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1. Introduction

A minimal submanifold M of a Riemannian manifold A7 is nothing but a
critical point of the volume functional induced from the Riemannian measure of
M. The first variational formula then states, roughly speaking, that the gradient
of the volume functional is the negative of the mean curvature vector field of
M. Concerning with the second variational formula for the volume functional,
the nullity and the index play an important role in the theory of minimal
submanifolds. Geometrically, the nullity means how many deformations of M
preserving the volume there are, while the index means how many deformations
of M decreasing the volume there are. For precise definition, see Section 2.

In this paper we investigate the following problem: estimate the nullity from
below and further determine minimal submanifolds with the least nullity. The
first results for this problem are found in [12], where Simons has proved the
following (cf. Exmple 3.6): the nullity of a compact minimal submanifold M in the
Euclidean sphere is bounded from below by (dim M + 1)codim M, and furthermore
it attains the lower bound if and only if M is totally geodesic. The method that
Simons used for Euclidean sphere will be explained in more general form in Section
3. Next Kimura [6] and Ohnita [10] have obtained respectively results for
complex submanifolds and for totally real submanifolds in a complex projective
space (cf. Example 3.8). On the other hand, Ohnita [10] has computed the nullities
of totally geodesic submanifolds in compact symmetric spaces of rank
one. Especially he obtained that the nullity of every compact totally geodesic
submanifold in a compact rank one symmetric space is equal to its Killing
nullity. Recently the present author [4] has obtained a result for real hypersurfaces
in a complex projective space (cf. Example 3.7, Fact 7.13).

The purpose in this paper is to investigate the problem for some wider class
of submanifolds in a complex projective space, that is, the class of minimal
CR-submanifolds. The following theorem summarizes the main results (Theorem
5.9, 5.10, 7.6);
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Theorem. Let M be an m-dimensional compact minimal CR-submanifold
immersed in CP".

(1) Suppose m is even. Then the nullity of M is estimated as

nul(M)> 2<T+ 1><n —ﬂ>.
2 2

Moreover equality holds when and only when M =cp? (totally geodesic).
(2) Supposemis odd and equal ton. Then the nullity of M is estimated as

nul(M)> "("; 3.

Moreover equality holds when and only when M =RP" (totally geodesic).
(3) Suppose m is odd and not equal to n. Then the nullity of M is estimated as

1
nul(M)>m+1 +2(%+ 1)<n—mT+l)'

m+1
Moreover equality holds when and only when M=M€,_, < CP 2 c CP".
0, 27

totally geodesic

It is surprised that the nullity on the class of compact minimal CR-submanifolds
of CP" achives its minimum at a non-totally geodesic minimal submanifold even
the class contains a totally geodesic one, contrary to the results of Simons, Kimura
and Ohnita.

The author wishes to thank the referee for his useful comments.

2. The Jacobi operator and the nullity

First of all, we explain the notation which will be used in what follows. For
a Riemannian manifold M, its tangent bundle, the Levi-Civita connection and the
curvature tensor are denoted respectively by TM, V™ and RM. If M is a submanifold
immersed isometrically in a Riemannian manifold A, we denote by NM the normal
bundle of M. Then the second fundamental form B, the shape operator A° in
the direction ¢ and the normal connection V¥™ are defined by

@2.1) Viy=vMY+ B(X,Y),
22) VHE= — A%X) + VM

for X,YeI'(TM) and ¢(e'(NM). Here, in each equation, the right hand side
indicates the decomposition of the left hand side into the tangential and the normal
part to M, and I'(E) denotes the space of all C*®-sections of a bundle E. These
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two equations (2.1) and (2.2) are known as the formulae of Gauss and Weingarten
respectively.

Let E— M be a Riemannian vector bundle with the fiber metric (®,8> over
a Riemannian manifold M. Suppose there is given a metric connection VZ on
E. Then an operator A acting on I'(E), called the rough Laplacian, is definde by

AE-= Z (VEIVEJ—VgngJ),
i=1

where {e,,---,e,}, m=dimM, is a field of locally defined orthonormal frame on
M. Then it is known that the rough Laplacian AE is self-adjoint with respect to
the L2-inner product on I'(E), that is, the equality

f (AR, n>dV = f CEAPp>AVy
M M

holds for all sections &, n of E, where dV,, denotes the Riemannian measure of
M.

Now let M be a compact minimal submanifold immersed in a Riemannian
manifold M. For a tangent vector X to M, we denote by X™ (resp. X"™) the
orthogonal projection to TM (resp. NM). Define two endmorphisms £,, and
of s of the normal bundle NM by

A= 3. (RTe,0e)™, ot uli= 3. Bldkese))

J J

where {e,,---,e,} is, as above, a field of locally defined orthonormal frame on
M. Using these operators together with the rough Laplacian, we define an
operator J,:T'(NM) - T'(NM) by

3M:= —‘ANM‘*'%M‘—MM,

which is called the Jacobi operator of a minimal submanifold M. The Jacobi
operator J,, is related to the second variation formula for the volume functional
Vol as follows ([12], [8]): for a (normal) variation M, of M with M=M,, we have

d?Vol(M,)
dr?

=_[ né,E>dVy,
t=0 M

where (€I(NM) is the variational vector field of M, given by é=%%|,_,. It is
then known that the Jacobi operator J,, is a self-adjoint strongly elliptic differential
operator, and so it has discrete eigenvalues bounded from below and diverging to
infinity. Furthermore each eigenspace of J,, is of finite dimensional. We define
the nullity of M as the dimension of O-eigenspace of the Jacobi operator and
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denote it by nul(M); nul(M):=dim Ker J,,. On the other hand, the index of M,
denoted by ind(M), is defined as the sum of all the dimensions of eigenspaces with
negative eigenvalues of the Jacobi operator.

REMARK 2.3. If it seems necessary to emphasize the ambient manifold M,
we use the notation N(M,M), Im.x and nul(M,M) in stead of NM, 3Iu and
nul(M) respectively, for instance.

Suppose now we have two submanifolds M < L < M. Then we have an
orthogonal splitting

(2.4) N(M,M)=NM,L)Y®N(L,M)| M,

where E|M denotes the restriction of a bundle E to M. According to this
decomposition, a normal vector ¢ € N(M, M) is decomposed as & = ENM-L) 4 gNLMIM

Proposition 2.5. Suppose, in addition to the above, that M and L are compact,
M is minimal in M and further L is totally geodesic in M. Then we have the
following relation between Jacobi operators Jp 55 and Iy o

Su,ﬁ(f) = SM,L(fN(M’L))

_ AN(L,A?HM( émz,,m) + i ( R’r’(ej, éN(L,ﬂ))ej)
ji=1

for EeT(N(M,M)), where {e,---e,}, m=dimM, is a field of locally defined
orthonormal frame on M.

Proof. This relation can be proved by means of routine calculations using
Gauss and Weingarten formulae (2.1) and (2.2). In fact we can show

AN(M.A?) E= ANM.L) éN(M,L) + AN(L,ﬁnM CN(L,ﬂ)lM’

m -~ ~ ~
-%M,Aﬁ:ﬂM,LéN(M'L)“' Z (RM(ej,éN(L’M))ej)N(M'M),
i=1

MM,A"J& = J”M,LfN(M'L)-

On the other hand, since L is totally geodesic by assumption, we have
CRM(X W)Y, n) = <(RM(Y,n)X,vY={RXY,n)X,v)>=0 for X,YeT,M, ve N(L,M) and
neT L, xeM. Thus Rﬁ(X,v)Y belongs to N, (L,M) for each X,YeT M and
veN(L,M), xe M. Especially we have

Y (RM(e), ENEMD)e WD — 5 (RM (¢, eNL-M) o) e N (L, M)
j=1 =1

J
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in the second equality above. Therefore those three equaliyties above imply the
relation between Jacobi operators stated above. O

For later use, for the triple M, L, M satisfying the assumption in Proposotion
2.5, we define an operator %), i acting on I(N(L,M)| M) by

26) Lril0)i= = AVEIMG) L 3 (R (e,)e)

J

for ve (N(L,M)| M). Tt is known from the proof of Proposition 2.5 that this
operator &£, ; 5 acts actually on T(N(L,M)| M). Hence we can restate Proposition
2.5 as follows: according to the splitting (2.4), the Jacobi operator J,, i is
decomposed as

(2-7) SM,}W = 3M,L®$M,L,A7 .

3. Simons’ method for estimating the nullity

In this section, we give a method for estimating the nullity of a minimal
submanifold, which has been established essentially by Simons.

Let M be a compact minimal submanifold immersed in a Riemannian manifold
M. We denote by i(M) the Lie algebra consisting of all the Killing vector fields
of M. We also put i(M)"™:={Z*M e [(NM)|Zei(M)}. Then Simons proved

Theorem 3.1 (J. Simons [12]). (M) < KerS,,.

From this theorem we call dimi(M)"™ the Killing nullity of M and denote it
by nulg(M); nulg(M):=dimiM)*™. In his paper [12], Simons has estimated the
Killing nullity of a compact minimal submanifold in a Euclidean sphere. His
method can be generalized easily as follows: fix a point, say x in M, and define
a linear map

@ i(M™™ - NMO®Hom(T ,M,N M)
by
B(ZVM):=(ZIM,(VIMZIM)).
Hence the inequality nulg(M)>dim Im ®, holds. This together with Theorem 3.1

implies the inequality

(3.2) nul(M)>nulg(M)>max(dim Im ®,).

xeM
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This estimation seems to be particularly useful if the dimension of Im @, does not
depend on x. The following proposition gives a criterion when this is the case:

Proposition 3.3. For each pair of points x and y in M, suppose there exists
an isometry f of M such that f(x)=y and ST M)y=T,M. Then dimIm®, does
not depend on x.

Proof. Let x, y and f be as above. Define an linear mapping F from
Hom(T,M,N M) to Hom(T,M,N,M) by Fw):=f,cwof,', for weHom(T M,
N,M). Note that F is well-defined by the assumption f (T . M)=T,M. Define
also an endomorphism ¢ of i(M) by ¢(Z):=f,Z, for Zei(M). Let P:i(M)— (M)"M
be the projection. Now consider the following diagram:

P Ox
(M) - (M™ > N.M®Hom(T M,N M)
(3_4) ¢l l(f.leM)eaF

(M) - (M)"™ —» N,M®Hom(T,M,N,M).
P

Dy

It is easy to see that both the two maps on the columns in this diagram are linear
isomorphisms. Therefore if the diagram is commutative, we obtain dim Im ®,
=dimIm®,.

We now show the commutativity of the diagram. By definition,

(f4®F) o @0 PZ)=(fZXM), fuo (VVMZMM), 0 fT1),
D, 0 Po yZ)=((f 20}, (V"M(£,Z)"™),).
It is clear that f(Z})=(f,Z)Y™. So we only have to prove
(3.5) Sao (VVMZNM) o [0 1= (VMM(£,Z)™), .
For each tangent vector X to M, we have
VAMZNM = (VYT ZNM)NM
=(V¥Z ¥ ZzTM)NM
=(VRZ)™ — (VEZTMy™
=(V¥Z)"M — B(X,Z™).
Therefore, for Ye T, M, we get

Jeo(VWMZIM) o £ (D) =f UV ¥ Z™)
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=V 2™ £, B H(Y),Z™™)
=(VVU 2)™=B(Y.f, Z™),

because f is an isometry of M. The similar computation shows
(V™M Z)™), Y =(VH ([ )™ —B(Y, £, Z™).
Thus we have the equation (3.5). O

Here are some examples:

ExAmMPLE 3.6 (J. Simons [12]). The case M=S". In this case, @, is
surjective. Therefore, (3.2) implies

nul(M) > dim(N . MPHom(T, M,N, M))=(m+ 1)(n—m),
where dim M =m.

ExaMpLE 3.7 (T. Gotoh [4]). The case M=CP" and dimM=2n—1. Also
in this case, @, is surjective. Therefore, as same as above,

nul(M)>2n=dim M + 1.

ExaMpLE 3.8 (Y. Kimura [6]). The case M=CP" and M is a complex
submanifold. In this case, ®, is not surjective, but Im®, =N MPHom(T, M,
N.M). Therefore, (3.2) implies

nul(M)>dimg(N . MOHom(T M,N M))=2(m+ 1)(n—m),
where dim¢ M =m.

REMARK 3.9. Each estimation of the nullity obtained in these examples above
is optimal. In fact, the compact minimal submanifold whose nullity realizes the
equality in the inequality above is completely determined as follows:

In Example 3.4, M=S"™ (totally geodesic) only,
In Example 3.5, M=M¢,_, (geodesic hypersphere) only,
In Example 3.6, M =CP™ (totally geodesic) only.

For M§,_,, see Section 7 below.

4. The case of symmetric spaces

In the present section, we apply the method for estimating the nullity, explained
in Section 3, to the case where the ambient manifold M is a symmetric space.
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Let M be a symmetric space, which is represented as M = G / H as a homogeneous
space. Here G is a Lie group and H its closed subgroup. As usual, their Lie
algebras are denoted by the corresponding Germann letters g and | respectively. Let
g=bh+1m be the canonical decomposition and hence [bh,h] = b, [h,M] = M and
[f,m] < bh. In what follows we identify it naturally with the tangent space T,M,
where o=H is the origine of M. For Zeg, we denote by Z* the Killing vector
field on M generated by Z; Z*:=dexpt2ix| _ ' xe ff. Then the covariant derivatives
are computed at the origin o as

4.1) Zeiit=(V"Z*),=0,
42 Zeb=(VZ%,=ad(Z).

We now suppose that there is given a compact submanifold M immersed
minimally in a symmetric space M. We may assume that M contains the origin
o, and then identify T,M with m by regarding it as a subspace of #it. The
orthogonal complement of m in 11 is denoted by m*. Then each Zeg can be
decomposed as Z=2Z;+Z,,+ Z* with respect to the decomposition g=h+m+m*.

A projiection IT:g— i(M)*™ is defined by II(Z):=Z*"M. Defining two maps
¥,:g—-»m* and ¥,:g - Hom(m,m') by

¥i(Z2):=Z*, YAZ)X):=(ady(Zy)X)" ~B(X,Z,),

then we have the following commutative diagram:

¥Y:=¥,0¥2
g m*@®Hom(m,m*)
4.3) m I =
(MM N,M®Hom(T,M,N,M).
oo

We now states the theorem (cf. Proposition 1.1 in [10]):

Theorem 4.4. Let M be a compact minimal submanifold immersed in a symmetric
space M=G/H. Then, using the notation above, the nullity of M satisfies the
inequality

nul(M)>nulg(M)>codim M +dim Im ¥, | b.
Proof. Because of (4.1), (4.2) and by definition of ¥, and ¥,, we obtain

¥i(h)=0, ¥,(m)=0, ¥ (f)=m",
Y,(Z2)X)=—-B(X,Z) for Xem and Zen,
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Y,(Z)(X)=(ad(Z)X))* for Xem for Zeb,
which imply
4.5) ImY=m'®ImY¥,|(H+m) > m'SIm¥,|h.

On the other hand, because the projection Il is surjective, we obtain
dimIm®,=dimImY¥ from the diagram (4.3). Therefore, by virture of (3.2) and
(4.5), we can conclude

nul(M) > nul (M) >dim Im ®,=dim Im ¥
>codim M +dim Im ¥, | b. O

5. Minimal CR-submanifolds in CP"

We begin this section with recalling the definition of CR-submaifolds. For
details, we refer [5], [2], for instance. Let W be a complex vector space with a
complex structure J and with an inner product. For a real subspace V of W,
we set Vyg:=VnJV and Vg:=the orthogonal complement of V in V. On the
contrary, we denote by V' the orthogonal complement of ¥ in W. We call V a
CR-subspace of W if JVg < V* holds.

DEFINITION 5.1.  Let (M,J) be an Hermitian manifold with a complex structure
J. Then a real submanifold M of M is called a CR-submanifold provided that
the following three conditions are satisfied:

(1) dimg(7T M)y does not depend on each xe M.

(2) The distribution M >3x+ (T, M)y is smooth on M.

(3) Each tangent space T,M is a CR-subspace of T, M, namely J(T .M)g
c N M.

We call a CR-submanifold M is of type (h,r) provided that dim(7T . M)y=~h
and dimg(T, M)g=r. The most typical examples of CR-submanifolds are complex
submanifolds (of type (dimM, 0)) and totally-real submanifolds (of type (0, dim M)).
Any (real) codimension one submanifold, namely any real hypersurface is also
CR-submanifold (of type (4™¥=1'1)). From a linear algebraic point of view,
CR-subspaces of fixed type are determined uniquely in a sence below; setting
(z,w),=ZzW; for z=(zy,-",2,), w=(wy,---,w,) € C", we give the canonical Euclidean
metric {-,*),:=Re(-,), to C™

Lemma 5.2. Let V be a CR-subspace of type (h,r) in the complex Euclidean
space C". Then there exists an unitary matrix ue U(n) such that

u(Vy)=Ce @ --- ®Ce,, u(Vg)=Re,, @ --DRe,,,,
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J
where e;=(0,---,0,1,0,--,0), j=1,---,n.
~ ——— ——

n times

From now on we consider the case where the ambient manifold is the complex
projective space CP" with the Fubini-Study metric of constant holomorphic sectional
curvature 4, and M is a compact minimal CR-submanifold of CP". If we adopt
the expression CP"=U(n+1)/U(1)x Un)=G/H as an symmetric space, then the
canonical decomposition g=h+1it is given by Wm={? )eur+1)|{eC"}. We
identify th with C”" naturally. Then the linear isotropy representation U(1) x U(n)
- GL(n,C) is given by (5 9+ 4. By virture of this fact combined with the use
Lemma 5.2, if M is of type (h,r), we may always assume without loss of generality
that M containes the origin o of CP" and furthermore the tangent space to M at
the origin is of the form

(5.3) TM=m=Ce,®---®Ce,®Re,, D --DRe,,,.

Consequently Proposition 3.3 implies

Proposition 5.4. Suppose M is a compact minimal CR-submanifold in
CP". Then the dimension of Im ®, does not depend on xe M.

We now give an estimation of the nullity:

Theorem 5.5. Let M be an m-dimensional compact minimal CR-submanifold
of type (h,r) in CP". Then its nullity satisfies the following inequality:

4n+4dmn—3m*—m
2

nul(M)>nulg(M)> —4h* +(dm—2n—1)h+

Proof. In this case, we have b=RJj1®u(n). It is easy to see Im¥, |}
=Im¥,|u(n), and so we compute the dimension of ImW¥,|u(n). Note that
W,(A) =(AL)* for Aeu(n) and {em under the identification fit=C". Therefore,
keeping the assumption (5.3) in mind, we find that

S00
(5.6) KerV,|un)= Owo Seuh), Teuln—h—r), Weo(r)
00T

Thus, we obtain

dim Im ¥, | u(n)=dim u(n) —dim Ker ¥, | u(n)
=dim u(n) — (dim w(k) + dim o(r) + dim u(n — A —r))
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3m?*—4mn—m

= — 4%+ (dm—2n—)h— .

The inequality in the assertion now comes from Theorem 4.4. O
In order to estimate the nullity of M only by its dimension, we consider the
quadratic function

4n+4mn—3m*>—m

2

L, (h):=—4h*+(@dm—2n—1)h+

Note that /4 runs over integers with max{0,m—n}<h<[%].
Lemma 5.7. The quadratic function L, ,, attains its minimum as follows:
) L m| m
(1) If mis even, L, ,, attains its minimum only when h= [E:sz and the value

o) )

(2) Ifmisoddand m=n, L,, attains its minimum only when h=0 and the value is

L,,0="04
2
(3) If m is odd and m+#n, L, ,, attains its minimum only when h=[§]=7~1

and the value is L,,_,,,(m—z_—l) =m+1+ Z(n _m_z_-H)(mT—f—l+ 1).

Summarizing Theorem 5.5 and Lemma 5.7, we obtain

Theorem 5.8. Let M be an m-dimensional compact minimal CR-submanifold
immersed in CP". Then its nullity can be estimated as follows:

2< —m)(§+l>, m is even,
2/\2
nul(M)> < n(n2+ 3), m is odd and m=n,
m+1+2<n—-r—n2L1><mT+l+1), m is odd and m#n.

It is known ([6], [9], [10]) that a complex projective space CP? and a real
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projective space RP", both imbedded totally geodesically in CP", realize the equalities
of the first two cases in Theorem 5.8 respectively. Speaking of conclusion, we
find that the estimation obtained in the last case in Theorem 5.8 is also optimal,
this case will be investigated in Section 7 below.

We conclude this section by determining M whose nullity satisfies the equality
in each first two cases in Theorem 5.8:

Theorem 5.9. Let M be an m-dimensional compact minimal CR-submanifold
immersed in CP". Suppose the dimension of M is even. Then an inequality

nul(M)> 2<n ‘%)(%* 1)

holds. Moreover equality holds when and only when M =CP? (totally geodesic).

Theorem 5.10. Let M be a compact minimal CR-submanifold immersed in
CP". Suppose the dimension of M is odd and equal to n. Then an inequality

nul(M) 2n(n +3)

holds. Moreover equality holds when and only when M =RP" (totally geodesic).

Because similar argument works in proving both these Theorems, we only
give here a proof of Theorem 5.9:

Proof of Theorem 5.9. The inequality have been obtained in Theorem 5.8,
so we consider M with nul(M)=2(n—%)%+1). Then according to Lemma 5.7(1),
M must be of type (3,0), namely M is a complex submanifold. Our assumption
(5.3) then becomes T,M=m=Ce,® --- ®Ce,, where we put 1=%. On the other
hand, (5.6) becomes

Ker?, |u(n)= {(g ;{)

=u(h)@u(n—h),

Seuh), Teuln— h)}

and hence the Lie subgroup of U(rn+ 1) generated by Ker W, |u(n) is

100
Uppon= 040 || AeUh), Be Un—h)
00 B
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The point of proof is

Claim 5.11. If nu](M)=2<n—%)(g+l>, the action of U,,_, on CP"

leaves M invariant.

In fact, ¥(Z)=0 for ZeKer¥,|u(n), which implies ®,(Z*"™)=0. However
®, must be injective by assumption on the nullity. As a result Z*** =0 for all
ZeKer W, |u(n), namely each Z* is tangent to M everywhere. This means
Upni(M) = M.

Let us now complete the proof of Theorem 5.9. The linear isotropy action
of U, ,_, on m is transitive on its unit sphere because the action is essentially the
same to the natural action of U(h) on C*. On the other hand, Claim 5.11 shows
that the group U, , -, acts isometrically not only on CP” but also on M. Therefore
B(X,X)=B(Y,Y) for all X,Yem with | X|=| Y| =1, together with which minimality
of M implies B=0. O

6. The nullity of a non-full minimal submanifold in CP"

Let M be an m-dimensional compact minimal submanifold immersed in a
complex projective space CP'. Then imbedding CP' totally geodesically into CP",
we shall investigate a relation between nul(M,CP") and nul(M,CP").

If #— 2% is a Riemannian submersion and X is a vector field on £, we

denote by X its horizontal lift to ..
Consider now the following system consisting of minimal submanifolds and

Hopf fibrations:

M o SArt SZn+1

(6.1) sty IR s
M - CP' - CP.

The action of the circle group S'={e¥~ e C|0€R} is given by t4(z)=ze¥~** for
zeS?+1 Set

C*(M)s1:={fe C*(M)®C|f(ze” ) =f(z), Vze M, Ve R},
Co(M)" :={fe C*(M)QC|f(ze"" ") =f(z)e’ ", Vze M, YOcR)},
and further
BE(; Ag)si =E(\; Ag)@Cn C=(M)g1,
E(;Ap)* =E(; A)@Cn C>(M)*,
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Here and in what follows, E(4; A;) indicates the A-eigenspace of the operator A,; .
An aim in the present section is to prove

Theorem 6.2. Let M be an m-dimensional compact minimal submanifold in
CP'. Then,imbedding CP' totally geodesically into CP", we get the following equality:

nul(M, CP")=nul(M,CP")+2(n —)dimcE(m + 1;A)S".

Proof. First of all we note the curvature tensor RC" is given by
RP(X,Y)Z = (Y, Z)X—X,ZYY+{IY,ZYIX—L{IX,ZYJY +2{X,JY)JZ. Hence
the operator &£ = cpi cpr defined in (2.6) is given as

(63) &L= — AV EEMM il cprepmim s

where Iycpi cpmyn I8 the identity endomorphism of the bundle N(CP',CP")|M. The
decomposition (2.7) then implies KerJy, cpn=KerJy cp@Ker#. Especially we
have

(6.4) nul(M, CP")=nul(M, CP')+ dim Ker &.

We shall henceforth investigate Ker# in what follows.

Suppose ze M is a point of the fiber over xe M. Then there are natural
isomorphisms N,(M,S?"* 1)~ N (M,CP"), N(M,S**")~N(M,CP") and N(S**!,
S+~ N (CP',CP"), since each normal space of the total space in the fibrations
(6.1) is horizontal with respect to the Riemannian submarsion. Thus if we set

T(NS* 1,827 1) | Mg, = {Ee T(N(S?+ 1,527+ 1) | M@ C) | 10, =&, VOERY},

this space T(V(S?'*1,52"*1)| M), is isomorphic to T'(N(CP',CP")|M). In order
to investigate Ker.#, we consider an operator £ defined by the commutative diagram

£
F(N(S2’+ 15S2"+1)|M)Sl - F(N(S21+1,S2"+1)|M)sx
= ! ! ~
I(MCP',CP)|M®C) — T(N(CP,CP")|MQC).
ZeC

The first step is to describe the operator £ as follows:

Lemma 6.5.

?’ 21+1 §2n+ 1)| M
P =—ANS s )IM—(m+l)IN(szl+1’szn+1)|1{].

Proof. Let {e,,---,e,} be a field of locally defined orthonormal frame on
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M. Define a vertical unit vector field ¥ on M by V,=./—1z, ze M. Then we
have {é,,---,é,,V} as a field of locally defined orthonormal frame on M. By

definition of the rough Laplacian,

m
N(S21+1,§2n+1)|M _ N(S21+1,§2n+1)| MN(S21+1,52n+ 1)| (] N(S21+1,§2n+ 1)| M
66) A = v vy L )
j=
N(S21+1,82n+1)| Mo N(S21+1,§2n+ 1) pf N(S2!+1,§2n+ 1) M

Note that e T(M(S?'*1,§2"*1)| M) belongs to T(N(S2'*1,82"*1)| M) if and only
if n(tyz)=n(z)e’ =1 for all ze M and OeR. This fact implies

(67) Vllg(szn l's2n+l)|ﬁV}'i(szl+ 1’52..41)'](4’1: -1

for ne(N(S?*1,82"*1)| M). We also note V is generated by the geodesic flow
on M:

(6.8) viy=0.

Now it is shown that Vg‘su”’sz"“)mf =(VYCPLEPE) for £ e T(N(CP',CP") | M),
and hence

N(S21+1 §2n+1 M N(S21+1,§2n+1 M _ N(CP!,CP")y7N(CP!,CP" ~
(6.9) Ve,( ] Vé,( ] é‘ —(Ve,( )Vej( )f) )

On the other hand, {V¥é, V> =—(é,VVy=—(&, V5" V)= —<(é,/—1é>=0,
which means each V¥é. is horizontal. This shows

€;"J
N(CPL,CP™)|M £\~ _ gN(S2t+ 1,520+ 1)|M £ __ gN(S21+1,52n+1)| M
(6.10) (VgL Ty =V E= Vg g,

Substituting (6.7), (6.8), (6.9), (6.10) into (6.6), and by definition of the rough
Laplacian, we get

(6.11) ANG?+ 152+ 1)|)Vl£ — (AN(CP',CPv-)wé)“_ f

By virture of (6.3) and (6.11), we obtain
éé\z _AN(szul,sznn)'ﬁE_(m_'_ l)f,

for ¢eI(N(CP',CP")|M). This completes the proof of Lemma 6.5. O

The second step is to describe T(NV(S?*1,82"*1)| M)s.. For the canonical

complex basis {ey,---,e,} of C", we set v,=e,, 14, Vai=/ —1€14 110 a=1,--,n—L
These v,’s and v;s are regarded naturally as elements in [(N(S¥*!,82"*1)| M).
Then the followings are easily verified:

(6.12) v, and v; are horizontal with respect to the Riemannian submarsion
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(6.1),

(6.13) v, and v; are parallel with respect to the normal connection V¥&*'* 52"+ DM,

(6.14)  7p,v,(2)=V,(2)eY ", Ty v(2)=vs(z)e? "1 for all ze M, OeR and «=1,-,
n—I,

(6.15) v (19(2)) = vo(2), v(1(z))=v4z) for all ze M, OeR and a=1,---,n—1.

The last (6.15) is due exactly to the definition. Note that (6.14) and (6.15)
show that v,’s and v;’s do not belong to T(N(S**1,82"*1)| M)s:. However we
also find from those (6.12), (6.14) and (6.15) that T(N(S?'*!,82"*1)| M)s: can be
described as follows:

n—l n—1
(6.16)  T(NS*',82"* )| M)s ={€= XSVt 3 fval 7 fRe C”(M)s'}-
a=1 a=1
Let us now complete the proof of Theorem 6.2. Let é=Xf*v,+ X f*v; be an

element of D(NV(S?'*1,82"*1)| M), expressed as in (6.16). Then by means of (6.13),
we have the following equality:

~ n—1 n—1 -
(6.17) —ANETESOME= N (DS Vet Y, (A SIv;-
a=1 a=1
Combining Lemma 6.5 and (6.17), we get
n—1 n-1
&= Y {Aaf*~m+ 1)+ 3 {Auf*—(m+1)f*}vs.
a=1 a=1
Consequently the kernel of .# is given by
n—1 n—1
Keri’:{{: Y [+ Zfavilf“,fieE(m+1;Aﬁ)s‘}
a=1 a=1
= (Em+ 1582,
and in particular we find
dimcKer? =2(n—l)dimcEm+1;Ag)%".
Because dim Ker# =dimcKer# by definition, (6.4) deduces

nul(M, CP") = nul(M,CP") + 2(n — )dimEm + 1; A",

which is the conclusion. 0O

Corollary 6.18. In addition to the above, we suppose the immersion M — CP
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is full. Then the following inequality holds:

nul(M,CP")>nul(M,CP)+ 2(I+ 1)(n—1).
Note that 2(/+ 1)n—1[) on the right is just equal to nul(CP',CP").

Proof. On account of Theorem 6.2, we have only to show the inequality
dimcEm+1;Ag)5' >141.

We denote the canonical complex coordinate on C'*! by z=(z,,-,z,4,). In our
setting, M is also minimal in S2'*! ([7]). Then by a well-known theorem of
Takahashi ([13]), we know that z;’s and Z;’s, when restricted on M, are eigenfunctions
with common eigenvalue m + 1(=dim M) of A;;. The z;’s are elements in c>(m,
while the Z;s neither in C>(M)*" nor in C®(M)s.. Hence the zj’s belong to
E(m+1;A;)5'. Moreover because M — CP' is full by assumption, z,,---,z,,, are
linearly independent over C as functions on M. Thus we conclude dimcE(m+1;
Ag) =I+1. O

REMARK 6.19. According to Kimura ([6]), if M is a Kidhler C-space fully
imbedded in CP', then the equality

nul(M, CP") =nul(M, CP") + 2(/ + 1)n—1)

holds. The author does not know an example of M whose nullity does not satisfy
the equality in Corollary 6.18.

7. The final case

In this section we shall investigate the final case of Theorem 5.8. We begin
with a construction of an example of a compact minimal CR-submanifold M in
CP" whose nullity equals to m+ 1+ 2(n —241)(®4L + 1), where m=dim M is odd and
m#n.

For non-negative integers p, ¢ with p+g="31, we set r,:==./%{ and
rgi=+/%. Then imbedding the Riemannian product S**'(r))xS2*(r,)

mt1
minimally in $™*2, we define a real hypersurface M ,ﬁ qin cP™ by the commutative
diagram

S2p+1(rp)xs2q+1(rq) — Sm+2(1)

(7.1) ! !
m+ 1
Mg, - CP 2.
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By making a composition with a totally geodesic imbedding CPmTH—> CP",
we regard M£, as a minimal submanifold in CP". Then Mf, is a CR-submanifold
in CP" of type (™5L,1).

Claim 7.2. The nullity of M, in CP" is given as follows:

nul(M,,, CP")= 2@+1)(Q+1)+2<n—%1)(ﬂ_2"i+1>.

Especially we have
nul(M m=1 L,CP)=m+1 +2(n_mT+l)(mT+l+ 1).

m+1

Proof. It has been shown in our previous paper [4] that nul(MS ,CP 2 )

=2(p+1)g+1). Therefore Theorem 6.2 shows

PP

(7.3)  nulME,CPY)=2p+1)g+1)+ Z(n ——-2—) dimcE(m+1; Agze )y

Note in the present case that ﬁc\—Sz"“(r )X S?*Y(r). The eigenspaces of
Az are described as follows (cf. [1]): set A2ptlizsletloimil) gletl - BlBt2amtl)
o ﬂ 20,1,---. Then Spec(Ayey) = {4271 +/12‘*“|a B=0,1,---}, the set consisting of
all the elgenvalues of Aﬁc\ “Let (z1,7,2p+1) (resp. (wy,-++,w, 1)) be the canonical
complex coordinate on cr (resp. C"+ 1), and denote by #2P*(z,7) (resp.
Jffj{,* !(w,)) the vector space consisting of all homogeneous harmonic polynomials
with coefficients in C and of bidegree (s,f) (resp. (u,v)) with respect to z; and Z;

(resp. w; and wj)). Then it is known that
(7.4) EGZ 4 3 )= Y H D@ AL w0,
utv=4

Since A27* !+ A29* ' =m+1 if and only if (o, £)=(1,0) or (0,1), (7.4) implies especially
Em+1; 43¢ = H N (2,2) 4+ AP V(2,2) + A2 Hw, ) + A3 Y(w,w).  Thus by
definition we have

Em+1; A/\S‘ HGF (2,2) + G (w, W),

and hence dimcE(m+1; Aﬁf},)sl =m+l1 1. Consequently (7.3) shows the assertion.
O

REMARK 7.5. As for the index, we can show
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ind(M : » CP"=2(n—m)+ 1 =codim(M f, @ CP").
Now we state the main result in this section:

Theorem 7.6. Let M be an m-dimensional compact minimal CR-submanifold
immersed in CP". Suppose m is odd and not equal to n. Then an inequality

nul(M)=m+1 +2<n—m; 1)<ﬂ;f—l+ 1)

m+1
holds. Moreover equality holds when and only when M =M(f,,,_1 c CP 2
v 2

c CP".

totally geodesic

Because the inequality have been established in Theorem 5.8, we assume

(7.7) rmMﬂ=m+HQG—ﬁgvc%i+0

in what follows.
First of all we know from Lemma 5.7 and the assumption (7.7) that the type

of M must be (23L,1). Hence our assumption (5.3) becomes T,M=m
=Ce,® - Ce,®Re,, ,, where we put h="51. On the other hand, (5.6) becomes

S00
Ker?W,|um={f 000
00T

Seu(h), Tewn—h—1)

u(h)@u(n—h—1),
which generates the following Lie subgroup of U(n+1):

1000
0400
Unn-r-1=1100 1 0

AeU@LBeUm—h—ng
000B

=Uh)x Un—h—1).
The follwing is a key claim, which is proved similarly to Claim 5.11:

Claim 7.8. Under the assumption (1.7), the action of U, ,_,_, on CP" leaves
M invariant.
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Moreover we shall prove

Lemma 7.9. B(X,Y)eR./—1le,,, for all X,Yem.

Proof. Consider an element u in U,,_,_, such that

1 0 0
u= 0 Ih+l 0
00 —In—h—l

Then the isotropy action u,:tht — 1t is given as

J

h+1
g identity on m® R,/ —le,, = @ Ce;,
(7.10) Uy = =1

a=h+2

( —identityon @ Ce,.

According to the direct sum m*=R./— 1eh+1®( ® Ce,), we decompose B as
a=h+2

B(X,Y)=B'(X,Y)+B"(X,Y). Then (7.10) implies

(7.11) uB(X,Y)=B(X,Y)-B"(X,Y).

On the other hand, by virture of Claim 7.8, we know that u is an isometry of both
M and CP". This combined with (7.10) shows

(7.12) u B(X,Y)=Bu,X,u,Y)
=B(X.Y)
=B(X,Y)+B'(X,Y).
Those (7.11) and (7.12) imply B(X,Y)=B(X,Y)eR./ —1le,,,. O

We now complete the proof of the Theorem 7.6. The idea is to reduce to
the following result which treats the case of codimension one:

Fact 7.13 (T. Gotoh [4]). Let M be a compact minimal real hypersurface in
CP'. Then an inequality nul(M,CP")>2l holds. Moreover the equality holds when
and only when M=M§,_, .

Proof of Theorem 7.6. The preceding Lemma 7.9 states that the first normal
space (see Appendix below for definition) of M coincide with (N,M)g only at the origin
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o. However, by means of Lemma 5.2, we find that 4"}(M)=(N _M); hold for all
xeM.. As a result of Theorem A.3, which will be given in Appendix below, there

exists a totally geodesic submanifold CP%l containing M as a real hypersurface.
Then since the immersion M — CPmT)r1 is full, Corollary 6.14 implies nul(M, CP")
Znul(M,CPﬂ?)+2(n—ﬂf{—‘)(ﬂ§i+ 1). Hence, by assumption (7.7), we obtain
m+12nul(M,CPﬂ%_1). By making use of Fact 7.13, we conclude nul(M,CP%L)

m+1
=m+1 and M=M0C,,,_1CCP 7 c CP". O
)

Appendix-a result on codimension reduction problem

To state the result, we introduce some terminology: let M be a submanifold
immersed in a Riemannian manifold . The second fundamental form of it is
denoted by By,. For each x in M, define a subspace .#"}(M) in the normal space
N .M by

(A1) N YM):=linear span {By(X,Y)e NM|X,Ye T .M},

which we call the first normal space. 1t is easy to verify that & (M) := U N L(M)
becomes a subbundle of NM provided the dimension of 4 (M) does not depend
on each x. In this case, it is also easy to see that the subbundle A4"!(M) is
invariant under parallel translations with respect to the normal connection on NM
if and only if the following condition is satisfied: Xe T, M, ¢ eT(N }(M)) = ViM¢
e N Y(M). The first normal space is said to be parallel provided the condition is
satisfied.

Erbacher has been proved the following theorem concerning with codimension
reduction problem:

Fact A.2 (J. Erbacher [3]). Let M be an n-dimensional submanifold of an
(n+ p)-dimensional Riemannian manifold M(¢) of constant sectional curvature é. If
the first normal space N (M) is parallel and q is the constant dimension of /" X(M), then
there exists a totally geodesic submanifold L of M(é) of dimension n+q such that
Mc L

Now we state the theorem:

Theorem A.3. Let M be an m-dimensional CR-submanifold of type (h,r) in
CP". Suppose that the first normal space N L(M) is equal to (N.M)y for each x
m+r
in M. Then there exists a totally geodesic submanifold CP 2 in CP" which contains
M.
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Proof. Considering the Hopf fibration S!— S?"*!  CP", we denote by
£eS?"*! a point on the fiber over xe CP". For a tangent vector Xe T,CP", X
indicates its horizontal lift at a point on the fiber over x. Then we have easily

A4 Byu(X, V)=(B\(X,Y))"
We shall show first
(A5) NNV =T YA

Because N;M =@ we find {By(X, ?)| X, Ye T, M)} =m Hence, on account
of (A.4), we show that By(V,V) and By(X,V) are contained inm Here V is
the vertical vector field on S2"*! defined in section 6. Since V3 ""'V'=0, we get
By(V,V)=0. On the other hand, V}’"”V:ﬁ which is tangent to M for
Xe(TxAQ{, and normal to M for Xe(T M)g. Thus By(X,V)=0 for Xe(T.M)y
and =JX for Xe(T,M)g. Because if X belongs to (T, M)z, JX belongs to
(N M)g=ALYM) by assumtion, we find By(X,V) to be contained in ﬂM\
Secondly we show

(A.6) XeTM, EeT(N (M) = VIMEe ¥ YM).

In fact let n be an element in (N, M)y Then we have, by assumption

N AM)=(N,M)g, that JEeD(TM), Jne(NM)y. Thus (VEMEn)=(VEEn

=IVEEIN) =V (JE),In) = (By(X,JE),Jn» =0, and hence V¥M¢e 4 (M)
Moreover we show

(A7) ve (N YM)), WeT:M = ViMye #YM).

It suffices to consider v which is written as the horizontal lift of an element, say
&in T/ (M)):v=E For W=ZX for some Xe T .M, we have V{’Vﬁv=V/§‘Q.\ By
means of (A.5) and (A.6), this belongs to A L(M). For W=V, since ¢ is invariant
by S !-action, we get V5" 'é=J¢, which is contained in T M by assumption. Hence
VIME

Now on account of Fact A.2 and (A.7), we find that there exists a totally
geodesic submanifold S™*!+" - §2"*1 which contains M. In order to complete
the proof, we must show that this S™*!*" is invariant by S'-action. According
to Erbacher’s proof given in [3], the S™*!*" above is constructed as follows: set
W =T;M®NYM)DR%. Then this defines a real subspace in C"*! not depending
on %. Then the S™*'*" above is obtained as S™*'*'=S2"*'~% . For this
reason we have only to show that # is a complex subspace in C"*!. By making
use of the decompositons into horizontal and vertical subspace of T;M,

T,;M:@@RQ / — 1)2=(fmﬂ@(T/xA?)R(-DR, / —1X, # can be expressed as

W = (T M} @ (T M@V, M)e} ® (REOR/ 15},
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Since each three factor in the above is complex subspace, so does #. O

ReMARK A.8. (1) In[3], the first normal space was defined as the orthonormal

complement of {ée N,M|A°=0} in N,M. Our definition (A.1) coinsides with this
definition.
(2) Okumura have studied the codimension reduction problem in a complex
projective space. In fact, our Theorem A.3 can be proved by using his results in
[11]; we gave a direct proof for the sake of completeness. Various results are
found in [11].
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