle, Dirac-type operator along
the S 1-orbits over a completion of Mε as a Riemannian manifold. We summarize the set-up
as follows.

SET-UP.
• M := R × S 1 : cylinder of infinite length
• (r, θ) : coordinate function on M
• g := dr2 + dθ2 : Riemannian metric on M
• ρ : R→ R : smooth function with

ρ(r) =
{

r2 (|r| < 1/4))
1/2 (|r| > 1/2)

• ω := ρ′(r)dr ∧ dθ : closed 2-form on M
• J : ∂r �→ ∂θ, ∂θ �→ −∂r : almost complex structure on M
• T MC = (T M, J) : complex tangent bundle with frame ∂θ
• W+ := M × C, W− := T MC, W := W+ ⊕W− : Z/2-graded vector bundle
• c : T ∗M → End(W) : Clifford action on W defined by

c(dr) =
(

0 −√−1
−√−1 0

)
, c(dθ) =

(
0 −1
1 0

)

• ∇W = d − 2πρ(r)
(
1 0
0 1

)
dθ : Clifford connection of W

• D = D+ + D− : Γ(W)→ Γ(W) : Dirac operator,

D = c(∂r)∇W
∂r
+ c(∂θ)∇W

∂θ
= D+ + D−

=

(
0 −∂θ −

√−1∂r + 2π
√−1ρ

∂θ −
√−1∂r − 2π

√−1ρ 0

)

• Let S 1 acts on M in the standard way, and we take a lift of the S 1-action on W so
that the action on the fiber direction is trivial.
• DS 1 = D+S 1 + D−S 1 : Γ(W)→ Γ(W) : Dirac operator along the S 1-orbits,

DS 1 = c(∂θ)∇W
∂θ
=

(
0 −∂θ + 2π

√−1ρ
∂θ − 2π

√−1ρ 0

)

Remark C.1. When we consider the restriction to an S 1-invariant small open neighbour-
hood Mε of {0} × S 1 = S 1 in M, the closed 2-form ω is the folded symplectic form on Mε
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and the Z/2-graded Clifford module bundle W is the one associated with the pre-quantizing
line bundle L0, the trivial line bundle with the connection d − 2π

√−1ρdθ. Note that Mε
has a unique spinc-structure and the Clifford module bundle W which is isomorphic to
W0,L0 := HomCl2 (W2,∧•C(TS 1 ⊕ R3)) ⊗ L0 as in Proposition 5.3.

By using this data we have a compatible system on Mε and can define the S 1-equivariant
local index indS 1 (S 1 × (−ε, ε), S 1 × (−ε, ε) � S 1). The index is defined by the following
perturbation of the Dirac operator:

Dt = D+t + D−t , D+t := D+ + tD+S 1 , D−t := D− + tD−S 1 ,

D+t = (1 + t)(∂θ − 2π
√−1ρ) − √−1∂r,

and

D−t = −(1 + t)(∂θ − 2π
√−1ρ) − √−1∂r.

Proposition C.2. We have kerL2 (D+t ) = kerL2 (D−t ) = 0 for any t ≥ 0. In particular we
have indS 1 (S 1 × (−ε, ε), S 1 × (−ε, ε) � S 1) = 0, for any ε > 0.

Proof. By using the Fourier expansion φ(r, θ) =
∑
m∈Z

am(r)e2π
√−1mθ for smooth section φ of

W+, the equation D+t φ = 0 can be rewritten as a series of differential equations

a′m(r) = 2π(1 + t)(m − ρ(r))am(r) (m ∈ Z).

Each of these equations has solutions

am(r) = αm exp
(
2π(1 + t)

∫ r

0
(m − ρ(r))dr

)
,

where αm ∈ C is constant. Suppose that the solution φ is an L2-section. Since ρ ≡ 1/2 on
±r � 0 we have αm = 0 for all m ∈ Z. In particular there are no non-trivial L2-solutions of
D+t φ = 0 for any t. As in the same way the equation D−t φ = 0 for φ(r, θ) =

∑
m∈Z

bm(r)e2π
√−1mθ

has solutions

bm(r) = βm exp
(
−2π(1 + t)

∫ r

0
(m − ρ(r))dr

)
(m ∈ Z),

for any constant βm ∈ C and one can see that there are no non-trivial L2-solutions. �

Remark C.3. The vanishing of the index can be deduced from the existence of an orien-
tation reversing isomorphism of S 1 × (−ε, ε) defined by (θ, t) �→ (θ,−t).
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