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Abstract
We give a necessary and sufficient condition for the nonsingular projective toric variety asso-

ciated to a building set to be weak Fano in terms of the building set.

1. Introduction

1. Introduction
A toric Fano variety is a nonsingular projective toric variety over C whose anticanonical

divisor is ample. It is known that there are a finite number of isomorphism classes of toric
Fano varieties in any given dimension. The classification problem of toric Fano varieties has
been studied by many researchers. In particular, Øbro [2] gave an explicit algorithm that
classifies all toric Fano varieties for any dimension.

A nonsingular projective algebraic variety is said to be weak Fano if its anticanonical
divisor is nef and big. Sato [5] classified toric weak Fano 3-folds that are not Fano but are
deformed to Fano under a small deformation, which are called toric weakened Fano 3-folds.

We can construct a nonsingular projective toric variety from a building set. Since a finite
simple graph defines a building set, which is called the graphical building set, we can also
associate to the graph a toric variety (see, for example [8]). The author [6, 7] characterized
finite simple graphs whose associated toric varieties are Fano or weak Fano, and building
sets whose associated toric varieties are Fano. In this paper, we characterize building sets
whose associated toric varieties are weak Fano (see Theorem 2.4). Our theorem is proved
combinatorially by using the fact that the intersection number of the anticanonical divisor
with a torus-invariant curve can be computed in terms of the building set.

A toric weak Fano variety defines a reflexive polytope. Higashitani [1] constructed inte-
gral convex polytopes from finite directed graphs and gave a necessary and sufficient condi-
tion for the polytope to be terminal and reflexive. We also discuss a difference between the
class of reflexive polytopes defined by toric weak Fano varieties associated to building sets,
and that of reflexive polytopes associated to finite directed graphs.

The structure of the paper is as follows: In Section 2, we review the construction of a toric
variety from a building set and state the characterization of building sets whose associated
toric varieties are weak Fano. In Section 3, we consider reflexive polytopes associated to
building sets and finite directed graphs. In Section 4, we give a proof of the main theorem.

2010 Mathematics Subject Classification. Primary 14M25; Secondary 14J45, 52B20, 05C20.
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2. The main result

2. The main result
Let S be a nonempty finite set. A building set on S is a finite set B of nonempty subsets

of S satisfying the following conditions:
(1) I, J ∈ B with I ∩ J � ∅ implies I ∪ J ∈ B.
(2) {i} ∈ B for every i ∈ S .

We denote by Bmax the set of all maximal (by inclusion) elements of B. An element of Bmax

is called a B-component and B is said to be connected if Bmax = {S }. For a nonempty subset
C of S , we call B |C = {I ∈ B | I ⊂ C} the restriction of B to C. B |C is a building set
on C. Note that B |C is connected if and only if C ∈ B. For any building set B, we have
B =

⊔
C∈Bmax

B |C . In particular, any building set is a disjoint union of connected building
sets.

Definition 2.1. Let B be a building set. A nested set of B is a subset N of B \ Bmax

satisfying the following conditions:
(1) If I, J ∈ N, then we have either I ⊂ J or J ⊂ I or I ∩ J = ∅.
(2) For any integer k ≥ 2 and for any pairwise disjoint I1, . . . , Ik ∈ N, the union I1 ∪
· · · ∪ Ik is not in B.

Note that the empty set is a nested set for any building set. The set  (B) of all nested
sets of B is called the nested complex.  (B) is in fact an abstract simplicial complex on
B \ Bmax.

Proposition 2.2 ([8, Proposition 4.1]). Let B be a building set on S . Then every maximal
(by inclusion) nested set of B has the same cardinality |S | − |Bmax|. In particular, if B is
connected, then the cardinality of every maximal nested set of B is |S | − 1.

We are now ready to construct a toric variety from a building set. First, suppose that B
is connected and S = {1, . . . , n + 1}. We denote by e1, . . . , en the standard basis for Rn and
we put en+1 = −e1 − · · · − en. For a nonempty subset I of S , we denote eI =

∑
i∈I ei. Note

that eS = 0. For N ∈  (B) \ {∅}, we denote by R≥0N the |N|-dimensional cone
∑

I∈N R≥0eI

in Rn, where R≥0 is the set of nonnegative real numbers, and we define R≥0∅ to be {0} ⊂ Rn.
Then Δ(B) = {R≥0N | N ∈ (B)} forms a fan in Rn and thus we have an n-dimensional toric
variety X(Δ(B)). If B is not connected, then we define X(Δ(B)) =

∏
C∈Bmax

X(Δ(B |C)).

Theorem 2.3 ([8, Corollary 5.2 and Theorem 6.1]). Let B be a building set. Then the
associated toric variety X(Δ(B)) is nonsingular and projective.

The following is our main result:

Theorem 2.4. Let B be a building set. Then the following are equivalent:

(1) The associated toric variety X(Δ(B)) is weak Fano.
(2) For any B-component C and for any I1, I2 ∈ B |C such that I1 ∩ I2 � ∅, I1 � I2 and

I2 � I1, we have at least one of the following:
(i) I1 ∩ I2 ∈ B |C.

(ii) I1 ∪ I2 = C and |(B |I1∩I2 )max| ≤ 2.
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Remark 2.5. In a previous paper [6], we proved that the toric variety associated to a
graphical building set is weak Fano if and only if every connected component of the graph
does not have a cycle graph of length ≥ 4 or a diamond graph as a proper induced subgraph.
However, it is unclear whether this result can be obtained from Theorem 2.4.

Example 2.6. Theorem 2.4 implies that if |S | ≤ 4, then the toric variety X(Δ(B)) is weak
Fano for any connected building set B on S . Any building set is a disjoint union of connected
building sets, and the disjoint union corresponds to the product of toric varieties associated
to the connected building sets. Since the product of toric weak Fano varieties is also weak
Fano, it follows that all toric varieties of dimension ≤ 3 associated to building sets are weak
Fano.

We recall a description of the intersection number of the anticanonical divisor with a
torus-invariant curve, see [3] for details. Let Δ be a nonsingular complete fan in Rn and
let X(Δ) be the associated toric variety. For 0 ≤ r ≤ n, we denote by Δ(r) the set of r-
dimensional cones in Δ. For τ ∈ Δ(n − 1), the intersection number of the anticanonical
divisor −KX(Δ) with the torus-invariant curve V(τ) corresponding to τ can be computed as
follows:

Proposition 2.7. Let Δ be a nonsingular complete fan in Rn and τ = R≥0v1 + · · · +
R≥0vn−1 ∈ Δ(n−1), where v1, . . . , vn−1 are primitive vectors in Zn. Let v and v′ be the distinct
primitive vectors in Zn such that τ+R≥0v and τ+R≥0v

′ are in Δ(n). Then there exist unique
integers a1, . . . , an−1 such that v+v′+a1v1+ · · ·+an−1vn−1 = 0. Furthermore, the intersection
number (−KX(Δ).V(τ)) is equal to 2 + a1 + · · · + an−1.

Proposition 2.8 ([4, Proposition 6.17]). Let X(Δ) be an n-dimensional nonsingular pro-
jective toric variety. Then X(Δ) is weak Fano if and only if (−KX(Δ).V(τ)) is nonnegative for
every (n − 1)-dimensional cone τ in Δ.

Example 2.9. Let S = {1, 2, 3, 4, 5} and

B = {{1}, {2}, {3}, {4}, {5}, {1, 2, 3, 4}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}}.
Then the nested complex  (B) consists of

{{1}, {2}, {3}, {1, 2, 3, 4}}, {{1}, {2}, {4}, {1, 2, 3, 4}},
{{1}, {3}, {4}, {1, 2, 3, 4}}, {{2}, {3}, {4}, {1, 2, 3, 4}},
{{2}, {3}, {4}, {2, 3, 4, 5}}, {{2}, {3}, {5}, {2, 3, 4, 5}},
{{2}, {4}, {5}, {2, 3, 4, 5}}, {{3}, {4}, {5}, {2, 3, 4, 5}},
{{1}, {2}, {3}, {5}}, {{1}, {2}, {4}, {5}}, {{1}, {3}, {4}, {5}}

and their subsets. The pair I1 = {1, 2, 3, 4} and I2 = {2, 3, 4, 5} does not satisfy the condition
(2) in Theorem 2.4. Hence the 4-dimensional toric variety X(Δ(B)) is not weak Fano. In
fact, there exists a 3-dimensional cone τ in Δ(B) such that (−KX(Δ(B)).V(τ)) ≤ −1. Let

N1 = {{2}, {3}, {4}, {1, 2, 3, 4}}, N2 = {{2}, {3}, {4}, {2, 3, 4, 5}}.
Then we have
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R≥0N1 = R≥0e2 + R≥0e3 + R≥0e4 + R≥0(e1 + e2 + e3 + e4),

R≥0N2 = R≥0e2 + R≥0e3 + R≥0e4 + R≥0(−e1).

Let us consider τ = R≥0N1 ∩ R≥0N2 = R≥0e2 + R≥0e3 + R≥0e4. Since (e1 + e2 + e3 + e4) +
(−e1) − e2 − e3 − e4 = 0, Proposition 2.7 gives (−KX(Δ(B)).V(τ)) = 2 − 3 = −1. Therefore
X(Δ(B)) is not weak Fano by Proposition 2.8.

3. Reflexive polytopes associated to building sets

3. Reflexive polytopes associated to building sets
An n-dimensional integral convex polytope P ⊂ Rn is said to be reflexive if 0 is in the

interior of P and the dual P∗ = {u ∈ Rn | 〈u, v〉 ≥ −1 for any v ∈ P} is also an integral convex
polytope, where 〈·, ·〉 denotes the standard inner product in Rn. Let Δ be a nonsingular
complete fan in Rn. If the associated toric variety X(Δ) is weak Fano, then the convex hull
of primitive generators of rays in Δ(1) is a reflexive polytope. For a building set B such
that the associated toric variety X(Δ(B)) is weak Fano, we denote by PB the corresponding
reflexive polytope.

Higashitani [1] gave a construction of integral convex polytopes from finite directed
graphs (with no loops and no multiple arrows). We describe his construction briefly. Let
G be a finite directed graph whose node set is V(G) = {1, . . . , n + 1} and whose arrow set is
A(G) ⊂ V(G) × V(G). For −→e = (i, j) ∈ A(G), we define ρ(−→e ) ∈ Rn+1 to be ei − e j. We define
PG to be the convex hull of {ρ(−→e ) | −→e ∈ A(G)} in Rn+1. PG is an integral convex polytope
in the hyperplane H = {(x1, . . . , xn+1) ∈ Rn+1 | x1 + · · · + xn+1 = 0}. In a previous paper we
proved that if X(Δ(B)) is Fano, then PB can be obtained from a finite directed graph:

Theorem 3.1 ([7, Theorem 4.2]). Let B be a building set. If the associated toric variety
X(Δ(B)) is Fano, then there exists a finite directed graph G such that PB is equivalent to
PG, that is, there exists a linear isomorphism f : Rn → H such that f (Zn) = H ∩ Zn+1 and
f (PB) = PG.

However, there exist infinitely many reflexive polytopes associated to building sets that
cannot be obtained from finite directed graphs. The following proposition provides such
examples:

Proposition 3.2. Let S = {1, . . . , n + 1} and B = 2S \ {∅}. Then X(Δ(B)) is weak Fano by
Theorem 2.4 but the reflexive polytope PB cannot be obtained from any finite directed graph
for n ≥ 3.

Proof. Suppose that there exists a finite directed graph G such that PB is equivalent to PG.
Since 0 ∈ PG, there exists a nonempty subset A′ of A(G) and positive real numbers a−→e for−→e ∈ A′ such that

∑
−→e ∈A′ a−→e ρ(

−→e ) = 0. If (i1, i2) ∈ A′, then we must have (i2, i3) ∈ A′ for some
i3 ∈ V(G). Continuing this process, eventually we obtain a directed cycle of G. In general,
if G has a nonhomogeneous cycle (a directed cycle is a nonhomogeneous cycle), then the
dimension of PG is |V(G)| − 1 (see [1, Proposition 1.3]). Hence we have |V(G)| = n + 1.
Since G has at most n(n + 1) arrows, PG has at most n(n + 1) vertices. On the other hand,
PB has 2n+1 − 2 vertices. Thus we have the inequality 2n+1 − 2 ≤ n(n+ 1), but this inequality
does not hold for n ≥ 3. This is a contradiction. Thus we proved the proposition. �
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Example 3.3. There also exists a reflexive polytope associated to a finite directed graph
that cannot be obtained from any building set. Let G be the finite directed graph defined by

V(G) = {1, 2, 3, 4}, A(G) = {(1, 2), (2, 3), (3, 1), (1, 4), (4, 3)}.
Then PG cannot be obtained from any building set. PG is a reflexive 3-polytope with six
lattice points. However, there are only three types of reflexive 3-polytopes with six lattice
points that are obtained from building sets. They are realized by the following building sets:

{{1}, {2}, {3}, {4}, {1, 2}, {1, 2, 3, 4}},
{{1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 3, 4}},
{{1}, {2}, {3}, {1, 2, 3}, {4}, {5}, {4, 5}}.

All the building sets yield reflexive polytopes not equivalent to PG.

Fig. 1. the directed graph G whose reflexive polytope cannot be obtained
from any building set.

4. Proof of Theorem 2.4

4. Proof of Theorem 2.4
First we introduce some notation.

Definition 4.1. Let B be a building set on S .
(1) We denote by  (B)max the set of all maximal (by inclusion) nested sets of B.

 (B)max is a subset of  (B).
(2) For C ∈ B \ Bmax, we call

 (B)C = {N ⊂ (B \ Bmax) \ {C} | N ∪ {C} ∈ (B)}
the link of C in  (B).  (B)C is an abstract simplicial complex on

{I ∈ (B \ Bmax) \ {C} | {I,C} ∈ (B)}.
(3) For a nonempty proper subset C of S , we call

C \ B = {I ⊂ S \C | I � ∅; I ∈ B or C ∪ I ∈ B}
the contraction of C from B. C \ B is a building set on S \C.

The symmetric difference of two sets X and Y is defined by X�Y = (X ∪ Y) \ (X ∩ Y).

Lemma 4.2. Let B be a connected building set on S and let I1, I2 ∈ B with I1 ∩ I2 �
∅, I1 � I2, I2 � I1 and |I1�I2| ≥ 3. Suppose that

i1 ∈ I1 \ I2, i2 ∈ I2 \ I1,N ∈ (B |I1∩I2 )max,N′ ∈ (B |(I1�I2)\{i1,i2})max
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such that

(4.1) {Ik} ∪ N ∪ (B |I1∩I2 )max ∪ N′ ∪ (B |(I1�I2)\{i1,i2})max

is not a nested set of B for some k = 1, 2. Then there exist I′1, I
′
2 ∈ B such that I′1 ⊃ I1, I′2 ⊃

I2, i1 ∈ I′1 \ I′2, i2 ∈ I′2 \ I′1, I
′
1 ∩ I′2 � I1 ∩ I2 and I′1 ∪ I′2 = I1 ∪ I2.

Proof. The proof is similar to a part of the proof of [7, Lemma 3.4 (1)].
Without loss of generality, we may assume k = 1. Note that {I1} ∪ N ∪ (B |I1∩I2 )max and

N′ ∪ (B |(I1�I2)\{i1,i2})max are nested sets of B. Thus (4.1) falls into the following three cases.
Case I. Suppose that (4.1) does not satisfy the condition (1) in Definition 2.1. Then there

exist

K ∈ {I1} ∪ N ∪ (B |I1∩I2 )max, L ∈ N′ ∪ (B |(I1�I2)\{i1,i2})max

such that K � L, L � K and K ∩ L � ∅. If K ∈ N ∪ (B |I1∩I2 )max, then K ∩ L = ∅, a
contradiction. Thus we must have K = I1. Then I1 ∪ L ∈ B. We put I′1 = I1 ∪ L and I′2 = I2.
Since L ⊂ I1�I2, it follows that L \ I1 ⊂ (I′1 ∩ I′2) \ (I1 ∩ I2). Thus I′1 ∩ I′2 � I1 ∩ I2.

Case II. Suppose that (4.1) does not satisfy the condition (2) in Definition 2.1, and there
exist

K1, . . . ,Kr ∈ N ∪ (B |I1∩I2 )max, L1, . . . , Ls ∈ N′ ∪ (B |(I1�I2)\{i1,i2})max

for r, s ≥ 1 such that K1, . . . ,Kr, L1, . . . , Ls are pairwise disjoint and K1∪· · ·∪Kr∪L1∪· · ·∪
Ls ∈ B. Then we have Ik∪L1∪· · ·∪Ls ∈ B for each k = 1, 2. We put I′k = Ik∪L1∪· · ·∪Ls for
k = 1, 2. L1∪· · ·∪Ls ⊂ I1�I2 implies Ik � I′k for some k = 1, 2. Since I′k\Ik ⊂ (I′1∩I′2)\(I1∩I2),
we have I′1 ∩ I′2 � I1 ∩ I2.

Case III. Suppose that (4.1) does not satisfy the condition (2) in Definition 2.1, and there
exist

L1, . . . , Ls ∈ N′ ∪ (B |(I1�I2)\{i1,i2})max

such that I1, L1, . . . , Ls are pairwise disjoint and I1 ∪ L1 ∪ · · · ∪ Ls ∈ B. We put I′1 = I1 ∪ L1 ∪
· · ·∪Ls and I′2 = I2. Since L1∪· · ·∪Ls ⊂ I2, it follows that L1∪· · ·∪Ls ⊂ (I′1∩ I′2)\ (I1∩ I2).
Thus I′1 ∩ I′2 � I1 ∩ I2.

In every case, we have i1 ∈ I′1 \ I′2, i2 ∈ I′2 \ I′1 and I′1 ∪ I′2 = I1 ∪ I2. This completes the
proof. �

Lemmas 4.3 and 4.5 play key roles in the proof of Theorem 2.4.

Lemma 4.3. Let B be a connected building set on S and let I1, I2 ∈ B with I1 ∩ I2 �
∅, I1 � I2, I2 � I1 and I1 ∩ I2 � B. Then there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,

N ∈ (B |J1∩J2 )max,N′ ∈ (B |(J1�J2)\{ j1, j2})max

such that J1 ∩ J2 � ∅, J1 ∩ J2 � B, J1 ∪ J2 ⊂ I1 ∪ I2 and

{Jk} ∪ N ∪ (B |J1∩J2 )max ∪ N′ ∪ (B |(J1�J2)\{ j1, j2})max

is a nested set of B for each k = 1, 2. If J1�J2 = { j1, j2}, then N′ and (B |(J1�J2)\{ j1, j2})max are
understood to be empty.
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Proof. We use induction on |I1�I2|. We have |I1�I2| ≥ 2. Suppose |I1�I2| = 2. We put
J1 = I1 and J2 = I2. Then J1 ∩ J2 � ∅, J1 ∩ J2 � B and J1 ∪ J2 = I1 ∪ I2. We pick
N ∈ (B |J1∩J2 )max. Then {Jk} ∪ N ∪ (B |J1∩J2 )max is a nested set of B for each k = 1, 2.

Suppose |I1�I2| ≥ 3. We pick i1 ∈ I1 \ I2, i2 ∈ I2 \ I1,N ∈  (B |I1∩I2 )max and N′ ∈
 (B |(I1�I2)\{i1,i2})max. If

{Ik} ∪ N ∪ (B |I1∩I2 )max ∪ N′ ∪ (B |(I1�I2)\{i1,i2})max

is a nested set of B for each k = 1, 2, then there is nothing to prove. Otherwise, by Lemma
4.2, there exist I′1, I

′
2 ∈ B such that I′1 ⊃ I1, I′2 ⊃ I2, i1 ∈ I′1 \ I′2, i2 ∈ I′2 \ I′1, I

′
1 ∩ I′2 � I1 ∩ I2

and I′1 ∪ I′2 = I1 ∪ I2.
Case I. Suppose I′1∩I′2 � B. We have |I′1�I′2| = |I′1∪I′2|−|I′1∩I′2| < |I1∪I2|−|I1∩I2| = |I1�I2|.

By the hypothesis of induction, there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,

N ∈ (B |J1∩J2 )max,N′ ∈ (B |(J1�J2)\{ j1, j2})max

such that J1 ∩ J2 � ∅, J1 ∩ J2 � B, J1 ∪ J2 ⊂ I′1 ∪ I′2 = I1 ∪ I2 and

{Jk} ∪ N ∪ (B |J1∩J2 )max ∪ N′ ∪ (B |(J1�J2)\{ j1, j2})max

is a nested set of B for each k = 1, 2.
Case II. Suppose I′1 ∩ I′2 ∈ B. We may assume that I1 � I′1.
Subcase II.1. Suppose I′1 ∩ I2 ∈ B. We put I′′1 = I1 and I′′2 = I′1 ∩ I2. Then we have

I′′1 ∩ I′′2 = I1 ∩ I2 � B, i1 ∈ I′′1 \ I′′2 and I′1 \ I1 ⊂ I′′2 \ I′′1 . Since i2 ∈ (I1 ∪ I2) \ (I′′1 ∪ I′′2 ), we
have I′′1 ∪ I′′2 � I1 ∪ I2.

Subcase II.2. Suppose I′1 ∩ I2 � B. We put I′′1 = I′1 and I′′2 = I2. Then we have I′′1 ∩
I′′2 = I′1 ∩ I2 � B, i1 ∈ I′′1 \ I′′2 , i2 ∈ I′′2 \ I′′1 and I′′1 ∪ I′′2 = I′1 ∪ I2 = I1 ∪ I2. Since
I′1 \ I1 ⊂ (I′′1 ∩ I′′2 ) \ (I1 ∩ I2), we have I1 ∩ I2 � I′′1 ∩ I′′2 .

In every subcase, we have |I′′1 �I′′2 | = |I′′1 ∪ I′′2 | − |I′′1 ∩ I′′2 | < |I1 ∪ I2| − |I1 ∩ I2| = |I1�I2|.
By the hypothesis of induction, there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,

N ∈ (B |J1∩J2 )max,N′ ∈ (B |(J1�J2)\{ j1, j2})max

such that J1 ∩ J2 � ∅, J1 ∩ J2 � B, J1 ∪ J2 ⊂ I′′1 ∪ I′′2 ⊂ I1 ∪ I2 and

{Jk} ∪ N ∪ (B |J1∩J2 )max ∪ N′ ∪ (B |(J1�J2)\{ j1, j2})max

is a nested set of B for each k = 1, 2.
Therefore the assertion holds for |I1�I2|. �

Example 4.4. Let S = {1, 2, 3, 4, 5, 6} and

B = {{1}, {2}, {3}, {4}, {5}, {6}, {1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6},
{1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}}.

Let us consider I1 = {1, 2, 3, 4} and I2 = {3, 4, 5, 6}. We pick i1 = 1 and i2 = 6. Then

B |I1∩I2 = {{3}, {4}}, B |(I1�I2)\{i1,i2} = {{2}, {5}}.
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The only maximal nested set of each is the empty set. However,

{I1} ∪ ∅ ∪ (B |I1∩I2 )max ∪ ∅ ∪ (B |(I1�I2)\{i1,i2})max

= {{1, 2, 3, 4}, {3}, {4}, {2}, {5}}
is not a nested set because {3} ∪ {4} ∪ {2} ∪ {5} = {2, 3, 4, 5} ∈ B (Lemma 4.2, Case II). Thus
we put

I(1)
1 = I1 ∪ {2, 3, 4, 5} = {1, 2, 3, 4, 5}, I(1)

2 = I2 ∪ {2, 3, 4, 5} = {2, 3, 4, 5, 6}.
We have I(1)

1 ∩ I(1)
2 = {2, 3, 4, 5} ∈ B (Lemma 4.3, Case II) and I1 � I(1)

1 . Since I(1)
1 ∩ I2 =

{3, 4, 5} � B (Subcase II.2), we put

I(2)
1 = I(1)

1 = {1, 2, 3, 4, 5}, I(2)
2 = I2 = {3, 4, 5, 6}.

We pick i(2)
1 = 1 and i(2)

2 = 6. Then

B |I(2)
1 ∩I(2)

2
= {{3}, {4}, {5}}, B |(I(2)

1 �I(2)
2 )\{i(2)

1 ,i
(2)
2 } = {{2}}.

The only maximal nested set of each is the empty set.

{I(2)
1 } ∪ ∅ ∪ (B |I(2)

1 ∩I(2)
2

)max ∪ ∅ ∪ (B |(I(2)
1 �I(2)

2 )\{i(2)
1 ,i

(2)
2 })max

= {{1, 2, 3, 4, 5}, {3}, {4}, {5}, {2}}
is not a nested set because {3} ∪ {4} ∪ {5} ∪ {2} = {2, 3, 4, 5} ∈ B (Lemma 4.2, Case II). Thus
we put

I(3)
1 = I(2)

1 ∪ {2, 3, 4, 5} = {1, 2, 3, 4, 5}, I(3)
2 = I(2)

2 ∪ {2, 3, 4, 5} = {2, 3, 4, 5, 6}.
We have I(3)

1 ∩ I(3)
2 = {2, 3, 4, 5} ∈ B (Lemma 4.3, Case II) and I(2)

2 � I(3)
2 . Since I(2)

1 ∩ I(3)
2 =

{2, 3, 4, 5} ∈ B (Subcase II.1), we put

I(4)
1 = I(2)

1 ∩ I(3)
2 = {2, 3, 4, 5}, I(4)

2 = I(2)
2 = {3, 4, 5, 6}.

Then

B |I(4)
1 ∩I(4)

2
= {{3}, {4}, {5}}, |I(4)

1 �I(4)
2 | = 2.

The only maximal nested set of B |I(4)
1 ∩I(4)

2
is the empty set and

{I(4)
1 } ∪ ∅ ∪ (B |I(4)

1 ∩I(4)
2

)max = {{2, 3, 4, 5}, {3}, {4}, {5}},
{I(4)

2 } ∪ ∅ ∪ (B |I(4)
1 ∩I(4)

2
)max = {{3, 4, 5, 6}, {3}, {4}, {5}}

are nested sets of B.

Lemma 4.5. Let B be a connected building set on S and let I1, I2 ∈ B with I1 ∩ I2 �
∅, I1 � I2, I2 � I1 and |(B |I1∩I2 )max| ≥ 3. Then there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,

N ∈ (B |J1∩J2 )max,N′ ∈ (B |(J1�J2)\{ j1, j2})max

such that J1 ∩ J2 � ∅, J1 ∩ J2 � B and



ToricWeak Fano Varieties 755

{Jk} ∪ N ∪ (B |J1∩J2 )max ∪ N′ ∪ (B |(J1�J2)\{ j1, j2})max

is a nested set of B for each k = 1, 2. Furthermore, we have J1∪J2 � I1∪I2 or |(B |J1∩J2 )max| ≥
3. If J1�J2 = { j1, j2}, then N′ and (B |(J1�J2)\{ j1, j2})max are understood to be empty.

Proof. We use induction on |I1�I2|. We have |I1�I2| ≥ 2. Suppose |I1�I2| = 2. We put
J1 = I1 and J2 = I2. Then J1 ∩ J2 � ∅ and |(B |J1∩J2 )max| ≥ 3. We pick N ∈  (B |J1∩J2 )max.
Then {Jk} ∪ N ∪ (B |J1∩J2 )max is a nested set of B for each k = 1, 2.

Suppose |I1�I2| ≥ 3. We pick i1 ∈ I1 \ I2, i2 ∈ I2 \ I1,N ∈  (B |I1∩I2 )max and N′ ∈
 (B |(I1�I2)\{i1,i2})max. If

{Ik} ∪ N ∪ (B |I1∩I2 )max ∪ N′ ∪ (B |(I1�I2)\{i1,i2})max

is a nested set of B for each k = 1, 2, then there is nothing to prove. Otherwise, by Lemma
4.2, there exist I′1, I

′
2 ∈ B such that I′1 ⊃ I1, I′2 ⊃ I2, i1 ∈ I′1 \ I′2, i2 ∈ I′2 \ I′1, I

′
1 ∩ I′2 � I1 ∩ I2

and I′1 ∪ I′2 = I1 ∪ I2.
Case I. Suppose |(B |I′1∩I′2 )max| ≥ 3. We have |I′1�I′2| = |I′1∪I′2|−|I′1∩I′2| < |I1∪I2|−|I1∩I2| =

|I1�I2|. By the hypothesis of induction, there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,

N ∈ (B |J1∩J2 )max,N′ ∈ (B |(J1�J2)\{ j1, j2})max

such that J1 ∩ J2 � ∅, J1 ∩ J2 � B and

{Jk} ∪ N ∪ (B |J1∩J2 )max ∪ N′ ∪ (B |(J1�J2)\{ j1, j2})max

is a nested set of B for each k = 1, 2. Furthermore, we have J1 ∪ J2 � I′1 ∪ I′2 = I1 ∪ I2 or
|(B |J1∩J2 )max| ≥ 3.

Case II. Suppose |(B |I′1∩I′2 )max| ≤ 2. For any K ∈ (B |I1∩I2 )max, there exists unique LK ∈
(B |I′1∩I′2 )max such that K ⊂ LK . Hence there exists L ∈ (B |I′1∩I′2 )max that contains more than
one element of (B |I1∩I2 )max. Let K1, . . . ,Kr be all elements of (B |I1∩I2 )max contained in L.
Note that I1 ∩ I2 ∩ L is the disjoint union of K1, . . . ,Kr. If L ⊂ I1 ∩ I2, then B � L =
I1 ∩ I2 ∩ L = K1 ∪ · · · ∪ Kr � B, a contradiction. Thus L � I1 ∩ I2. We may assume L � I1.

Subcase II.1. Suppose I1∩L ∈ B. If L ⊂ I2, then B � I1∩L = I1∩I2∩L = K1∪· · ·∪Kr � B,
a contradiction. Thus L � I2. We put I′′1 = I1 ∩ L and I′′2 = I2. Then we have I′′1 ∩ I′′2 =
I1 ∩ I2 ∩ L � B, L \ I2 ⊂ I′′1 \ I′′2 and i2 ∈ I′′2 \ I′′1 . Since i1 ∈ (I1 ∪ I2) \ (I′′1 ∪ I′′2 ), we have
I′′1 ∪ I′′2 � I1 ∪ I2.

Subcase II.2. Suppose I1 ∩ L � B. We put I′′1 = I1 and I′′2 = L. Then we have I′′1 ∩ I′′2 =
I1 ∩ L � B, i1 ∈ I′′1 \ I′′2 and I′′2 \ I′′1 = L \ I1 � ∅. Since i2 ∈ (I1 ∪ I2) \ (I′′1 ∪ I′′2 ), we have
I′′1 ∪ I′′2 � I1 ∪ I2.

In every subcase, by Lemma 4.3, there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,

N ∈ (B |J1∩J2 )max,N′ ∈ (B |(J1�J2)\{ j1, j2})max

such that J1 ∩ J2 � ∅, J1 ∩ J2 � B, J1 ∪ J2 ⊂ I′′1 ∪ I′′2 � I1 ∪ I2 and

{Jk} ∪ N ∪ (B |J1∩J2 )max ∪ N′ ∪ (B |(J1�J2)\{ j1, j2})max

is a nested set of B for each k = 1, 2.
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Therefore the assertion holds for |I1�I2|. �

Example 4.6. Let S = {1, 2, 3, 4, 5, 6, 7} and

B = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {2, 4, 6}, {2, 3, 4, 5}, {1, 2, 3, 4, 5},
{2, 3, 4, 5, 6}, {3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6}, {2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7}}.

Let us consider I1 = {1, 2, 3, 4, 5} and I2 = {3, 4, 5, 6, 7}. We pick i1 = 1 and i2 = 7. Then

B |I1∩I2 = {{3}, {4}, {5}}, B |(I1�I2)\{i1,i2} = {{2}, {6}}.
The only maximal nested set of each is the empty set. However,

{I1} ∪ ∅ ∪ (B |I1∩I2 )max ∪ ∅ ∪ (B |(I1�I2)\{i1,i2})max

= {{1, 2, 3, 4, 5}, {3}, {4}, {5}, {2}, {6}}
is not a nested set because {4} ∪ {2} ∪ {6} = {2, 4, 6} ∈ B (Lemma 4.2, Case II). Thus we put

I(1)
1 = I1 ∪ {2, 4, 6} = {1, 2, 3, 4, 5, 6}, I(1)

2 = I2 ∪ {2, 4, 6} = {2, 3, 4, 5, 6, 7}.
We have I(1)

1 ∩ I(1)
2 = {2, 3, 4, 5, 6} ∈ B (Lemma 4.5, Case II) and L = {2, 3, 4, 5, 6}. Since

L � I1 and I1 ∩ L = {2, 3, 4, 5} ∈ B (Subcase II.1), we put

I(2)
1 = I1 ∩ L = {2, 3, 4, 5}, I(2)

2 = I2 = {3, 4, 5, 6, 7}.
Now we apply Lemma 4.3 to I(2)

1 and I(2)
2 . We pick i(2)

1 = 2 and i(2)
2 = 7. Then

B |I(2)
1 ∩I(2)

2
= {{3}, {4}, {5}}, B |(I(2)

1 �I(2)
2 )\{i(2)

1 ,i
(2)
2 } = {{6}}.

The only maximal nested set of each is the empty set.

{I(2)
1 } ∪ ∅ ∪ (B |I(2)

1 ∩I(2)
2

)max ∪ ∅ ∪ (B |(I(2)
1 �I(2)

2 )\{i(2)
1 ,i

(2)
2 })max

= {{2, 3, 4, 5}, {3}, {4}, {5}, {6}}
is not a nested set because {2, 3, 4, 5} ∪ {6} = {2, 3, 4, 5, 6} ∈ B (Lemma 4.2, Case III). Thus
we put

I(3)
1 = {2, 3, 4, 5, 6}, I(3)

2 = I(2)
2 = {3, 4, 5, 6, 7}.

We have I(3)
1 ∩ I(3)

2 = {3, 4, 5, 6} � B (Lemma 4.3, Case I) and

B |I(3)
1 ∩I(3)

2
= {{3}, {4}, {5}, {6}}, |I(3)

1 �I(3)
2 | = 2.

The only maximal nested set of B |I(3)
1 ∩I(3)

2
is the empty set and

{I(3)
1 } ∪ ∅ ∪ (B |I(3)

1 ∩I(3)
2

)max = {{2, 3, 4, 5, 6}, {3}, {4}, {5}, {6}},
{I(3)

2 } ∪ ∅ ∪ (B |I(3)
1 ∩I(3)

2
)max = {{3, 4, 5, 6, 7}, {3}, {4}, {5}, {6}}

are nested sets of B. Furthermore, we have I(3)
1 ∪ I(3)

2 � I1 ∪ I2.

Example 4.7. Let S = {1, 2, 3, 4, 5, 6, 7} and

B = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {2, 6}, {4, 5, 6}, {2, 4, 5, 6}, {1, 2, 3, 4, 5},
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{2, 3, 4, 5, 6}, {3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6}, {2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7}}.
Let us consider I1 = {1, 2, 3, 4, 5} and I2 = {3, 4, 5, 6, 7}. We pick i1 = 1 and i2 = 7. Then

B |I1∩I2 = {{3}, {4}, {5}}, B |(I1�I2)\{i1,i2} = {{2}, {6}, {2, 6}}.
The only maximal nested set of B |I1∩I2 is the empty set. We choose N′ = {{2}} ∈
 (B |(I1�I2)\{i1,i2})max.

{I1} ∪ ∅ ∪ (B |I1∩I2 )max ∪ N′ ∪ (B |(I1�I2)\{i1,i2})max

= {{1, 2, 3, 4, 5}, {3}, {4}, {5}, {2}, {2, 6}}
is not a nested set because {1, 2, 3, 4, 5} ∩ {2, 6} = {2} � ∅ (Lemma 4.2, Case I). Thus we put

I(1)
1 = I1 ∪ {2, 6} = {1, 2, 3, 4, 5, 6}, I(1)

2 = I2 = {3, 4, 5, 6, 7}.
We have I(1)

1 ∩ I(1)
2 = {3, 4, 5, 6} = {3}∪ {4, 5, 6} (Lemma 4.5, Case II) and L = {4, 5, 6}. Since

L � I1 and I1 ∩ L = {4, 5} � B (Subcase II.2), we put

I(2)
1 = I1 = {1, 2, 3, 4, 5}, I(2)

2 = L = {4, 5, 6}.
Now we apply Lemma 4.3 to I(2)

1 and I(2)
2 . We pick i(2)

1 = 1 and i(2)
2 = 6. Then

B |I(2)
1 ∩I(2)

2
= {{4}, {5}}, B |(I(2)

1 �I(2)
2 )\{i(2)

1 ,i
(2)
2 } = {{2}, {3}}.

The only maximal nested set of each is the empty set.

{I(2)
2 } ∪ ∅ ∪ (B |I(2)

1 ∩I(2)
2

)max ∪ ∅ ∪ (B |(I(2)
1 �I(2)

2 )\{i(2)
1 ,i

(2)
2 })max

= {{4, 5, 6}, {4}, {5}, {2}, {3}}
is not a nested set because {4, 5, 6} ∪ {2} ∪ {3} = {2, 3, 4, 5, 6} ∈ B (Lemma 4.2, Case III).
Thus we put

I(3)
1 = I(2)

1 = {1, 2, 3, 4, 5}, I(3)
2 = {2, 3, 4, 5, 6}.

We have I(3)
1 ∩ I(3)

2 = {2, 3, 4, 5} � B (Lemma 4.3, Case I) and

B |I(3)
1 ∩I(3)

2
= {{2}, {3}, {4}, {5}}, |I(3)

1 �I(3)
2 | = 2.

The only maximal nested set of B |I(3)
1 ∩I(3)

2
is the empty set and

{I(3)
1 } ∪ ∅ ∪ (B |I(3)

1 ∩I(3)
2

)max = {{1, 2, 3, 4, 5}, {2}, {3}, {4}, {5}},
{I(3)

2 } ∪ ∅ ∪ (B |I(3)
1 ∩I(3)

2
)max = {{2, 3, 4, 5, 6}, {2}, {3}, {4}, {5}}

are nested sets of B. Furthermore, we have I(3)
1 ∪ I(3)

2 � I1 ∪ I2.

Proposition 4.8 ([8, Proposition 3.2]). Let B be a building set on S and let C ∈ B \ Bmax.
Then the correspondence

I �→
{

I \C (C ⊂ I),
I (C � I)

induces an isomorphism  (B)C → (B |C ∪ (C \ B)) of simplicial complexes.
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Lemma 4.9. Let B be a connected building set on S and J1, J2 ∈ B with J1∩ J2 � ∅, J1 �
J2, J2 � J1 and J1 ∪ J2 � S . Let N′′ ∈  (B |J1∪J2 ) such that {Jk} ∪ N′′ ∈  (B |J1∪J2 )max for
each k = 1, 2. Then there exists M ∈ (B) such that {Jk, J1 ∪ J2} ∪ N′′ ∪ M ∈ (B)max for
each k = 1, 2.

Proof. We pick M′ ∈ ((J1 ∪ J2) \ B)max. Then

{Jk} ∪ N′′ ∪ M′ ∈ (B |J1∪J2 ∪ ((J1 ∪ J2) \ B))max

for each k = 1, 2. Hence by Proposition 4.8, there exists M ∈ (B) such that {Jk} ∪N′′ ∪M
are maximal simplices of  (B)J1∪J2 . Hence {Jk, J1 ∪ J2} ∪ N′′ ∪ M ∈  (B)max for each
k = 1, 2. �

Proposition 4.10 ([8, Proposition 4.5]). Let B be a building set on S and let I1, I2 ∈ B
with I1 � I2 and N ∈ (B) such that N∪{I1},N∪{I2} ∈ (B)max. Then the following hold:

(1) We have I1 � I2 and I2 � I1.
(2) If I1 ∩ I2 � ∅, then (B |I1∩I2 )max ⊂ N.
(3) There exists {I3, . . . , Ik} ⊂ N such that I1 ∪ I2, I3, . . . , Ik are pairwise disjoint and

I1 ∪ · · · ∪ Ik ∈ N ∪ Bmax ({I3, . . . , Ik} can be empty).

We are now ready to prove Theorem 2.4.
Proof of Theorem 2.4. The disjoint union of connected building sets yields the product

of toric varieties associated to the connected building sets. Since the product of nonsingular
projective toric varieties is weak Fano if and only if every factor is weak Fano, it suffices
to show that, for any connected building set B on S = {1, . . . , n + 1}, the following are
equivalent:

(1′) The associated toric variety X(Δ(B)) is weak Fano.
(2′) For any I1, I2 ∈ B such that I1 ∩ I2 � ∅, I1 � I2 and I2 � I1, we have at least one of

the following:
(i′) I1 ∩ I2 ∈ B.

(ii′) I1 ∪ I2 = S and |(B |I1∩I2 )max| ≤ 2.
(1′)⇒ (2′): Let I1, I2 ∈ B such that I1 ∩ I2 � ∅, I1 � I2, I2 � I1 and I1 ∩ I2 � B. We show

that if I1 ∪ I2 � S or |(B |I1∩I2 )max| ≥ 3, then the toric variety X(Δ(B)) is not weak Fano.
Case I. Suppose I1 ∪ I2 � S . By Lemma 4.3, there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,

N ∈ (B |J1∩J2 )max,N′ ∈ (B |(J1�J2)\{ j1, j2})max

such that J1 ∩ J2 � ∅, J1 ∩ J2 � B, J1 ∪ J2 ⊂ I1 ∪ I2 � S and

(4.2) {Jk} ∪ N ∪ (B |J1∩J2 )max ∪ N′ ∪ (B |(J1�J2)\{ j1, j2})max

is a nested set of B for each k = 1, 2. Since the cardinality of (4.2) is |J1 ∪ J2| − 1, (4.2) is a
maximal nested set of B |J1∪J2 . By Lemma 4.9, there exists M ∈ (B) such that

{Jk, J1 ∪ J2} ∪ N ∪ (B |J1∩J2 )max ∪ N′ ∪ (B |(J1�J2)\{ j1, j2})max ∪ M ∈ (B)max

for k = 1, 2. Let

τ = R≥0({J1 ∪ J2} ∪ N ∪ (B |J1∩J2 )max ∪ N′ ∪ (B |(J1�J2)\{ j1, j2})max ∪ M).
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Clearly

eJ1 + eJ2 −
∑

C∈(B |J1∩J2 )max

eC − eJ1∪J2 = 0.

Since |(B |J1∩J2 )max| ≥ 2, Proposition 2.7 gives

(−KX(Δ(B)).V(τ)) = 2 − |(B |J1∩J2 )max| − 1 ≤ 2 − 2 − 1 = −1.

Therefore X(Δ(B)) is not weak Fano by Proposition 2.8.
Case II. Suppose that I1 ∪ I2 = S and |(B |I1∩I2 )max| ≥ 3. By Lemma 4.5, there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,

N ∈ (B |J1∩J2 )max,N′ ∈ (B |(J1�J2)\{ j1, j2})max

such that J1 ∩ J2 � ∅, J1 ∩ J2 � B and

(4.3) {Jk} ∪ N ∪ (B |J1∩J2 )max ∪ N′ ∪ (B |(J1�J2)\{ j1, j2})max

is a nested set of B for each k = 1, 2. Furthermore, we have J1 ∪ J2 � I1 ∪ I2 = S or
|(B |J1∩J2 )max| ≥ 3. If J1 ∪ J2 � S , then a similar argument shows that X(Δ(B)) is not weak
Fano. Suppose that J1 ∪ J2 = S and |(B |J1∩J2 )max| ≥ 3. Then (4.3) is a maximal nested set of
B. Let

τ = R≥0(N ∪ (B |J1∩J2 )max ∪ N′ ∪ (B |(J1�J2)\{ j1, j2})max).

Since eJ1∪J2 = eS = 0, it follows that

eJ1 + eJ2 −
∑

C∈(B |J1∩J2 )max

eC = 0.

Proposition 2.7 gives

(−KX(Δ(B)).V(τ)) = 2 − |(B |J1∩J2 )max| ≤ 2 − 3 = −1.

Therefore X(Δ(B)) is not weak Fano by Proposition 2.8.
(2′) ⇒ (1′): Let I1, I2 ∈ B with I1 � I2 and N ∈  (B) such that N ∪ {I1},N ∪ {I2} ∈

 (B)max. We need to show that (−KX(Δ(B)).V(R≥0N)) ≥ 0.
Case I. Suppose I1 ∩ I2 = ∅. By Proposition 4.10 (3), there exists {I3, . . . , Ik} ⊂ N such

that I1 ∪ I2, I3, . . . , Ik are pairwise disjoint and I1 ∪ · · · ∪ Ik ∈ N ∪ Bmax = N ∪ {S }. Since

eI1 + eI2 + eI3 + · · · + eIk − eI1∪···∪Ik = 0,

Proposition 2.7 gives

(−KX(Δ(B)).V(R≥0N)) =
{

k − 1 (I1 ∪ · · · ∪ Ik ∈ N),
k (I1 ∪ · · · ∪ Ik = S ).

Hence (−KX(Δ(B)).V(R≥0N)) ≥ 1.
Case II. Suppose I1 ∩ I2 � ∅. By Proposition 4.10 (1), we have I1 � I2 and I2 � I1.
(i′) Suppose I1 ∩ I2 ∈ B. By Proposition 4.10 (2), we have {I1 ∩ I2} = (B |I1∩I2 )max ⊂ N.

By Proposition 4.10 (3), there exists {I3, . . . , Ik} ⊂ N such that I1 ∪ I2, I3, . . . , Ik are pairwise
disjoint and I1 ∪ · · · ∪ Ik ∈ N ∪ Bmax = N ∪ {S }. Since
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eI1 + eI2 − eI1∩I2 + eI3 + · · · + eIk − eI1∪···∪Ik = 0,

Proposition 2.7 gives

(−KX(Δ(B)).V(R≥0N)) =
{

k − 2 (I1 ∪ · · · ∪ Ik ∈ N),
k − 1 (I1 ∪ · · · ∪ Ik = S ).

Hence (−KX(Δ(B)).V(R≥0N)) ≥ 0.
(ii′) Suppose that I1 ∪ I2 = S and |(B |I1∩I2 )max| ≤ 2. By Proposition 4.10 (2), we have

(B |I1∩I2 )max ⊂ N. Since eI1∪I2 = eS = 0, it follows that

eI1 + eI2 −
∑

C∈(B |I1∩I2 )max

eC = 0.

Proposition 2.7 gives

(−KX(Δ(B)).V(R≥0N)) = 2 − |(B |I1∩I2 )max| ≥ 2 − 2 = 0.

Therefore X(Δ(B)) is weak Fano by Proposition 2.8. This completes the proof of Theorem
2.4. �
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