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Abstract
On a polarized manifold (X, L), the Bergman iteration φ(m)

k is defined as a sequence of Bergman
metrics on L with two integer parameters k,m. We study the relation between the Kähler-Ricci
flow φt at any time t ≥ 0 and the limiting behavior of metrics φ(m)

k when m = m(k) and the
ratio m/k approaches to t as k → ∞. Mainly, three settings are investigated: the case when
L is a general polarization on a Calabi-Yau manifold X and the case when L = ±KX is the
(anti-) canonical bundle. Recently, Berman showed that the convergence φ(m)

k → φt holds in
the C0-topology, in particular, the convergence of curvatures holds in terms of currents. In this
paper, we extend Berman’s result and show that this convergence actually holds in the smooth
topology.
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1. Introduction

1. Introduction1.1. Background.
1.1. Background. Throughout this paper, let (X, L) be an n-dimensional polarized man-

ifold (i.e., X is a compact Kähler manifold with an ample line bundle L), and (L) is the
space of smooth plurisubharmonic weights with strictly positive curvature (where the term
“weight” is an additive notation for hermitian metrics, for instance, see [2]). For φ ∈ (L),
ωφ denotes the curvature locally represented as
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ωφ =

√−1
2π

∂∂̄φ ∈ c1(L).

For simplicity, we may assume that c1(L)n = n!, i.e., the Monge-Ampère volume form

MA(φ) :=
ωn
φ

n!
has unit volume. Let μ be a map from (L) to the space of all smooth volume forms on
X. We assume that μ = μ(φ) depends smoothly on φ. Given an initial metric φ0 ∈ (L),
Kähler-Ricci flow in (L) is defined by the Monge-Ampère evolution equation

(1.1)
∂φt

∂t
= log

MA(φt)
μ(φt)

.

The Kähler-Ricci flow is an analytic study object in nature, whereas Berman [5] proposed a
numerical algorithm to study (1.1) called “Bergman iteration”: for any integer k, let k be
the space of hermitian forms on H0(X, kL). We associate the pair (φ, μ(φ)) to a Hilbert map:

Hilbk,μ(φ) : (L) −→ k

defined by

‖s‖2Hilbk,μ(φ) =

∫
X
|s|2e−kφμ(φ)

for s ∈ H0(X, kL). Conversely, Fubini-Study map:

FSk : k −→ (L)

is defined by

FSk(H) =
1
k

log

⎛⎜⎜⎜⎜⎜⎜⎝ 1
Nk

Nk∑
i=1

|si|2
⎞⎟⎟⎟⎟⎟⎟⎠

for H ∈ k, where (si) is any orthonormal basis with respect to H and

Nk := dim H0(X, kL).

Notice that the definition of FSk(H) does not depend on the specific choice of (si). In fact,
FSk(H) is, to the letter, just the restriction to X of the Fubini-Study weight determined by H.
An element in k, or in the image of injective map FSk is called a Bergman metric (at level
k). Let k,μ be the composition of these two maps

k,μ := FSk ◦ Hilbk,μ.

We consider the sequence of Bergman metrics:

(1.2) φ(m)
k := (k,μ)m(φ0).

The sequence φ(m)
k is called the Bergman iteration (starting at φ0). We mainly consider three

cases (S0) and (S±). Then the stational points φKE of the Kähler-Ricci flow, i.e., the solutions
to the Monge-Ampère equation

(1.3) MA(φKE) = μ(φKE)
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is a Kähler-Einstein weight as we see below.
The Calabi-Yau setting (S0). Let X be a Calabi-Yau manifold (i.e., the canonical bundle KX

is holomorphically trivial) and Ω a global holomorphic n-form that vanishes nowhere. Then

(1.4) μ0 := C(
√−1)n2

Ω ∧ Ω̄
defines a smooth volume form, where C is a normalizing constant so that μ0 has unit volume.
We set μ := μ0. Since Ω is holomorphic, differentiating (1.3) yields

Ric(ωφKE) = −
√−1
2π

∂∂̄ log MA(φKE) = −
√−1
2π

∂∂̄ log μ0 = 0.

Thus the solution corresponds to a Ricci-flat Kähler metric. Berman [5, Theorem 3.1] (also
see [7]) showed that there exists a long time solution φt of (1.1), and φt converges to the
Kähler-Einstein weight φKE in the C∞-topology as t → ∞.

The (anti-) canonical setting (S±). We consider the case when the ample line bundle L is
the (anti-) canonical bundle ±KX and μ is the canonical volume form

μ±(φ) := e±φ.

Then differentiating the equation (1.3), we have

Ric(ωφKE) = −
√−1
2π

∂∂̄ log MA(φKE) = −
√−1
2π

∂∂̄ log μ±(φKE) = ∓ωφKE .

Thus the solution corresponds to a Kähler-Einstein metric of negative (resp. positive) scalar
curvature. In the both settings, the long time solution of (1.1) always exists. Moreover, if
we consider the normalized canonical volume form

μ̄±(φ) :=
μ±(φ)∫
X μ±(φ)

instead of μ±, the normalized Kähler-Ricci flow converges to a Kähler-Einstein weight in
the setting L = KX . On the other hand, we need some extra assumptions to prove the same
result in the setting L = −KX (see [5, Theorem 4.1] and [17]).

Let m = m(k) be a sequence of non-negative integers such that the ratio m/k converges to
some real number t ≥ 0 as k → ∞. We would like to call such a limit the double scaling limit
and simply write as m/k → t. In the seminal paper of Berman [5], he showed that in each of
three settings (S0) and (S±), in the double scaling limit m/k → t, the Bergman iteration φ(m)

k
converges to the Kähler-Ricci flow φt in the C0-topology. In particular, the convergence of
Kähler metrics ωφ(m)

k
→ ωφt holds in terms of current.

1.2. The main result.
1.2. The main result. As expected in [5], the statement of Berman’s theorem still holds

in a stronger sense, that is, we can show the following:

Theorem 1.1. Let (X, L) be a polarized manifold. For any φ0 ∈ (L), let φ(m)
k be the

Bergman iteration (1.2) and φt the Kähler-Ricci flow (1.1) starting at the same initial weight
φ0. Then, in each of three settings (S0), (S±), in the double scaling limit m/k → t, we have
the convergence of Kähler metrics

ωφ(m)
k
→ ωφt
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in the C∞-topology on X. More precisely, for any non-negative integer l, we have∥∥∥∥ωφ(m)
k
− ωφt

∥∥∥∥
Cl
= O(k−1).

Remark 1.1. In the proof of Theorem 1.1 for the setting (S0), we do not use the Calabi-
Yau hypothesis and the equation (1.4). Therefore, Theorem 1.1 can be extended to the case
when (X, L) is a general polarized manifold and μ is any fixed smooth volume form with
unit volume (where the long time solution and convergence of the Kähler-Ricci flow for this
case were obtained also in [5, Theorem 3.1] or [7]).

Our problem is similar to the problem discussed in many places (e.g. [10], [12], [13],
etc.). The key idea to prove the main theorem is constructing the higher order approximation
towards the Bergman iteration by adding polynomials of k−1 with coefficient functions ηi(t)
to φt:

φ̃(r)
t := φt +

r∑
i=1

k−iηi(t).

We can find a successful choice of ηi as a solution of a heat equation and kill the lower
order terms appearing in the distance d

(
φ(m)

k , φ̃(r)
m/k

)
= supX

∣∣∣∣φ(m)
k − φ̃(r)

m/k

∣∣∣∣, which overcomes
the polynomial growth of the distance functions on k (cf. Lemma 2.4). The Cl-norms for
Bergman metrics are controlled by the upper bound of the operator norm and the distance
function provided the family of metrics has bounded geometry (cf. Lemma 2.7). These
projective and analytic estimates were established in [10] and [12], and are widely used
throughout this paper.

The author expects that in the case when m/k → ∞, we can show the C∞-convergence
ωφ(m)

k
→ ωφKE as long as m/k has a polynomial growth of k, under the C∞-convergence

assumption φt → φKE. Then the sequence φ(m)
k gives a dynamical construction of solutions

φKE to the Monge-Ampère equation (1.3). We can prove this if we have the uniform control
of the higher order derivatives for the functions η1, . . . , ηr. However it is hard to prove this
in general, so that we leave this problem for the future.

1.3. Relation with other results.
1.3. Relation with other results. If we take m = 1 in Theorem 1.1, we obtain the C∞-

convergence of Kähler metrics ωφ(1)
k
→ ωφ0 as raising the exponent k → ∞. Thus our main

theorem can be seen as an extension of Tian’s result [16] along the Kähler-Ricci flow (also
see Proposition 2.2). On the other hand, we consider the discrete time limit m → ∞ with
a fixed exponent k. Then one would expect that the sequence φ(m)

k converges to a balanced
weight φbal,k ∈ k, i.e., a fixed point of the iteration map:

k,μ(φbal,k) = φbal,k.

This is actually true in the setting (S0) and (Sμ+) (cf. [5, Theorem 3.9, Theorem 4.14]),
whereas the same result generally does not hold in the setting (Sμ−) because of the absence
of balanced weights (cf. [14, Example 4.3, Example 5.6]). The large k limit of balanced
weights φbal,k are also studied deeply in [3, Theorem 7.1].
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2. Estimates

2. Estimates2.1. The C0-estimate.
2.1. The C0-estimate.

2.1.1. Large k asymptotics of Bergman functions.
2.1.1. Large k asymptotics of Bergman functions. Let (X, L) be a polarized manifold

and μ = μ(φ) a smooth volume form depending smoothly on φ ∈ (L). We define the
Bergman function associated to (φ, μ(φ)) by

ρk,μ(φ) :=
Nk∑
i=1

|si|2e−kφ,

where (si) is any Hilbk,μ(φ)-orthonormal basis. Then it is not hard to see that the func-
tion ρk,μ(φ) does not depend on the choice of (si). We introduce the notion of normalized
Bergman function

ρ̄k,μ(φ) :=
1

Nk
ρk,μ(φ)

so that
∫

X ρ̄k,μ(φ)μ(φ) = 1, and put

F(k)
μ (φ) :=

1
k

log ρ̄k,μ(φ).

Then we have

(2.1) k,μ − Id = F(k)
μ .

In particular, when we take μ as the Monge-Ampère volume form MA(φ), we drop the
notation of μ and simply write Hilbk, ρk, k, etc.

Now we recall the property of Bergman functions essentially obtained by Bouche [6],
Catlin [8], Tian [16] and Zelditch [18]. The asymptotic expansions of the Bergman function
associated to the space of global sections of kL + C is also studied in [9, Theorem 1.1,
Theorem 1.3] and [4, Section 2.5], where C denotes the trivial line bundle with the hermitian
metric μ(φ)/MA(φ).

Proposition 2.1. We have the following asymptotic expansion of Bergman function:

ρk,μ(φ) = (b0kn + b1kn−1 + b2kn−2 + · · · ) · MA(φ)
μ(φ)

,

Each coefficient bi can be written as a polynomial in the Riemannian curvature Riem(ωφ),
the curvature of μ(φ)/MA(φ), their derivatives and contractions with respect to ωφ. In
particular, we have

b0 = 1, , b1 =
1
2

S (ωφ) − Δφ log
MA(φ)
μ(φ)

,

where S (ωφ) is the scalar curvature of ωφ and Δφ is the (negative) ∂̄-Laplacian with respect
to ωφ. The above expansion is uniform as long as φ stays in a bounded set in the C∞-
topology. More precisely, for any integer p and l, there exists a constant Cp,l such that∥∥∥∥∥∥∥ρk,μ(φ) −

p∑
i=0

bikn−i

∥∥∥∥∥∥∥
Cl

< Cp,l · kn−p−1.
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We can take the constant Cp,l independently of φ as long as φ stays in a bounded set in the
C∞-topology.

By the Riemann-Roch formula, we find that Nk is a polynomial of k of degree n:

Nk = kn +
1
2

S̄ kn−1 + O(kn−2),

where we denote the average of scalar curvature by S̄ (which is independent of a choice of
φ ∈ (L)). Combining with Proposition 2.1, we also have a uniform asymptotic expansion
of a normalized Bergman function:

ρ̄k,μ(φ) = (b̄0 + b̄1k−1 + b̄2k−2 + · · · ) · MA(φ)
μ(φ)

,

where b̄0 = 1 and b̄1 =
1
2 (S (ωφ) − S̄ ) − Δφ log MA(φ)

μ(φ) .

2.1.2. Higher order approximation.
2.1.2. Higher order approximation. In what follows, we consider only three cases (S0),

(S±) introduced in Section 1. The following properties follow directly from the definition of
F(k)
μ :

Proposition 2.2. We have the following properties in each settings:

(1) In the setting (S0), the function F(k)
μ0 satisfies

F(k)
μ0

(φ + c) = F(k)
μ0

(φ)

for any c ∈ R and φ ∈ (L).
(2) In the setting (S±), the function F(k)

μ± satisfies

F(k)
μ± (φ + c) = F(k)

μ± (φ) ∓ c
k

for any c ∈ R and φ ∈ (L).

Let d be the distance function defined by the sup-norm

d(φ, ψ) := sup
X
|φ − ψ|

for φ, ψ ∈ (L). We also use the monotonicity for the iteration map k,μ:

Proposition 2.3 ([5], Proposition 3.13 and Proposition 4.12). In each of three settings
(S0), (S±), the monotonicity for the iteration map holds, i.e., for any weights φ, ψ ∈ (L)
such that φ ≤ ψ, we have k,μ(φ) ≤ k,μ(ψ). Moreover, we have the following:

(1) In the setting (S0), an inequality

d(k,μ0 (φ), k,μ0 (ψ)) ≤ d(φ, ψ)

holds for any φ, ψ ∈ (L).
(2) In the setting (S±), an inequality

d(k,μ±(φ), k,μ±(ψ)) ≤
(
1 ∓ 1

k

)
d(φ, ψ)

holds for any φ, ψ ∈ (L).
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Proof. For the sake of exposition and completeness, we shall provide a complete proof.
In each of three settings, the following characterization for Bergman function holds (cf. [15,
Lemma 6.2]):

ρk,μ(φ)(x) = sup
s∈H0(X,kL)

|s(x)|2e−kφ∫
X |s|2e−kφμ(φ)

.

Since φ ≤ ψ, we have ∫
X
|s|2e−kφμ(φ) ≥

∫
X
|s|2e−kψμ(ψ)

for any s ∈ H0(X, kL). Hence, by (2.1), we obtain

k,μ(φ) = φ + F(k)
μ (φ) ≤ ψ + F(k)

μ (ψ) = k,μ(ψ),

which proves the first statement. Next, we consider (1). If we set C := d(φ, ψ), we have

φ ≤ ψ +C, ψ ≤ φ +C.

Applying the map k,μ0 to the first equation yields

k,μ0 (φ) ≤ k,μ0 (ψ +C) (the monotonicity for k,μ0 )

= ψ +C + F(k)
μ0

(ψ +C) (by (2.1))

= ψ +C + F(k)
μ0

(ψ) (by Proposition 2.2)

= k,μ0 (ψ) +C (by (2.1)).

Applying the map k,μ0 to the second equation yields another inequality k,μ0 (ψ) ≤ k,μ0 (φ)+
C, and thus we obtain (1). A similar proof also works for (2).

�
Let φt be a solution of the Kähler-Ricci flow (1.1). We perturb φt as

φ̃(r)
t := φt +

r∑
i=1

k−iηi(t),

where η1(t), . . . , ηr(t) are smooth functions on X × [0,∞). Then φ̃(r)
t ∈ (L) for sufficiently

large k, and φ̃(r)
t → φt in the C∞-topology as k → ∞. In what follows, let T > 0 be a large

constant, and all O are meant to hold uniformly for t ≤ T as k → ∞. For instance, we have:

Remark 2.1. φ̃(r)
t − φt = O(k−1).

The following is an analogue of [12, Theorem 11].

Lemma 2.1. Let r be any non-negative integer. Then there exists an appropriate choice
of η1, . . . , ηr (depending only on the initial data φ0) such that

(2.2) d
(
φ(m)

k , φ̃(r)
m/k

)
≤ C · k−(r+1)

holds for any pair (k,m) such that m/k ≤ T, where the constant C > 0 depends only on T .

Proof. We first show the following claim.
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Claim. For any t ∈ [0, T ], there exists an appropriate choice of η1, . . . , ηr such that

(2.3) sup
X

∣∣∣∣(φ̃(r)
t+1/k − φ̃(r)

t ) − F(k)
μ (φ̃(r)

t )
∣∣∣∣ ≤ C

kr+2 ,

where the constant C > 0 depends only on T .

The proof of Claim. We prove this by induction of r. In the case when r = 0, the equation
(2.3) follows from the proof of [5, Theorem 3.15, Theorem 4.18].

The setting (S0). We assume that the claim holds for some appropriate choice of η1, . . . , ηr.
First, for a heuristic argument, let ηr+1 be any smooth function on X × [0,∞). By the mean
value theorem, we can compute

φ̃(r+1)
t+1/k − φ̃(r+1)

t = φt+1/k − φt +

r+1∑
i=1

k−i(ηi(t + 1/k) − ηi(t))

=
1
k
· ∂φt

∂t
+

r∑
i=1

k−(i+1)Mi(t)

+k−(r+2)
(
∂ηr+1

∂t
(t) +Gr(t)

)
+ O(k−(r+3)),

where Mi = Mi(η1, . . . , ηi) and Gr = Gr(η1, . . . , ηr) are functions determined by the previous
data, and the absolute of the term O(k−(r+3)) is bounded by A · k−(r+3) for some constant A
which only depends on

max
X×[0,T ]

{∣∣∣∣∣∣∂r+3φt

∂tr+3

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∂r+2η1

∂tr+2

∣∣∣∣∣∣ , . . . ,
∣∣∣∣∣∣∂2ηr+1

∂t2

∣∣∣∣∣∣
}
.

Hence ηr+1 only affects the O(k−(r+2))-term in the above expansion and no lower-order terms
of k−1. The contribution of ηr+1 to the coefficient of k−(r+2) is just ∂ηr+1

∂t (t).
Let Δt be the (negative) ∂̄-Laplacian with respect to ωφt . Since the linearized operator of

MA/μ0 at φt is computed as

d
ds

(
MA(φt + s f )

μ0

)∣∣∣∣∣∣
s=0
= (Δt f ) · MA(φt)

μ0
,

we have

MA(φ̃(r+1)
t )

μ0
=

MA(φt)
μ0

+

r∑
i=1

k−iPi(t) + k−(r+1)
(
(Δtηr+1) · MA(φt)

μ0
+ Qr(t)

)
+O(k−(r+2)),

where Pi = Pi(η1, . . . , ηi), and Qr = Qr(η1, . . . , ηr). Since we have the uniform C∞-
convergence φ̃(r)

t → φt as k → ∞, the metrics φ̃(r)
t are in a C∞-bounded set as t varies in

[0, T ]. Thus we can apply Proposition 2.1 and find that b̄i(φ̃
(r+1)
t ) are polynomials in the

curvature of φ̃(r+1)
t and μ0/MA(φ̃(r+1)

t ). It follows that b̄i(φ̃
(r+1)
t ) = b̄i(φ̃

(r)
t ) + O(k−(r+1)), in

particular, the first contribution of ηr+1 to b̄i(φ̃
(r+1)
t ) occurs at O(k−(r+1)). Thus we have
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F(k)
μ0

(φ̃(r+1)
t ) =

1
k

log
MA(φ̃(r+1)

t )
μ0

+
1
k

log
(
1 + k−1b̄1(φ̃(r+1)

t ) + · · · + k−(r+1)b̄r+1(φ̃(r+1)
t ) + O(k−(r+2))

)
=

1
k

log
MA(φt)
μ0

+

r∑
i=1

k−(i+1)Ri(t)

+k−(r+2)(Δtηr+1(t) + S r(t)) + O(k−(r+3)),

where Ri = Ri(η1, . . . , ηi) and S r = S r(η1, . . . , ηr). Putting Tr(t) := S r(t) −Gr(t), we obtain

(φ̃(r+1)
t+1/k − φ̃(r+1)

t ) − F(k)
μ0

(φ̃(r+1)
t ) = k−(r+2)

(
∂ηr+1

∂t
(t) − Δtηr+1(t) − Tr(t)

)
+ O(k−(r+3)),

where we used the induction hypothesis (2.3). Hence we may choose ηr+1 as a solution of
the linear, parabolic PDE:

(2.4)

⎧⎪⎪⎨⎪⎪⎩ ∂ηr+1
∂t (t) − Δtηr+1(t) = Tr(t)

ηr+1(0) = 0,

where Tr = Tr(η1, . . . , ηr) is determined in the previous process. The equation (2.4) is a lin-
ear, inhomogeneous heat equation. Since the spectra of −Δt is bounded below, Δt generates
a strongly continuous analytic semigroup for each t. Hence there exists a unique long time
solution of (2.4) (where we used general results in the semigroup theory, for instance, see
[1, Section 1.2]).

The setting (S±). We can compute the term φ̃(r+1)
t+1/k−φ̃(r+1)

t as with the case (S0). The difference
in computations only comes from the term F(k)

μ± (φ̃(r+1)
t ), more precisely, the linearization of

the operator MA/μ±:

d
ds

(
MA(φt + s f )
μ±(φt + s f )

)∣∣∣∣∣∣
s=0
= (Δt f ∓ f ) · MA(φt)

μ±(φt)
.

Using this, we obtain

F(k)
μ± (φ̃(r+1)

t ) =
1
k

log
MA(φt)
μ±(φt)

+

r∑
i=1

k−(i+1)Ri(t)

+k−(r+2)(Δtηr+1(t) ∓ ηr+1(t) + S r(t)) + O(k−(r+3)),

where Ri = Ri(η1, . . . , ηi) and S r = S r(η1, . . . , ηr). Thus we may take ηr+1 as the solution of
the linear, parabolic PDE:

(2.5)

⎧⎪⎪⎨⎪⎪⎩ ∂ηr+1
∂t (t) − Δtηr+1(t) ± ηr+1(t) = Tr(t)

ηr+1(0) = 0,

where Tr is a function depending only on η1, . . . , ηr. Since the operator −Δt ± Id have only
finitely many negative eigenvalues, the spectra of the operator −Δt ± Id are bounded below.
Hence the operator Δt ∓ Id generates a strongly continuous analytic semigroup for each t,
and we can use again the result [1, Section 1.2] to obtain the long time solution ηr+1. �
Now we return to the proof of Lemma 2.1.
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The setting (S0). We show that the equation

(2.6) d
(
φ(m)

k , φ̃(r)
m/k

)
≤ C · m

kr+2

holds as long as m/k ≤ T , where the functions η1, . . . , ηr and the constant C > 0 are deter-
mined in the previous claim.

We prove this by induction of m. Notice that the case m = 0 is trivial. Assume that the
equation (2.6) holds for m, and let k be any integer such that m+1

k ≤ T . Applying (2.3) with
t := m

k ≤ m+1
k ≤ T yields

sup
X

∣∣∣∣φ̃(r)
(m+1)/k − φ̃(r)

m/k − F(k)
μ0

(φ̃(r)
m/k)
∣∣∣∣ ≤ C · 1

kr+2 .

On the other hand, using Proposition 2.3 (1), we have

sup
X

∣∣∣∣(φ̃(r)
m/k + F(k)

μ0
(φ̃(r)

m/k)) − φ(m+1)
k

∣∣∣∣ = sup
X

∣∣∣∣(φ̃(r)
m/k + F(k)

μ0
(φ̃(r)

m/k)) − (φ(m)
k + F(k)

μ0
(φ(m)

k ))
∣∣∣∣

= d
(
k,μ0 (φ̃

(r)
m/k), k,μ0 (φ

(m)
k )
)

≤ d
(
φ̃(r)

m/k, φ
(m)
k

)
≤ C · m

kr+2 ,

where we used the induction hypothesis in the last inequality. Combining these two inequal-
ities, we have

d
(
φ(m+1)

k , φ̃(r)
(m+1)/k

)
≤ sup

X

∣∣∣∣φ(m+1)
k − φ̃(r)

m/k − F(k)
μ0

(φ̃(r)
m/k)
∣∣∣∣ + sup

X

∣∣∣∣φ̃(r)
m/k + F(k)

μ0
(φ̃(r)

m/k) − φ̃(r)
(m+1)/k

∣∣∣∣
≤ C · m

kr+2 +C · 1
kr+2

= C · m + 1
kr+2 .

Hence the equation (2.6) holds for m + 1.
From (2.6), we have

d
(
φ(m)

k , φ̃(r)
m/k

)
≤ C · m

kr+2 ≤ CT · 1
kr+1 .

Finally, replacing CT with C, we obtain the desired result.

The setting (S+). Thanks to Proposition 2.3 (2), the distance defined by the sup-norm is
decreasing along the iteration. Hence the proof for the setting (S0) carries over essentially
verbatim to this case.

The setting (S−). We show that the equation

(2.7) d
(
φ(m)

k , φ̃(r)
m/k

)
≤ C
(
1 +

1
k

)m
· m

kr+2

holds as long as m/k ≤ T , where the functions η1, . . . , ηr and the constant C > 0 are deter-
mined in the previous claim.

The case m = 0 is trivial. We assume that the equation (2.7) holds for m and let k be any
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integer such that m+1
k ≤ T . Applying (2.3) with t := m

k ≤ m+1
k ≤ T yields

sup
X

∣∣∣∣φ̃(r)
(m+1)/k − φ̃(r)

m/k − F(k)
μ− (φ̃(r)

m/k)
∣∣∣∣ ≤ C · 1

kr+2 .

On the other hand, using Proposition 2.3 (2) and the induction hypothesis, we have

sup
X

∣∣∣∣(φ̃(r)
m/k + F(k)

μ− (φ̃(r)
m/k)) − φ(m+1)

k

∣∣∣∣ = sup
X

∣∣∣∣(φ̃(r)
m/k + F(k)

μ− (φ̃(r)
m/k)) − (φ(m)

k + F(k)
μ− (φ(m)

k ))
∣∣∣∣

≤
(
1 +

1
k

)
· d
(
φ̃(r)

m/k, φ
(m)
k

)
≤ C

(
1 +

1
k

)m+1

· m
kr+2 .

Combining these two inequalities, we have

d
(
φ(m+1)

k , φ̃(r)
(m+1)/k

)
≤ C

(
1 +

1
k

)m+1

· m
kr+2 +C · 1

kr+2

≤ C
(
1 +

1
k

)m+1

· m
kr+2 +C

(
1 +

1
k

)m+1

· 1
kr+2

= C
(
1 +

1
k

)m+1

· m + 1
kr+2 .

Hence the equation (2.7) holds for m + 1.
Since (

1 +
1
k

)m
=

⎛⎜⎜⎜⎜⎜⎝(1 + 1
k

)k⎞⎟⎟⎟⎟⎟⎠m/k ≤ em/k ≤ eT ,

combining with (2.7) implies

d
(
φ(m)

k , φ̃(r)
m/k

)
≤ CeT · m

kr+2 ≤ CTeT · 1
kr+1 .

We accomplishes the proof by replacing CTeT with C. �

In order to apply projective estimates, we have to approximate the perturbed flow φ̃(r)
t by

a smooth family of Bergman metrics.

Lemma 2.2. For any integer r, there exists a smooth family of metrics φ
(r)
t (t ∈ [0,∞)) in

(L) such that

(1) k(φ
(r)
t ) = φ̃(r)

t + O(k−(r+1)) as k → ∞.
(2) φ

(r)
t → φt in the C∞-topology as k → ∞.

(3) k(φ
(r)
t )→ φt in the C∞-topology as k → ∞.

Moreover, all of the above properties hold uniformly in t ∈ [0, T ].

Proof. We can prove this by the same argument in [11, Section 5]. Since φ̃(r)
t → φt in the

C∞-topology as k → ∞, uniformity of the asymptotic expansion (cf. Proposition 2.1) yields

F(k)(φ̃(r)
t ) = e2(t)k−2 + O(k−3),
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for some smooth function e2(t). Hence k(φ̃(r)
t ) = φ̃(r)

t +O(k−2). If we put φ
(r)
t := φ̃(r)

t −k−2e2(t),
then we have

k(φ
(r)
t ) = φ

(r)
t + F(k)(φ

(r)
t )

= φ̃(r)
t +

(
F(k)(φ

(r)
t ) − k−2e2(t)

)
= φ̃(r)

t + O(k−3).

We can repeat this process and obtain functions e2, . . . , er (depending smoothly on t) such
that k(φ

(r)
t ) = φ̃(r)

t + O(k−(r+1)) with φ
(r)
t := φ̃(r)

t −
∑r

i=2 k−iei(t), which completes the proof
of (1). By the definition of φ

(r)
t , we have

∥∥∥∥φ(r)
t − φ̃(r)

t

∥∥∥∥
Cl
=
∥∥∥∑r

i=2 k−iei(t)
∥∥∥

Cl → 0 as k →
∞ for any non-negative integer l. Combining with Remark 2.1, we have (2). From (2)
and uniformity of the asymptotic expansion for Bergman function, we have (3). Finally,
we stress that all of the above arguments hold uniformly in t: we have used asymptotic
expansions for φ̃(r)

t and φ
(r)
t . When t varies in a compact interval [0, T ], these family of

metrics stay in a C∞-bounded set since there are only finitely many perturbations ηi, ei

present. Thus these asymptotic expansions are uniform in t. �

Now we set φ̂(r)
t := k(φ

(r)
t ) and Ĥ(r)

t := Hilbk(φ
(r)
t ) ∈ k for the corresponding hermitian

form, i.e., φ̂(r)
t = FSk(Ĥ(r)

t ). By Lemma 2.1 and Lemma 2.2 (1), we obtain:

Lemma 2.3.

d
(
φ(m)

k , φ̂(r)
m/k

)
= O(k−(r+1))

for any (k,m) such that m/k ≤ T.

2.2. Distance function dk on k.
2.2. Distance function dk on k. Let dk be the distance function arising from the Rie-

mannian structure trH(δH, δH) := tr(δH · H−1 · δH · H−1) on k. For m ≥ 1, we denote the
hermitian norm which corresponds to φ(m)

k by H(m)
k , i.e., φ(m)

k = FSk(H(m)
k ). We prove that the

higher order estimate of the distance d
(
φ(m)

k , φ̂(r)
m/k

)
yields the estimate of dk

(
H(m)

k , Ĥ(r)
m/k

)
.

Lemma 2.4. If r > 2n, we have dk

(
H(m)

k , Ĥ(r)
m/k

)
= O(k2n−r).

Proof. Let (si) be an Ĥ(r)
m/k-orthonormal and an H(m)

k -orthogonal basis. Then we can find
λ j ∈ R so that (eλ j s j) is an H(m)

k -orthonormal basis. Then the distance between these two
hermitian forms is computed as

dk

(
H(m)

k , Ĥ(r)
m/k

)
=

√√√ Nk∑
j=1

|λ j|2.

We define the function f by φ(m)
k − φ̂(r)

m/k =
1
k log(1 + f ). Now we apply the argument in [13,

Lemma 2.18]. The direct computation shows that

log(1 + f ) = k
(
φ(m)

k − φ̂(r)
m/k

)
= k

(
FSk(H(m)

k ) − FSk(Ĥ(r)
m/k)
)

= log

∑Nk
j=1 e2λ j |s j|2∑Nk

j=1 |s j|2
.



C∞-Convergence of Bergman Iteration 725

Hence, for any φ ∈ (L), we have

(2.8) (1 + f ) ·
Nk∑
i=1

|s j|2e−kφ =

Nk∑
j=1

e2λ j |s j|2e−kφ.

Since the map Hilbk is surjective, we can choose a weight φi ∈ (L) so that (ek/2s1, . . . ,

ek/2si−1, si, ek/2si+1, . . . , ek/2sNk ) is a Hilbk(φi)-ONB. We set

vi := (‖s1‖2Hilbk(φi) , . . . ,
∥∥∥sNk

∥∥∥2
Hilbk(φi)

)

= (e−k, . . . , e−k,

i
∨
1 , e−k, . . . , e−k),

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
v1
...

vNk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , F = (Fi, j) =
(∫

X
f |s j|2e−kφiMA(φi)

)
.

Then we find that ‖A‖op ≤ 2 and ‖A−1‖op ≤ 2 if k is sufficiently large. Moreover, if we put
φ = φi in (2.8), then we have

(A + F)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
...

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
e2λ1

...

e2λNk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
and hence

(2.9)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
e2λ1 − 1

...

e2λNk − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = A−1F

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
...

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
On the other hand, since

‖F‖max := max
i, j
{|Fi, j|}

≤ sup
X
| f | ·max

i, j

{∫
X
|s j|2e−kφiMA(φi)

}
= sup

X
| f | ·max

i, j
‖s j‖2Hilbk(φi)

= sup
X
| f |,

we obtain

‖A−1F‖op ≤ ‖A−1‖op‖F‖op ≤ 2‖F‖HS ≤ 2Nk‖F‖max ≤ 2Nk sup
X
| f |,

where ‖F‖HS :=
√∑Nk

i, j=1 |Fi, j|2 is the Hilbert-Schmidt norm of F. Combining with (2.9), we
find that

2Nk sup
X
| f | ≥ ‖A−1F‖op = sup

x�0

‖(A−1F)(x)‖
‖x‖ ≥ N−1/2

k

√√√ Nk∑
j=1

|e2λ j − 1|2.
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Thus we have

1 − 2N3/2
k sup

X
| f | ≤ e2λ j ≤ 1 + 2N3/2

k sup
X
| f |.

Now we assume r > 2n. Then, by Lemma 2.3, we see that supX | f | = O(k−r) and
Nk

3/2 supX | f | = O(k
3
2 n−r) (where we used Nk = O(kn)). Thus if k is sufficiently large,

we can take the log of the above equation and know that

1
2

log
(
1 − 2Nk

3/2 sup
X
| f |
)
≤ λ j ≤ 1

2
log
(
1 + 2Nk

3/2 sup
X
| f |
)
,

where log
(
1 − 2Nk

3/2 supX | f |
)
= O(k

3
2 n−r) and log

(
1 + 2Nk

3/2 supX | f |
)
= O(k

3
2 n−r). Hence

we have |λ j|2 = O(k3n−2r) and

dk

(
H(m)

k , Ĥ(r)
m/k

)
≤
√

Nk max
j
|λ j|2 = O(k2n−r).

�

2.3. Operator norm ‖μ̄(·)‖op.
2.3. Operator norm ‖μ̄(·)‖op. For H ∈ k, let

√−1μ(H) be the moment map of the action
of the corresponding unitary group. If we take an H-orthonormal basis (si), μ(H) can be
represented as a matrix-valued function

(μ(H))α,β =
(sα, sβ)∑Nk

i=1 |si|2
.

We are interested in the center of mass μ̄(H):

μ̄(H) := kn
∫

X
μ(H)MA(FSk(H)).

The following Lemma is a direct consequence from Lemma 2.2 (2) and [12, Lemma 15,
Remark 16]:

Lemma 2.5.
∥∥∥∥μ̄(Ĥ(r)

t ) − Id
∥∥∥∥

op
→ 0 uniformly for t ∈ [0, T ].

Let H(s) (s ∈ [0, 1]) be a Bergman geodesic with H(0) = Ĥ(r)
m/k and H(1) = H(m)

k . The
next lemma shows that the distance dk controls the operator norm ‖μ̄(·)‖op.

Lemma 2.6. If r > 2n, the operator norm ‖μ̄(H(s))‖op is uniformly bounded for any (k,m)
such that m/k ≤ T and s ∈ [0, 1].

Proof. By the previous lemma, the operator norm
∥∥∥∥μ̄(Ĥ(r)

m/k)
∥∥∥∥

op
is uniformly bounded as

long as m/k ∈ [0, T ]. Applying [12, Proposition 24] to our case, we obtain

‖μ̄(H(s))‖op ≤ exp
(
2dk

(
H(s), Ĥ(r)

m/k

))
·
∥∥∥∥μ̄(Ĥ(r)

m/k)
∥∥∥∥

op

≤ exp
(
2dk

(
H(m)

k , Ĥ(r)
m/k

))
·
∥∥∥∥μ̄(Ĥ(r)

m/k)
∥∥∥∥

op
.

Hence ‖μ̄(H(s))‖op is bounded as long as r > 2n by Lemma 2.4. �
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2.4. Bounded geometry.
2.4. Bounded geometry. In this section, we review the definitions of R-bounded geome-

try and several related results in [12, Section 4]. We use the large Kähler metrics in the class
kc1(L) to avoid worrying about powers of k. We fix a reference Kähler metric ω0 ∈ c1(L)
and denote a large reference Kähler metric ω̃0 := kω0 ∈ kc1(L).

Definition 2.1. We say that ω̃ ∈ kc1(L) has R-bounded geometry in Cl if ω̃ > R−1ω̃0 and

‖ω̃ − ω̃0‖Cl < R,

where the norm ‖ · ‖Cl is that determined by the metric ω̃0.

For a family of metrics which has R-bounded geometry in Cl, we can control the Cl−2-
norm of Kähler metrics by means of geometric data in the Bergman space k.

Lemma 2.7 (Lemma 13, [12]). Let H(s) be a smooth path in k. If ω̃(s) = ωkFSk(H(s)) for
s ∈ [0, 1] have R-bounded geometry in Cl, and ‖μ̄(H(s))‖op < K, then

‖ω̃(0) − ω̃(1)‖Cl−2 < CKL,

where the constant C > 0 depends only on R and l, but not on k, and L is the length of the
path H(s) (s ∈ [0, 1]).

The next lemma is also useful to check the condition for bounded geometry.

Lemma 2.8 (Lemma 14, [12]). Let Hk ∈ k be a sequence of metrics such that the cor-
responding sequence of metrics ω̃k := ωkFSk(Hk) has R/2-bounded geometry in Cl+2 and such
that ‖μ̄(Hk)‖op is uniformly bounded. Then there is a constant C > 0 (which depends only
on R and l, but not on k) such that if H ∈ k satisfies dk(Hk,H) < C, then the corresponding
metric ω̃ := ωkFSk(H) has R-bounded geometry in Cl.

3. Proof of Theorem 1.1

3. Proof of Theorem 1.1
Now we give a proof of Theorem 1.1. Proof of Theorem 1.1. We use ωφt as our reference

metric. Since we have the C∞-convergence φ̂(r)
m/k → φt in the double scaling limit m/k → t

(cf. Lemma 2.2 (3)), we know that the metrics ωφ̂(r)
m/k

has R/2-bounded geometry in Cl+4. If

we take r > 2n, we have dk

(
H(m)

k , Ĥ(r)
m/k

)
→ 0 (cf. Lemma 2.4) and

∥∥∥∥μ̄(Ĥ(r)
m/k)
∥∥∥∥

op
is uniformly

bounded (cf. Lemma 2.5). Hence we can apply Lemma 2.8 to our case and find that a family
of metrics ωFS k(H(s)) (s ∈ [0, 1]) has R-bounded geometry in Cl+2. Combining with Lemma
2.4, Lemma 2.6 and Lemma 2.7, we obtain∥∥∥∥kωφ(m)

k
− kωφ̂(r)

m/k

∥∥∥∥
Cl(kωφt )

≤ CK · dk

(
H(m)

k , Ĥ(r)
m/k

)
≤ CKM · k2n−r,

where the constant M > 0 depends only on T , and K is the uniform upper bound of
‖μ̄(H(s))‖op. Rescaling the inequality, we have

(3.1)
∥∥∥∥ωφ(m)

k
− ωφ̂(r)

m/k

∥∥∥∥
Cl(ωφt )

≤ CKM · k l
2+2n−r.

Hence, if we take r so that r > l
2 +2n and take the limit k → ∞, we have the Cl-convergence∥∥∥∥ωφ(m)

k
− ωφt

∥∥∥∥
Cl(ωφt )

≤
∥∥∥∥ωφ(m)

k
− ωφ̂(r)

m/k

∥∥∥∥
Cl(ωφt )

+
∥∥∥∥ωφ̂(r)

m/k
− ωφt

∥∥∥∥
Cl(ωφt )

→ 0
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as desired. Finally, Remark 2.1 together with Lemma 2.2 (1) implies∥∥∥∥ωφ̂m/k
− ωφt

∥∥∥∥
Cl(ωφt )

= O(k−1).

On the other hand, if we take r so that r > l
2 + 2n + 1

2 in (3.1), we get∥∥∥∥ωφ(m)
k
− ωφ̂(r)

m/k

∥∥∥∥
Cl(ωφt )

= O(k−1).

Combining these two estimates, we obtain the speed of convergence∥∥∥∥ωφ(m)
k
− ωφt

∥∥∥∥
Cl(ωφt )

= O(k−1).

This completes the proof of Theorem 1.1. �

Acknowledgements. The author would like to express his gratitude to his advisor Profes-
sor Shigetoshi Bando and Professor Ryoichi Kobayashi for useful discussions on this article.
The author also would like to thank Professor Shin Kikuta, Satoshi Nakamura and Yusuke
Miura for several helpful comments. This research is supported by Grant-in-Aid for JSPS
Fellows Number 16J01211.

References

[1] H. Amann: Linear and Quasilinear Parabolic Problems, Abstract Linear Theory, Monographs in Mathe-
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