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Abstract
We consider the permutation module kP↑GLn(p f ), where P is a parabolic group in the general

linear group GLn(p f ) and k is an algebraically closed field of prime characteristic p. The ver-
tices of the components of these modules have been calculated in [9] by Tinberg, who studied
these modules for all groups with split BN-pairs in characteristic p. In this paper we show that
the idea of suitability is strong enough to find all p-groups that are vertex of some component
of kP↑GLn(p f ). Furthermore using a result of Burry and Carlson we show that all components
have a different vertex.

1. Introduction

1. Introduction
Let G be a finite group with subgroup H. We are interested in the p-groups of G that

are vertices of components of the permutation-module kH↑G, where k is an algebraically
closed field of characteristic p. In [7] the author introduces the idea of H-suitability and in
an example shows how suitability could be applied to detect all p-groups that are vertices of
some component of kH↑G. Furthermore in that example suitability is at its most restrictive
as every H-suitable group turns out to be the vertex of a component of kH↑G. In the present
paper we present another example where this concept of suitability unfolds its full potential
by giving us only p-groups that are vertices of some component of the given permutation
module kH↑G.

Next we describe the notion of H-suitability. A p-subgroup V of G is called H-suitable
(with respect to G and p), if for every S ∈ Sylp(G) with V ≤ S there exists some g ∈ G
so that V = S ∩ Hg. Here Hg denotes the conjugate g−1Hg of H. In [7] we show that
H-suitability is a necessary condition for a p-group to be the vertex of a component of kH↑G

and present an example in which it is also sufficient. However in general an H-suitable
group is not necessarily the vertex of some component of kH↑G. For instance with respect
to the symmetric group S 5 and p = 2 the trivial group is D-suitable, for the dihedral group
D := 〈(1234), (13)〉 ≤ S 5, but kD↑S 5 has no projective summand. Nevertheless one can use
the concept of suitability to produce a list of potential candidates for a vertex by finding
all H-suitable groups. If this list is short enough one may then deal with each candidate
individually.

In [7] we see that if V is H-suitable then so is every G-conjugate of V . Hence given a
Sylow-p-group S of G the set A := {S ∩ Hg : g ∈ G} contains a representative of each
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770 L. Pforte

conjugacy class of H-suitable groups. The following statement presents a method to shorten
the list given by A by finding groups that are not H-suitable. A more general version of the
statement with proof can be found in [7, Theorem 2.6.].

Lemma 1.1. Let S ∈ Sylp(G) and K ≤ G. Also let T ⊆ G such that

(a) For every g ∈ G there is α ∈ T so that S ∩ Hg =K S ∩ Hα
−1

.

(b) For all α ∈ T we have S α ∩ H ≤ S .

(c) If S α ∩ H =K S α
′ ∩ H, for α, α′ ∈ T, then α = α′.

Furthermore let V ≤ S be H-suitable. Then there is some α ∈ T such that V =K S α ∩ H.

Observe that Lemma 1.1 implies that every H-suitable group V that is contained in S is
a K-conjugate of both S ∩ Hα

−1
and S β ∩ H, for some α, β ∈ T . In particular any group in

the set {S ∩ Hα
−1

: α ∈ T } which has no K-conjugate in the set {S α ∩ H : α ∈ T } fails to be
H-suitable.

Let us now turn to our example for which we need the following notation. For the re-
mainder of this paper let n, f ≥ 1 and set q = p f , for some prime number p. Furthermore
let G := GLn(q) be the general linear group, that is, the group of invertible n × n-matrices
over the finite field Fq with q elements. Finally let k be an algebraically closed field of
characteristic p.

For any integer j ≥ 1 we define GL j := GL j(q). By Bj we denote the group of upper-
triangular matrices in GL j. Those elements in Bj with 1’s on the main diagonal form the
group U j. Recall that U j is a Sylow-p-group of GL j and Bj is the normalizer of U j in GL j.

Furthermore W j denotes the group of permutation matrices in GL j. There is a bijection
between the symmetric group Sym( j) and W j, in the sense that the permutation ω ∈ Sym( j)
corresponds to the permutation matrix (δr,ω(s))r,s, where δ denotes the Kronecker-symbol.

Let λ = (λ1, . . . , λr) be a composition of n, that is, λ1 . . . , λr are positive integers such
that λ1 + . . . + λr = n. Then for Xt ∈ GLλt , let Dn(X1, X2, . . . , Xr) be the matrix in G, which
has X1, . . . , Xr along the main diagonal and zeros otherwise. Similarly Dn(X1•, X2•, . . . , Xr)
denotes any matrix in G which has X1, . . . , Xr along the main diagonal, arbitrary elements in
Fq above and zeros below that diagonal. Finally we define

Pλ = {Dn(X1•, X2•, . . . , Xr) : Xt ∈ GLλt }.
Then Pλ is a parabolic subgroup of G. For instance if λ = (1n) then Pλ = Bn.

The permutation module kPλ↑G, where λ is a composition of n, has been studied before
and in more generality. Tinberg [9] studied these modules for all groups with split BN-pairs
in characteristic p. Further work was done by Canbanes [3] and Sin [8]. In particular the
vertices of all components are known as well as their Green correspondents. In this paper
we revisit kPλ↑G and show that Pλ-suitability is a strong enough tool to find all p-groups
that are vertices of components of kPλ↑G. In section 2 we find all Pλ-suitable groups up to
G-conjugation and in section 3 we show that all Pλ-suitable groups are vertex of exactly one
component of kPλ↑G.

Next let 1 ≤ k, l ≤ n such that k � l. By Fk,l we denote the subgroup of G that consists of
exactly those matrices that have ones on the main diagonal and zeros everywhere else except
in the (k, l)-entry, which is arbitrary in Fq. One checks easily that for ω ∈ Wn and k � l we
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have Fk,l = (Fω(k),ω(l))ω. Finally by [5] a group V ≤ Un is called a pattern group if Xk,l � 0,
for some X ∈ V and 1 ≤ k < l ≤ n, implies that Fk,l ≤ V . Note that a pattern group which
contains both Fk,l and Fl,m, for k < l < m, also contains Fk,m.

Lemma 1.2. Let V,W ≤ Un be pattern groups that are Bn-conjugate. Then V = W.

Proof. It is enough to show that Fk,l ≤ V implies Fk,l ≤ W. So let Fk,l ≤ V , for some
k < l, and let g ∈ Fk,l be non-trivial. By assumption there is h ∈ Bn so that g′ := gh ∈ W. As
g′k,l � 0 it now follows that Fk,l ≤ W. �

2. Pλ-suitable groups

2. Pλ-suitable groups
In this section let λ = (λ1, . . . , λr) be a composition of n. Also set si :=

∑i−1
k=1 λk, for

i = 1, . . . , r, and sr+1 := n.

2.1. Good Permutations.
2.1. Good Permutations. We call ω ∈ Wn good with respect to λ, if ω(si + 1) < . . . <

ω(si + λi), for all i = 1, . . . , r.

Lemma 2.1. Every (Bn, Pλ)-double coset in G contains a permutation matrix in Wn that
is good with respect to λ.

Proof. Let g ∈ G. Then by the Bruhat decomposition, (see [1]), and since Bn ≤ Pλ, there
exists μ ∈Wn such that Bn · g · Pλ = Bn · μ · Pλ. Next let

μ({si + 1, . . . , si + λi}) = {ksi+1, . . . , ksi+λi}, where ksi+1 < . . . < ksi+λi ,

for all i = 1, . . . , r. Set γ( j) := μ−1(k j), for all j = 1, . . . , n. Then γ ∈Wn. Also observe that
γ acts on the sets {si + 1, . . . , si + λi}. Hence γ ∈ Pλ.

Next set ω := μ · γ ∈ Wn. Since ω( j) = μ(μ−1(k j)) = k j, for all j = 1, . . . , n, it follows
that ω is good. As now Bn · g · Pλ = Bn · ω · Pλ, the proof is complete. �

For any g ∈ G we define V(g) := Un
g∩Pλ. The following lemma is then an easy exercise.

Lemma 2.2. Let ω ∈Wn be good with respect to λ. Then

V(ω) = {X = Dn(A1•, A2•, . . . , Ar) : Ai ∈ Uλi , and

Xk,l = 0, for all k, l = 1, . . . , n so that ω(k) > ω(l)}.(1)

In particular V(ω) ≤ Un, and V(ω) is a pattern group.

Observe that Lemma 2.1 implies the following

Corollary 2.3. Every Pλ-suitable group is G-conjugate to some V(ω), where ω ∈ Wn is
good with respect to λ.

Lemma 2.4. The set T of all ω ∈Wn that are good with respect to λ satisfies the proper-
ties (a)-(c) in Lemma 1.1, where H = Pλ, S = Un and K = Bn.

Proof. Property (a) is a consequence of Lemma 2.1, property (b) follows since V(ω) ≤ Un

and property (c) is a consequence of Lemma 1.2 and the structure of V(ω), as given in (1).
�
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Proposition 2.5. Let V ≤ Un be a pattern group. If V is Pλ-suitable, then V = V(ω),
where ω ∈Wn is good with respect to λ.

Proof. By Lemma 2.4 and Lemma 1.1 we have V =Bn V(ω), where ω ∈Wn is good with
respect to λ. Now V = V(ω) follows from Lemma 1.2. �

2.2. λ-permutations.
2.2. λ-permutations. Recall that I j denotes the identity matrix in GL j. By I j we mean

the permutation matrix in GL j that has all its ones on the anti-diagonal. Also let ω =
Dn(K1, . . . ,Ku) ∈ Wn, where Ki ∈ {Ini , Ini}, and n1 + . . . + nu = n. We call such ω a λ-
permutation if for all t = 1, . . . , r so that λt ≥ 2 we have that ω acts on each of the following
sets

{1, . . . , st + 1}, {st + 2}, . . . , {st+1 − 1}, {st+1, . . . , n}.
Observe that every λ-permutation is good with respect to λ. In the following we show that
if ω ∈Wn is a λ-permutation, then V(ω) is Pλ-suitable.

Lemma 2.6. Let ω ∈Wn be a λ-permutation. Then

V(ω) = {Dn(A1•, A2•, . . . , Au) : where Ai ∈ Uni , if Ki = Ini ,

and Ai = Ini , if Ki = Ini}.
Proof. Let S be the set on the right hand side. Then S = Un

ω∩Un ≤ Pλ. Since V(ω) ≤ Un

we get S ≤ Un
ω ∩ Pλ = V(ω) ≤ Un

ω ∩ Un = S . Thus V(ω) = S . �

Lemma 2.6 implies the following

Corollary 2.7. Let ω ∈Wn be a λ-permutation. Then
(1) Bn ≤ NG(V(ω))
(2) If μ ∈Wn such that V(ω)μ ≤ Un, then μ = Dn(μ1, . . . , μu) where μi = Ini , if Ki = Ini , and
μi ∈Wni , if Ki = Ini .

Lemma 2.8. Let ω ∈Wn be a λ-permutation. Also let N be the set of all matrices of the
from Dn(A1•, A2•, . . . , Au) where Ai ∈ Bni , if Ki = Ini , and Ai ∈ GLni , if Ki = Ini . Moreover
let g ∈ G such that V(ω)g ≤ Un. Then g ∈ N. In particular NG(V(ω)) = N.

Proof. By the Bruhat decomposition there are A, B ∈ Bn and μ ∈ Wn such that g = AμB.
As Bn ⊆ NG(V(ω)) we have V(ω)μ ≤ Un, and thus μ ∈ N, by Corollary 2.7. Since Bn ⊆ N,
we get g ∈ N. Now NG(V(ω)) ⊆ N follows. As one checks easily that N normalizes V(ω),
the proof is complete. �

Corollary 2.9. Let ω1, ω2 ∈ Wn be λ-permutations so that V(ω1) =G V(ω2). Then
ω1 = ω2.

Proof. As V(ω1)g = V(ω2) ≤ Un, for some g ∈ G, we have g ∈ NG(V(ω1)), by Lemma
2.8. Thus V(ω1) = V(ω2). Now ω1 = ω2 follows from (1). �

Proposition 2.10. Let ω ∈Wn be a λ-permutation. Then V(ω) is Pλ-suitable.
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Proof. Since V(ω)ω
−1 ≤ Un, it follows ω−1 ∈ NG(V(ω)), by Lemma 2.8. Thus V(ω) =

Un ∩ Pλω
−1

. Note that Un ∈ Sylp(NG(V(ω))). So the statement follows from [7, Lemma
2.2.(3)]. �

2.3. The Pλ-suitable V(ω).
2.3. The Pλ-suitable V(ω). In the following let ω ∈Wn be good with respect to λ so that

V(ω) is Pλ-suitable. We aim to show that ω is a λ-permutation.

Lemma 2.11. Let Fk,l ≤ V(ω), that is, ω(k) < ω(l), for some k < l. Then

(1) Ft,l ≤ V(ω), that is, ω(t) < ω(l), for all t = 1, . . . , k

(2) Fk,t ≤ V(ω), that is, ω(k) < ω(t), for all t = l, . . . , n.

Proof. We prove part (1) by contradiction. Without lose of generality we may assume that
Fk−1,l � V(ω). In particular Fk−1,k � V(ω). Next let μ ∈ Wn correspond to the permutation
(k − 1, k) ∈ Sym(n), and set V := V(ω)μ. Then V ≤ Un is a Pλ-suitable pattern group, and
so, by Proposition 2.5, there is α ∈Wn that is good with respect to λ such that V = V(α).

As Fk,k−1 � V(ω), Fk−1,l � V(ω) and Fk,l ≤ V(ω), we have Fk−1,k � V(α), Fk,l � V(α) and
Fk−1,l ≤ V(α). That forces α(k) < α(k − 1), α(l) < α(k) and α(k − 1) < α(l), respectively.
This contradiction proves part (1). A similar argument proves part (2). �

Corollary 2.12. If ω(k) < ω(k + 1), then ω acts on the sets {1, . . . , k} and {k + 1, . . . , n}.
Proof. Let r ∈ {1, . . . , k}. Then ω(r) < ω(k + 1), by Lemma 2.11 (1). Hence ω(r) < ω(t),

for all t = k + 1, . . . , n, by Lemma 2.11 (2). In particular ω({1, . . . , k}) ⊆ {1, . . . , k}, and the
statement follows. �

Proposition 2.13. Let ω ∈ Wn be good with respect to λ such that V(ω) is Pλ-suitable.
Then ω is a λ-permutation.

Proof. First we show that ω = Dn(K1, . . . ,Ku), where Ki ∈ {Ini , Ini}, and n1 + . . . + nu = n.
Clearly there is some k ∈ {0, 1, . . . , n} such that ω = Dn(K1, . . . ,Ku, ω

′), where Ki ∈ {Ini , Ini},
n1 + . . . + nu = k and ω′ ∈ Wn−k. Let us choose k maximal with this property and suppose
k < n. Observe that ω acts on the sets {1, . . . , k} and {k + 1, . . . , n}. Also the maximality
of k implies that ω(k + 1) � k + 1. Next let l ≥ k + 1 be maximal such that ω(k + 1) >
ω(k+ 2) . . . > ω(l). Since l = n or ω(l) < ω(l+ 1), it follows from Corollary 2.12 that ω acts
on the set {k + 1, . . . , l} and it does so like the permutation matrix Il−k. But this contradicts
the maximality of k, and thus k = n.

Now let i ∈ {1, . . . , r} so that λi ≥ 2. As ω is good with respect to λ we have ω(si + 1) <
. . . < ω(si+1). Now Corollary 2.12 implies that ω acts on the sets {1, . . . , si + 1}, {si +

2}, . . . , {si+1 − 1}, {si+1, . . . , n}. In particular ω is a λ-permutation. �

Theorem 2.14. The set C := {V(ω) : ω ∈Wn is a λ-permutation} provides a full set of
representatives for the G-conjugacy classes of Pλ-suitable groups without repetitions.

Proof. In Proposition 2.10 we have established that V(ω), where ω ∈ Wn is a λ-
permutation, is Pλ-suitable. Furthermore any two different such groups lie in different con-
jugacy classes, by Corollary 2.9.
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Now let V be Pλ-suitable. Then V is G-conjugate to some V ′ ≤ Un. Hence V ′ = Un∩Pλg,
for some g ∈ G. By Lemma 2.1 it follows that V ′ is G-conjugate to V(ω), where ω ∈Wn is
good with respect to λ. In particular ω is a λ-permutation, by Proposition 2.13. �

3. The number of components of kPλ↑GLn and their vertices

3. The number of components of kPλ↑GLn and their vertices
Let λ = (λ1, . . . , λr) be a composition of n. In the previous section we found all Pλ-

suitable groups up to G-conjugation. In fact we have shown that V is Pλ-suitable if and only
if V =G V(ω), where ω is a λ-permutation. Hence the set C from Theorem 2.14 contains
a vertex for each component of kPλ↑GLn . In this section we want to determine how many
components have each of the groups in C as a vertex. So for the remainder of this paper let
ω ∈Wn be a λ-permutation and set V := V(ω).

By a result of Burry and Carlson [2] the kG-module kPλ↑G and the k NG(V)-module⊕

g∈A
kPλg∩NG(V)↑NG(V) have the same number of components with vertex V , where A is a set

of representatives g for those (Pλ,NG(V))-double cosets of G with V ≤ Pλg.
Next suppose that V ≤ Pλg, for some g ∈ G. Since Un is a Sylow-p-group of Pλ it follows

that Vg
−1h ≤ Un, for some h ∈ Pλ. Now by Lemma 2.8 we have g−1h ∈ NG(V), and thus

g ∈ Pλ ·NG(V). Hence by the above paragraph we obtain that kPλ↑G has the same number of
components with vertex V as kPλ∩NG(V)↑NG(V).

Lemma 3.1. We have Pλ ∩ NG(V(ω)) = Bn.

Proof. Clearly Bn ⊆ Pλ∩NG(V). Next let X ∈ Pλ∩NG(V), such that X � Bn. Hence Xl,k �
0, for some k < l. Since X ∈ NG(V), Lemma 2.8 implies that there is some j ∈ {1, . . . , u}
such that Kj = In j and n1 + . . . + n j−1 < k < l ≤ n1 + . . . + n j. In particular ω(k) > ω(l).

On the other hand as X ∈ Pλ, then si + 1 ≤ k < l ≤ si+1, for some i ∈ {1, . . . , r}. But then
ω(k) < ω(l), as ω is good with respect to λ. This contradiction completes the proof. �

Lemma 3.2. Let ω ∈ Wn be a λ-permutation. Then there is exactly one component in
kPλ↑GLn with vertex V(ω).

Proof. Let V = V(ω). By the introduction of this section and Lemma 3.1 we know that the
number of components of kPλ↑GLn with vertex V coincides with the number of components
of kBn↑NG(V) with vertex V . This number in turn equals the number of projective components
of kBn/V↑NG(V)/V . We have

Bn/V � {Dn(A1, . . . , Au) : where Ai ∈ Dni , if Ki = Ini ,

and Ai ∈ Bni , if Ki = Ini}
and

NG(V)/V � {Dn(A1, . . . , Au) : where Ai ∈ Dni , if Ki = Ini ,

and Ai ∈ GLni , if Ki = Ini},
where Dni is the group of diagonal matrices in GLni . Hence

kBn/V↑NG(V)/V �
⊗

i:Ki=Ini

kBni
↑GLni .
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But every kBj↑GL j contains exactly one projective component, known as the Steinberg-
module, (see [4] for more details). Now the statement follows by [6, Proposition 1.2]. �

Finally we can state our main result.

Theorem 3.3. The number of components of kPλ↑GLn coincides with the number of λ-
permutations in Wn, and {V(ω) : ω ∈Wn is a λ-permutation} gives a full set of the different
vertices of the components of kPλ↑GLn .

Proof. We have seen that every component of kPλ↑GLn has a vertex of the form V(ω),
where ω ∈ Wn is a λ-permuation. By Corollary 2.9 we know that two such groups are not
G-conjugate. The result of Lemma 3.2 completes the proof. �

We conclude our paper with a specific example. Let λ = (3, 1, 2) be a composition of
n = 6. Then s1 = 0, s2 = 3, s3 = 4 and s4 = 6. Next observe that a λ-permutation ω acts on
the sets {1}, {2}, {3, 4, 5} and {6}. Hence there are exactly four λ-permutations and they are
ω1 = I6, ω2 = D6(I2, I3, I1), ω3 = D6(I2, I2, I2) and ω4 = D6(I3, I2, I1). In particular kPλ↑GL6

has exactly four components with the respective vertices

V(ω1) = U6

V(ω2) = {X ∈ U6 : X3,4 = X3,5 = X4,5 = 0},
V(ω3) = {X ∈ U6 : X3,4 = 0},
V(ω4) = {X ∈ U6 : X4,5 = 0}.
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