

Title	On perfect rings and the exchange property
Author(s)	Harada, Manabu; Ishii, Tadamasa
Citation	Osaka Journal of Mathematics. 1975, 12(2), p. 483-491
Version Type	VoR
URL	https://doi.org/10.18910/7084
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Harada, M. and Ishii, T,
Osaka J. Math.
12 (1975), 483-491

ON PERFECT RINGS AND THE EXCHANGE PROPERTY

Dedicated to Professor Kiiti Morita on his 60th birthday

MANABU HARADA AND TADAMASA ISHII

(Received July 22, 1974)

Let R be a ring with unit element. We always consider unitary right R -modules. Let T be an R -module and η a cardinal number. If for any module K containing T as a direct summand and for any decomposition of K with η components: $K = \bigoplus_{\alpha \in I} A_\alpha$, there exist submodules A'_α of A_α for all α such that $K = T \oplus \bigoplus_{\alpha \in I} A'_\alpha$, then we say T has the η -exchange property[2]. If T has the η -exchange property for any η , we say T has the exchange property.

In this short note we shall show that R is a right perfect ring if and only if for every projective module P , P has the exchange property and $\text{End}_R(P)/J(\text{End}_R(P))$ is a regular ring in the sense of Von Neumann. This is a refinement of Theorem 7 in [4] and we shall give its proof as an application of [6].

After submitting this paper to the journal, the authors have received a manuscript of Yamagata [13] and found that one of main theorems in this paper overlaped with one in [13]. The authors would like to express their thanks to Dr. Yamagata for his kindness.

1. Preliminaries

First we shall recall some definitions given in [3], [4] and [6]. Let T be an R -module. If $\text{End}_R(T)$ is a local ring, T is called *completely indecomposable*. We take a set $\{M_\alpha\}_I$ of completely indecomposable modules and define the full additive subcategory \mathfrak{A} of all right R -modules which is induced from $\{M_\alpha\}_I$, namely the objects in \mathfrak{A} consist of all modules which are isomorphic to direct-sums of completely indecomposable modules in $\{M_\alpha\}_I$. We define an ideal \mathfrak{F} in \mathfrak{A} as follows: let $A = \bigoplus_{\alpha \in K} A_\alpha$, $B = \bigoplus_{\beta \in L} B_\beta$ be in \mathfrak{A} , where A_α, B_β are isomorphic to some in $\{M_\alpha\}_I$, then $\mathfrak{F} \cap [A, B] = \{f \in \text{Hom}_R(A, B), p_\beta f i_\alpha \text{ are not isomorphic for all } \alpha \in K, \beta \in L\}$, where $i_\alpha: A_\alpha \rightarrow A, p_\beta: B \rightarrow B_\beta$ are the inclusion and the projection, respectively. By $\bar{\mathfrak{A}}$ we denote the factor category of \mathfrak{A} with respect to \mathfrak{F} [3]. For any object A and morphism f in \mathfrak{A} , by \bar{A} and \bar{f} we denote the residue classes of A and f in $\bar{\mathfrak{A}}$, respectively.

We take a countable subset $\{M_{\alpha_i}\}_1^\infty$ of $\{M_\alpha\}_I$ (resp. we can take same modules M_{α_i} in $\{M_\alpha\}_1^\infty$ as many as we want) and a set of homomorphisms $f_i \in \mathfrak{J}' \Pi [M_{\alpha_i}, M_{\alpha_{i+1}}]$. If for any element m in M_{α_i} there exists n , which depends on m , such that $f_n f_{n-1} \dots f_1(m) = 0$, $\{f_i\}$ is called *locally semi-T-nilpotent* (resp. *T-nilpotent*). If every $\{f_i\}$ is locally semi-T-nilpotent (resp. T-nilpotent) for every subset $\{M_{\alpha_i}\}$, we say $\{M_\alpha\}_I$ is a *locally semi-T-nilpotent* (resp. *T-nilpotent*) system [4]. Finally, let $M \supset N$ be modules and $N = \sum_{\gamma \in J} \bigoplus N_\gamma$. If for any finite subset J' of J , $\sum_{\gamma \in J'} \bigoplus N_\gamma$ is a direct summand of M , N is called a *locally direct summand* of M (with respect to the decomposition $\sum_{\gamma \in J} \bigoplus N_\gamma$) [6].

2. Perfect rings

Let $\{M_\alpha\}$ be a set of completely indecomposable modules and $M = \sum_{\alpha \in I} \bigoplus M_\alpha$.

We understand p_α means the projection of M to M_α in the decomposition if there are no confusions. Let N be a submodole of M , which is isomorphic to one in $\{M_\alpha\}_I$. We shall consider a strong condition:

each N above is a direct summand of M $\cdots ()$*

Lemma 1. *Let M and $\{M_\alpha\}_I$ be as above. We assume $\{M_\alpha\}_I$ is a locally semi-T-nilpotent system and M satisfies $(*)$. Let A be a submodule of M . Then we have $A = A_1 \oplus A_2$, where A_1 is a direct summand of M (and hence $A_1 \in \mathfrak{A}$) and A_2 does not contain any submodules which are isomorphic to some in $\{M_\alpha\}_I$.*

Proof. Let \mathfrak{S} be the set of submodules A' in A as follows: A is in \mathfrak{A} , say $A' = \sum_{\alpha \in J} \bigoplus A_\alpha$; A_α are isomorphic to some in $\{M_\alpha\}_I$ and A' is a locally direct summand of M with respect to this decomposition. We can define a partial order in \mathfrak{S} by members of direct components (cf. [6]). Then we obtain a maximal one in \mathfrak{S} by Zorn's lemma, say A_1 . Since $\{M_\alpha\}_I$ is locally semi-T-nilpotent, A_1 is a direct summand of M : $M = A_1 \oplus M_1$ by Theorem 9 in [3], Theorem in [7] and Lemma 3 and Corollary 2 to Lemma 2 in [6]. Hence, $A = A_1 \oplus (A \cap M_1)$ and $A \cap M_1$ does not contain any submodules in \mathfrak{A} from the assumption and the maximality of A_1 .

The following lemma is a modification of one part of Theorem 2.6 in [12].

Lemma 2. *Let $\{M_\alpha\}_I$ and M be as above. We assume M satisfies $(*)$. Then M has the exchange property if and only if $\{M_\alpha\}_I$ is a locally semi-T-nilpotent system.*

Proof. If M has the exchange property, then $\{M_\alpha\}_I$ is a locally semi-T-nilpotent system by [4'], Corollary 2 to Proposition 1. Conversely, we assume that $\{M_\alpha\}_I$ is semi-T-nilpotent. Let $A = M \oplus N = \sum_{\alpha \in J} \bigoplus A_\alpha$. We may assume

from [2], Theorem 8.2 that all A_α are isomorphic to submodules in M , in order to show that M has the exchange property. Then from the assumption and Lemma 1, $A_\alpha = A_\alpha' \oplus A_\alpha''$, where $A_\alpha' \in \mathfrak{A}$ and A_α'' does not contain any submodules, isomorphic to some in $\{M_\alpha\}_I$. Put $A' = \sum_{\alpha \in J} A_\alpha'$ and $A'' = \sum_{\alpha \in J} A_\alpha''$, then $A = A' \oplus A''$. Let $\varphi: A \rightarrow A/A''$ be the natural epimorphism. We shall show that M is a locally direct summand of A/A'' through φ . Let I' be a finite subset of I and $M' = \sum_{\alpha \in I'} M_\alpha$. Since M' has the exchange property by [11], Proposition 1 and [2], Lemma 3.10, $A = M' \oplus A'_0 \oplus A''_0$, where $A'_0 \subset A'$ and $A''_0 \subset A''$. Then $A'' = A''_0 \oplus K''$ and K'' is isomorphic to a direct summand of M' . If $K'' \neq 0$, K'' contains a completely indecomposable module K_1 (isomorphic to one in $\{M_\alpha\}_I$) as a direct summand by Krull-Remak-Schmidt theorem. Since K_1 has the exchange property, we know from the argument above that some A_α'' contains a submodule isomorphic to K_1 . Which is a contradiction. Hence, $A = M' \oplus A'_0 \oplus A''$ and $\varphi(M) \approx M$ is a locally direct summand of A/A'' . Since $A/A'' \approx A' \in \mathfrak{A}$ and $\{M_\alpha\}_I$ is locally semi- T -nilpotent, $\varphi(M)$ is a direct summand of A/A'' by [6], Lemma 3; $A/A'' = \varphi(M) \oplus \varphi(K)$ and $K \subset A'$. Furthermore, $\varphi(M)$ has the exchange property in \mathfrak{A} by [4], Corollary 2 to Proposition 1 and hence $A/A'' = \varphi(M) \oplus \sum_{\alpha \in J} \varphi(A_\alpha''')$ where $A_\alpha''' \subset A_\alpha'$. Therefore, $A = M \oplus \sum_{\alpha \in J} \varphi(A_\alpha''')$.

Next, we shall consider some cases where M satisfies (*).

Lemma 3. *Let $\{M_\alpha\}_I$, M and N be as in (*) and $i: N \rightarrow M$ the inclusion. Then N is a direct summand of M if and only if $p_\alpha i$ is isomorphic for some α in I .*

Proof. It is clear from the definition of \mathfrak{J}' .

Lemma 4. *Let M_1 be a completely indecomposable module. We assume M_1 is a locally T -nilpotent system itself. Then $M = \sum_{\alpha \in I} M_\alpha$; $M_\alpha \approx M_1$ has the exchange property for any set I .*

Proof. We shall show that M satisfies (*). We may assume $N = M_1$. We put $f_\alpha = p_\alpha i$ and assume that f_α are not isomorphic for all $\alpha \in I$. Let $m \neq 0 \in N$ and $i(m) = \sum_{i=1}^n f_{\alpha_i}(m)$. Since i is monomorphic, we may assume $f_{\alpha_1}(m) = m_2 \neq 0$. Let $i(m_2) = \sum_{i=1}^{n'} f_{\alpha_i}(m_2)$. Repeating this argument, we obtain a sequence $\{f_{\beta_i}\}_1^\infty$ such that $f_{\beta_n} f_{\beta_{n-1}} \cdots f_{\beta_1}(m) \neq 0$ for any n , which contradicts the T -nilpotency of $\{M_i\}$. Therefore, M satisfies (*) by Lemma 3.

Let A , B be R -modules and $f \in \text{Hom}_R(A, B)$. If $\text{Im } f$ is small in B , f is called a *small homomorphism*. We note that if $A = B$ are R -projective, then

the Jacobson radical $J(\text{End}_R(A))$ of $\text{End}_R(A)$ consists of all small homomorphisms by [10], Lemma 1.

Lemma 5. *Let $\{P_\alpha\}_I$ be a set of R -modules and $P = \bigoplus_{\alpha \in I} P_\alpha$. If P has the \aleph_0 -exchange property, then any sequence of small homomorphisms $\{n_\alpha : P_{\alpha_i} \rightarrow P_{\alpha_{i+1}}\}$ is locally semi- T -nilpotent for any countable subset $\{P_{\alpha_i}\}_1^\infty$ of $\{P_\alpha\}_I$.*

Proof. We make use of the same argument in [3], Lemma 9. Since $P^* = \sum_{i=1}^\infty \bigoplus P_{\alpha_i}$ has the \aleph_0 -exchange property by [2], Lemma 3.10, we may assume $I = \{\alpha_i\}_1^\infty$. Let $\{n_i\}$ be the given small homomorphisms. Put $P'_i = \{p_i + n_i p_i : p_i \in P_i\} \subset P_i \oplus P_{i+1}$. Then $P = P_1 \oplus P_2 \oplus P_3 \oplus P_4 \oplus \dots = P'_1 \oplus P_2 \oplus P'_3 \oplus P'_4 \oplus \dots$. Since $P'_i \approx P_i$, $\sum_{n=0}^\infty \bigoplus P_{2n+1}$ has the \aleph_0 -exchange property. Hence, $P = \sum_{n=0}^\infty \bigoplus P_{2n+1} \oplus P_1^{(1)} \oplus P_2^{(1)} \oplus P_3^{(1)} \oplus P_4^{(1)} \oplus \dots$, where $P_{2n+1}^{(1)}$ and $P_{2n+2}^{(1)}$ are direct summands of P_{2n+1} and P_{2n+2} , respectively. Since $P_{2n+2} \approx P_{2n+2}$, $P_{2n+2}^{(1)} = P_{2n+2}^{(1)}$, where $P_{2n+2} = P_{2n+2}^{(1)} \oplus P_{2n+2}^{(2)}$. Let p_{2n} be the projection of P to P_{2n} with respect to the decomposition $P = \sum_{i=1}^\infty \bigoplus P_i$. Then $P_{2n} = p_{2n}(P) = n_{2n-1}(P_{2n-1}) + P_{2n}^{(1)}$ from the latest decomposition. On the other hand, $n_{2n-1}(P_{2n-1})$ is small in P_{2n} by the definition and hence $P_{2n}^{(1)} = P_{2n}$. We consider the two decompositions $P = (P'_1 \oplus P_1^{(1)}) \oplus \{P'_2 \oplus (P'_3 \oplus P_3^{(1)}) \oplus P'_4 \oplus \dots\} = \sum_{i=1}^\infty \bigoplus P_i$. We shall show $P_1^{(1)} = (0)$. Let x be in $P_1^{(1)}$. If $n_1 x$ is contained in $\{P'_2 \oplus (P'_3 \oplus P_3^{(1)}) \oplus P'_4 \oplus \dots\}$, then $x = x + n_1 x + (-n_1 x) \in (P'_1 \oplus \{P'_2 \oplus (P'_3 \oplus P_3^{(1)}) \oplus P'_4 \oplus \dots\}) \cap P_1^{(1)} = (0)$ from the former decomposition and so $x = 0$, which implies that $n_1|_{P_1^{(1)}}$ is monomorphic. Let y be any element in P_2 in the latter decomposition. Consider the expression of y in the former, then $y = x_1 + x'_1 + n_1 x_1 + x'_2 + n_2 x'_2 + y'$, where $x_1 \in P_1^{(1)}$, $x'_1 \in P_1$, $x'_2 \in P_2$ and $y \in (P'_3 \oplus P_3^{(1)}) \oplus P'_4 \oplus \dots$. We consider this expression in the latter, then $x_1 = -x'_1$, $n_2 x'_2 = -y'$ and $y = n_1 x_1 + x'_2$. We define a submodule N in P_2 as follows: $N = \{z \in P_2 : n_2 z \in (P'_3 \oplus P_3^{(1)}) \oplus P'_4 \oplus \dots\}$. Then we obtain $P_2 = n_1(P_1^{(1)}) \oplus N$ from the above arguments. On the other hand, $n_1(P_1^{(1)})$ is small in P_2 and hence, $n_1(P_1^{(1)}) = (0)$. We have already known that $n_1|_{P_1^{(1)}}$ is monomorphic. Therefore, $P_1^{(1)} = (0)$ and $P = P'_1 \oplus P_2 \oplus (P'_3 \oplus P_3^{(1)}) \oplus P'_4 \oplus \dots$. Consider an expression of element x_3 in P_3 in the above decomposition, then $x_3 = x_3^{(1)} + x'_3 + n_3 x'_3 + y$, $x_3^{(1)} \in P_3^{(1)}$, $x'_3 \in P_3$ and $y \in \{P'_4 \oplus \dots\}$. Hence if we repeat the same argument on the direct summand $P_3 \oplus P_4$ instead of the direct summand $P_1 \oplus P_2$, we know $P_3^{(1)} = (0)$. Similarly, we obtain $P_{2n+1}^{(1)} = (0)$ for all n . Thus, we have $P = \sum_{i=1}^\infty \bigoplus P_i$. It is easy from this fact to prove the lemma (cf. [3], Lemma 9).

Theorem 1. *Let R be a ring. Then the following statements are equivalent.*

- 1) R is a right perfect ring (see [1]).

- 2) For every projective module P ,
 - i P has the exchange property,
 - ii $\text{End}_R(P)/J(\text{End}_R(P))$ is a regular ring in the sense of Von Neumann.
- 3) Put $P_0 = \sum_{i=1}^{\infty} \bigoplus R$.
 - i P_0 has the exchange property,
 - ii $\text{End}_R(P_0)/J(\text{End}_R(P_0))$ is a regular ring.
- 4) i P_0 has the exchange property,
ii $R/J(R)$ is artinian.

Proof. 1) \rightarrow 2) Let R be perfect and $R = \sum_{i=1}^n \bigoplus e_i R$, where $\{e_i\}$ is a complete set of mutually orthogonal primitive idempotents (see [1]). Let P be a projective R -module. Then $P \approx \sum_i (\sum_{j_i} \bigoplus e_i R)$ and $\{e_i R\}$ is a T -nilpotent system of completely indecomposable modules by [1]. Hence, $\sum_i \bigoplus e_i R$ has the exchange property by Lemma 4 and so does P from [2], Lemma 3.10. ii is obtained by [8].

2) \rightarrow 3) It is clear.

3) \rightarrow 4) Since P_0 has the exchange property, $J(R)$ is right T -nilpotent from Lemma 5 and [10], Lemma 1. It is well known that $\text{End}_R(P_0)$ is isomorphic to the ring of column finite matrices over R with degree \aleph_0 . Since $J(R)$ is right T -nilpotent, $J(\text{End}_R(P_0))$ is isomorphic to the subring of column finite matrices over $J(R)$ by [9] or [5], Corollary 1 to Proposition 1. Hence, $\text{End}_R(P_0)/J(\text{End}_R(P_0))$ is isomorphic to the ring of column finite matrices over $R/J(R)$. Therefore, $R/J(R)$ is artinian by [5], Corollary to Lemma 2.

4) \rightarrow 1) It is clear from Lemma 5 and [1].

Proposition 1. *Let R be a semi-perfect ring (see [1]) and P a projective R -module. Then P is semi-perfect (see [8]) if and only if P has the exchange property.*

Proof. Since R is semi-perfect, P is isomorphic to a module $\sum_{i=1}^n 2 \bigoplus e_i R$ by [11]. If P is semi-perfect, $\{e_i R\}_{j_i}$ is semi- T -nilpotent by [8] or [4], Theorem 7. Hence, P has the exchange property from Lemma 4. The converse is clear from [4], Theorem 7.

Finally, we shall add here some remarks concerned with (*).

Lemma 6. *Let $\{M_\alpha\}_I$, M and N be as in (*). // N is uniform, $p_\alpha i$ is monomorphic for some α .*

Proof. Let $\alpha \in \Omega$ be in N and $n = \sum_{i=1}^n m_{\alpha_i}$. Put $M_0 = \sum_{i=1}^n \bigoplus M_{\alpha_i}$ and let $p_0: M \rightarrow M_0$ be its projection. Then $0 = (\bigcap \text{Ker}(p_{\alpha_i} i)) \cap \text{Ker}(p_0 i)$. Since N is uniform and $\text{Ker}(p_0 i) \neq 0$, $\text{Ker}(p_{\alpha_i} i) = 0$ for some α_i .

Corollary 1 (cf. [12]) *Let $\{M_\alpha\}_I$ and M be as above. We assume that all M_α are uniform and each M_α is not isomorphic to a proper submodule in M_β for all α, β (e.g. all M_α are injective). Then M has the exchange property if and only if $\{M_\alpha\}_I$ is a locally semi- T -nilpotent system.*

Proof. It is clear from Lemma 6 and [4].

For an R -module L we denote its composition length by $\|L\|$.

Corollary 2. *We assume all M_α are uniform and of $\|M_\alpha\| \leq n < \infty$ for all α . Then $M = \sum_{\alpha \in I} \bigoplus M_\alpha$ has the exchange property.*

Proof. Put $M(i) = \sum_{J_i} \bigoplus M_\gamma$, where $\|M_\gamma\| = i$. Then $M(i)$ satisfies (*) by Lemma 6. On the other hand, $\{M_\alpha\}_I$ is T -nilpotent by [3], Corollary to Lemma 12. Hence, M has the exchange property by Lemma 2 and [2], Lemma 3.10.

3. \aleph_0 -exchange property

Let $\{M_\alpha\}_I$ be a set of completely indecomposable modules and \mathfrak{A} the induced category from $\{M_\alpha\}_I$. We have shown in [4] that every object in \mathfrak{A} has the exchange property in \mathfrak{A} if and only if $\{M_\alpha\}_I$ is a locally T -nilpotent system.

In this section we shall study a similar theorem to the above. We rearrange $\{M_\alpha\}_I$ as follows: $\{M_{\alpha\beta}\}_{\alpha \in K, \beta \in J_\alpha}$ such that $M_{\alpha\beta} \approx M_{\alpha\beta'}$ and $M_{\alpha\beta} \not\approx M_{\alpha'\beta'}$ if $\alpha \neq \alpha'$. Put $K^{(1)} = \{\alpha \in K, |J_\alpha| < \aleph_0\}$, $K^{(2)} = \{\alpha \in K, |J_\alpha| \geq \aleph_0\}$ and $M^{(i)} = \sum_{\alpha \in K^{(i)}} \sum_{\beta \in J_\alpha} \bigoplus M_{\alpha\beta}$, where $|K|$ means the cardinal of K . Then $M = M^{(1)} \oplus M^{(2)}$.

In Section 2, we have mainly studied a case $M = M^{(2)}$. We shall consider here a case $M = M^{(1)}$.

Lemma 7. *Let $M = M^{(1)} \oplus M^{(2)}$ be as above. We assume $\{M_\alpha\}_I$ is a locally T -nilpotent system. If either $M^{(2)} = 0$ or $M^{(1)} = 0$ and $|K^{(2)}| = 1$, then every monomorphism f in $\text{Hom}_R(M, M)$ has a left inverse, namely $\text{Im } f$ is a direct summand of M , (cf. [13], Proposition 6).*

Proof. We first note that there exist indices $\alpha, \beta \in I$ such that $p_\beta f|_{M_\alpha}$ is isomorphic from the proof of Lemma 4. Let \mathfrak{S} be the set of direct summands $\sum_{I'} \bigoplus M_\delta$ of M such that $\sum_{I'} \bigoplus f(M_\delta)$ are locally direct summands of M . Then \mathfrak{S} contains a maximal element $K = \sum_{I'} \bigoplus M_\delta$ with respect to the inclusion. Since $\{f(M_\delta)\}$ is locally T -nilpotent, $f(K)$ is a direct summand of M and $M = f(K) \oplus \sum_{I'} \bigoplus M'_\varepsilon$ by Lemma 10 in [3] and Lemma 3 in [6], where M'_ε are isomorphic to some in $\{M_\alpha\}_I$. We assume $K \neq M$. Then $f(M) = f(K) \oplus f(M) \cap (\sum_{I'} \bigoplus M'_\varepsilon)$. Let p be the projection of M to $\sum_{I'} \bigoplus M'_\varepsilon$, then $p f|_{\sum_{I'} \bigoplus M_\alpha}$ is monomorphic. On

the other hand, if $M^{(2)}=0$, $\sum_{I-L} \oplus M_\alpha \approx \sum_{I'} \oplus M'_\alpha$ and we may assume $pf|_{\sum_{I-L} \oplus M_\alpha}$ is a monomorphism in $\text{Hom}_R(\sum_{I'} \oplus M'_\alpha, \sum_{I'} \oplus M'_\alpha)$. Hence, in either case $M^{(1)}=0$ or $M^{(2)}=0$, there exists α' in $I-L$ such that $pf(M_{\alpha'})$ is a direct summand of $\sum_{I'} \oplus M'_\alpha$ from the first argument and Lemma 3. Therefore, $f(K \oplus M_{\alpha'})$ is a direct summand of M , which contradicts the maximality of K . Thus, we have proved the lemma.

REMARK. Lemma 7 is not true for the different cases from the assumption.

The following lemma is substantially due to [2], Lemma 3.11.

Lemma 8. *We assume that an R -module T has the finite exchange property and $T \oplus T' = \sum_{i=1}^{\infty} \oplus A_i = A$. Then each A_i contains a direct summand A'_i such that $T \cap (\sum_{i=1}^{\infty} \oplus A'_i) = 0$ and $T \otimes \sum_{i=1}^n \oplus A'_i$ is a direct summand of A for any n .*

Proof. Put $K_n = \sum_{i \geq n} \oplus A_i$. We assume $A = T \oplus A'_1 \oplus A'_2 \oplus \dots \oplus A'_n \oplus K_{n+1}'$, where A and K_{n+1}' are direct summands of A_i and K_{n+1} , respectively, say $A_i = A'_i \oplus A''_i$, $K_{n+1}' = K_{n+1}'' \oplus K_{n+1}'''$. Since $T \approx \sum_{i=1}^n \oplus A''_i \oplus K_{n+1}''$, K_{n+1}'' has the finite exchange property by [2], Lemma 3.10. We may assume $K_{n+1}'' = (T \oplus A'_1 \oplus A'_2 \oplus \dots \oplus A'_n) \cap K_{n+1}$ and hence $T \oplus A'_1 \oplus A'_2 \oplus \dots \oplus A'_n$ contains K_{n+1}'' as a direct summand; $T \oplus A'_1 \oplus A'_2 \oplus \dots \oplus A'_n = K_{n+1}'' \oplus P$. Put $K_{n+1} = A_{n+1} \oplus K_{n+2}$. Then $K_{n+1} = K_{n+1}'' \oplus A_{n+1}' \oplus K_{n+2}'$, since K_{n+1}'' has the finite exchange property. Thus, $A = T \oplus A'_1 \oplus A'_2 \oplus \dots \oplus A'_n \oplus K_{n+1}' = K_{n+1}'' \oplus P \oplus K_{n+1}' = K_{n+1} \oplus P = K_{n+1}'' \oplus P \oplus A_{n+1}' \oplus K_{n+2}' = T \oplus A'_1 \oplus A'_2 \oplus \dots \oplus A'_n \oplus A_{n+1}' \oplus K_{n+2}'$.

In Lemma 8 we have obtained $A_i = A'_i \oplus A''_i$ and $A = (\sum_{i=1}^{\infty} \oplus A'_i) \oplus (\sum_{i=1}^{\infty} \oplus A''_i)$. Let p_n be the projection of A to $\sum_{i=1}^n \oplus A''_i$ in the decomposition above.

Lemma 9. $p_n(T) = \sum_{i=1}^n \oplus A''_i$ for any n .

Proof. Let p be the projection of A to $\sum_{i=1}^{\infty} \oplus A''_i$. Since $A = \sum_{i=1}^n \oplus A'_i \oplus T \oplus K_{n+1}'$ and $K_{n+1} = \sum_{i>n} \Theta A'_i \oplus \sum_{i>n} \oplus A''_i$, $p(A) = p(T \oplus K_{n+1}') \subseteq p(T) + p(K_{n+1}') = p(T) + \sum_{i>n} \oplus A''_i \subseteq p(A)$. Hence, $p_n(T) = \sum_{i=1}^n \oplus A''_i$.

Lemma 10. *If $\{M_\alpha\}_I$ is α/fy T -nilpotent and $M^{(2)}=0$, then M has the \aleph_0 -exchange property.*

Proof. Let $M = M^{(1)} = \sum_{\alpha \in K} \sum_{\beta \in J_\alpha} \oplus M_{\alpha\beta}$ as above and $M \oplus N = \sum_{i=1}^{\infty} \oplus A_i = A$. Then M has the finite exchange property by [12], Proposition 1.7. Hence, we

obtain direct summands A_i'' of A_i such that $M \cap (\sum_{i=1}^n \oplus A_i'') = (0)$ from Lemma 8. Since

$$\sum_{i=1}^n \oplus A_i'' \oplus K_{n+1}'' \approx M \cdots (**),$$

$A_i'' \approx \sum_{\alpha \in K^{(i)}} \sum_{\beta \in J_{\alpha}^{(i)}} \oplus M_{\alpha\beta}$ and $J_{\alpha}^{(i)} \subseteq J_{\alpha}$, $K^{(i)} \subseteq K$ by [3], Theorem 9. Since $|J_{\alpha}| < \aleph_0$, $\sum_1^{\infty} |J_{\alpha}^{(i)}|$ is finite and $|J_{\alpha}| \geq \sum_1^{\infty} |J_{\alpha}^{(i)}|$ from (**). Now, $\sum_1^{\infty} \oplus A_i = \sum_1^{\infty} \oplus A_i' \oplus \sum_1^{\infty} \oplus A_i''$ and let p be the projection to $\sum_1^{\infty} \oplus A_i''$. Since $M \cap (\sum_1^{\infty} \oplus A_i') = (0)$, M is isomorphic to $p(M) \subseteq \sum_1^{\infty} \oplus A_i''$. From the above argument we may assume that $p|_M$ is a monomorphism in $\text{Hom}_R(M, M)$. Then $p(M)$ is a direct summand of $\sum_1^{\infty} \oplus A_i''$ by Lemma 7. Hence, $\sum_1^{\infty} \oplus A_i'' = p(M) \oplus \sum_1^{\infty} \oplus A_i'''$; $A_i''' \subseteq A_i''$, by [4'], Corollary 2 to Proposition 1. Thus, $\sum_1^{\infty} \Theta A_i = M \oplus \sum_1^{\infty} \oplus (A_i' \oplus A_i''')$.

Lemma 11. // $\{M_{\alpha}\}$ is locally semi- T -nilpotent and $M = M^{(1)}$ (i.e. $M^{(2)} = 0$) is R -projective, then M has the tf₀-exchange property.

Proof. Let $M = M^{(1)} = \sum_{\alpha \in K^{(1)}} \sum_{\beta \in J_{\alpha}^{(1)}} \oplus M_{\alpha\beta}$. We shall use the same notations as in the proof of Lemma 10. We have obtained the monomorphism p of M to $\sum_1^{\infty} \oplus A_i''$ and A_i'' are in \mathfrak{A} from (**) and [4], Theorem 4. Put $A_i'' = \sum_{\alpha \in K^{(i)}} \sum_{\beta \in J_{\alpha}^{(i)}} \oplus M_{\alpha\beta}'$. Since $|J_{\alpha}^{(1)}| < \aleph_0$, $\sum_1^{\infty} |J_{\alpha}^{(i)}| \leq |J_{\alpha}|$ from (**). We consider all $M_{\alpha\beta}'$ and p in $\bar{\mathfrak{A}}$. Since M is projective, so is A_i'' from (**). Furthermore, $p|_M$ is epimorphic to $\sum_1^{\infty} \oplus A_i''$ by Lemma 9 and so $p|_M$ splits. Therefore, $p|_{\bar{M}}$ is epimorphic in $\bar{\mathfrak{A}}$. Now, $\sum_1^{\infty} \oplus A_i'' = \sum_{\alpha \in K^{(1)}} \sum_{\beta \in J_{\alpha}^{(1)}} \oplus M_{\alpha\beta}'$. Since $\sum_1^{\infty} |J_{\alpha}^{(i)}| < \aleph_0$, $\sum_{\alpha \in K^{(1)}} \oplus \bar{M}_{\alpha\beta}'$ is a direct summand of some $\sum_1^{\infty} \oplus A_i''$. Let q be the projection of $\sum_1^{\infty} \oplus A_i''$ to $\sum_{\alpha \in K^{(1)}} \oplus M_{\alpha\beta}'$. Then $q|_{\bar{M}}$ is epimorphic from the above. On the other hand, $\bar{q}p(\sum_{\alpha' \neq \alpha} \oplus \bar{M}_{\alpha'\beta}) = (0)$, since $\bar{M}_{\alpha'\beta}$ are minimal and $\bar{M}_{\alpha'\beta} \approx \bar{M}_{\alpha\beta}$. Hence, $\bar{p}(\sum_{\beta \in J_{\alpha}} \oplus \bar{M}_{\alpha\beta}) = \sum_{\beta \in J_{\alpha}} \oplus \bar{M}_{\alpha\beta}'$, which implies $\bar{p}|_{\bar{M}}$ is epimorphic. Since $\bar{\mathfrak{A}}$ is a regular abelian category from [3], Theorem 7, there exists $t: \sum_1^{\infty} \oplus A_i'' \rightarrow M$ such that $pt = \bar{1}_{\sum \oplus A_i''}$. Therefore, p is epimorphic as R -modules by [6] and [7]. Thus, $A = \sum_1^{\infty} \oplus A_i' \oplus M$.

Let $\mathfrak{A}(f)$ be the subadditive category of \mathfrak{A} , whose objects consist of all A

such that $A = A^{(1)} \oplus A^{(2)}$ and $|K^{(2)}| < \aleph_0$.

Summarizing the above we have

Proposition 2. *Let $\{M_\alpha\}_I$ be a set of completely indecomposable modules and $\mathfrak{A}(f)$ as above. Then $\{M_\alpha\}_I$ is a locally T -nilpotent system if and only if every module in $\mathfrak{A}(f)$ has the \aleph_0 -exchange property.*

Proposition 3. *Let P be a projective R -module in $\mathfrak{A}(f)$. Then P is semi-perfect if and only if P has the \aleph_0 -exchange property.*

OSAKA CITY UNIVERSITY
KINKI UNIVERSITY

References

- [1] H. Bass: *Finitistic dimension and a homological generalization of semi-primary rings*, Trans. Amer. Math. Soc. 95 (1960), 466-488.
- [2] P. Crawley and B. Jónnson: *Refinements for infinite direct decomposition of algebraic systems*, Pacific J. Math. 14 (1964), 797-855.
- [3] M. Harada and Y. Sai: *On categories of indecomposable modules I*, Osaka J. Math. 7 (1970), 323-344.
- [4] M. Harada: *On categories of indecomposable modules II*, ibid. 8 (1971), 309-321.
- [4']———: *Supplementary remarks on categories of indecomposable modules*, ibid. 9 (1972), 49-55.
- [5] M. Harada and H. Kanbara: *On categories of projective modules*, ibid. 8 (1971), 471-483.
- [6] T. Ishii: *On locally direct summands of modules*, Osaka J. Math. 12 (1975), 473-482.
- [7] H. Kanbara: *Note on Krull-Remak-Schmidt-Azumaya's Theorem*, Osaka J. Math. 9 (1972), 409-413.
- [8] E. Mares: *Semi-perfect modules*, Math. Z. 83 (1963), 347-360.
- [9] E.M. Patterson: *On the radical of rings of row-finite matrices*, Proc. Roy. Soc. Edinburgh Sect. A 66 (1962), 42-46.
- [10] R. Ware and J. Zelmanowitz: *The Jacobson radical of endomorphism ring of a projective module*, Proc. Amer. Math. Soc. 26 (1970), 15-20.
- [11] R.B. Warfield Jr.: *A Kurll-Schmidt theorem for infinite sums of modules*, ibid. 22 (1969), 460-465.
- [12] K. Yamagata: *The exchange property and direct sums of indecomposable injective modules*, Pacific J. Math. 55 (1974), 301-317.
- [13]———: *On projective modules with the exchange property*, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 12 (1974), 149-158.

