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Abstract
In this paper we give a generalization of a result of Herzog, Hibi, and Zheng

providing an upper bound for regularity of powers of an ideal. As the main result
of the paper, we give a simple criterion in terms of Rees algebra of a given ideal
to show that high enough powers of this ideal have linear resolution. We apply the
criterion to two important idealsJ, J1 for which we show thatJk, and Jk

1 have linear
resolution if and only ifk 6= 2. The procedures we include in this work is encoded
in computer algebra package CoCoA [3].

1. Introduction

Let S = K [x1, : : : , xr ] and let

F : � � � ! Fi ! Fi�1! � � �
be a graded complex of freeS-modules, with Fi =

P
j S(�ai , j ). The Castelnuovo-

Mumford regularity, or simply regularity, ofF is the supremum of the numbersai , j � i .
The regularity of a finitely generated gradedS-module M is the regularity of a mini-
mal graded free resolution ofM. We will write reg(M) for this number. The regular-
ity of an ideal is an important measure of how complicated theideal is. The above
definition of regularity shows how the regularity of a modulegoverns the degrees ap-
pearing in a minimal resolution. As Eisenbud mentions in [8]Mumford defined the
regularity of a coherent sheaf on projective space in order to generalize a classic argu-
ment of Castelnuovo. Mumford’s definition [12] is given in terms of sheaf cohomology.
The definition for modules, which extends that for sheaves, and the equivalence with
the condition on the resolution used above definition, come from Eisenbud and Goto
[9]. Alternate formulations in terms of Tor, Ext and local cohomology are given in
the following. Let I be a graded ideal,m = (x1, : : : , xr ) the maximal ideal ofS, and
n = dim(S=I ). Let

ai (S=I ) = maxft ; H i
m(S=I )t 6= 0g, 0� i � n,
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where H i
m(S=I ) is the i -th local cohomology module with the support inm (with the

convention max; = �1). Then the regularity is the number

reg(S=I ) = maxfai (S=I ) + i ; 0� i � ng.
Note that reg(I ) = reg(S=I ) + 1. We may also compute reg(I ) in terms of Tor by the
formula

reg(I ) = max
k
ftk(I )� kg,

where tp(I ) := maxfdegree of the minimalp-th syzygies ofI g. Simply this definition
may be rewritten as

reg(I ) = max
i , j
f j � i ; Tori (I , k) j 6= 0g

= max
i , j
f j � i ; �i , j (I ) 6= 0g.

Anyway, from local duality one see that the two ways of expressing the regularity
are also connected termwise by the inequalitytk(I ) � k � ai (S=I ) + n� k. Regularity
is a kind of universal bound for important invariants of graded algebras, such as the
maximum degree of the syzygies and the maximum non-vanishing degree of the local
cohomology modules. One has often tried to find upper bounds for the Castelnuovo-
Mumford regularity in terms of simpler invariants which reflect the complexity of a
graded algebra like dimension and multiplicity. Clearlyt0(I k) � kt0(I ) and one may
expect to have the same inequality for regularity, that is, reg(I k) � k reg(I ). Unfortu-
nately this is not true in general. However, in [6] Cutkosky,Herzog, and Trung and
in [11] Kodiyalam studied the asymptotic behavior of the Castelnuovo-Mumford regu-
larity and independently showed that the regularity ofI k is a linear function for large
k, i.e.,

reg(I k) = a(I )k + b(I ), 8k � c(I ).(1.1)

Now assume thatI is an equigenerated ideal, that is, generated by forms of thesame
degreed. Then one hasa(I ) = d and hence, reg(I k+1) � reg(I k) = d for all k � c(I ).
Hence we have

reg(I k) = (k� c(I ))d + reg(I c(I )), 8k � c(I ).(1.2)

One says that the regularity of the powers ofI jumps at placek if reg(I k)�reg(I k�1)>
d. In [4] the author gives several examples of ideals generated in degreed (d = 2, 3),
with linear resolution (i.e., reg(I ) = d), and such that the regularity of the powers of
I jumps at place 2, i.e., such that reg(I 2) > 2d. As it is indicated in [4], the first
example of such an ideal was given by Terai. Throughout this paper we useJ for this
ideal. Geometrically speaking, this is an example of Reisner which corresponds to the
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Fig. 1. The ideal of triangulation of the real projective plane P2.

(simplicial complex of a) triangulation of the real projective planeP2; see Fig. 1 and
[2] for more details. LetR := K [x1, : : : , x6] one has

J = (x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6, x3x4x5,

x3x4x6).
(1.3)

It is known that J is a square-free monomial ideal whose Betti numbers, regularity
and projective dimension depend on the characteristic of the base field. Indeed when-
ever char(K ) 6= 2, R=J is Cohen-Macaulay (and otherwise not), moreover one has
reg(J) = 3 and reg(J2) = 7 (which is of course> 2� 3). If char(K ) = 2, then J itself
has no linear resolution. So the following natural questionarises:

QUESTION A. How it goes on for the regularity of powers ofJ?

By the help of (1.1) we are able to write reg(Jk) = 3k +b(J), 8k � c(J). But what
are b(J) and c(J)? In this paper we give an answer to this question and prove that Jk

has linear resolution (in char(K ) = 0) 8k 6= 2, that is,b(J) = 0 andc(J) = 3. That is

reg(Jk) = 3k, 8k 6= 2.

To answer Question A we develop a general strategy and to thisend we need to
follow the literature a little bit. In [13] Römer proved that

reg(I n) � nd + regx(R(I )),(1.4)

where R(I ) is the Rees ring ofI , which is naturally bigraded, and regx refers to the
x-regularity of R(I ), that is,

regx(R(I )) = maxfb� i ; Tori (R(I ), K )(b,d) = 0g,
as defined by Aramova, Crona and De Negri [1]. In Section 2 we study Rees rings and
their bigraded structure in more details. It follows from (1.4) that if regx(R(I )) = 0,
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Table 1. Count of elements of in(P) with degx > 1 for the ideal
of (1.3).

x > t t > x
DegRevLex (1, 2) : 2, (2, 2) : 2 (1, 2) : 2, (2, 2) : 1

Lex (1, 2) : 2, (2, 2) : 1 (1, 2) : 2, (2, 2) : 1

then each power ofI admits a linear resolution. Based on Römer’s formula, in [10,
Theorem 1.1 and Corollary 1.2] Herzog, Hibi and Zheng showedthe following:

Theorem 1.1. Let I � K [x1,:::, xn] := S be an equigenerated graded ideal. Let m
be the number of generators of I and let T:= S[t1, : : : , tm], and let R(I ) = T=P be the
Rees algebra associated to I. If for some term order< on T, P has a Gröbner basis
G whose elements are at most linear in the variables x1, : : : , xn, that is degx( f ) � 1
for all f 2 G, then each power of I has a linear resolution.

Throughout this paper we simply writeS= K [x ] and T = S[t ]. One can easily see
that for J, (1.3), one has at least 3 elements in in(P) with degx > 1, no matter if we
take initial ideal w.r.t. term ordering x> t or t> x in either Lex or DegRevLex order
as it is reported in Table 1. Note that for example if one starts in DegRevLex order
and x> t then there is 4 elements in in(P) which havex-degree> 1 (= 2 actually)
and among them 2 term hast-degree 1 and 2 term is int-degree 2.

The main motivation for our work is to generalize Herzog, Hibi and Zheng’s tech-
niques in order to apply them to a wider class. Furthermore, we will indicate the least
exponentk0 for which I k has linear resolution for allk � k0. Indeed our generalization
works for all ideals which admit the following condition:

Theorem 1.2. Let Q� S = K [x1, : : : , xr ] be a graded ideal which is generated
by m polynomials all of the same degree d, and let I = in(g(P)) for some linear bi-
transformation g2 GLr (K ) � GLm(K ). Write I = G + B where G is generated by
elements ofdegx � 1 and B is generated by elements ofdegx > 1. If I (k, j ) = G(k, j ) for
all k � k0 and for all j 2 Z, then Qk has linear resolution for all k� k0. In other
words, reg(Qk) = kd for all k� k0.

Another motivation for our paper is an example that Conca considered in [4].

EXAMPLE 1.3. Let J1 be the ideal of 3-minors of a 4� 4 symmetric matrix of
linear forms in 6 variables, that is, 3-minors of

2
664

0 x1 x2 x3

x1 0 x4 x5

x2 x4 0 x6

x3 x5 x6 0

3
775.



L INEAR RESOLUTION OF POWERS OF IDEALS 1051

Table 2. Count of elements of in(P1) with degx > 1 for J1, (1.5).

x > t t > x
DegRevLex (1, 2) : 6, (2, 2) : 5, (1, 3) : 1, (4, 2) : 1(1, 2) : 6, (2, 2) : 3, (1, 3) : 1

Lex (1, 2) : 6, (2, 2) : 3 (1, 2) : 6, (2, 2) : 5

As an ideal ofS = Q[x1, : : : , x6] one has:

J1 := (2x1x2x4, 2x1x3x5, 2x2x3x6, 2x4x5x6, x1x3x4 + x1x2x5� x2
1x6,

x3x4x6 + x2x5x6� x1x2
6, �x2x3x4 + x2

2x5� x1x2x6, �x2
3x4 + x2x3x5 + x1x3x6,

�x3x2
4 + x2x4x5 + x1x4x6, �x3x4x5 + x2x2

5 � x1x5x6).

(1.5)

As Conca mentioned in his paper [4, Remark 3.6] and as we will show in this paper,
the idealsJ, J1 are very closely related. For instance, we prove that

reg(Jk
1 ) = 3k, 8k 6= 2.

Similar to the ideal of (1.3), one can easily check that in(P1), where P1 is the associ-
ated ideal to Rees ring ofJ1, has at least 9 elements with degx > 1, no matter if we
take initial ideal w.r.t. term ordering x> t or t > x in Lex or DegRevLex order; see
Table 2 for more details.

We also show thatJ and J1 and their powers have the same Hilbert series (HS
for short) correspondingly:

HS(S=Jk) = HS(S=Jk
1 ), 8k.

Indeed we have computed the multigraded Hilbert series of the corresponding ideals
to the Rees algebra ofJ and J1 and observed that they are the same. As a result
we conclude that all of the powers ofJ and J1 have the same graded Betti numbers
as well:

�i , j (Jk) = �i , j (Jk
1 ), 8i , j , 8k.

2. Main results

Let K be a field, I = ( f1, : : : , fm) be a graded ideal ofS= K [x1, : : : , xr ] generated
in a single degree, sayd. The Rees algebra ofI is known to be

R(I ) =
M
j�0

I j t j = S[ f1t , : : : , fmt ] � S[t ].

Let T = S[t1, : : : , tm]. Then there is a natural surjective homomorphism of bigraded
K -algebras' : T ! R(I ) with '(xi ) = xi for i = 1, : : : , r and '(y j ) = f j t for j =
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1, : : : , m. So one can writeR(I ) = T=P. In this paper we considerT , and soR(I ), as
a standard bigraded polynomial ring with deg(xi ) = (0, 1) and deg(t j ) = (1, 0). Indeed if
we start with the natural bigraded structure deg(xi ) = (0, 1) and deg(f j t) = (d, 1) then
R(I )(k,vd) = (I k)vd, but the standard bidegree normalizes the bigrading in the following
sense:

(2.1) R(I )(k, j ) = (I k)kd+ j .

For eachk 2 Z we define a functorFk from the category of bigradedT-modules
to the category of gradedS-modules with bigraded maps of degree zero. LetM be a
bigradedT-module, define

Fk(M) =
M
j2Z

M(k, j ),

obviously Fk is an exact functor and associates to each freeK [x, t]-module a free
K [x ]-module. Sometimes we simply writeM(k,?) instead ofFk(M). Using (2.1) we get

[T=P](k,?) = R(I )(k,?) =
M
j2Z

R(I )(k, j ) =
M
j2Z

(I k)kd+ j = I k(kd),(2.2)

which provides the link betweenI and its Rees ringR(I ). In the sequel we need to
know what isFk(T(�a, �b)). For the convenience of reader we provide a proof.

REMARK 2.1. For each integerk we have

(2.3) T(�a, �b)(k,?) =

�
0, if k < a,
S(�b)N , otherwise.

Where N := #
�
t� ; j�j = k� a

	
=
�

m� 1 + k� a
m� 1

�
.

Proof.

T(�a, �b)(k,?) =
M
j2Z

T(�a, �b)(k, j ) =
M
j2Z

T(k�a, j�b)

=
M
j2Z

ht�x� ; j�j = k� a, j�j = j � bi,(2.4)

where the last equality is as vector spaces. From (2.4) the proof is immediate when
k < a. Considering as anS = K [x ]-module the last module in (2.4) is free. Sincej�j = j � b could be any integer wherej changes overZ, a shift by�b is required
for the representation of the graded free moduleT(�a,�b)(k,?) and finally the proposed
N will take care of the required copies.
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Note that in the spacial casea = b = 0, we have

(2.5) T(k,?) = S(m�1+k
m�1 ).

As we mentioned in Introduction, Theorem 1.1 is subject to condition that in(P) =
(u1,:::,um) and degx(ui ) � 1. So the natural way to generalize it is to change the upper
bound for x-degree ofui with some numbert . As one may expect, we end up with
reg(I n) � nd+ (t �1) pd(T=in(P)). The proof is mainly as that of Theorem 1.1 but for
the convenience of reader we bring it here.

Proposition 2.2. Let I � S be an equigenerated graded ideal and let R(I ) =
T=P. If in(P) = (u1, : : : , um) and degx(ui ) � t , then reg(I n) � nd+ (t �1) pd(T=in(P)).

Proof. LetC� be the Taylor resolution of in(P). The moduleCi has the basise�
with � = j1 < j2 < � � � < ji � [m]. Each basis elemente� has the multidegree (a� , b� )
wherexa� . yb� = lcmfu j1, : : : , u jmg. It follows that degx(e� ) � t i for all e� 2 Ci . Since
the shifts of C� bound the shifts of a minimal multigraded resolution of in(P), we
conclude that

regx(T=P) � regx(T=in(P)) = max
i , j
fai j � i g

� t i � i = (t � 1)i

� (t � 1) pd(T=in(P)).

Now (1.4) completes the proof.

One can see that now Theorem 1.1 is the special case of Proposition 2.2 with t = 1.
However, this approach seems to be less effective. Our approach to generalize Theo-
rem 1.1 is to changeP with an isomorphic imageg(P) so that in(g(P))(k,?) only con-
sists of terms withx-degree� 1, for somek. To this end, we need a simple fact.

Let < be any term order onS = K [x ] and let V � S be a K -vector space. Then
with respect to the monomial order onS obtained by restricting<, by definition V is
homogeneous if for any elementf of V , f =

Pn
i =0 fi , where fi is an element ofS

of degreei , we have fi 2 V , 8i = 0, : : : , n. That is to sayV =
L1

i =0 Vi , Vi = V \ Si .
It yields that in(V) =

L1
i =0 in(Vi ) and so, in(V)i = in(Vi ). Generalizing this idea to

bigraded (or multigraded) situation is also well understood. Let F be a freeS-module
with a fixed basis andM a bigraded subvector space of it. Then

in(M)(i , j ) = in(M(i , j )),

and so

in(M)(k,?) :=
M
j2Z

in(M)(k, j ) =
M
j2Z

in(M(k, j )) = in(M(k,?)).(2.6)
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See [7] Chapter 15.2 for more details. Furthermore since�S
i j (F=M) � �S

i j (F=in(M)),
it is easy to conclude with

reg(F=M) � reg(F=in(M)).(2.7)

Lemma 2.3. Let P be the associated ideal of Rees ring R(I ) and let T = R=P.
Then reg([T=P](k,?)) � reg([T=in(P)](k,?)).

Proof. SinceP is a naturally bigraded ideal ofT , and since easilyT(k,?) is a
free S-module (see (2.5)), (2.6) implies that in(P)(k,?) = in(P(k,?)). Applying (2.7) for
F := T(k,?) and M := P we obtain reg(T(k,?)=P(k,?)) � reg(T(k,?)=in(P(k,?))). Finally putting
all together we get the required inequality.

reg([T=P](k,?)) = reg(T(k,?)=P(k,?)) � reg(T(k,?)=in(P(k,?)))
= reg(T(k,?)=in(P)(k,?))
= reg([T=in(P)](k,?)).

In the following the proof of Theorem 1.2 is given.
Proof. First of all notice that, sinceg : K [x, t] ! K [x, t] is an invertible bi-

homogenous transformation, we have the following bi-homogenous isomorphism:

K [x, t]

P
' K [x, t]

g(P)
,

and so we can simply takeg = id in the rest of proof. Write down the so-called Taylor
resolution ofT=G:

(2.8) � � � !
F2,0�
F2,1�
F2,2

! F1,0�
F1,1

! T ! T=G! 0,

where Fi , j =
L

a2Z T(�a, � j )�i ,(a, j )(T=G). Note that�i ,(a, j )(T=G), is an integer number
which depends oni , a, and j . Since (k, ?) is an exact functor, the following complex
of K [x ]-modules is exact:

(2.9) � � � !
(F2,0)(k,?)�
(F2,1)(k,?)�
(F2,2)(k,?)

! (F1,0)(k,?)�
(F1,1)(k,?) ! T(k,?) ! [T=G](k,?) ! 0.
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Using formula (2.3) we obtainT(�a, �b)(k,?) = S(�b)Na,k , so for Fi , j we get

(Fi , j )(k,?) =
M
a2Z

S(� j )Na,k�i ,(a, j )(T=G).(2.10)

It follows that (2.9) is a (possibly non-minimal) graded free K [x ]-resolution of [T=G](k,?).
Since degx(G) � 1, from (2.9) and (2.10) we conclude that

reg([T=G](k,?)) = 0 for all k.(2.11)

Now we have

(2.12)

dk � reg(Qk) � reg([T=P](k,?)) + dk � reg([T=in(P)](k,?)) + dk

= reg([T=G](k,?)) + dk for all k � k0

= 0 +dk = dk,

where the second (in)equality in (2.12) follows from (2.2),the third inequality is due to
Lemma 2.3, and the forth comes from the easy argument [T=in(P)](k,?) = T(k,?)=in(P)(k,?) =
T(k,?)=G(k,?) = [T=G](k,?).

Finally (2.12) implies that reg(Qk) = kd for all k � k0 as desired.

3. Examples and applications

In this section we provide some applications of Theorem 1.2.But before that we
examine our condition on the decomposition of in(P) in a closer view. In the following
a reformulation of our results is provided.

With the assumptions and notation introduced in Theorem 1.2assume thatB =
(m1, : : : , mp) and bideg(mi ) = (ti , � 2). By (ti , � 2) we mean that the degx(mi ) � 2. It
is harmless to assume thatt1 � � � � � tp. If for all i = 1, : : : , p and all � 2 Nm withj�j = tp + 1� ti we have t�mi � G then I(k,?) = G(k,?) for all k > tp + 1.

Using this strategy and as an application for our main resultwe give an answer to
the Question A proposed in the Introduction.

EXAMPLE 3.1. Let S = Q[x1, : : : , x6] and let J be the ideal of (1.3). LetT =
Q[x1, : : : , x6, t1, : : : , t10] with order x> t (and DegRevLex). We also useJ for the ideal
of T generated by the same generators as ofJ in S. Let P be the defining ideal of the
Rees ring ofJ, so R(J) = T=P. One can check thatP has 15 elements of bidegree
(1, 1), 10 elements of bidegree (3, 0), and 15 elements of bidegree (4, 0). TakeG and B
as in Theorem 1.2. We have checked thatjGj = 60, B = Ideal(t6x4x5, t4x3x5, t4t6x2

5), and
so maxfdegt (h) j h 2 Bg = 2. But (t)2(t6x4x5) * G, (t)2(t4x3x5) * G, (t)(t4t6x5) * G.
So in DegRevLex (also Lex) order and x> t, we were unable to admit the conditions
of Theorem 1.2. We have observed that the same story happens for ordering t> x
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either DegRevLex or Lex. One could try to takeg “generic”, as in (3.1).

g := g1� g2,

g1 := xi 7! Random(Sum(x1, : : : , x6)),

g2 := t j 7! Random(Sum(t1, : : : , t10)),

(3.1)

for all i = 1, : : : , 6 and all j = 1, : : : , 10, where by Random(Sum(x1, : : : , x6)) we mean
a linear combination ofx1, : : : , x6 with random coefficients and the same interpretation
for t1, : : : , t10. But we realized that a properly chosen sparse random upper triangular
g does the job as well. We continue in DegRevLex order and t> x.

We have implemented some functions (in CoCoA) to look for a desired upper tri-
angular bi-change of coordinates. For example, the following g works fine for J, in-
deed there exists many of suchg:

g := g1� g2 2 GL6(Q)�GL10(Q),

where g1 : Q[x ] ! Q[x ] is given by

x4 7! x1 + x4,

x6 7! x3 + x6,

and sendsxi for i 6= 4, 6 to itself and letg2 to be the identity map overQ[t ]. One can
compute thatjGj = 98, B = (t7x2

3, t4t6x2
5). It is easy to verify that

(3.2) I(k,?) = G(k,?), for k > 2() �
(t7x2

3)(t1, : : : , t10)2 � G,
(t4t6x2

5)(t1, : : : , t10) � G,

and since in the right side of (3.2) both containments are valid we conclude with
reg(Jk) = 3k for all k > 2.

Taking several ideas from Example 3.1 now we are able to quickly find an answer
to Question A forJ1. In the following we show that reg(Jk

1 ) = 3k, for all k > 2.

EXAMPLE 3.2. Let S = Q[x1, : : : , x6] and let J1 be the ideal of (1.5). LetT =
Q[t1, : : : , t10, x1, : : : , x6] in DegRevLex order, and letP1 be the defining ideal of the
Rees ring ofJ1, so R(J1) = T=P1. One can observe thatP has 15 elements of bidegree
(1, 1), 10 elements of bidegree (3, 0), and 12 elements of bidegree (4, 0). Takeg to
be the following simple upper triangular bi-transformation:

g := g1� g2 2 GL6(Q)�GL10(Q),
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where g1 : Q[x ] ! Q[x ] shall be given by

x4 7! x2 + x4,

x6 7! x1 + x6,

and sending the rest to themselves and takeg2 : Q[t ] ! Q[t ] to be

t8 7! t7 + t8,

and fori 6= 8, ti 7! ti . Computations by CoCoA shows thatjGj= 144, B = (t10x2x3, t2t4x2
5).

Since I := in(g(P)) = G + B, we have

I(k,?) = G(k,?), for k > 2() �
(t10x2x3)(t1, : : : , t10)2 � G,
(t2t4x2

5)(t1, : : : , t10) � G,
(3.3)

and since it is easy to check that the right side of (3.3) is holding, we obtain that
reg(Jk

1 ) = 3k for all k > 2.

We conclude with the following two corollaries which indicate that idealsJ, (1.3),
and J1, (1.5), are very tightly related.

Corollary 3.3. When the characteristic of the base field is zero, all the powers
of J, and J1, but the second power have linear resolution.

Since the least exponentk0 for Jk, and also forJk
1 in order to have linear resolu-

tion for all k > k0 is 2, the following question seems to be interesting to discover:

QUESTION B. Does there exist an idealQ with generators of the same degree
d over some polynomial ringS = K [x1, : : : , xr ], for which reg(Qk) = kd, 8k 6= 3 or8k 6= 2, 3?

As we mentioned in Introduction, it is easy to check thatT=P and T=P1 have the
same multigraded Hilbert series, whereP, and P1 are the defining ideals of Rees rings
of J and J1 correspondingly. The immediate result is as follows:

Corollary 3.4. HS(S=Jk) = HS(S=Jk
1 )8k, and so�i , j (Jk) = �i , j (Jk

1 ) 8i , j , 8k.
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