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Abstract

We consider the permutation module kaGL“(”f), where P is a parabolic group in the general
linear group GL,(p/) and k is an algebraically closed field of prime characteristic p. The ver-
tices of the components of these modules have been calculated in [9] by Tinberg, who studied
these modules for all groups with split BN-pairs in characteristic p. In this paper we show that
the idea of suitability is strong enough to find all p-groups that are vertex of some component
of kaGL“(Pf). Furthermore using a result of Burry and Carlson we show that all components
have a different vertex.

1. Introduction

Let G be a finite group with subgroup H. We are interested in the p-groups of G that
are vertices of components of the permutation-module k; 1%, where k is an algebraically
closed field of characteristic p. In [7] the author introduces the idea of H-suitability and in
an example shows how suitability could be applied to detect all p-groups that are vertices of
some component of kz1¢. Furthermore in that example suitability is at its most restrictive
as every H-suitable group turns out to be the vertex of a component of k;7¢. In the present
paper we present another example where this concept of suitability unfolds its full potential
by giving us only p-groups that are vertices of some component of the given permutation
module ky1°.

Next we describe the notion of H-suitability. A p-subgroup V of G is called H-suitable
(with respect to G and p), if for every S € Syl (G) with V < § there exists some g € G
so that V = S N HY. Here HY denotes the conjugate g~'Hg of H. In [7] we show that
H-suitability is a necessary condition for a p-group to be the vertex of a component of k¢
and present an example in which it is also sufficient. However in general an H-suitable
group is not necessarily the vertex of some component of k;T¢. For instance with respect
to the symmetric group Ss and p = 2 the trivial group is D-suitable, for the dihedral group
D :={(1234),(13)) < S5, but kpT55 has no projective summand. Nevertheless one can use
the concept of suitability to produce a list of potential candidates for a vertex by finding
all H-suitable groups. If this list is short enough one may then deal with each candidate
individually.

In [7] we see that if V is H-suitable then so is every G-conjugate of V. Hence given a
Sylow-p-group S of G the set A := {§ N HY : g € G} contains a representative of each
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770 L. PForRTE

conjugacy class of H-suitable groups. The following statement presents a method to shorten
the list given by A by finding groups that are not H-suitable. A more general version of the
statement with proof can be found in [7, Theorem 2.6.].

Lemma 1.1. Let S € Syl (G) and K < G. Also let T C G such that

1

(a) For every g € G thereisa € T so that S N H? = S N H* .
(b) Foralla« € T we have SN H < S.

() IfS*NH =k SY NH, fora,a’ €T, thena = .
Furthermore let V < S be H-suitable. Then there is some « € T such thatV =x S* N H.

Observe that Lemma 1.1 implies that every H-suitable group V that is contained in S is
a K-conjugate of both S N H*" and S# N H, for some a, B € T. In particular any group in
the set {S N HY :qe€ T} which has no K-conjugate in the set {S* N H : « € T} fails to be
H-suitable.

Let us now turn to our example for which we need the following notation. For the re-
mainder of this paper let n, f > 1 and set ¢ = p/, for some prime number p. Furthermore
let G := GL,(q) be the general linear group, that is, the group of invertible n X n-matrices
over the finite field F, with ¢ elements. Finally let k be an algebraically closed field of
characteristic p.

For any integer j > 1 we define GL; := GL;(q). By B; we denote the group of upper-
triangular matrices in GL;. Those elements in B; with 1’s on the main diagonal form the
group U;. Recall that U; is a Sylow-p-group of GL; and B; is the normalizer of U, in GL;.

Furthermore W; denotes the group of permutation matrices in GL;. There is a bijection
between the symmetric group Sym(j) and W;, in the sense that the permutation w € Sym()
corresponds to the permutation matrix (6, .(s))rs>» Where ¢ denotes the Kronecker-symbol.

Let A = (44,...,4,) be a composition of n, that is, 4, ..., A, are positive integers such
that 4; + ...+ 4, = n. Then for X, € GL,,, let D,(X;, X5, ..., X,) be the matrix in G, which
has X, ..., X, along the main diagonal and zeros otherwise. Similarly D, (X e, X;e, ..., X))
denotes any matrix in G which has X, ..., X, along the main diagonal, arbitrary elements in

[F, above and zeros below that diagonal. Finally we define
Py ={D,(X1e,Xze,....X,): X; € GL, }.

Then P, is a parabolic subgroup of G. For instance if A = (1) then P, = B,,.

The permutation module kp,T¢, where A is a composition of 7, has been studied before
and in more generality. Tinberg [9] studied these modules for all groups with split BN-pairs
in characteristic p. Further work was done by Canbanes [3] and Sin [8]. In particular the
vertices of all components are known as well as their Green correspondents. In this paper
we revisit kp, 19 and show that P,-suitability is a strong enough tool to find all p-groups
that are vertices of components of kp,7¢. In section 2 we find all P,-suitable groups up to
G-conjugation and in section 3 we show that all P,-suitable groups are vertex of exactly one
component of kp,1¢.

Next let 1 < k,[ < nsuch that k # [. By F;; we denote the subgroup of G that consists of
exactly those matrices that have ones on the main diagonal and zeros everywhere else except
in the (k, [)-entry, which is arbitrary in F,. One checks easily that for w € W, and k # [ we



PermuTATION MODULE INDUCED FROM PARABOLIC GROUPS 771

have Fy; = (Fu@.w@)?”. Finally by [5] a group V < U, is called a pattern group if Xy, # 0,
for some X € Vand 1 < k < [ < n, implies that F; < V. Note that a pattern group which
contains both Fy; and Fy,,, for k <[ < m, also contains Fy_,,.

Lemma 1.2. Let V,W < U, be pattern groups that are B,-conjugate. Then V = W.

Proof. It is enough to show that Fy; < V implies Fy; < W. So let Fy; < V, for some
k <[, and let g € F}; be non-trivial. By assumption there is & € B, so that g’ := gh e W. As
g, ; # 0 it now follows that Fy; < W. |

2. P,-suitable groups

In this section let 4 = (4;,...,4,) be a composition of n. Also set s; := Z};ll A, for
i=1,...,r,and s5,4 := n.

2.1. Good Permutations. We call w € W,, good with respect to 4, if w(s; + 1) < ... <
w(s;+ A, foralli=1,...,r.

Lemma 2.1. Every (B,, P,)-double coset in G contains a permutation matrix in W,, that
is good with respect to A.

Proof. Let g € G. Then by the Bruhat decomposition, (see [1]), and since B, < P,, there
exists u € W, such that B,, - g - Py = B, - - P,. Next let

ﬂ({si + 17 s St /ll}) = {kx,'-f-l’ v ’ks,-+/l,~}, where ks;+1 <...< k_s‘,'+/l,-’

foralli=1,...,r. Set y(j) := ,u‘l(kj), forall j=1,...,n. Theny € W,. Also observe that

v acts on the sets {s; + 1,...,s; + 4;}. Hence y € P,.
Next set w := u -y € W,. Since w(j) = ,u(;f'(kj)) = kj, forall j = 1,...,n, it follows
that w is good. Asnow B,, - g- Py = B, - w - P,, the proof is complete. m]

For any g € G we define V(g) := U,? N P,. The following lemma is then an easy exercise.
Lemma 2.2. Let w € W,, be good with respect to A. Then
V(w) ={X =D,(A1e,Aze,...,A): A;€U,, and
M X1 =0, forallk,l =1,...,n so that w(k) > w(l)}.
In particular V(w) < U, and V(w) is a pattern group.

Observe that Lemma 2.1 implies the following

Corollary 2.3. Every P,-suitable group is G-conjugate to some V(w), where w € W, is
good with respect to A.

Lemma 2.4. The set T of all w € W, that are good with respect to A satisfies the proper-
ties (a)-(c) in Lemma 1.1, where H = P,, S = U, and K = B,

Proof. Property (a) is a consequence of Lemma 2.1, property (b) follows since V(w) < U,
and property (c) is a consequence of Lemma 1.2 and the structure of V(w), as given in (1).
|
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Proposition 2.5. Let V < U, be a pattern group. If V is P-suitable, then V = V(w),
where w € W, is good with respect to A.

Proof. By Lemma 2.4 and Lemma 1.1 we have V =5 V(w), where w € W, is good with
respect to 4. Now V = V(w) follows from Lemma 1.2. m|

2.2. A-permutations. Recall that /; denotes the identity matrix in GL;. By I, we mean
the permutation matrix in GL; that has all its ones on the anti-diagonal. Also let w =
D,K,,...,K,) € W,, where K; € {Ini,l_,,i}, and ny + ... +n, = n. We call such w a A-
permutation if for allt = 1,...,r so that A, > 2 we have that w acts on each of the following
sets

{1,...,S1+ 1}9{st+2}a“-’{st+l - 1},{S[+1,...,n}.

Observe that every A-permutation is good with respect to A. In the following we show that
if w € W, is a A-permutation, then V(w) is P,-suitable.

Lemma 2.6. Let w € W, be a A-permutation. Then
V(w) = {Dy(A1e,Aze, ... A,) . where A; € U, ifK; =1,
and A; = I, if K; = 1, }.

Proof. Let S be the set on the right hand side. Then S = U,“NU, < P,. Since V(w) < U,
wegetS <U,“NP,=Vw)<U,“NnU,=5.Thus V(w) =S. O

Lemma 2.6 implies the following

Corollary 2.7. Let w € W, be a A-permutation. Then
(1) B, < Ng(V(w))
(2) If u € W,, such that V(wY* < U, then u = Dy(uy, . .., u,) where y; = 1, if K; = I,, and
/'ll' € Wn;: l.le = I_n,

Lemma 2.8. Let w € W, be a A-permutation. Also let N be the set of all matrices of the
from D,(Aje,Aze, ... A,) where A; € B, if K; = 1,, and A; € GL,,, if K; = I,,. Moreover
let g € G such that V(w)? < U,,.. Then g € N. In particular Ng(V(w)) = N.

Proof. By the Bruhat decomposition there are A, B € B, and u € W,, such that g = AuB.
As B, € Ng(V(w)) we have V(w)* < U, and thus u € N, by Corollary 2.7. Since B, C N,
we get g € N. Now Ng(V(w)) € N follows. As one checks easily that N normalizes V(w),
the proof is complete. m|

Corollary 2.9. Let wi,wy; € W, be A-permutations so that V(w,) =g V(w,). Then
w1 = W).

Proof. As V(w1)? = V(wy) < U, for some g € G, we have g € Ng(V(wy)), by Lemma
2.8. Thus V(wy) = V(w>). Now w; = w, follows from (1). ]

Proposition 2.10. Let w € W, be a A-permutation. Then V(w) is P,-suitable.
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Proof. Since V(cu)“f1 < U, it follows w™' € Ng(V(w)), by Lemma 2.8. Thus V(w) =
U, N Pﬂ”_l. Note that U,, € Sylp(NG(V(a)))). So the statement follows from [7, Lemma
2.2.3)]. ]

2.3. The P,-suitable V(w). In the following let w € W,, be good with respect to A so that
V(w) is P,-suitable. We aim to show that w is a A-permutation.

Lemma 2.11. Let Fy; < V(w), that is, w(k) < w(l), for some k < I. Then

(1) F;y < V(w), that is, w(t) < w(l), forallt =1,...,k
(2) Fry < V(w), that is, wk) < w(t), forallt=1,...,n.

Proof. We prove part (1) by contradiction. Without lose of generality we may assume that
Fr-1; £ V(w). In particular Fy_;; £ V(w). Next let © € W,, correspond to the permutation
(k—1,k) € Sym(n), and set V := V(w)*. Then V < U, is a P,-suitable pattern group, and
s0, by Proposition 2.5, there is @ € W, that is good with respect to A such that V = V(a).

As Fk,k—l j<_ V(w), Fk—l,l j<_ V(w) and Fk,[ < V(w), we have Fk—l,k j<_ V(a/), Fk,[ f_ V((I) and
Fr_1; < V(a). That forces a(k) < a(k — 1), a(l) < a(k) and a(k — 1) < a(l), respectively.
This contradiction proves part (1). A similar argument proves part (2). m|

Corollary 2.12. If w(k) < w(k + 1), then w acts on the sets {1, ...k} and {k + 1,...,n}.

Proof. Let r € {1,...,k}. Then w(r) < w(k + 1), by Lemma 2.11 (1). Hence w(r) < w(?),
forallt = k+1,...,n, by Lemma 2.11 (2). In particular w({1,...,k}) C {1,...,k}, and the
statement follows. O

Proposition 2.13. Let w € 'W,, be good with respect to A such that V(w) is P-suitable.
Then w is a A-permutation.

Proof. First we show that w = D, (K}, ..., K,), where K; € {I”,,,I_n,.}, andn, +...+n, = n.
Clearly there is some k € {0, 1,...,n} such that w = D, (Kj, ..., K,,w"), where K; € {Ini,E},
ny+...+n, =kand " € W,_;. Let us choose kK maximal with this property and suppose
k < n. Observe that w acts on the sets {1,...,k} and {k + 1,...,n}. Also the maximality
of k implies that w(k + 1) # k+ 1. Next let /[ > k + 1 be maximal such that w(k + 1) >
wk+2)...> w(l). Since [ = n or w(l) < w(l+ 1), it follows from Corollary 2.12 that w acts
on the set {k + 1,...,1} and it does so like the permutation matrix /,_;. But this contradicts
the maximality of &, and thus k = n.

Now leti € {1,...,r} sothat 4; > 2. As w is good with respect to A we have w(s; + 1) <

. < w(sit1). Now Corollary 2.12 implies that w acts on the sets {1,...,s; + 1},{s; +
2}, ..o {sie1 — 1}, {Six15 - - - s ). In particular w is a A-permutation. O

Theorem 2.14. The set C := {V(w) : w € W, is a A-permutation} provides a full set of
representatives for the G-conjugacy classes of P,-suitable groups without repetitions.

Proof. In Proposition 2.10 we have established that V(w), where w € W, is a A-
permutation, is P,-suitable. Furthermore any two different such groups lie in different con-
jugacy classes, by Corollary 2.9.
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Now let V be P,-suitable. Then V is G-conjugate to some V' < U,,. Hence V' = U,NP,Y,
for some g € G. By Lemma 2.1 it follows that V’ is G-conjugate to V(w), where w € W, is
good with respect to A. In particular w is a A-permutation, by Proposition 2.13. m|

TGL

3. The number of components of kp, T and their vertices

Let 4 = (441,...,4,) be a composition of n. In the previous section we found all P,-
suitable groups up to G-conjugation. In fact we have shown that V is P,-suitable if and only
if V =¢ V(w), where w is a A-permutation. Hence the set C from Theorem 2.14 contains
a vertex for each component of kp, 1%, In this section we want to determine how many
components have each of the groups in € as a vertex. So for the remainder of this paper let
w €W, be a A-permutation and set V := V(w).

By a result of Burry and Carlson [2] the kG-module kp/[TG and the k Ng(V)-module

EB kp/l.flnNG(V)TNG(V) have the same number of components with vertex V, where A is a set

geA
of representatives g for those (P,, Ng(V))-double cosets of G with V < P,9.

Next suppose that V < P,9, for some g € G. Since U,, is a Sylow-p-group of P, it follows
that V9 " < U,,, for some h € P,. Now by Lemma 2.8 we have g~'h € Ng(V), and thus
g € Py -Ng(V). Hence by the above paragraph we obtain that kp, T G has the same number of
components with vertex V as kP,mNG(V)TNG(V).

Lemma 3.1. We have P, N Ng(V(w)) = B,.
Proof. Clearly B, € PyNNg(V). Nextlet X € PyNNg(V), such that X ¢ B,. Hence X;; #

0, for some k < [. Since X € Ng(V), Lemma 2.8 implies that there is some j € {1,...,u}
such that K; = Ejand n+...+nj <k<Il<n +...+n; Inparticular w(k) > w(l).

On the otherhand as X € Py, thens; + 1 <k <[ < s;41, forsome i € {1,...,r}. But then
w(k) < w(l), as w is good with respect to A. This contradiction completes the proof. |

Lemma 3.2. Let w € W, be a A-permutation. Then there is exactly one component in
kp ATGL” with vertex V(w).

Proof. Let V = V(w). By the introduction of this section and Lemma 3.1 we know that the
number of components of kp, 7 with vertex V coincides with the number of components
of kg, T™N¢(V) with vertex V. This number in turn equals the number of projective components
of an/VTNG(V)/V. We have

B,V ={D,(A,,...,A,) : where A; € D, ,ifK; =1,,
and A; € B, if K; = 1,,))
and
Ne(V)/V = {D,(A,y,...,A,) : whereA; € D, it K; = I,
and A; € GL,,,, if K; = 1,,},

where D,, is the group of diagonal matrices in GL,,. Hence

ko 10 = @) ky, 1

iKi=I,
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But every kBjTGLf contains exactly one projective component, known as the Steinberg-

module, (see [4] for more details). Now the statement follows by [6, Proposition 1.2]. m]

Finally we can state our main result.

Theorem 3.3. The number of components of kp,T6-
permutations in W,,, and {V(w) : w € W, is a A-permutation} gives a full set of the different

vertices of the components of kp, 1.

" coincides with the number of A-

Proof. We have seen that every component of kp ATGL" has a vertex of the form V(w),

where w € W, is a A-permuation. By Corollary 2.9 we know that two such groups are not
G-conjugate. The result of Lemma 3.2 completes the proof. |

We conclude our paper with a specific example. Let 4 = (3,1,2) be a composition of
n = 6. Then 51 =0, 55 = 3, s3 =4 and s4 = 6. Next observe that a A-permutation w acts on
the sets {1}, {2}, {3.4,5} and {6}. Hence there are exactly four A-permutations and they are
w1 = 16, wy = D6(12,E, 11), w3 = D6(12,E’ 12) and Wy = D6(13,E, 11). In particular kPATGLf’
has exactly four components with the respective vertices

V(wy) = Us

V() ={X € Us: X34 =X35=Xy45=0},
V(ws) ={X € Us : X34 =0},

V(ws) = (X € Ug : X45 = O},
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