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Abstract

We say a graph has property 7, , when it is an induced subgraph of the curve graph of a
surface of genus g with p punctures. Two well-known graph invariants, the chromatic and
clique numbers, can provide obstructions to 7, ,. We introduce a new invariant of a graph, the
nested complexity length, which provides a novel obstruction to P, ,. For the curve graph this
invariant captures the topological complexity of the surface in graph-theoretic terms; indeed we
show that its value is 6g — 6 + 2p, i.e. twice the size of a maximal multicurve on the surface. As
a consequence we show that large ‘half-graphs’ do not have 7, ,, and we deduce quantitatively
that almost all finite graphs which pass the chromatic and clique tests do not have P, ,. We also
reinterpret our obstruction in terms of the first-order theory of the curve graph, and in terms of
RAAG subgroups of the mapping class group (following Kim and Koberda). Finally, we show
that large complete multipartite graphs cannot have 7, ,. This allows us to compute the upper
density of the curve graph, and to conclude that clique size, chromatic number, and nested
complexity length are not sufficient to determine P ,.

1. Statement of results

Let S indicate a hyperbolizable surface of genus g with p punctures (i.e. 2g + p > 2). The
curve graph of §, denoted C(S), is the infinite graph whose vertices are isotopy classes of
simple closed curves on S and whose edges are given by pairs of curves that can be realized
disjointly. Let P, , indicate the property that a graph is an induced subgraph of the curve
graph C(S'). We are concerned with the following motivating question:

Question 1. Which finite graphs have P, ,? When is P, , obstructed?

The low complexity cases Py 3, Po4, and P are trivial, so we assume further that 3g+p >
5. See §2 for details and complete definitions.

Property P, , has been considered in different guises in the literature [8, 6, 7, 14, 11, 12,
13]. It is not hard to see that every finite graph has P, for large enough g, though it is
remarkable that there exist finite graphs which do not have Py, for any p [8, §2].! Question
1 above is especially salient when g and p are fixed, and we adopt this point of view in
everything that follows.

There are few known obstructions to a graph G having property P, ,. The simplest is
the presence of a clique of G that is too large, as the size of a maximal complete subgraph
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of C(S) is 3g — 3 + p. A more subtle obstruction follows from a surprising fact proved by
Bestvina, Bromberg, and Fujiwara: the graph C(S) has finite chromatic number [4, 11].

We introduce an invariant of a graph G which we call the ‘nested complexity length’
NCL(G) that controls the topological complexity of any surface whose curve graph contains
G as an induced subgraph (see §4 for a precise definition). The following is our main result,
providing a new obstruction to 7, ,,. In fact, our calculation applies equally well to the clique
graph C(S) of C(S), whose vertices are multicurves and with edges for disjointness.

Theorem 2. We have NCL(C(S)) = NCL(C(S)) = 6g — 6 + 2.

The nested complexity length of a graph is obtained via a supremum over all nested
complexity sequences, and while this definition is useful in light of the theorem above, we
know of no non-exhaustive algorithm that computes the nested complexity length of a finite
graph. Thus it is natural to ask:

QuestioN 3. What is an algorithm to compute the nested complexity length of a finite
graph? How can one find effective upper bounds?

As a starting point toward this question, Proposition 23 gives an upper bound for the
nested complexity length of a graph G which is exponential in the maximal size of a com-
plete bipartite subgraph of G.

We describe several corollaries of Theorem 2 below. The first concerns half-graphs, a
family of graphs that has attracted study in combinatorics and model theory.

DeriniTioN 4. Given an integer n > 1 and a graph G, we say that G is a half-graph of
height n if there is a partition {ay,...,a,} U {b,...,b,} of the vertices of G such that the
edge e(a;, bj) occurs if and only if i > j. The unique bipartite half-graph of height n is
denoted H,,.

In Example 25, we observe that if G is a half-graph of height n then NCL(G) > n. Because
NCL is monotone on induced subgraphs, the following is an immediate consequence of
Theorem 2.

Corollary 5. If G is a half-graph of height n, with n > 6g — 6 + 2p, then G does not have
Py

Since H, is 2-colorable and triangle-free, Corollary 5 implies:

Corollary 6. Chromatic number and maximal clique size are not sufficient to determine
if a finite graph has Py, .

In fact, a more dramatic illustration of Corollary 6 can be made quantitatively. By def-
inition, P, , is a hereditary graph property (i.e. closed under isomorphism and induced
subgraphs). Asymptotic enumeration of hereditary graph properties has been studied by
many authors, resulting in a fairly precise description of possible ranges for growth rates [3,
Theorem 1]. Combining Corollary 5 with a result of Alon, Balogh, Bollobas, and Morris
[1], we obtain an upper bound on the asymptotic enumeration of 7, ,. The argument for
the following is in §4. Given n > 0, let P, ,(n) denote the class of graphs with vertex set
[n] = {1,...,n} satisfying PP, ,.
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€

Corollary 7. There is an € > 0 such that, for large n, |P, ,(n)| < 2

The set of graphs on [n] satisfying the clique and chromatic tests for 7, , includes all
(3g + 3 — p)-colorable graphs on [n], and thus this set has size 20" In particular, the upper
bound above cannot be obtained from the clique or chromatic number obstructions to 7, ,.
This also strengthens the statement of Corollary 6: among the graphs on [#] satisfying the
clique and chromatic tests, the probability of possessing 7, , tends to 0 as n — oo.

For monotone graph properties (i.e. closed under isomorphism and subgraphs), even more
is known concerning asymptotic structure [2]. However, we can use Corollary 5 to show that
in most cases, P, , is not monotone.

Corollary 8. If3g + p > 6 then P, , is not a monotone graph property.

Proof. If 3g + p > 6 then S contains a pair of disjoint incompressible subsurfaces that
support essential nonperipheral simple closed curves. It follows that the complete bipartite
graph K, , has property P, , for all n € N. However, the half-graph H, is a subgraph of K, ,.

O

It is also worth observing that, for 3g + p > 6, this result thwarts the possibility of
using the Robertson-Seymour Graph Minor Theorem [20] to characterize P, , by a finite
list of forbidden minors. Of course this would also require 7P, , to be closed under edge
contraction, which is already impossible just from the clique number restriction. Indeed,
edge contraction of the graphs K, , produces arbitrarily large complete graphs.

REmMARK 9. Neither of the exceptional cases P s and P, , are closed under edge contrac-
tion, as each contains a five-cycle but no four-cycles by Lemma 30. However, it remains
unclear whether Pys and P;, are monotone graph properties; while Theorem 2 applies,
complete bipartite graphs do not possess P, , in these cases.

Following Kim and Koberda, Question 1 is closely related to the problem of which right-
angled Artin groups (RAAGs) embed in the mapping class group Mod(S) of S [14, 11, 12,
13]. If the graph G has P, ,, then A(G) is a RAAG subgroup of Mod(S) [14, Theorem 1.1].
The converse is false in general [13, Theorem 3], but a related statement holds: if the RAAG
A(G) embeds as a subgroup of Mod(S), the graph G is an induced subgraph of the clique
graph C/(S) [11, Lemma 3.3].

By exploiting a construction by Erd&s of graphs with arbitrarily large girth and chromatic
number, Kim and Koberda produce ‘not very complicated’ (precisely, cohomological dimen-
sion two) RAAGs that do not embed in Mod(S) [11, Theorem 1.2]. Rephrasing Theorem 2
in this context, the graphs H, provide such examples which are ‘even less complicated’.

Corollary 10. If A(G) is a RAAG subgroup of Mod(S), then
NCL(G) <6g—-6+2p.

Moreover, for any g and p there exist bipartite graphs G so that A(G) does not embed in
Mod(S').

The nested complexity length of a graph G is closely related to the centralizer dimension
of A(G), i.e. the longest chain of nontrivially nested centralizers in the group (this algebraic
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invariant is discussed elsewhere in the literature [18]). In particular, it is straightforward
from the definitions that the centralizer dimension of A(G) is at least NCL(G). The possible
centralizers of an element of a RAAG have been classified by Servatius [21], and the char-
acterization there would seem to suggest that equality does not hold in general. Of course,
this is impossible to check in the absence of a method to compute nested complexity length,
and Question 3 arises naturally.

Our next corollary concerns the model theoretic behavior of C(S). We focus on stability,
one of the most important and well-developed notions in modern model theory. Given a
first-order structure, stability of its theory implies an abstract notion of independence and
dimension for definable sets in that structure (see Pillay [19] for details). Stability can also
be treated as a combinatorial property obtained from half-graphs. Given an integer k > 1,
we say that a graph G is k-edge-stable if it does not contain any half-graph of height n > k
as an induced subgraph. We can thus rephrase Corollary 5.

Corollary 11. C(S) is k-edge-stable for k = 6g — 5 + 2p.

When considering the first-order theory of C(S) in the language of graphs, this corol-
lary implies that the edge formula (and thus any quantifier-free formula) is stable in the
model theoretic sense [23, Theorem 8.2.3]. Whether arbitrary formulas are stable remains
an intriguing open question, and would likely require some understanding of quantifier elim-
ination for the theory of C(S') in some suitable expansion of the graph language. This aspect
of the nature of curve graphs remains unexplored, and stability is only one among a host of
natural questions about their first-order theories to pursue.

On the other hand, edge-stability of C(S') alone has strong consequences for the structure
of large finite subgraphs of C(S), via Szemerédi’s regularity lemma [15, 22]. In particular,
Malliaris and Shelah show that if G is a k-edge-stable graph, then the regularity lemma can
be strengthened so that in Szemerédi partitions of large induced subgraphs of G, the bound
on the number of pieces is significantly improved, there is no need for irregular pairs, and
the density between each pair of pieces is within € of 0 or 1 [16]. Thus a consequence of our
work is that the class of graphs with 7, , enjoys this stronger form of Szemerédi regularity.

Next we consider an explicit family of multipartite graphs.

DermniTion 12. Given integers r,t > 0, let K,(f) denote the complete r-partite graph in
which each piece of the partition has size ¢.

In Example 25, we show NCL(K,(2)) = 2r. Combined with the Erd6s-Stone Theorem,
this implies a general relationship (Proposition 28) between nested complexity length and
the upper density 6(G) of an infinite graph G, i.e. the supremum over real numbers ¢ such
that G contains arbitrarily large finite subgraphs of edge density ¢. In the case of the curve
graph C(S), we show in Lemma 30 that K,(¢) is obstructed from having 7, , for large r.
From this we obtain the following exact calculation of the upper density of the curve graph,
which is proved in §6.

1

Theorem 13. The upper density 6(C(S)) is equal to 1 — ——————.
g+15E1-1

Remark 14. The exceptional cases (g, p) = (0,5) and (1, 2) are again remarkable in that
they imply 6(C(S)) = 0 in Theorem 13. Thus any family of graphs {G,} with P, , and



Finite SuBGRAPHS OF THE CURVE GRAPH 799
|[V(G,)| — oo in these exceptional cases must satisty |E(G,)| = o(IV(G)P).

Question 15. Given (g, p) = (0,5) or (1,2), does there exist € > 0 such that, for any
family of graphs {G,} with P, , and |V(G,)| — oo one has |[E(G,)| = O(IV(G,)*)?

Finally, we use the analysis of P, , for K,(¢) to extend Corollary 6.

Corollary 16. Chromatic number, maximal clique size, and nested complexity length are
not sufficient to determine if a finite graph has P, .

Proof. Forr = g+ L‘”T”J, the graph K,(2) does not have P, , by Lemma 30, but passes the
clique, coloring, and NCL tests. Indeed the chromatic number of C(S) is at least its clique
number 3g — 3 + p, which is greater than r (the clique and chromatic number of K,(2)).
Moreover, by Example 25 and Theorem 2, we have NCL(K,(2)) = 2r < NCL(C(S)). O

2. Notation and conventions

We briefly list definitions and notation relevant in this paper, with the notable exception of
nested complexity length (found in §4). For background and context see Farb and Margalit
[10].

A graph G consists of a set of vertices V(G) and an edge set E(G) which is a subset
of unordered distinct pairs from V(G); we denote the edge between vertices v and w by
e(v,w) € E(G). A subgraph H C G is induced if v,w € H and e(v,w) € E(G) implies that
e(v,w) € E(H). The closed neighborhood of a vertex v € V(G) is the set of vertices

N[v] = {v} U{u € V(G) : e(u,v) € E(G)}.

Given a graph G the right-angled Artin group corresponding to G, denoted A(G), is de-
fined by the following group presentation: the generators of A(G) are given by V(G) and
there is a commutation relation vw = wo for every edge e(v, w) € E(G).

Recall that we are concerned with the hyperbolizable surface S of genus g with p punc-
tures, so we assume that 2g + p > 2. The mapping class group of S, denoted Mod(S), is the
group mo(Homeo™(S)).

By a curve we mean the isotopy class of an essential nonperipheral embedded loop on
S, and we refer to the union of curves which can be made simultaneously disjoint as a
multicurve. The curve graph C(S) is the graph consisting of a vertex for each curve on
S, and so that a pair of curves span an edge when the curves can be realized disjointly.
The clique graph C'(S) of the curve graph is the graph obtained as follows: The vertices
of C(S) correspond to cliques of C(S) (i.e. multicurves), and two cliques are joined by
an edge when they are simultaneously contained in a maximal clique (i.e can be realized
disjointly). The curve graph is the subgraph of the clique graph induced by the one-cliques.

We strengthen the assumption on g and p above to 3g + p > 5. When (g, p) = (0, 3) the
curve graph as defined above has no vertices. When (g, p) = (0,4) or (1, 1), the curve graph
has no edges, and the matter of deciding if a graph has P, , in these cases is trivial. The
common alteration of the definition of these curve graphs yields the Farey graph. We make
no comment on induced subgraphs of the Farey graph, though a comprehensive classification
can be made.



800 E.A. BErRING IV, G. CoNaNT AND J. GASTER

Whenever we refer to a subsurface ¥ C S we make the standing assumption that X is a
disjoint union of closed incompressible homotopically distinct subsurfaces with boundary
of S, i.e. the inclusion £ C § induces an injection on the fundamental groups of components
of X. We write [X] for the isotopy class of X.

Given a subsurface £ C S, we say that a curve vy is supported on X if it has a representa-
tive which is either contained in an annular component of Z, or is a nonperipheral curve in a
(necessarily non-annular) component. The curve vy is disjoint from X if it is has a representa-
tive disjoint from X. We say that vy is fransverse to X, written y (h X, if it is not supported on
> and not disjoint from X. A multicurve vy is supported on (resp. disjoint from) X if each of
its components is supported on (resp. disjoint from) Z, and vy is transverse to X if at least one
of its components is. Each of these above definitions applies directly for curves and isotopy
classes of subsurfaces.

We note that the definitions above may be nonstandard, as they are made with our specific
application in mind. For example, in our terminology the core of an annular component of
X is both supported on and disjoint from the subsurface X.

Given a pair of subsurfaces £, and Z,, we write [X;] < [X,] when every curve supported
on X; is supported on X,. If [X;] < [X;] and [X;] # [2>] (denoted [Z;] < [X,]), we say that
[X:] and [X;] are nontrivially nested.

Given a collection of curves C, we let [X(C)] indicate the isotopy class of the minimal
subsurface of S, with respect to the partial ordering just defined, that supports the curves
in C. Concretely, a representative of [X(C)] can be obtained by taking the union of regular
neighborhoods of the curves in C (for suitably small regular neighborhoods that depend on
the realizations of the curves in C) and filling in contractible complementary components of
the result with disks.

A set of curves C supported on a subsurface X fills the subsurface if [2(C)] = [X]. Con-
cretely, C fills X if the core of each annular component of X is in C, and if the complement
in X of a realization of the remaining curves consists of peripheral annuli and disks. Given
a subsurface X, we write £(X) for the number of components of a maximal multicurve sup-
ported on X.

3. Topological complexity of subsurfaces

Since the ambient surface S is fixed throughout, it should not be surprising that any non-
trivially nested chain of subsurfaces of S has bounded length. We make this explicit below,
using &£(§) to keep track of ‘how much’ of the surface has been captured by subsurfaces
from the chain. In fact, this is not quite enough to notice nontrivial nesting of subsurfaces,
as annuli can introduce complications. We keep track of this carefully in Lemma 20 below.
Throughout this section, X; and X, refer to a pair of subsurfaces of §.

Lemma 17. If [Z,] < [X,], then X is isotopic to a subsurface of X,.

The reader is cautioned that the converse is false: consider a one-holed torus subsurface
T and let 7’ indicate the disjoint union of 7" with an annulus isotopic to dT. Though 7" is
isotopic to a subsurface of T, the curve 97 is supported on 77 but not on 7. Thus [7T”] £ [T].
Proof. Choose a collection of curves C filling ;. Since [X;] < [X,], each curve in C is
supported on X,. It follows that there are small enough regular neighborhoods of represen-
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tatives of the curves in C that are contained in Z,. Filling in contractible components of the
complement produces a subsurface isotopic to Z; inside ;. m|

Lemma 18. If[X] < [X;] and [Z;] < [X1], then [X1] = [X2].

Proof. Fix representatives X; C X, using the previous lemma. Let C be a collection of
curves that fill ¥,. Since [X,] < [X;] the curves in C can be realized on X; so that they have
regular neighborhoods contained in Z;. Their complement in %, is a collection of disks and
peripheral annuli, so their complement in £; must also be a collection of disks and peripheral
annuli. Hence C fills ; and [Z;] = [2(C)] = [Z;]. ]

Lemma 19. Suppose that [Z1] < [X;]. Then one of the following holds:
(1) we have £(21) < £(X), or
(2) there exists a curve a which is the core of an annular component of X, but not
disjoint from X,.

Proof. By Lemma 18 we have [X,] £ [X1]. Thus there is a curve y supported on X, that is
not supported on X;. If v were the core of an annular component of X, then £(X;) < &(%,)
would be immediate. Likewise if y were disjoint from X, then £(Z) < é(Z,) again.

We are left with the case that 7y is transverse to ;. Choose a boundary component @ of
%, intersected essentially by y. Evidently, this curve must be supported on X,. Since « is
supported on X,, either one has £(X;) < £(Z;) or « is supported as well on X;. In this case,
« is the core of an annular component of X, intersected essentially by y. If @ could be made
disjoint from X, then its intersection with y would be inessential, so we are done. m]

Lemma 20. Suppose that O # [£1] < [Z2] < ... < [Z,] is a nontrivially nested chain of
subsurfaces of S. Thenn < 6g — 6 + 2p.

Proof. Choose k with 1 < k < n -1, and let ¢, = &(X;). We construct, inductively on
k, a (possibly empty) multicurve w. Evidently, we have [£;] < [X,], so that by Lemma 19
either ¢; < ¢, or there is a curve ) isotopic to the core of an annular component of X; but
not disjoint from %,. In the second case, add a; to w. Note that in the latter case there is a
representative for a; which is contained in X;.

We continue inductively. Since we have [X;] < [Z;+1], Lemma 19 guarantees that either
cr < Cry1, OF there is a curve «; isotopic to the core on an annular component of X; but not
disjoint from Z;.;. Suppose that, for some i < k, the curve @; is another component of w
supported on X;. Since a; has a representative disjoint from X, and [¥;] < [Z;], ay has a
representative disjoint from X;. Moreover, because @; cannot be made disjoint from X;,; but
ay can be (since [Z;41] < [Zk]), the curves @; and «; are not isotopic. It follows that the
curve @ may be added to the multicurve w so that w remains a collection of disjoint curves,
and so that its number of components increases by one.

At each step of the chain [X;] < [2,] < ... < [Z,], either ¢ strictly increases, or w gains
another component. Since [£] # 0 and [Z,] < [S], we have 1 < ¢; and ¢, < &(S). The

number of components of w is also at most £(S), so we conclude that
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n<26(S)=6g—-6+2p.

Finally, we will make use of a straightforward certificate that [X;] < [2,].

Lemma 21. Suppose that [£1] < [X;]. If « is a curve disjoint from X, B is a curve
supported on Xy, and a and 3 intersect essentially, then [X{] < [X;].

Proof. Because « is disjoint from X, it has a representative disjoint from X;. If 8 were
supported on X, it would have a representative contained in X, contradicting the assumption
that @ and 3 intersect essentially. Thus § is a curve supported on X, but not supported on X;.

O

4. The nested complexity length of a graph

The topological hypotheses of Lemma 21 suggest a natural combinatorial parallel, which
we capture in the definition of nested complexity length.

DermNiTION 22. Let G be a graph.

(1) Given by,...,b, € V(G), we say that (by,...,b,) is a nested complexity sequence for G
if foreach 1 < k <n—1thereis a; € V(G) such that by, ..., b, € N[ay] ? bis1.
(2) The nested complexity length of G, denoted NCL(G), is given by

NCL(G) :=sup{n| (by,...,by) is a nested complexity sequence for G}.

Fig. 1. A graph acquires some nested complexity. Dotted lines indicate
edges that are necessarily absent.

Note that in the definition of a nested complexity sequence, a; may be equal to b;, for
1 < i < k; see Figure 1 for a schematic in which this is not the case. To highlight this
subtlety, and as a first step toward an answer to Question 3, we prove an upper bound for
NCL(G) in terms of a maximal complete bipartite subgraph of G.
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Proposition 23. Let G be a graph. Fix m,n > 0 and suppose G does not contain a
subgraph isomorphic to K, ,. Then NCL(G) < 2"+ — 2,

Proof. Given k > 0, let s; = 2! — 2. Note that s, = 2(sg_; + 1). Set N = 2"+ _ 1 =
sm+n + 1. For a contradiction, suppose (by,...,by) is a nested complexity sequence for G,
witnessed by ay, ..., ay-1.

We inductively produce values j; < ... < jun < N below, such thatforall 1 <r <m+n,
Jr < srand a;, # b; for all i < j,.. With these indices chosen, the set {b;,...,b; } U
{aj,.....,aj,.,} € V(G) produces a (not necessarily induced) subgraph of G isomorphic to
K0, a contradiction.

If a; # by then we set j; = 1. Otherwise, if a; = b; then by, b, are independent vertices
in N[a;]. So a, ¢ {b;, b,}, and we set j; = 2.

Fix 1 < r < m + n, and suppose we have defined j, as above. If a; i # b; for all
i < j,+ 1 then we let j,; = j-+ 1. Otherwise, let k = j, + 1 and suppose a; = b,
for some iy < k. We will find ¢ such that k < ¢+ < 2k and a, # b; for any i < t. By
induction, 2k < 2(s, + 1) = 5,41 < N, and so setting j,;; = ¢ finishes the inductive step of
the construction.

Suppose no such ¢ exists. Then for all k£ < r < 2k, we have a;, = b; for some i; < .
Fix 1 < s < k. Forany 0 < u < s, we have ayyy, = bj,,,, and s0 b1 € N[bj, 1.
Therefore, for any 0 < u < s, biyuy1 and b, are independent vertices in N[ax,], which
means iy & {Pksus1,bj,,, ). In other words, we have shown that for all 1 < s <k,

Jkes Lk + 1,000k + 8, Jis Jrrts oo Jhrs—1)

It follows that ji, jit1, ..., jor are k + 1 distinct elements of {1, ..., k}. O

We make note of two useful properties of NCL that follow immediately from the defini-
tions.

Proposition 24.
(1) If H is an induced subgraph of G, then NCL(H) < NCL(G).
(2) We have NCL(G) < |V(G)).

We also give the following examples, which are heavily exploited in the results outlined
in §1.

ExamPpLE 25.

(1) Let G be a half-graph of height n. We may partition the vertices as V(G) =
{ai,...,a,} U {b1,...,b,}, where e(a;,b;) € E(G) if and only if i > j. Then
(by,...,b,)1s anested complexity sequence for G, witnessed by ay, ..., a,_;. There-
fore NCL(G) > n.

(2) Let G be the multipartite graph K,(2). Let V(G) = {b, ..., by} where e(by_1, b)) ¢
E(G)for1 <k <r. Seta; =by. For2 <k <rletay_ = by and ay_ = by_;.
Then (by, ..., by,) is a nested complexity sequence for G, witnessed by aj, ..., az—.
Combined with Proposition 24(2), we have NCL(G) = 2r.

With the first example in hand, we immediately derive Corollary 5 from Theorem 2. We
can also give the proof of Corollary 7.
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Proof of Corollary 7.  Given k > 0, let U'(k) denote the class of graphs G for which
there is a partition V(G) ={a; : 1 <i <k}U{b; : J C {1,...,k}} such that e(a;, by) holds
if and only if i € J. Any graph in U’(k) contains an induced half-graph of height k (take
{ai: 1 <i<kbu{by :1<1i<k}, whereJ; ={i,...,k}). By Corollary 5, every graph with
P, , omits the class U'(k) for k > 6g — 6 + 2p. The result now follows immediately from

g
Theorem 2 of Alon, et al. [1]. ]

5. Proof of Theorem 2

Recall that [Z(C)] refers to the minimal isotopy class, with respect to inclusion, of a
subsurface of S that supports the curves in C.

Proof of Theorem 2. As C(S) is an induced subgraph of C(S), Proposition 24(1) ensures
that NCL(C(S)) < NCL(C(S)). We proceed by showing that 6g — 6 + 2p is simultaneously
a lower bound for NCL(C(S)) and an upper bound for NCL(C(S)).

For the lower bound, choose a maximal multicurve {y1,...,¥3,-34+,}. For each curve
i, choose a transversal n;, i.e. a curve intersecting y; essentially and disjoint from 7y; for
J # i. That such collections of curves exist is routine (e.g. a ‘complete clean marking’ in the
language of Masur and Minsky [17, §2.5] is an even more restrictive example, see Figure 2).

Fig.2. A bold maximal multicurve {y;,y»,v3} and a lighter set of transver-
sals {n1,m2,m3}.

Foreach 1 <i < 6g— 6+ 2p, let the curves a; and 8; be given by

,8—% 1<i<3g-3+p
" migsen 39-3+p<i<6bg—6+2p,
Nix1 1Sl§3g—4+p
;=
l Yi-(Bg—d+p) 3g—4+p<i<b6bg-T+2p.
It is straightforward to check that (8, . .., Bsg—-6+25) forms a nested complexity sequence for
C(S), with witnessing curves (ay, . . ., @eg-7+2p)-
Towards the upper bound, suppose (B, . . .,3,) is a nested complexity sequence for C¢/(S),
so that there exists a vertex ay in C/(S) with By, ..., B € N[ay] # Bis1 foreach 1 <k <n-—1

as in Definition 22. For 1 < k < n, let By = {B1,...,B«}, and let [Z;] = [E(By)].

Choose k < n—1. Because By C By, we have [X;] < [Zx41]; as By C N[a], a4 is disjoint
from X; and since By+1 € B+ we have that ;. is supported on X;,. Because Sy ¢
Nlayil, @, and By, are independent vertices of C(S), and so there are components of the
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multicurves o and S that intersect essentially. Lemma 21 applies, so that [2;] < [Zg41].
Thus 0 # [X] < [%,] < ... < [Z,] is a nontrivially nested chain of subsurfaces, and Lemma
20 implies that n < 6g — 6 + 2p. O

RemMark 26. The upper bound can be strengthened for C(S') under the additional assump-
tion that the antigraphs of the subgraphs induced on the vertices {by, ..., b} are connected
for each k (indeed, in this case the negative Euler characteristic of X is strictly less than that
of Xi41). In particular, if n > 2¢g + p then the bipartite half-graph H, does not have P, ,.

6. Obstructing K, (¢) and the upper density of the curve graph

We turn to K,(¢) and the upper density of curve graphs.

DerintTion 27. Let G be a graph.
(1) If |G| = n > 1 the density of G is
|E(G)]

G

0(G) =

(2) If G is infinite the upper density of G is

6(G) = limsup O(H).
HCG, |H|—c0
In other words, given an infinite graph G, 6(G) is the supremum over all @ € (0, 1] such
that G contains arbitrarily large finite subgraphs of density at least @. Given a fixed r > 0,
it is easy to verify lim, ., 0(K,(¢)) = 1 — % It is a consequence of a remarkable theorem of
Erdds and Stone that the graphs K, () witness the densities of all infinite graphs. We record
this precisely in language most relevant for our application ([5, Ch. IV], [9]).

Erdos-Stone Theorem. Fix r > 0. For any infinite graph G, if 5(G) > 1 — % then K,1(t) is
a subgraph of G for arbitrary t.

Using this theorem, we obtain the following relationship between density and nested
complexity length.

Proposition 28. Let G be an infinite graph. If 5(G) < 1 then

NCL(G) > 1-60)

Proof. If this inequality fails then we have 6(G) > 1 — #(G) By the Erdds-Stone
Theorem, there is r > %NCL(G) such that K,(¢) is a subgraph of G for arbitrarily large
t. Let w be the size of the largest finite clique in G, which exists since 6(G) < 1. If we
consider a copy of K,(w + 1) in G, it follows that each piece of the partition contains a pair
of independent vertices. Therefore K,(2) is an induced subgraph of G. By Proposition 24
and Example 25, NCL(G) > 2r, which contradicts the choice of r. ]

Note that if G is complete then NCL(G) = 1. Therefore an infinite graph with upper
density 1 need not have large nested complexity length.
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Finally, we obstruct the multipartite graphs K,.(r) from having 7, , for large enough r and
t > 2, and employ this fact in the proof of Theorem 13.

Lemma 29. The maximum number of pairwise disjoint subsurfaces of S which are not
annuli or pairs of pants is g + L?J - 1.

Proof. It suffices to consider a pairwise disjoint sequence of subsurfaces in which each
component is a four-holed sphere or a one-holed torus; any more complex subsurface can
be cut further without decreasing the number of non-annular and non-pair of pants subsur-
faces. Suppose there are T one-holed tori and F four-holed spheres. The dimension of the
homology of § requires 0 < T < g. Additivity of the Euler characteristic under disjoint
union implies that 0 < T + 2F < 2g + p — 2. Maximizing T + F on this polygon is routine,
and the solutionis 7 = g and F = |£2] — 1. Moreover, it is straightforward to construct

2
such a collection of subsurfaces of S. O

This is enough to obstruct K,(¢) for large r.
Lemma 30. Fort > 1, K,(t) has P, , if and only if r < g + | 52 ] - 1.

Proof. Let £ = g + I_"”TPJ — 1. First, suppose X, ..., %, is a sequence of pairwise disjoint
subsurfaces consisting of tori and four-holed spheres, as guaranteed by Lemma 29. The
curves supported on the X; induce K,(c0) as a subgraph of C(S). Hence K,(f) is an induced
subgraph of C(S) for all # and r < £. Conversely, suppose towards a contradiction that
K:1(2) is an induced subgraph of C(S'), and let V1, ..., V,, be the partition of its vertices.
For each i # j, both curves in V; are disjoint from the curves in V;, so the subsurfaces
2(V;) and (V) are disjoint. Moreover, since the curves in V; intersect, X(V;) is a connected
surface that is not an annulus or a pair of pants. Thus X(Vy),...,Z(Ves1) is a sequence of

disjoint non-annular and non-pair of pants subsurfaces, contradicting Lemma 29. O

We can now prove Theorem 13.

Proof of Theorem 13. Let{ = g + I_WTPJ — 1 again. By Lemma 30, K,(t) has P, , for
all ¢, so that 6(C(S)) > 1 - % Ifo(C(S)) > 1 - % then, as in the proof of Proposition 28,
the Erd6s-Stone Theorem and finite clique number of C(S) together imply that K;,1(2) is an
induced subgraph of C(S), violating Lemma 30. |
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