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Abstract

On a polarized manifold (X, L), the Bergman iteration ¢2’”) is defined as a sequence of Bergman
metrics on L with two integer parameters k, m. We study the relation between the Kihler-Ricci
flow ¢, at any time ¢ > 0 and the limiting behavior of metrics ¢,({'") when m = m(k) and the
ratio m/k approaches to t as k — oco. Mainly, three settings are investigated: the case when
L is a general polarization on a Calabi-Yau manifold X and the case when L = +Kx is the
(anti-) canonical bundle. Recently, Berman showed that the convergence q),(cm) — ¢, holds in
the C°-topology, in particular, the convergence of curvatures holds in terms of currents. In this
paper, we extend Berman’s result and show that this convergence actually holds in the smooth

topology.
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1. Introduction

1.1. Background. Throughout this paper, let (X, L) be an n-dimensional polarized man-
ifold (i.e., X is a compact Kédhler manifold with an ample line bundle L), and H(L) is the
space of smooth plurisubharmonic weights with strictly positive curvature (where the term
“weight” is an additive notation for hermitian metrics, for instance, see [2]). For ¢ € H(L),
wy denotes the curvature locally represented as
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714 R. TAKAHASHI

V=1 -
wy = ——00¢ € c(L).
2n
For simplicity, we may assume that ¢;(L)" = n!, i.e., the Monge-Ampere volume form

n

MA($) := —

has unit volume. Let u be a map from H (L) to the space of all smooth volume forms on
X. We assume that u = u(¢) depends smoothly on ¢. Given an initial metric ¢y € H(L),
Kdihler-Ricci flow in H(L) is defined by the Monge-Ampere evolution equation

00, _ 1o MAG)

ot H(r)

The Kihler-Ricci flow is an analytic study object in nature, whereas Berman [5] proposed a
numerical algorithm to study (1.1) called “Bergman iteration”: for any integer k, let /3; be
the space of hermitian forms on H°(X, kL). We associate the pair (¢, u(¢)) to a Hilbert map:

(1.1)

Hilby ,(¢): H(L) — By
defined by

150, ) = fx s’ u(¢)
for s € H(X, kL). Conversely, Fubini-Study map:
FSi: By — H(L)
is defined by

1 1 &
FS«(H) = ¢ log(ﬁk > |sl-|2]

for H € By, where (s;) is any orthonormal basis with respect to H and
Ny := dim H(X, kL).

Notice that the definition of FS;(H) does not depend on the specific choice of (s;). In fact,
FSi(H) is, to the letter, just the restriction to X of the Fubini-Study weight determined by H.
An element in B, or in the image of injective map FSy is called a Bergman metric (at level
k). Let Ty, be the composition of these two maps

Tk,p = FSk o Hllbku
We consider the sequence of Bergman metrics:
(1.2) " = (Tiw)" (o).

The sequence ¢S,(€m) is called the Bergman iteration (starting at ¢y). We mainly consider three
cases (Sp) and (S.). Then the stational points ¢kg of the Kéhler-Ricci flow, i.e., the solutions
to the Monge-Ampere equation

(1.3) MA(¢kg) = u(¢ke)
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is a Kdhler-Einstein weight as we see below.
The Calabi-Yau setting (Sp). Let X be a Calabi-Yau manifold (i.e., the canonical bundle Ky
is holomorphically trivial) and Q a global holomorphic n-form that vanishes nowhere. Then

(1.4) to = COV=D)"QAQ

defines a smooth volume form, where C is a normalizing constant so that 1 has unit volume.
We set u := pp. Since Q is holomorphic, differentiating (1.3) yields

, V-1, V-1,
RIC(U)¢KE) = —768 10g MA(¢KE) = —766 IOg/.lo =0.

Thus the solution corresponds to a Ricci-flat Kidhler metric. Berman [5, Theorem 3.1] (also
see [7]) showed that there exists a long time solution ¢, of (1.1), and ¢, converges to the
Kihler-Einstein weight ¢gg in the C*-topology as t — oo.

The (anti-) canonical setting (S.). We consider the case when the ample line bundle L is
the (anti-) canonical bundle +Ky and y is the canonical volume form

ps(9) := €.
Then differentiating the equation (1.3), we have

. V-1 _. V=1 .-
Ric(wg,,) = —768 log MA(¢kg) = —788 log 1. (PkE) = FWey, -

Thus the solution corresponds to a Kéhler-Einstein metric of negative (resp. positive) scalar
curvature. In the both settings, the long time solution of (1.1) always exists. Moreover, if
we consider the normalized canonical volume form

()
Jy 1=(0)
instead of ., the normalized Kéhler-Ricci flow converges to a Kihler-Einstein weight in

the setting L = Kx. On the other hand, we need some extra assumptions to prove the same
result in the setting L = —Ky (see [5, Theorem 4.1] and [17]).

Ax(9) =

Let m = m(k) be a sequence of non-negative integers such that the ratio m/k converges to
some real number ¢ > 0 as k — co. We would like to call such a limit the double scaling limit
and simply write as m/k — ¢. In the seminal paper of Berman [5], he showed that in each of
three settings (Sp) and (S.), in the double scaling limit m/k — ¢, the Bergman iteration qb,({m)
converges to the Kihler-Ricci flow ¢, in the C%-topology. In particular, the convergence of
Kéihler metrics w o > W, holds in terms of current.

1.2. The main result. As expected in [5], the statement of Berman’s theorem still holds
in a stronger sense, that is, we can show the following:

Theorem 1.1. Let (X, L) be a polarized manifold. For any ¢o € H(L), let ¢,(€m) be the
Bergman iteration (1.2) and ¢, the Kdhler-Ricci flow (1.1) starting at the same initial weight
¢o. Then, in each of three settings (So), (S+), in the double scaling limit m/k — t, we have
the convergence of Kiihler metrics

(,l)(p;(m) b CL)¢,
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in the C*™-topology on X. More precisely, for any non-negative integer I, we have
o ool - o

RemMark 1.1. In the proof of Theorem 1.1 for the setting (Sy), we do not use the Calabi-
Yau hypothesis and the equation (1.4). Therefore, Theorem 1.1 can be extended to the case
when (X, L) is a general polarized manifold and u is any fixed smooth volume form with
unit volume (where the long time solution and convergence of the Kihler-Ricci flow for this
case were obtained also in [5, Theorem 3.1] or [7]).

Our problem is similar to the problem discussed in many places (e.g. [10], [12], [13],
etc.). The key idea to prove the main theorem is constructing the higher order approximation
towards the Bergman iteration by adding polynomials of k~! with coefficient functions 7;(¢)

to ¢;:

=) .

V=g Y K@),

r
i=1

We can find a successful choice of 7; as a solution of a heat equation and kill the lower
order terms appearing in the distance d (¢]((m),~f12k) = supy |¢,((m) - ?6ij
the polynomial growth of the distance functions on By (cf. Lemma 2.4). The C'-norms for
Bergman metrics are controlled by the upper bound of the operator norm and the distance
function provided the family of metrics has bounded geometry (cf. Lemma 2.7). These
projective and analytic estimates were established in [10] and [12], and are widely used
throughout this paper.

The author expects that in the case when m/k — co, we can show the C*-convergence

Wym = Wy, AS long as m/k has a polynomial growth of k, under the C*-convergence
k

, which overcomes

assumption ¢, — ¢gg. Then the sequence qﬁ,(cm) gives a dynamical construction of solutions
¢ke to the Monge-Ampere equation (1.3). We can prove this if we have the uniform control
of the higher order derivatives for the functions n,,...,n,. However it is hard to prove this
in general, so that we leave this problem for the future.

1.3. Relation with other results. If we take m = 1 in Theorem 1.1, we obtain the C*-
convergence of Kihler metrics w g = W, AS raising the exponent k — oco. Thus our main
theorem can be seen as an extension of Tian’s result [16] along the Kihler-Ricci flow (also
see Proposition 2.2). On the other hand, we consider the discrete time limit m — co with
a fixed exponent k. Then one would expect that the sequence ¢](<m) converges to a balanced
weight ¢pa 4 € By, i.e., a fixed point of the iteration map:

Tty (Poalk) = Poal k-

This is actually true in the setting (So) and (S,,) (cf. [5, Theorem 3.9, Theorem 4.14]),
whereas the same result generally does not hold in the setting (S,_) because of the absence
of balanced weights (cf. [14, Example 4.3, Example 5.6]). The large k limit of balanced
weights ¢y, x are also studied deeply in [3, Theorem 7.1].
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2. Estimates
2.1. The C°-estimate.

2.1.1. Large k asymptotics of Bergman functions. Let (X, L) be a polarized manifold
and 4 = u(¢) a smooth volume form depending smoothly on ¢ € H(L). We define the
Bergman function associated to (¢, u(¢)) by

Ni
piu(®) = ) IsiPe ™,

i=1
where (s;) is any Hilby,(¢)-orthonormal basis. Then it is not hard to see that the func-

tion py ,(¢) does not depend on the choice of (s;). We introduce the notion of normalized
Bergman function

1
Prp(P) = ﬁkpk,,u((b)
so that fx Prp(@)u(¢) = 1, and put

1 _
FO@) = 7 102 Pr(9).
Then we have
2.1 Tew—1d=FP.

In particular, when we take p as the Monge-Ampere volume form MA(¢), we drop the
notation of u and simply write Hilby, px, 7%, etc.

Now we recall the property of Bergman functions essentially obtained by Bouche [6],
Catlin [8], Tian [16] and Zelditch [18]. The asymptotic expansions of the Bergman function
associated to the space of global sections of kL + C is also studied in [9, Theorem 1.1,
Theorem 1.3] and [4, Section 2.5], where C denotes the trivial line bundle with the hermitian

metric u(¢)/MA(¢).

Proposition 2.1. We have the following asymptotic expansion of Bergman function:
MA(®®)

u(¢)
Each coefficient b; can be written as a polynomial in the Riemannian curvature Riem(wg),

the curvature of u(¢)/MA(¢), their derivatives and contractions with respect to wy. In
particular, we have

Pk,y(¢) = (bokn + blkn_l + bzk”_z + .. )

MA(¢)
H(@)
where S (wy) is the scalar curvature of wg and Ay is the (negative) 0-Laplacian with respect

to wg. The above expansion is uniform as long as ¢ stays in a bounded set in the C*-
topology. More precisely, for any integer p and |, there exists a constant Cp, such that

1
bo =1, ,bl = ES((%) —A¢10g

< Cp’l : kn—p—l'
C!

P
(@) = ) bik'"™
i=0
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We can take the constant C,,; independently of ¢ as long as ¢ stays in a bounded set in the
C*-topology.

By the Riemann-Roch formula, we find that Ny is a polynomial of k of degree n:
1
Ne=k'+ 5S K=t 02,

where we denote the average of scalar curvature by S (which is independent of a choice of
¢ € H(L)). Combining with Proposition 2.1, we also have a uniform asymptotic expansion
of a normalized Bergman function:
MA(®$)

u@)

pk,y(¢) = (Z)O + Elk_l + 52](_2 + .- )

where by = 1 and b; = %(S(a)qj) ~§)—Aslog hff(*;;”

2.1.2. Higher order approximation. In what follows, we consider only three cases (Sy),

(S.) introduced in Section 1. The following properties follow directly from the definition of
£
P

Proposition 2.2. We have the following properties in each settings:
(1) In the setting (Sy), the function F L]f)) satisfies

FOg+c) = FO(9)

forany c € Rand ¢ € H(L).
(2) In the setting (S.), the function F,(l’i) satisfies

c
Fl@+o)=Fl@) ¢
forany ceRand ¢ € H(L).

Let d be the distance function defined by the sup-norm
d(¢,¥) := sup|¢ — Y|
X
for ¢, ¥ € H(L). We also use the monotonicity for the iteration map 7y ,:

Proposition 2.3 ([5], Proposition 3.13 and Proposition 4.12). In each of three settings
(So), (S.), the monotonicity for the iteration map holds, i.e., for any weights ¢,y € H(L)
such that ¢ <, we have Ty, (¢) < Ty ,(¥). Moreover, we have the following:

(1) In the setting (Sy), an inequality

d(Tlc,H()(¢), Tk,/l() (lﬂ)) < d(¢’ lﬁ)

holds for any ¢, € H(L).
(2) In the setting (S.), an inequality

1
AT (@), T, W) < (1 ¥ %)d((ﬁ, )

holds for any ¢, € H(L).
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Proof. For the sake of exposition and completeness, we shall provide a complete proof.
In each of three settings, the following characterization for Bergman function holds (cf. [15,
Lemma 6.2]):

PR = sup [ IsPeou(@)’

Since ¢ < i, we have

f |sPe ™ u(p) > f IsI*e™ ()
X X

for any s € H(X, kL). Hence, by (2.1), we obtain
Tew(@) = ¢+ FP(@) <y + FOW) = Tip(),
which proves the first statement. Next, we consider (1). If we set C := d(¢, ), we have
p<Y+C, vw<p+C.
Applying the map 7, to the first equation yields
Ticyuo ()

IA

Tieuo( + C) (the monotonicity for 7 )
= y+C+FPW+C) (by (2.1)

= y+C+F) (by Proposition 2.2)

= Tipw@) +C (by (2.1)).

Applying the map 7, to the second equation yields another inequality 7y ,,, () < Ty, () +
C, and thus we obtain (1). A similar proof also works for (2).

m|
Let ¢, be a solution of the Kihler-Ricci flow (1.1). We perturb ¢, as

G =g+ ) K n0),

i=1

where 71(), ..., n,(t) are smooth functions on X X [0, c0). Then ~§r) € H(L) for sufficiently
large k, and ¢§’) — ¢; in the C™-topology as k — oo. In what follows, let 7 > 0 be a large
constant, and all O are meant to hold uniformly for # < T as k — oco. For instance, we have:

Remark 2.1. ¢ — ¢, = O(k™).

The following is an analogue of [12, Theorem 11].

Lemma 2.1. Let r be any non-negative integer. Then there exists an appropriate choice
of m,...,n, (depending only on the initial data ¢o) such that

(2.2) d(g{".90),) < C -k

holds for any pair (k, m) such that m/k < T, where the constant C > 0 depends only on T.

Proof. We first show the following claim.
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Cram. For any 7 € [0, T], there exists an appropriate choice of 1y, ..., 7, such that

(2.3) Sup (¢§:-)l/k ¢§r)) F(k)(¢§r>) k“’z’

where the constant C > 0 depends only on 7'.

The proof of Claim. We prove this by induction of r. In the case when r = 0, the equation
(2.3) follows from the proof of [5, Theorem 3.15, Theorem 4.18].

The setting (Sp). We assume that the claim holds for some appropriate choice of 7y, ..., 7.
First, for a heuristic argument, let 1,,; be any smooth function on X X [0, c0). By the mean
value theorem, we can compute

r+1

G =0 = b= g+ ) KT+ 1K) = mi(0)

=1

1 8¢ ~— .
— ey DM
t Zl] (1)

) (—a'ggl (t) + G,(t)) + Ok~ ),

where M; = M;(n1,...,n;) and G, = G,.(11, ..., n,) are functions determined by the previous
data, and the absolute of the term O(k~"*%) is bounded by A - k="*? for some constant A

which only depends on
max { } .
Xx[0,T]

Hence 7,4, only affects the O(k~"*?))-term in the above expansion and no lower-order terms
of k~!'. The contribution of 7,,; to the coefficient of k=2 is just %—";'(t).

Let A, be the (negative) 0-Laplacian with respect to wg,. Since the linearized operator of
MA /g at ¢, is computed as

ar+3 ¢t
6tr+3

3r+2771

atr+2

8277r+1
or?

N g e ooy

d MA 4 MA t
4 ((‘ﬁ—”f)) = (A - MAGY
s Ho s=0
we have
~(r+1) r
MA@, ) _ MAW) | DK + D ((A,nr+1)' MA@ | Q,(t))
Ho Ho i—1 0

+O(k™ "),

where P; = P;(n,...,n), and Q, = Q.(11,...,n,). Since we have the uniform C*-
convergence ~( ) S ¢; as k — oo, the metrics ~( ) are in a C®-bounded set as 7 varies in
[0, T]. Thus we can apply Proposition 2.1 and ﬁnd that l_ai(agm)) are polynomials in the
curvature of ¢ and po/MA(S"™). It follows that by(¢!*") = bi(¢”) + OK=*V), in
particular, the first contribution of 7,,; to E,»(agr“)) occurs at O(k~"*Y). Thus we have
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1. MA@"™)
(k) A (r+1) _ t
F/JO (¢[ ) - E log l,[(]

! -1y —(r+1) 1, ~r —(r
+210g (LKD) o+ kb (B) + 0G)

1 MA(¢, .
= -lo +§k(’+>Rt
% o8 2 ®

+k‘<’+2><Amr+1<r> +8,(0) + Ok,

where R; = Ri(n1,...,n) and S, = S,(1,...,n,). Putting T,.(¢) := S .(t) — G,(t), we obtain

@& - F<">(¢§””>=k—<r+2>(‘9’7’“<z> A (1) - Tr<z>)+0<k—<’+3>>,

+1/k Ho

where we used the induction hypothesis (2.3). Hence we may choose 7,.; as a solution of
the linear, parabolic PDE:

aﬂm _
2.4) { (- Atnr+l(t) =T,

Mr+1 (O) -

where T, = T,(n1, .. .,7,) is determined in the previous process. The equation (2.4) is a lin-
ear, inhomogeneous heat equation. Since the spectra of —A, is bounded below, A, generates
a strongly continuous analytic semigroup for each ¢. Hence there exists a unique long time
solution of (2.4) (where we used general results in the semigroup theory, for instance, see
[1, Section 1.2]).

Efj}])( ¢(r+1) as with the case (Sp). The difference

in computations only comes from the term F g?(%rﬂ)), more precisely, the linearization of
the operator MA /..

The setting (S+). We can compute the term ¢

MA(¢)
H=(9r) .

d (MA(@ + sf))
H(Pr + 5f)

=(ASFS)-
=0
Using this, we obtain

~ 1 MA(¢t
F(k)(¢(r+1)) — _ k (l+1)R (l)
pe T ﬂ+(¢z ;
+k‘(’+2>(A,nr+l<z> F Nra1(8) + S (1) + O™ 7*Y),
where R; = R;(n1,...,n;) and S, = S,(1,...,n,). Thus we may take 7,,; as the solution of
the linear, parabolic PDE:

(2 5) 67]r+| (t) Atnr+](t) + nr+1([) = Tr(t)
77r+1(0) =
where T, is a function depending only on 7y, ..., 7,. Since the operator —A; + Id have only

finitely many negative eigenvalues, the spectra of the operator —A; + Id are bounded below.
Hence the operator A, ¥ Id generates a strongly continuous analytic semigroup for each ¢,
and we can use again the result [1, Section 1.2] to obtain the long time solution 7,1. O
Now we return to the proof of Lemma 2.1.
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The setting (Sp). We show that the equation

(m) =(r) m
(26) (¢ ¢m/k) kr+2
holds as long as m/k < T, where the functions 7, ...,n, and the constant C > 0 are deter-

mined in the previous claim.

We prove this by induction of m. Notice that the case m = 0 is trivial. Assume that the
equation (2.6) holds for m, and let k be any integer such that =— ’”“ < T. Applying (2.3) with
t:=2 <™ < T yields

1
(r) 5 F® (r)
SUP |¢(m+1)/k Posc — (¢m/k)| T
On the other hand, using Proposition 2.3 (1), we have
sup @0, + FO@0 ) - = sup @+ FO@D0) — @ + FO@™)

= (nm(cpf,:}k) Tian@™))
< d(@04")

m
’ k2’

where we used the induction hypothesis in the last inequality. Combining these two inequal-
ities, we have

R

(m+1) _ =(r) k) ()
< Sup |¢km = Gpi ~ p(to)(¢n:/k)’ Tsup

() (k) (2 (r) ~(r)
Bousi + F i (D) = Bimiiyi

1
sCrm*C s
_ m+ 1
=C- -

Hence the equation (2.6) holds for m + 1.
From (2.6), we have

d(of".8y),) < C- 5 < CT-

Finally, replacing CT with C, we obtain the desired result.

k1 :

The setting (S;). Thanks to Proposition 2.3 (2), the distance defined by the sup-norm is
decreasing along the iteration. Hence the proof for the setting (So) carries over essentially
verbatim to this case.

The setting (S—). We show that the equation

n" m
(m) ~1(r)
2.7) d(g".90),) < (1+k) o
holds as long as m/k < T, where the functions 7y, ...,n, and the constant C > 0 are deter-

mined in the previous claim.
The case m = 0 is trivial. We assume that the equation (2.7) holds for m and let k be any
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integer such that ’"T“ < T. Applying (2.3) with ¢ := 2 < '”T T yields

m
k

1
(r) 5 (k) (7(r)
Sep |¢<m+1)/k G~ Fu (@ /k)| T
On the other hand, using Proposition 2.3 (2) and the induction hypothesis, we have

sup|<¢£;}k + FO@D0) - @ + FP@™))
1 ~(r m
(1+§)'d(¢fn>k’ )

m+1 m
C(l + %) . k’+2'

Combining these two inequalities, we have

sup [(@) + FLE @) = 4"

IA

IA

1 m+1 m 1
(m+1) —(r)
d(¢" .00, 1) < c(1+%) omtC o

1m+1 1m+l 1
C(1+%) . +C(1+—) :

<
- kr+2 k kr+2
N\ m+1

Hence the equation (2.7) holds for m + 1.

Since
m k\m/k
(1+%) :[(1+%)) <"k <ol

combining with (2.7) implies

(m) =(r) T
d(¢".9),) < Ce k—2 <Cre’
We accomplishes the proof by replacing CTe! with C. O

In order to apply projective estimates, we have to approximate the perturbed flow gb(’)
a smooth family of Bergman metrics.

Lemma 2.2. For any integer r, there exists a smooth family of metrics afr) (t €]0,00)) in
H(L) such that

(D) Ti@) = ¢ + Ok "Dy as k — oo,
2) air) — ¢, in the C*-topology as k — .
3) Tk@;r)) — ¢, in the C®-topology as k — oo.
Moreover, all of the above properties hold uniformly in t € [0, T].

Proof. We can prove this by the same argument in [11, Section 5]. Since agr) — ¢, in the
C*-topology as k — oo, uniformity of the asymptotic expansion (cf. Proposition 2.1) yields

FO@) = ex(t)k 2 + O(™),
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for some smooth function e,(). Hence T3(8\"”) = ¢\ +O(k~2). If we put gb = ¢~k e, (1),
then we have
—(r)

7@ = 8 +FO@")
= 3+ (FOG) - ke
= ¢+ 0k™).
We can repeat this process and obtain functions e,...,e, (depending smoothly on #) such
that Tk@ir)) = 4" + Ok (’“)) w1th ¢ = ¢\ — Y7, k7ie,(t), which completes the proof
of (1). By the deﬁnltlon of ¢t , we have |¢§r) —~fr) o = HZLQ k‘iei(t)||c, — Qask —

oo for any non-negative integer /. Combining with Remark 2.1, we have (2). From (2)
and uniformity of the asymptotic expansion for Bergman function, we have (3). Finally,
we stress that all of the above arguments hold uniformly in #: we have used asymptotic
expansions for ¢(r) and Er). When ¢ varies in a compact interval [0, T'], these family of
metrics stay in a C*-bounded set since there are only finitely many perturbations 7;, e;
present. Thus these asymptotic expansions are uniform in . m|

Now we set ¢\ : Tk(gb ) and H" := Hllbk(qﬁt ) € By, for the corresponding hermitian
form, i.e., ¢ = FS (IEI\(’)) By Lemma 2.1 and Lemma 2.2 (1), we obtain:

Lemma 2.3.

d(¢y". b)) = 00"

for any (k,m) such that m/k < T.

2.2. Distance function d; on B;. Let d; be the distance function arising from the Rie-
mannian structure try(6H, 6H) := tr(6H - H™' - 6H - H™") on By. For m > 1, we denote the
hermitian norm which corresponds to gb('") H; m e. gb('") FSk(H]Em)). We prove that the

higher order estimate of the distance d (qﬁ(m) 5(’2 k) yields the estimate of dj (H m) I-/I\(n: ;k)

Lemma 2.4. If r > 2n, we have dy (H('") j(;;k) O(k* ).

Proof. Let (s;) be an I’-I\f;}k—orthononnal and an H,Em)—orthogonal basis. Then we can find

A; € R so that (e'is)) is an H,(Cm)-orthonormal basis. Then the distance between these two
hermitian forms is computed as

o (0. 7)) -

Ny
S
J=1

We define the function f by ¢(m) Ebmk = 1log(1 + f). Now we apply the argument in [13,

Lemma 2.18]. The direct computation shows that
(m) _ =(r)
log(1+f) = k(o -o\),)
k (FSW(H{™) - FSy(H),))
Zi\’kl 62/1,-|sj|2

ijl |Sj|2

= log
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Hence, for any ¢ € H(L), we have
Ny

Ny
(2.8) 1+ f)- Z |sj|2€_k¢ _ Zezﬂjlsjlze—qu.

i=1 =1

Since the map Hilby is surjective, we can choose a weight ¢; € H(L) so that (e*/?sy,. ..,
sy, s, @250, ..., e sy,) is a Hilby(¢;)-ONB. We set

v = (sl - HSNk”ililbk(@))

U1
A=| 1|, F=(F;)= (f fls.,-lze_k@MA((p,-)).
X
UNk
Then we find that ||A]l,, < 2 and ||A‘1||Op < 2 if k is sufficiently large. Moreover, if we put
¢ = ¢; in (2.8), then we have

1 e
A+pli|=4 : |
1 e
and hence
el — 1 1
(2.9) : =A"'F|:].
e — 1 1
On the other hand, since
1Fllmax 2= H}?}X“Fi,jl}

< sup|f]- max f 5% MA(¢)
X i,j X
2
= su -max ||s ;|5
Xplf | 12 118 jllEgitn g0
= suplf],
X

we obtain

IA™" Fllop < 1A loplFllop < 21Fllis < 2NillFllmax < 2Ni sup |1,
X

where ||F|lgs := 4 /ZQ’;:] |F; ;|? is the Hilbert-Schmidt norm of F. Combining with (2.9), we
find that

. AT Pl -
2Nisup [f] > A" Fllop = sup ————= > N, '/?
X wo
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Thus we have

1-2N.?sup|fl < e* < 1+ 2N, sup|f].
X X

Now we assume r > 2n. Then, by Lemma 2.3, we see that supy|f] = O(k™") and
N2 supy |f] = O(k%"") (where we used Ny = O(k")). Thus if k is sufficiently large,
we can take the log of the above equation and know that

[ NN

1
3 log (1 —2N3/? sup Ifl) <A< log(l + 2N sup |f|),
X X

where log( —2N,3? supy |f|) = O(k%’”) and log(l +2N,>? supy Ifl) = O(k%"*’). Hence
we have |4; 1> = O(k*2") and

di (H™,H")) < [Ny max| L = O(k>™™).

2.3. Operator norm ||fi(-)||op. For H € By, let V=1u(H) be the moment map of the action
of the corresponding unitary group. If we take an H-orthonormal basis (s;), u(H) can be
represented as a matrix-valued function

O

(sa/’ SB)
H))yp = ——22
('u( )) ’ Zf\;k] Si|2

We are interested in the center of mass a(H):

A(H) := k" fX u(H)MA(FS(H)).

The following Lemma is a direct consequence from Lemma 2.2 (2) and [12, Lemma 15,
Remark 16]:

Lemma 2.5. ||ﬁ(ﬁ§’>) - 1d|| = 0 uniformly for t € [0, T].
op
Let H(s) (s € [0,1]) be a Bergman geodesic with H(0) = A(r) , and H(1) = (m) The
next lemma shows that the distance d; controls the operator norm ||,u( Nlop-

Lemma 2.6. If r > 2n, the operator norm ||ii(H(s))llop is uniformly bounded for any (k, m)
such thatm/k < T and s € [0, 1].

Proof. By the previous lemma, the operator norm Hﬁ(fl\fﬁ k)“ is uniformly bounded as
op

long as m/k € [0, T]. Applying [12, Proposition 24] to our case, we obtain

IH Do < exp (2 (H(s). HS),)) - [ <P7f£}k
< exp(2di (H", H.),)) “,U( o

Hence ||fi(H (s))llop is bounded as long as r > 2n by Lemma 2.4. m]
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2.4. Bounded geometry. In this section, we review the definitions of R-bounded geome-
try and several related results in [12, Section 4]. We use the large Kihler metrics in the class
kc1(L) to avoid worrying about powers of k. We fix a reference Kéhler metric wy € c¢;(L)
and denote a large reference Kéhler metric wy := kw € kci(L).

DeriNITION 2.1. We say that @ € kc; (L) has R-bounded geometry in C!if @ > R~'@, and
llw = woller <R,

where the norm || - ||+ is that determined by the metric wy.

For a family of metrics which has R-bounded geometry in C’, we can control the C/~2-
norm of Kihler metrics by means of geometric data in the Bergman space B;.

Lemma 2.7 (Lemma 13, [12]). Let H(s) be a smooth path in By. If w(s) = wyrs,(H(s)) for
s € [0, 1] have R-bounded geometry in C', and lz(H(s)llop < K, then

1@(0) = @(1)ller> < CKL,

where the constant C > 0 depends only on R and [, but not on k, and L is the length of the
path H(s) (s € [0, 1]).

The next lemma is also useful to check the condition for bounded geometry.

Lemma 2.8 (Lemma 14, [12]). Let H; € By be a sequence of metrics such that the cor-
responding sequence of metrics wy = wirs,(H,) has R/2-bounded geometry in C 2 and such
that ||p(Hy)llop is uniformly bounded. Then there is a constant C > O (which depends only
on R and [, but not on k) such that if H € By, satisfies di,(Hy, H) < C, then the corresponding
metric @ = wyrs,m) has R-bounded geometry in C'.

3. Proof of Theorem 1.1

Now we give a proof of Theorem 1.1. Proof of Theorem 1.1. We use wy, as our reference
metric. Since we have the C*-convergence an:} . — ¢ in the double scaling limit m/k — 1

(cf. Lemma 2.2 (3)), we know that the metrics Wy has R/2-bounded geometry in C'**. If
m/

we take r > 2n, we have dj (H,Em), I’-i’(;;k) — 0 (cf. Lemma 2.4) and “ﬁ(l—ll\(r;;k)nop is uniformly
bounded (cf. Lemma 2.5). Hence we can apply Lemma 2.8 to our case and find that a family
of metrics wrs, (s (s € [0, 1]) has R-bounded geometry in C"*2. Combining with Lemma
2.4, Lemma 2.6 and Lemma 2.7, we obtain

(m) () 2n—
”kwaﬁi”‘) — kg < CK-dy (Hk ’Hm/k) < CKM - k™,

m/k I Cl(kawg, )

where the constant M > 0 depends only on 7, and K is the uniform upper bound of
lz(H(s))llop- Rescaling the inequality, we have

< CKM - k¥,
C’(w¢t)

(3.1) ”w oo~ 0,

Hence, if we take r so that r > é + 2n and take the limit kK — oo, we have the C’—convergence

-0

< ||U)¢(m) — W3
k

war —
¢m/k

- N—
“ b Z Clwy,) Pk N Cl(wy,)

Cl(u}qﬁt )
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as desired. Finally, Remark 2.1 together with Lemma 2.2 (1) implies
— - -1
||a)$m/k a)¢r’|C’(w¢t) O(k )
On the other hand, if we take r so that r > % +2n + % in (3.1), we get

=0k

W ,m — Wi
|| ¢k ¢m/l< Cl(w¢,)

Combining these two estimates, we obtain the speed of convergence
m)y — = O k71 .
“w‘ﬁi ) w"””cl(%,) )

This completes the proof of Theorem 1.1. O
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