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厳密な Z3対称性を持つ量子色力学による格子計算 
 

   開田 丈寛 

  九州大学 大学院理学府 物理学専攻 

 

1. はじめに 

 身の回りの物質は原子で構成され、これはさらに

クォークとグルーオンから成る。これらに働く相互

作用は「強い力」と呼ばれ、「量子色力学（QCD）」

で記述される。クォーク・グルーオンの系は、温度

（T）やクォーク化学ポテンシャル（µ）を変化させ

ることで様々な状態へと変化し、その様相は QCD

相図で描かれる。低温低密度ではクォークはハドロ

ンに閉じ込められ、高温状態や高密度状態になると、

クォークは閉じ込めから解放され、自由粒子として

振る舞えるようになる。しかし、QCD相図において

特に高密度領域は未確定であり、様々な手法で研究

されている。 

 QCD相図を解明する一つの手段として、「格子

QCD計算」がある。これは QCDの第一原理計算で

あり、QCD相図を研究するための強力な手法であ

る。しかし、特に高密度領域（µ/T>1）では「符号問

題」という数値計算上の問題が生じてしまう。この

問題に対して様々な対処法が提案・検証されてきた

が、未だ完全な解決には至っていない。 

 我々は、QCDの Z3対称性（ゲージ変換の中心対

称性）を厳密に取り込んだ「Z3-QCD」[1]に注目し

た。これはゼロ温度において元の QCDと一致する

ことが知られており、また符号問題が弱まると予想

されている。この予想については、格子 QCDの有

効模型として 3状態 Potts模型[2]や effective 

Polyakov-line模型[3]を用いて数値計算が行われ、厳

密な Z3対称性を模型に取り入れることで符号問題

が生じる領域が狭まることがわかった。しかし、符

号問題が一番深刻な領域を比較すると、問題の深刻

度合いは改善されていなかった。そこで、符号問題

の対処法の 1つである「再重み法」の改良を行い、

その結果符号問題の深刻さを劇的に改善することに

成功した。 

 そこで本研究では、改良された再重み法に関する

再検証を行った。また、有限クォーク化学ポテンシ

ャル領域における Z3-QCDの格子計算の準備とし

て、クォーク化学ポテンシャルがゼロでの Z3-QCD

の格子計算プログラムを構築し、これの計算チェッ

クも行った。 

 

2. 格子 QCD と符号問題 

 格子 QCD による数値計算では、以下の大分配関

数を用いた統計計算が行われる。 

𝑍𝑍𝑍𝑍𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = ∫𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷det[𝑀𝑀𝑀𝑀(µ)] exp[−𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺] 
ここで、Uはグルーオン場、SGはグルーオンの作

用、det[M(µ)]はクォークの作用、µ はクォーク化

学ポテンシャルをそれぞれ表している。グルーオ

ン場 Uは格子 QCDでは格子点の間で定義されて

おり、格子点の数×方向（x, y, z, t方向）の数だけ

の積分をすることで分配関数 ZQCD を評価するこ

とができる。しかし、積分する変数が多すぎるた

めこれは現実的に不可能である。そこで、被積分

関数 

𝐹𝐹𝐹𝐹 = det [𝑀𝑀𝑀𝑀(µ)]・exp [−𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺] 
を確率分布関数とみなし、その確率に従ってグル

ーオン場の配位を生成する「重点サンプリング

法」が用いられるようになった。この手法により、

精度の高い格子 QCD 計算結果を得ることができ

る。 

 重点サンプリング法を用いた格子QCD計算は、

主に零クォーク化学ポテンシャル領域で数々の

成功を収めている。しかし、有限クォーク化学ポ

テンシャル領域ではクォークの作用 det[M(µ)]が 

(det[𝑀𝑀𝑀𝑀(µ)])∗ = det [𝑀𝑀𝑀𝑀(−µ∗)] 
の関係を満たすため、特に実数クォーク化学ポテ

ンシャル領域では大分配関数の被積分関数が複

素数となってしまい、確率分布関数としてみなす

 

 

 

6．おわりに 

本研究は、水素・重水素・トリチウム同位体分子

凝縮系における、同位体に依存した分子内・分子間

ダイナミクスを定量的に記述した初めての報告であ

る。今後は、並列化に成功し高速化したプログラム

を駆使して、さらに広範な系や熱力学状態に挑戦し

ていく。 
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図 2 ノーマル液体における核波束幅の分布。平
均波束幅は、水素>重水素>トリチウムの順に広が
っている。しかし分布幅は、水素>重水素>トリチ
ウムの順に狭まっている。高温のノーマル液体に

おいても、トリチウムでは２ピークの異常に広い

核波束幅分布を示す。 
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ことができなくなってしまう。これにより、実数

クォーク化学ポテンシャル領域では重点サンプ

リング法を用いた格子 QCD 計算が行えなくなっ

てしまう。これが「符号問題」である。この問題

に対して、様々な対処法が考案されてきたが、未

だ完全な解決には至っていない。 

 

3. Z3-QCD、再重み法 

3.1 Z3-QCD 

 QCDは SU(3)の非可換ゲージ理論であり、Z3群

は SU(3)の部分群である。QCDでは、Z3対称性は

ゲージ変換𝑉𝑉𝑉𝑉に以下の境界条件 

𝑉𝑉𝑉𝑉(𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2,𝑥𝑥𝑥𝑥3,𝑥𝑥𝑥𝑥4 = 𝛽𝛽𝛽𝛽) 
= exp[𝑖𝑖𝑖𝑖(2𝜋𝜋𝜋𝜋/3)]𝑉𝑉𝑉𝑉(𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2,𝑥𝑥𝑥𝑥3,𝑥𝑥𝑥𝑥4 = 0) 

を課すことで、クォークの境界条件がexp[𝑖𝑖𝑖𝑖(2𝜋𝜋𝜋𝜋/
3)]だけ変更してしまうことで破れてしまう。この
問題に対し、クォークの境界条件を 

𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2,𝑥𝑥𝑥𝑥3,𝑥𝑥𝑥𝑥4 = 𝛽𝛽𝛽𝛽) 
= − exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃𝑓𝑓𝑓𝑓] 𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2, 𝑥𝑥𝑥𝑥3,𝑥𝑥𝑥𝑥4 = 0) 
𝜃𝜃𝜃𝜃𝑓𝑓𝑓𝑓 = (2𝜋𝜋𝜋𝜋/3)𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓 = 0, 1, 2 

とすることで Z3 変換に対して不変にすることが

できる。ここで、添字 f はクォークの種類に対応

させ、クォークの質量は全て等しいとする。この

境界条件は、上記の Z3変換により元の場合と同様

の変更を受けるが、添字 f を改めてクォークの種

類に対応するように書き直すことで、変換に対し

て不変になるようにする。クォーク場にこの境界

条件を課したものを「Z3-QCD」[1]と呼ぶ。これ

は零温度で元の QCD と一致することが知られて

おり、また符号問題が緩和されると予想されてい

る。 

 Z3-QCD は先に有効模型で研究され、また零ク

ォーク化学ポテンシャル領域での格子計算[4]も

実行されている。本研究では、実数クォーク化学

ポテンシャル領域での Z3-QCDによる格子計算の 

準備として、中村氏のグループが開発したプログ

ラム[5]を独自に改良し、これの計算チェックを行

った。 

 

3.2再重み法 

 符号問題の対処法の１つとして、再重み法が挙

げられる。これは確率分布関数が複素数となる系

に対して、確率分布関数を|F|としてゲージ場の配

位を生成し、 

< 𝑂𝑂𝑂𝑂 > = < 𝑂𝑂𝑂𝑂exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃] >1/< exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃] >1 
< 𝑂𝑂𝑂𝑂 >1= 1

𝑍𝑍𝑍𝑍1
∫𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  𝑂𝑂𝑂𝑂 |𝐹𝐹𝐹𝐹| 

𝑍𝑍𝑍𝑍1 = ∫𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  |𝐹𝐹𝐹𝐹|, 𝐹𝐹𝐹𝐹 = |𝐹𝐹𝐹𝐹| exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃] 
として、物理量の期待値を計算する手法である。

これは数学的には厳密な書き換えではあるが、再

重み因子< exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃] >′が 0 に近い値を取る時、期

待値の誤差が肥大化してしまい、信頼できる結果

が得られない。よって、再重み因子は再重み法に

おける符号問題の深刻さの指標として適してい

る。 

 本研究では、この手法を以下の式に従って改良

を行った。 

< 𝑂𝑂𝑂𝑂 > 
 = < 𝑂𝑂𝑂𝑂exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃 + 𝛼𝛼𝛼𝛼𝜃𝜃𝜃𝜃2] >2/< exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃 + 𝛼𝛼𝛼𝛼𝜃𝜃𝜃𝜃2] >2 
< 𝑂𝑂𝑂𝑂 >2= 1

𝑍𝑍𝑍𝑍2
∫𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  𝑂𝑂𝑂𝑂 |𝐹𝐹𝐹𝐹| 

𝑍𝑍𝑍𝑍2 = ∫𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  |𝐹𝐹𝐹𝐹|exp [−𝛼𝛼𝛼𝛼𝜃𝜃𝜃𝜃2] 
ここでは、系の作用の虚部𝜃𝜃𝜃𝜃の寄与exp [−𝛼𝛼𝛼𝛼𝜃𝜃𝜃𝜃2]を取
り入れた。この寄与は、作用の虚部をなるべく小

さく抑えるために導入した。本研究では、この改

良された再重み法を、格子 QCD の有効模型とし

て挙げられる effective Polyakov-line (EPL)模型[6]

を用いて、主に再重み因子のパラメータ𝛼𝛼𝛼𝛼依存性
と体積依存性について調べた。また、Z3-QCD の

考えをもとに EPL 模型を Z3対称化して同様の検

証を行った。 

 

4. 数値計算結果 

4.1 Z3-QCDの格子計算 

 今回の格子計算では、グルーオン作用として

Clover gauge action を用い、クォーク作用として

Wilson fermion actionを用いた。また、格子の大き

さは、空間方向を 8、時間方向を 4とした。Wilson 

fermion では偶数種類のクォークしか扱えないた

め、今回は Z3対称性を取り入れるにあたり、クォ
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ークの種類を 6個とした。グルーオン作用のパラ

メータとクォーク作用のパラメータの関係につ

いては、文献[7]のものを採用した。ここでは、計

算する量として QCD の閉じ込め相転移の秩序変

数として用いられる Polyakov loopを計算した。 

 図 1と 2は、それぞれ低温領域と高温領域にお

ける Polyakov loopの複素平面上での分布である。

低温領域(図 1)では、Polyakov loop は複素平面の

原点に集中し、高温領域(図 2)では、Polyakov loop

の絶対値が有限かつ位相が 0, 2π/3, 4π/3付近に

分布していることがわかる。これは我々が期待し

た振る舞いであり、今回独自改良した数値計算プ

ログラムは正常に動作していることが確かめら

れた。 

4.2改良再重み法の検証 

 次に、EPL模型を用いて、独自に改良した再重
み法を用いた数値計算を行い、符号問題の深刻さ

についての検証を行った。 

 今回の数値計算では、𝛼𝛼𝛼𝛼依存性の検証では空間
方向の大きさを 8とし、𝛼𝛼𝛼𝛼を 1.0から 3.5の範囲で

変化させた。また、体積依存性の検証では空間方

向の大きさを 6、8、12、16 とし、パラメータを

𝛼𝛼𝛼𝛼 = 3.0で固定した。系のパラメータとしては、ク
ォークの質量で規格化した化学ポテンシャル µ/M

を 0.0 から 2.0 まで変化させた。この計算では、

確率分布関数 F2 を計算する際に一度空間全体で

の作用を計算する必要がある。そこで、SX-ACE

上では MPI の機能を用いてパラメータ µ/M をス

レッド毎に分配して計算を行った。 

  

図 3は、再重み因子 Wの𝛼𝛼𝛼𝛼依存性を表したもの
である。改良前の再重み法では、EPL模型での再

重み因子は 0.5 < µ/M < 1.5で 0に近い値を取り、

符号問題が深刻化していた[3]。しかし、図 3から

わかるように、改良再重み法では再重み因子が 1

ないしはそれ以上の値を取るようになった。 

 𝛼𝛼𝛼𝛼 = 1.0では、今回考慮した領域で再重み因子が
1に近い値を取るが、µ/M=0.9, 1.1付近では 0に近

い値を取っており、符号問題が完全に解消された

とはいえない。しかし、次第に𝛼𝛼𝛼𝛼の値を大きくす
ることで、再重み因子は符号問題が深刻化する領

域で 1より大きな値を取るようになり、今回用い

-1
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 0

 0.5
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-1 -0.5  0  0.5  1

Im
[L
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図 1 低温領域における Polyakov loopの分布図 
図 3 EPL模型における改良再重み法の 
パラメータ依存性。ここで空間方向の大
きさは 8で固定した。 

図 2 高温領域における Polyakov loopの分布図 
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は SU(3)の部分群である。QCDでは、Z3対称性は

ゲージ変換𝑉𝑉𝑉𝑉に以下の境界条件 

𝑉𝑉𝑉𝑉(𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2,𝑥𝑥𝑥𝑥3,𝑥𝑥𝑥𝑥4 = 𝛽𝛽𝛽𝛽) 
= exp[𝑖𝑖𝑖𝑖(2𝜋𝜋𝜋𝜋/3)]𝑉𝑉𝑉𝑉(𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2,𝑥𝑥𝑥𝑥3,𝑥𝑥𝑥𝑥4 = 0) 

を課すことで、クォークの境界条件がexp[𝑖𝑖𝑖𝑖(2𝜋𝜋𝜋𝜋/
3)]だけ変更してしまうことで破れてしまう。この
問題に対し、クォークの境界条件を 

𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2,𝑥𝑥𝑥𝑥3,𝑥𝑥𝑥𝑥4 = 𝛽𝛽𝛽𝛽) 
= − exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃𝑓𝑓𝑓𝑓] 𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2, 𝑥𝑥𝑥𝑥3,𝑥𝑥𝑥𝑥4 = 0) 
𝜃𝜃𝜃𝜃𝑓𝑓𝑓𝑓 = (2𝜋𝜋𝜋𝜋/3)𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓 = 0, 1, 2 

とすることで Z3 変換に対して不変にすることが

できる。ここで、添字 f はクォークの種類に対応

させ、クォークの質量は全て等しいとする。この

境界条件は、上記の Z3変換により元の場合と同様

の変更を受けるが、添字 f を改めてクォークの種

類に対応するように書き直すことで、変換に対し

て不変になるようにする。クォーク場にこの境界

条件を課したものを「Z3-QCD」[1]と呼ぶ。これ

は零温度で元の QCD と一致することが知られて

おり、また符号問題が緩和されると予想されてい

る。 

 Z3-QCD は先に有効模型で研究され、また零ク

ォーク化学ポテンシャル領域での格子計算[4]も

実行されている。本研究では、実数クォーク化学

ポテンシャル領域での Z3-QCDによる格子計算の 

準備として、中村氏のグループが開発したプログ

ラム[5]を独自に改良し、これの計算チェックを行

った。 

 

3.2再重み法 

 符号問題の対処法の１つとして、再重み法が挙

げられる。これは確率分布関数が複素数となる系

に対して、確率分布関数を|F|としてゲージ場の配

位を生成し、 

< 𝑂𝑂𝑂𝑂 > = < 𝑂𝑂𝑂𝑂exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃] >1/< exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃] >1 
< 𝑂𝑂𝑂𝑂 >1= 1

𝑍𝑍𝑍𝑍1
∫𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  𝑂𝑂𝑂𝑂 |𝐹𝐹𝐹𝐹| 

𝑍𝑍𝑍𝑍1 = ∫𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  |𝐹𝐹𝐹𝐹|, 𝐹𝐹𝐹𝐹 = |𝐹𝐹𝐹𝐹| exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃] 
として、物理量の期待値を計算する手法である。

これは数学的には厳密な書き換えではあるが、再

重み因子< exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃] >′が 0 に近い値を取る時、期

待値の誤差が肥大化してしまい、信頼できる結果

が得られない。よって、再重み因子は再重み法に

おける符号問題の深刻さの指標として適してい

る。 

 本研究では、この手法を以下の式に従って改良

を行った。 

< 𝑂𝑂𝑂𝑂 > 
 = < 𝑂𝑂𝑂𝑂exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃 + 𝛼𝛼𝛼𝛼𝜃𝜃𝜃𝜃2] >2/< exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃 + 𝛼𝛼𝛼𝛼𝜃𝜃𝜃𝜃2] >2 
< 𝑂𝑂𝑂𝑂 >2= 1

𝑍𝑍𝑍𝑍2
∫𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  𝑂𝑂𝑂𝑂 |𝐹𝐹𝐹𝐹| 

𝑍𝑍𝑍𝑍2 = ∫𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  |𝐹𝐹𝐹𝐹|exp [−𝛼𝛼𝛼𝛼𝜃𝜃𝜃𝜃2] 
ここでは、系の作用の虚部𝜃𝜃𝜃𝜃の寄与exp [−𝛼𝛼𝛼𝛼𝜃𝜃𝜃𝜃2]を取
り入れた。この寄与は、作用の虚部をなるべく小

さく抑えるために導入した。本研究では、この改

良された再重み法を、格子 QCD の有効模型とし

て挙げられる effective Polyakov-line (EPL)模型[6]

を用いて、主に再重み因子のパラメータ𝛼𝛼𝛼𝛼依存性
と体積依存性について調べた。また、Z3-QCD の

考えをもとに EPL 模型を Z3対称化して同様の検

証を行った。 

 

4. 数値計算結果 

4.1 Z3-QCDの格子計算 

 今回の格子計算では、グルーオン作用として

Clover gauge action を用い、クォーク作用として

Wilson fermion actionを用いた。また、格子の大き

さは、空間方向を 8、時間方向を 4とした。Wilson 

fermion では偶数種類のクォークしか扱えないた

め、今回は Z3対称性を取り入れるにあたり、クォ
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ことができなくなってしまう。これにより、実数

クォーク化学ポテンシャル領域では重点サンプ

リング法を用いた格子 QCD 計算が行えなくなっ

てしまう。これが「符号問題」である。この問題

に対して、様々な対処法が考案されてきたが、未

だ完全な解決には至っていない。 

 

3. Z3-QCD、再重み法 

3.1 Z3-QCD 

 QCDは SU(3)の非可換ゲージ理論であり、Z3群

は SU(3)の部分群である。QCDでは、Z3対称性は

ゲージ変換𝑉𝑉𝑉𝑉に以下の境界条件 

𝑉𝑉𝑉𝑉(𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2,𝑥𝑥𝑥𝑥3,𝑥𝑥𝑥𝑥4 = 𝛽𝛽𝛽𝛽) 
= exp[𝑖𝑖𝑖𝑖(2𝜋𝜋𝜋𝜋/3)]𝑉𝑉𝑉𝑉(𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2,𝑥𝑥𝑥𝑥3,𝑥𝑥𝑥𝑥4 = 0) 

を課すことで、クォークの境界条件がexp[𝑖𝑖𝑖𝑖(2𝜋𝜋𝜋𝜋/
3)]だけ変更してしまうことで破れてしまう。この
問題に対し、クォークの境界条件を 

𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2,𝑥𝑥𝑥𝑥3,𝑥𝑥𝑥𝑥4 = 𝛽𝛽𝛽𝛽) 
= − exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃𝑓𝑓𝑓𝑓] 𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥1,𝑥𝑥𝑥𝑥2, 𝑥𝑥𝑥𝑥3,𝑥𝑥𝑥𝑥4 = 0) 
𝜃𝜃𝜃𝜃𝑓𝑓𝑓𝑓 = (2𝜋𝜋𝜋𝜋/3)𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓 = 0, 1, 2 

とすることで Z3 変換に対して不変にすることが

できる。ここで、添字 f はクォークの種類に対応

させ、クォークの質量は全て等しいとする。この

境界条件は、上記の Z3変換により元の場合と同様

の変更を受けるが、添字 f を改めてクォークの種

類に対応するように書き直すことで、変換に対し

て不変になるようにする。クォーク場にこの境界

条件を課したものを「Z3-QCD」[1]と呼ぶ。これ

は零温度で元の QCD と一致することが知られて

おり、また符号問題が緩和されると予想されてい

る。 

 Z3-QCD は先に有効模型で研究され、また零ク

ォーク化学ポテンシャル領域での格子計算[4]も

実行されている。本研究では、実数クォーク化学

ポテンシャル領域での Z3-QCDによる格子計算の 

準備として、中村氏のグループが開発したプログ

ラム[5]を独自に改良し、これの計算チェックを行

った。 

 

3.2再重み法 

 符号問題の対処法の１つとして、再重み法が挙

げられる。これは確率分布関数が複素数となる系

に対して、確率分布関数を|F|としてゲージ場の配

位を生成し、 

< 𝑂𝑂𝑂𝑂 > = < 𝑂𝑂𝑂𝑂exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃] >1/< exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃] >1 
< 𝑂𝑂𝑂𝑂 >1= 1

𝑍𝑍𝑍𝑍1
∫𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  𝑂𝑂𝑂𝑂 |𝐹𝐹𝐹𝐹| 

𝑍𝑍𝑍𝑍1 = ∫𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  |𝐹𝐹𝐹𝐹|, 𝐹𝐹𝐹𝐹 = |𝐹𝐹𝐹𝐹| exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃] 
として、物理量の期待値を計算する手法である。

これは数学的には厳密な書き換えではあるが、再

重み因子< exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃] >′が 0 に近い値を取る時、期

待値の誤差が肥大化してしまい、信頼できる結果

が得られない。よって、再重み因子は再重み法に

おける符号問題の深刻さの指標として適してい

る。 

 本研究では、この手法を以下の式に従って改良

を行った。 

< 𝑂𝑂𝑂𝑂 > 
 = < 𝑂𝑂𝑂𝑂exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃 + 𝛼𝛼𝛼𝛼𝜃𝜃𝜃𝜃2] >2/< exp[𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃 + 𝛼𝛼𝛼𝛼𝜃𝜃𝜃𝜃2] >2 
< 𝑂𝑂𝑂𝑂 >2= 1

𝑍𝑍𝑍𝑍2
∫𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  𝑂𝑂𝑂𝑂 |𝐹𝐹𝐹𝐹| 

𝑍𝑍𝑍𝑍2 = ∫𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  |𝐹𝐹𝐹𝐹|exp [−𝛼𝛼𝛼𝛼𝜃𝜃𝜃𝜃2] 
ここでは、系の作用の虚部𝜃𝜃𝜃𝜃の寄与exp [−𝛼𝛼𝛼𝛼𝜃𝜃𝜃𝜃2]を取
り入れた。この寄与は、作用の虚部をなるべく小

さく抑えるために導入した。本研究では、この改

良された再重み法を、格子 QCD の有効模型とし

て挙げられる effective Polyakov-line (EPL)模型[6]

を用いて、主に再重み因子のパラメータ𝛼𝛼𝛼𝛼依存性
と体積依存性について調べた。また、Z3-QCD の

考えをもとに EPL 模型を Z3対称化して同様の検

証を行った。 

 

4. 数値計算結果 

4.1 Z3-QCDの格子計算 

 今回の格子計算では、グルーオン作用として

Clover gauge action を用い、クォーク作用として

Wilson fermion actionを用いた。また、格子の大き

さは、空間方向を 8、時間方向を 4とした。Wilson 

fermion では偶数種類のクォークしか扱えないた

め、今回は Z3対称性を取り入れるにあたり、クォ
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たEPL模型では𝛼𝛼𝛼𝛼を 2.5以上で設定すると因子が 0

に近い値を取らなくなった。以上のことから、適

切なパラメータ𝛼𝛼𝛼𝛼を与えることで、改良再重み法
により符号問題が解消されることが示された。た

だし、実際にこの手法を、実クォーク化学ポテン

シャル領域で格子 QCD 計算に適用する際は、改

めて𝛼𝛼𝛼𝛼による再重み因子の振る舞いを調べ、適切
な値を決定してやる必要がある。 

 

 次に、図 4は𝛼𝛼𝛼𝛼 = 3.5で固定した際の、改良再重
み法における再重み因子の体積依存性を表した

ものである。体積が大きくなるに従って、因子が

1 より大きくなる領域が広くなっていることがわ

かる。また、0.7<µ/M<1.3 の領域における因子の

値は、空間方向の大きさによらずある一定の値に

集中していることがみてとれる。このことから、

改良再重み法における再重み因子は、比較的空間

方向の大きさに依存せず同じ振る舞いをみせる

ことがわかった。 

 

5. まとめと展望 

 本研究では、(1)零クォーク化学ポテンシャルに

おける Z3-QCDの格子計算プログラムの数値計算

チェックと、(2)独自に改良した再重み法のパラメ

ータ依存性と体積依存性を、格子 QCD の有効模

型を用いて調べた。 

 (1)では、Z3-QCD の格子計算で、QCD の Z3対

称性の秩序変数である Polyakov loopを計算し、こ

れが低温領域では複素平面上の原点に点が分布

し、高温領域では Z3群の位相に対応する領域に分

布した。これは期待したとおりの振る舞いであ

り、今回用いたプログラムは正常に動作したこと

を確認した。今後は、これを有限クォーク化学ポ

テンシャル領域へと計算領域を拡大し、符号問題

の影響等について検証を行う。 

 (2)では、新たに導入したパラメータについて

は、適切な値を決定してやることで、符号問題が

深刻だった領域で問題が解消できることを示し

た。また、体積依存性については大きな変化は見

られなかった。今後は、この改良再重み法を実際

に有限クォーク化学ポテンシャル領域での格子

QCD計算に実装し、符号問題の深刻さの振る舞い

を調べる。これにより、格子 QCD 計算でも符号

問題を軽減することができれば、有限クォーク化

学ポテンシャル領域で物理量の期待値を精度良

く計算することが可能となる。 
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図 4 EPL 模型における改良再重み法の体積依存
性。ここでパラメータは𝜶𝜶𝜶𝜶 = 𝟑𝟑𝟑𝟑.𝟓𝟓𝟓𝟓で固定した。 
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