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The main purpose of this paper is to prove Theorem C, giveavbdlet us how-
ever in this introduction first discuss the role of the veinpisg C° topology and its
relation to the strong € topology.

Let M and N be C° manifolds. By C (4, N ), where 1< r < oo, we denote
the set of all C maps fronM t&v . In the case when is finite, &Ad may b
non-compact, there is a well established, standard chdieetopology for C (4, N ),
namely the strong 'C topology, also called the Whitnéy C togwl see e.g. [5], Sec-
tion 2.1, and [11], Section 2. We denoté¢ ® (N ) with the strorig @otogy by
C5(M,N), 1 <r < co. In the case whem is finite the strong C topology is clearly
the right topology to use on CM, N ). However, when oz the question concerning
the right topology for C°(M, N) is more complex and interesting.

One possible choice of a topology fore@M, N) is the strong € topology,
introduced by Mather in [11], Section 2, see also [5], Sectl. The strong ©
topology on C°(M, N) has as a basis the union of all strong C topologies on
C>®(M,N), 1 < r < oo. (The strong C topology on €M, N) is the relative
topology from G(M, N), 1 < r < o0.) Mather calls the strong € topology the
Whitney C* topology, but as we shall see this choice of terminology i$ well
founded. It is only in the case when is finite that the strorig @otogy should
be named the Whitney topology. In fact du Plessis and Wak, [4&], p. 59, pro-
pose that the strong € topology on C°(M, N) be named the Mather topology. Note
that the strong © topology is completely determined by the strongj C topolsgie
C>®(M,N), 1 <r < oo, and in this sense the strong®Ctopology on C°(M, N) is
not a genuine © topology. We let G°(M, N) denote C°(M, N) with the strong C°
topology.

There is however a genuine>Ctopology on C°(M, N), namely thevery-strong
C*° topology This topology was introduced by Cerf in [3], Definition B41. We give
the definition of the very-strong € topology on C°(M, N) in Definition 1.1, in a
slightly different way than Cerf does. Cerf does not givesthopology any special
name, but it is named the ‘very strong topology’, and denat&t, by du Plessis
and Wall, see [15], p. 59. We shall denoté° @7, N) with the very-strong & topol-

ogy by G3(M, N).
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There are some basic and clear facts which show that the sieygg C° topol-
ogy is a better topology for ©(M, N) than the strong € topology. Let us first
present the following.

The very-strong € topology on C°(M, N) provides the right means to express
classical approximation results by Whitney [16] in a modé&amework. Supposd/
is an open subset of some euclidean spR¢e and let C'(U, R") denote the set of
all real analytic maps front/ t®R”", n > 1. Using the C° case of Lemma 6 in [16]
(see Lemma 4.1), we first prove that’@, R") is dense in ¢8(U, R"), see Proposi-
tion 4.2. We then proceed to establish the following ressée Theorem 4.4.

Theorem A. Let M and N be real analytic manifolds. Then the &t(M, N),
of all real analytic maps fromM taV, is dense in the spacgj3(M, N).

We do not wish to claim originality concerning the result ihebrem A, but on
the other hand we do not know of any place in the literatureretiteis proved. The-
orem A is a stronger result than the well-known result that(/Z, N) is dense in
CZ(M, N).

The C* case of Lemma 6 in [16] proves the existence of an approximabif
a given C° map f :U — R" by a real analytic maggr U — R”", and the estab-
lished approximation involves approximation of the partiarivatives of f by the par-
tial derivatives ofh , of increasingly high order as one apgt®es the boundary of
U, i.e., as one moves out towards infinity. This phenomenorafguced by the very-
strong C*° topology, butnot by the strong € topology. Here lies the reason why
it is the very-strong € topology on C°(M, N) that should be called the Whitney
C* topology on C°(M, N), and the strong € topology on C°(M, N) could well
be named the Mather topology orPCM, N), as was already pointed out above. It is
however usually very difficult to change accepted matherahtierminology, even in
cases where there is a good reason for a change, so we haviermadnthese termi-
nology questions here without any real expectation of a geam this paper we only
use the terminology “strong € topology” and “very-strong € topology”, and re-
frain from using the terminology “Mather topology” and “Whey topology” in order
to avoid misunderstandings.

Another important property that the very-strong°Qas, but which the strong°€
topology lacks, is that by using the very-strong°Qopology one can glue together
two C>* maps, as in Lemma B, see [3], 1.4.3.4.4.

Lemma B. Let f: M — N be aC> map betweerC>* manifolds and letU be
an open subset a¥f . Then there exists an open neighborhéod f|U in CE(U, N)
such that for eachh € N the mapE(h): M — N defined by

_[h(x), xe€U
E(h)(x)_{f(x), xeM-U,
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is a C> map. MoreoverE: N’ — C%(M, N), h — E(h), is continuous.

For 1 < r < oo, the C case of Lemma B holds for the strong C topol-
ogy, see [5], Lemma 2.2.8, or [15], Lemma 1.3.4.18. Howevier,the C* case
Lemma B does not hold if we use the strong @opology, see the remark after Corol-
lary 1.3.4.19 in [15]. Thus it is necessary that one uses #wy-gtrong C° topology,
and not the strong € topology, in Lemma B.

Now let K be a compact Lie group. By a*C K-manifold M we mean a ©
smooth manifoldM on whichk acts by a>Csmooth action. IfM andv are €
K-manifolds we let C>X(M, N) denote the set of alk -equivariant*Cmaps from
M to N. We give C>X(M, N) the very-strong € topology, i.e., the relative topology
from C3(M, N), and we denote the obtained topological space @K(CM, N). If
M and N are real analyti -manifolds, we denote the set ofkall uivagiant real
analytic maps fromM tav by €X(M, N).

SupposeR”(0) is a linear representation space fr . Using the invariegeirHn-
tegral onK one obtains an averaging map , which is a retractiap from the set
C>(M, R"(0)) onto the subset ©X (M, R"*(#)). We prove in Theorem 6.4 that the av-
eraging mapA is continuous in the very-strong® @opology, i.e., that

A: CE(M, R"(B)) — CoX (M, R"(9))

is continuous. This result plays a key role in the proof of main result, namely The-
orem C below.

As we have already mentioned the main purpose of this paper psove the fol-
lowing.

Theorem C. Let M and N be real analytick -manifoldavhere K is a com-
pact Lie group and assume that the number &f -isotropy typesvin  is finitenThe
cvX(M, N) is dense inCog X (M, N).

T. Matumoto and M. Shiota [12], Theorem 1.2, prove, under $hene assump-
tions as in Theorem C, that“€(M, N) is dense in @O’K(M, N). By [10] the set
CvXK(M, N) is dense in @O’K(M, N), even without the assumption of only a finite
number of K -isotropy types itV . It would be interesting to knifvone also in The-
orem C can drop the assumption of only a finite numbeKof -igptritypes inN . A
student of mine is at present working on this question.

In Section 9 we correct a mistake in [6]. The author wants tankh Sarah
Packman for pointing out this mistake and for her very cdredading of [6].

This paper is written in such a way that all manifolds are =i to be Haus-
dorff and second countable. However, the assumption ofnskcountability is made
purely for convenience, the results hold for paracompaatifolals, compare with Re-
mark 6.3 in [7]. Here we content ourselves with recalling thell-known fact that a
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manifold M is paracompact if and only if each connected corepowf M is second
countable.

1. The very-strong C* topology on C*(M, N)

Let U be an open subset &™", and let f :U — R" be a C° map. Letr be an
integer, 1< r < oo, and letA C U. Then we define

1714 =sup{[D*fi(a)[ [a € A, 1<j<n, O<l|af <r},

wherea = (a4, ..., ay) is anm -tuple of non-negative integers, afd = a3 +- - - +,.
Here
ool £i(a)
D*fi(a) = =15
fil@) = g e

Now suppose tha/ and are*Cmanifolds. By C°(M, N) we denote the set
of all C> maps fromM toN . Suppose thg € C>*(M, N). Let (U, ¢) be a chart in
M, and B a compact subset &f . Furthermore we M) be a chart inN , such
that f(B)C V, ande > 0 is a positive real number, ar=co. We then denote

) N'(fiB. (U, ¢), (V, 1), €)

={h e C*(M,N)|h(B)CV and [pohop ™t —1pofop | 4z <e}
Note that herapohop=t—1o fop™: p(f~YV)Nh~YV)NU) — R" is a C° map, and
that o(B) C o(f~Y(V)Nh=Y(V) N U). We call such a se\N”(f; B, (U, ©), (V, ), €)
as in (1)an elementaryC" neighborhood off inC>(M, N).

Throughout this paper the notatioh” (f; B, (U, »), (V, ¥), €) will denote a set of
the form given in(1).

In the case whetV  R", and the chartV(, ¥) in R" is (R", id), we instead of the
full notation N (f; B, (U, ¢), (R", id), €) use the simpler notatioW” (f; B, (U, ¢), ).
If furthermore U is an open subset @&, and the chartl(, ) equals U, id), we
denote N (f; B, (U, id), €) by N7 (f; B, €). Thus

N'(fiB.e)={h € C*(U.R") | [[h — fl <&},

whereB C U C R", and B is compact.

Before we give the definition of the very-strong<Ctopology on C°(M, N) we
recall, for comparison, the definition of the strong°Gopology on C°(M, N). First
recall that for 1< r < co the strong C" topologyon C*(M, N) is the topology, which
as a basis has the family of all sets of the form

) S= ﬂ N'(f; Bi, (Ui, ¢i), (Vi ¥4), €1),

ieA
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where f € C>*(M, N), and the family{B;};c4 is locally finite in M. In the defini-
tion of the strong C topology some authors require that tineilja{U, };c, is locally
finite, see e.g. [5], Section 2.1. However, this definitiord dhe one given above are
equivalent, see Section 1 in [8].

Then recall that thestrong C> topology on C*(M, N), introduced by Mather
in [11], Section 2, is the topology which as a basis has theruraf all strong
C" topologies on ©(M,N), 1 < r < oo, see also [5], Section 2.1. We denote
C>(M, N) with the strong C° topology by G°(M, N).

Let us now turn to the definition of theery-strongC> topologyon C*(M, N).
Supposef € C>*(M, N). By a basic very-strongC> neighborhoodof f we mean a
set of the form

(3) U= mNri(f;Bi’(Ui’ 410)’ (V’ ’[/),-),E,-),

i€EA
where 1< r; < 00, i € A, and the family{B;} is locally finite in M. By Lemma 1.3
below the family of all sets of the form (3), i.e., the family all basic very-strong
C> neighborhoods of allf € C>*(M, N), is a basis for a topology on M, N).
Thus we can give the following definition.

Derinimion 1.1, The very-strong C*™ topology on C*(M, N) is the topology
which as a basis has the family of all sets of the form (3), fbr fae C>°(M, N).
We denote the set€(M, N) with the very-strong € topology by Gg(M, N).

The very-strong © topology is defined in [3], Definition 1.4.3.1, in a slightlyifd
ferent way. Note that in (3) we may very well have that

sup(r; | i € A} = o0.

It is this property that is the crucial one, and this propergkes the very-strong €
topology to differ from the strong € topology, in the case whed is non-compact.
The very-strong € topology on C°(M, N) is always at least as strong (i.e., at least
as fine) as the strong°€ topology. In other words, the map

id: C33(M, N) — CZ(M, N)
is continuous.
Lemma 1.2. Let N =N"(f;B, (U, ¢), (V, ), €) be an elementar” neighbor-

hood of f € C>(M, N), and let fo € N. Then there existsg > 0 such that if we set
No=N"(fo, B, (U, ), (V, ), o), then Ny C V.

Proof. We have thatl ¢ o foo o™t — 1o f ol < e and by choosing
€0 = € — d the claim follows. ]
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Lemma 1.3. Letlf andl’ be basic very-stron@€> neighborhoods off ang”’
respectivelywhere f, f/ € C>®(M, N). If fo e UNU’, then there exists a basic very-
strong C> neighborhoodi4y of fo, such thatlly C U NU'.

Proof. Heret/ =, Ni andU’ =, N}, where

€A
M :Nri (f! Bi’ (U,', @i)’ (‘/h ’l/)i), Ei)’ S A’
and
N =N B (U ), (VU €), J €T,

are elementary neighborhoods ¢f ayiti respectively, and X r; < oo, for all i €
A, and 1< s; < oo for all j € T, and the families{B;};ca and {B}};cr are locally
finite in M. By Lemma 1.2 there exists for ea¢he A aneg; > 0 such that\p; =
N'i(fo; Bi, (Ui, ¢1), (Vi, 1i), €0.) C Ni, and also for eachj € T' aneg ; > 0 such that
0.; = N (fo; B}, (U}, ¢7), (V] ), 5 ;) C Nj. Since the family{B;, B} }ien, jer is
locally finite in M, it follows thatNo = ;.o Noi N(;er Mg ; is @ basic very-strong
C* neighborhood offy, and we have thatdo C U NU'. O

The following easy lemma will be used later on in the paper.

Lemma 1.4. Let M and N beC*> manifolds and let W be an open subset of
N. Then the seC>(M, W) is open inC(M, N).

Proof. Let f € C>°(M, W). We choose a locally finite family B; };cA of com-
pact subsets oM such that:
@) Uica Bi =M,
(b) B; C U;, where U, ¢;) is a chart inM ,i € A,
() f(B;))CV:cC W, where {;, ;) is a chart inN ,i € A.
Let ; > O be arbitrary, e.g.s; =oco0, i € A. Then

U = (VNS B Ui o). (Vi ). &)

ieA

is a basic ¢ neighborhood off . Furthermo&* c C>(M, W), since if f' € U*,
then /(M) = Uica f/(Bi) C Uica Vi € W. Thus C°(M, W) is an open subset of
C>®(M, N) in the strong € topology, and therefore also in the strong°Qopology
and hence also in the very-strong°Qopology. U

2. Continuity of induced maps in the very-strong C*° topology

Throughout this sectiodf, N and P denoteC> manifolds.The main purpose of
this section is to prove Propositions 2.5 and 2.6, both ofctvldire about the continu-
ity of induced maps in the very-strong>Ctopology. We also establish Proposition 2.3,
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which is concerned with the continuity of the compositionpma
[:C®(M,N)x C*®(N,P)—C®M,P), (fih)—hof.
We begin by proving the following lemma.

Lemma 2.1. Let (f,h) € C®(M,N) x C®(N,P) and let N = N"(h o f;
B, (U,y), (W,w), ) be an elementanC" neighborhood ofl'(f,h) = h o f
in C*(M, P), wherel < r < oo. Then there exist finitely many elementary
C" neighborhoodsM; = N'(f; B, (U,¢). (V;,¢;), €;) of f, and M’ =
N7 (h; Vi, (V] ), (W,w), €}) of h, 1< j <1, such thatl (o, (M;xM))) C N
Moreover if Q is any neighborhood off(B) in N, then we can choose the sé&fs
such thatV; c 0, 1< <.

Proof. Sincef B ) is compact, andNi~1(W) is a neighborhood of K ), there
are finitely many charts\(/, ¢) in N and open subset®;  df;/, with V; compact,
and compact subset®; 6f;, < j <t such that
@ fB)C U= Dy,

(b) D;CV;C Vj C Vj/ C Qﬁh_l(W).

We setB; =B N f~1(D;), 1< j <t Then

(€) Uyt B) = B,

d) fBj)cD;CV;, 1<j<t.

We denotey; = ¢, | V;. Since;(V;) C ¢(V;) and sincey;(V;) is compact, we
have that|wo h o %—lnfp,-(v,-) < oo. Hence there exists; > 0 such that the following
holds: If f: M — N is a C° map, with f(B,) C V;, then

(1) ljo Fop™ —wjofoe  im) <e;

implies that||(wohot; M) o (o fop ™t —¢jofo ¢ D) < /2, ie., that

2) lwoho fop™ —woho fop iy <e/2.

Here above one should note the following. If (1) holds, therparticular
Bj=(@jofop™ —vjofor™)w(B)) C E'())

wheref?"(sj) ={x eR" | ||x]| < &;}. We may assume that® vy ;(V;), 1< j <t,
and hence we have, fer; small enough, that

By c E"e;) cui(Vy), 1<j<ut.
We define

M;=N"(fi B, (U, ¢), (Vi ¥)).e5), 1< j<t
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Thus we have shown that if € M, then (2) holds.

Since ¢(B;) is compact we have thaly; o f o <p—1||;(Bj) < oo. Furthermore we
have that for allf ¢ M the inequality (1) holds, and hence there is a finite number
L; such that

(3) [0 f oo M,y <Lj foral femM,.

Hence there exists) > 0 such that the following holds: If € M;, and if i: N — P
is a C° map, with(V;) C W, then

@ lwoio (W)™ —woho W), <&
implies that||(wo 7o (1)) —woho () o W0 fop ,, <c/2 ie., that
(5) lwohofop™ —woho fop |y, <c/2.
We define
M =N (V) (V] ), (W, w), &), 1< j <t

If feM;andh e M, then Go f)(B,;) C h(V;) C W, and by (2) and (5) we have
that

lwohofop™t—woho fop ™y, <e 1<j<t.
Thus, if (f, k) € =y M; x M, then @ o f)(B) C W, and
lwohofop™ —wohofop i <e
holds, which means thato f =T'(f, h) € N"(ho f; B, (U, ), (W,w), &) =N O

If we in Lemma 2.1 takeN =P and # = idy, we see that the proof of
Lemma 2.1 proves the following.

RemArRk 2.2. Let f € C*®(M, N), and letN = N7(f; B, (U, ), (V, ¥), ) be an
elementary C neighborhood of . Suppose that we are given acimgubsetsB; of
M and charts {;, ¢;) in N, 1< j <¢, such that
@ B=U\4B
(b) f(Bj))CV;CV;C Vi C V, where {/,}) are charts inN, ; =’ | V; and
V; are compact, X j <1.

Then there exist;, 1< j <t, so that if we setN; = N"(f; B;, (U, ¢), (V;, ¥)), €;),
then(,.; NVj C V.
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Using Lemma 2.1 we can now easily prove Proposition 2.3 hetme [3], Propo-
sition 1.4.5.5.

Proposition 2.3. Let (f, h) € C{2(M, N) x C¢(N, P), where the mapf: M —
N is proper. Then the map

2 C(M. N) x C3&(N, P) — C3&(M. P), (f.h)— ho f,
is continuous at(f, i).

Proof. LetV =), Vi be any basic very-strong°€ neighborhood of" f, & )=
ho f in C3(M, P). Here eachN; = N'i(h o f; Bi, (Ui, i), (Wi, wi), &), i € A, is
an elementary € neighborhood #fo f, and 1< r; < oo, i € A, and the family
{Bi}ica is locally finite in M. Since the map® is proper it follows thatetfiamily
{f(B:)}ica is locally finite in N . Each seff K; ) is compact, and thus therestexifor
eachi € A, a compact neighborhoo@; g¢f B{ )IN , such that the fanfity; }ica
is locally finite in N, see [2], Theorem 30.C.10.

By Lemma 2.1 there exist for each; finitely many elementary © neighborhoods

M i =N (f3 Bij, (Ui, @i), (Vijs i), €ij)
and

Ml{,j :Nri (h;vi,j’ (Vitj’ w;,j)’ (‘/VI’ wi)’ El{,j)’
of f and &, respectively, X j < (i), such thatl" r(]’j(;')l(/\/l,-,j x M;;)) C N;. Here
Ulj(;)lBi,j =B andV;; C Q;, 1< j <t(i).

Since the family{B;; [ i € A, 1 < j < (i)} is locally finite in M, we have
thatf = ();ca ﬂ’j(;)l M,; ; is a basic very-strong € neighborhood off in (M, N).
Moreover, since the family{ Q;};ca is locally finite in N it follows that the family
{Vijli€eA, 1< j<t(i)}is locally finite in N. Henceld’ = (), ﬂ’j(;)lj\/l,f’j is a
basic very-strong € neighborhood of: in (N, P). Furthermorel’ f x U’) C V.
This completes the proof. U

Let Prop°(M, N) denote the set of all proper®€ maps fromM toN . We give
Prop©(M, N) the relative topology from (M, N), and denote the obtained topolog-
ical space by PrgB(M, N). As a corollary of Proposition 2.3 we obtain.

Corollary 2.4. The maprI': Progs(M, N) x CB(N, P) — C3(M, P), (f, h) —
ho f,is continuous.

As another corollary of Proposition 2.3 we have the follagviresult.
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Proposition 2.5. Let f: M — N be a properC> map. Then the induced map
Y CR(N, P)— CRé(M,P), hw hof,
is continuous.

Using Lemma 2.1 we can also prove the following.

Proposition 2.6. Leth: N — P be aC*> map. Then the induced map
h.: Ce(M,N)— CE(M,P), fr—holf,

is continuous.

Proof. Let f € Cj(M,N), and letV = (., N; be any basic very-strong
C*> neighborhood ofi.(f) = h o f in C(M, P). Here eachN; = N"i(h o f;
Bi, (Ui, ), (Wi, ), e), i € A, is an elementary © neighborhood bfo f, and
1<r <oo, i €A, and the family{B;};c, is locally finite in M. By Lemma 2.1
we find for each)V; finitely many elementary € neighborhoods; ; of f, 1
j < 1(), such thatD (Y9 My x {h}) = h(Q M) C N;. Here M
Nri(f; B,',j, (U;,(p;), (V,',j,’l/),',j), E,',j) and UIJ(QL B,',j = B;. Now the famlly {B,"j |
i €A, 1< j <)} is locally finite in M, and hence/ = ., ' M, ; is a basic
very-strong neighborhood of . Furthermore we have thdt/) C V. This completes
the proof. U

1IN

3. The product theorem

By the product theorem we mean the result in Proposition &lbwp Using the
product theorem and also Proposition 2.5 we prove Corolgagy which will be im-
portant for us later on in the paper. Corollary 3.2 plays a kele in the proof
of Lemma 6.3. Note that Corollary 3.2 is the very-strong® Gopology version of
Lemma 2.2 in [6].

Proposition 3.1. Let M, N; and N> be C* manifolds and letg;: NyxN» — N;,
i =1, 2,denote the projection maps. Then the natural bijection

t: Cys(M, Ny x Np) — CJs(M, N1) x Cie(M, N2), f(q10 f,q20 f),

is @ homeomorphism.

Proof. It follows by Proposition 2.6 that is continuous. The fact that! is
continuous is seen as follows. Lefi( f2) € CR(M, N1) x Ci(M, N»), and denote
T f1, fo)= f. Lety = Nica Ni be any basic very-strong°€ neighborhood off in
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C3(M, N1 x Np). Here eachN; = N"(f; B;, (Ui, ¢i), (Vi. i), &), i € A, is an ele-
mentary C neighborhood of In€(M, N1 x N»), and 1<r; < oo, i € A, and the
family {B;}.ca is locally finite in M. It follows by Remark 2.2 that we may assim

that each of the elementary"C neighborhoods i € A, is of the type where the
chart in Ny x N> is a product chart, i.e., we can assume that e&ghs of the form

(1) Ni = N7(f:Bio (Ui i), (VI x VO ) o). ), i e A
It is readily seen that if\; is as in (1), and we set
M(k) = N"(fx; Bi, (Ui, vi), (V,-(k), ’l/),gk))’ &), k=1 2

then .YV x A®) ¢ N Now u® =, _, NV is a basic very-strong € neigh-

borhood of f; =gi o f in C®(M, Ny), k = 1, 2. Furthermore}U® x ©®@) c
Nica Vi = V. This proves that™! is continuous. O

Corollary 3.2. Let M and N beC*> manifolds and let 9 be a compacC>
manifold. Then the map

x:Cis(M, N)— C5(Q x M, Q x N), fidx f,
iS continuous.

Proof. It follows by Proposition 3.1 that it is enough to pecthat the maps

(i) Cys(M, N) — Ci5(Q x M, Q), f+ quo(idx f)
and
(i) Cy8(M,N) — CR(Q x M,N), frqgpo(idx f)

are continuous. Hergi: Q x N — Q and¢2: Q x N — N denote the projection
maps. The map in (i) is the constant map frorfR@/, N) onto the elementp; €
C>®(Q x M, Q), wherepy: O x M — Q is the projection, and hence (i) is continuous.

Observe thag; o (id x f) = f o p2, Wwherep,: Q x M — M is the projection.
Thus the map in (ii) equals the mag : C;2(M, N) — C(Q x M, N), [+ fo pa.
Since Q is compact, the projectiop, is a proper map, and hengg is continuous
by Proposition 2.5. O

4. Whitney approximation

In this section we prove Theorem A. The following basic resuds proved by H.
Whitney in 1932-33.
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Lemma 4.1 (H. Whitney). Let U be an open subset &, and let Uy, Uy, ...
be bounded open sefsome of which may be emptsuch thatU;":’1 U,=UandU, C
Uges forall ¢ > 1. Thenif f: U — R" is aC>* map ande; > e > --- are given
positive numbersand k1 < k, < --- are given positive integerghere is real analytic
maph: U — R" such that for each1l < j < n, we have that

IDh — f);(x)| <&, foral xeU-—U,,
and all a« = (aq, ..., am) With |o <k,, ¢ =1, 2,....

Proof. See [16], Lemma 6. In [16] the formulation of this féds given in the
case wherk, =y , foy > 1. The above form of the result is an immediate conse-
guence of this one. O

We begin by showing that Lemma 4.1 gives us the following Iltesu

Proposition 4.2. Let U be an open subset &”. Then the setC¥(U,R") is
dense inCgg(U, R").

Proof. Supposef € Cg(U,R") and letid = (., N'(f; Bi. ;) be any basic
very-strong C° neighborhood off . Here X r; < o0, ande; > 0, i € A, and each
Bi, i € A, is a compact subset @ , and the fam{l; };c4 is locally finite in U .

First we choose bounded open subdgktsU;, Us, ... of U such that
a) Uz U, =U,

b) U, CUp1,q=1,2....
Next we define subseta, df, ¢ > 1, in the following way. We set

Ag={ieA|BNUsZ0}, qg=1 2....

Clearly A1 € Az C -+ C Ay C Agea C -+, and ;5 Ay = A. Since Uy is
a compact subset af and the famifyB; };c is locally finite in U, it follows that
BiNUy+ #0, and hence also thak; N U+ # 0, for only finitely manyi € A. Thus
eachA, is a finite set. We define

Fo=max{r, |i € Ay}, q=1, 2...,

() L . _
gg=min{e |i €A}, g=1 2....

Thenri <r<...,andg; >z > ... .
By Lemma 4.1 there exists a real analytic mapU :— R" such that, for each
1<j<n,

2 D — f);(x)| <&, foral xeU—-U,,
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and alla = (a1, ..., ay) With o] <7, ¢=1,2....
Now consider a fixed compact s&f, i € A. We letg () be the least integer for
which i € A,(). Thus
1€ Ag(i) — Ag()-1,

where Ag = 0. Sincei ¢ A,;)—1 We have that
3) B; C U — Uy,
Since we for eachti € A have thati € Ay, it follows by (1) that

Tq@) >ri, and g,u <e, foreach ieA.
It now follows by (2) and (3) that, for each 4 j < n,

ID*(h — f);(x)] <E44) <&, forall xe B,

and all @ = (o, ..., an) With |a] < 74), and hence in particular for ath with
la| <ri, i € A. Thus we have that

Ih—fllg <&, i€A.

Henceh € ;o N'(f: Bi, i) =U. Now h € U N C¥(U, R"), and this proves that the
set C’(U, R") is dense in (U, R"). [l

Using Proposition 4.2 we prove the following.

Proposition 4.3. Let M be a real analytic manifold. Then the $t(M, R") is
dense inC3g(M, R").

Proof. By the Grauert-Morrey imbedding theorem, see [4]edrem 3, we may
considerM as a real analytic closed submanifold of some deefi spaceR™. Let
i: M — R™ denote the inclusion. By Proposition 2.5 the induced map

i*: CRR™, R") — Ceg(M,R"), f f|M,

is continuous. Furthermorg is surjective, since each®€©map f': M — R" can be
extended to a € map f :R"™ — R", see e.g. [13], Proposition 2.5.14.

Let U be a non-empty open subset ofSCM, R"). Then (*)~1(l/) is a non-empty
open subset of &(R”, R"), and hence we have by Proposition 4.2 that there exists a
real analytic map: R” — R” such thath € (i*)~*(). Thenhoi =h|: M — R" is
real analytic, and thug oi =i*(h) € U N C¥(M, R"). [l
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We can now prove Theorem A, given in the introduction.

Theorem 4.4. Let M and N be real analytic manifolds. The@“(M, N) is
dense inCSg(M, N).

Proof. By the Grauert-Morrey imbedding theorem, [4], Theor3, we can con-
sider N as a real analytic closed submanifold of soRie It is well known that
there then exist an open neighborhodd Mf RA and a real analytic retraction
r: W — N, see the corresponding step in the proof of Theorem 7.2. Rypd3i-
tion 2.6 the induced map

re: Coe(M, W) — C3(M,N), fwrrolf,

is continuous, and clearly, is surjective.

Supposeld is a non-empty open subset oM, N). Then r;1(U/) is a non-
empty open subset of g(M, W), and since (M, W) is open in Gg(M,R"), see
Lemma 1.4, it follows that (/) is open in G(M, R"). By Proposition 4.3 we now
know that there exists a real analytic map M: — R” such thatk € r; (/). Then
h: M — W CR" androh: M — N is a real analytic map. Thuso i = r.(h) €
UNC¥ M, N), and this completes the proof. ]

5. The very-strong topology C° on C>K(M, N)

Let K be a compact Lie group. I and&  are>CK-manifolds, we let
C>X(M, N) denote the set of alk -equivariant*Cmaps fromM toN . We give
C>K(M, N) the relative topology from (M, N), and denote the set°€X(M, N)
with this topology by Cg'*(M, N). As immediate consequences of Propositions 2.5
and 2.6, respectively, we now obtain.

Proposition 5.1. Let M, N and P beC> K-manifolds and letf: M — N be
a K -equivariant properC> map. Then the induced map

frCf(N, P)— CXX(M, P), hwholf,
is continuous.

Proposition 5.2. Let M, N and P beC*> K-manifolds and leth: N — P be a
K-equivariantC> map. Then the induced map

h.: CX¥(M,N) - CX¥(M, P), f—hof,

is continuous.
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6. The averaging map and the very-strong € topology

Let K be a compact Lie group and assume to begin with Mat is &ayr@n-
ifold. Suppose that we are given &Cmap

fiKxM—R"
We then define
A(f): M = R"
by
A = ,x)dg.
AC)) /K flg. x)dg

Here the integral is the Haar integral, obtained by intéggatach coordinate function

of f. That is if £ (g, x) = (fa(g, x). ..., fu(g, x)), then A(f)(x) = (vi(x). - .. v (x)),
wherev; ) =/, fi(g.x)dg. 1< j <n.Itis a well-known fact thatA(f): M — R"
is a C° map, see e.g., [1], Theorem 0.3.3. Hence we have that

1) A1 C®(K x M,R") — C®(M,R"), f+— A(f).

We show in Proposition 6.2 that is continuous when we give both function spaces
the very-strong € topology. First we prove the following.

Lemma 6.1. Supposef € C(K x M,R"), and let N = N"(A(f); B, (U, ¢), )
be any elementarf’ neighborhood ofA(f) in C°(M, R"), wherel < r < co. Then
there exist finitely many elementa@/ neighborhoodsM,, of f, of the form M, =
N'(f; Qp X B, (W, x U,w, x ¢),€), 1< p <s, such thatA(",.; M,) C .

Proof. SinceK is compact we can find finitely many chais,(w,) in K and
compact subset®, d¥,, 4 p<s, suchthatJ,, 0, =K. We set

M, =N"(f;0pxB, (W,xU,w,xg), €), 1<p<s.
If h € M,, then we have for each & j <n that
IDY(ho Wy x ¢) ™ = fo(wp x ) ()] <.
forall v=_(t1, ..., 1% U1, ..., un) € wy(Q,) xp(B) C RExR™, and every k +n )-tuple
vy=(0a, .., 0, Py ---, Bu) With |y| <r. Herek =dimK andn =dind . In partic-

ular we have that

() !Dﬁ(hgw‘l—fgw‘l)j(u)! <e 1<j<n,
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forall g € O, and allu = @1, ..., un) € ¢(B) C R™, and every3 = (61, ..., On)
with || <r. Hereh, ) =h . x) andf, £ )=f £, x ), for allg € K and allx € M.
We have that

(A(h) o o™ — A(f) o™ h);(u) = /K(hg o9t = frop Hwdg, 1<j<n,
for all u € (U). Hence
DY(A() o™t — A(f) o ™)) = /K D(hg oo™ = feop™h))dg, 1< j<n,

for all u € ¢(U).
By (2), and sincel J,-; Q) = K, it now follows that if » € (\,-; M, then

IDP(A(h) o o™t — A(f) 0 o ™Y),()| < /K D (hg oo™ — frop™);(u)| dg <e,

for 1 < j < n, and for allu € ¢(B), and everys with |5| < r. Thus A(h) €
NT(A(f); B, (U, ), ) = N. O

Proposition 6.2. The mapA: C2(K x M,R") — C3g(M,R") is continuous.

Proof. Letf € Cjg(K x M,R") and letV = ,., N; be any basic very-strong
C> neighborhood ofA(f) in C23(M, R"). Here each\; = N7 (A(f); Bi, (Ui, ©). &),
i € A, is an elementary © neighborhood é(f) in C>°(M,R"), where 1< r; <
o0, i € A, and the family{B;};c is locally finite in M. By Lemma 6.1 we find for
eachNV;, i € A, finitely many elementary ' neighborhoodd; , of f, 1 < p <
s(i), such thatA(N\Y M. ,) C ;. Here

M, =N(f;Qp X Bi, (Wy, x Ui, wp X @), &), i€A, 1< p<s(i),

and US(") 0, = K. Now the family{Q, x B; | 1 < p <s(i), i € A} is locally finite

p=1 ’
in K x M, and henced = ;_, ﬂ‘;,(;)lM,-,,, is a basic very-strong € neighborhood
of f in Ci2(K x M, R). Furthermore we have that(f) c V. ]

Let us now turn our attention to the case whefe is°a €-manifold. We let
P:KxM—M, (g,x)— gx,

denote the given action & oM . Suppd®¥&(h) is a linear representation space for
K, and let

0: K x R"(0) — R"(0), (g,y)— 0(g)y =gy,
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denote the corresponding action &f  &1(0). If f: M — R"(f) is any C° map,
we define

3) A(f): M — R"(0)
by
A()@) = / o f(ex)dg. x € M.
K

Then A (f) is aK -equivariant © map, andA ) =f , if f isK -equivariant. Thus
we obtain a surjective map, in fact a retraction,

@) A1 CO(M,R"(6) — CK(M.R'().  f > A(f).

We prove in Theorem 6.4 that  is continuous in the very-str@ig topology.
In order to do this we first establish the following key lemma.

Lemma 6.3. Let M be aC>* K-manifold where K is a compact Lie grouand
let R"(9) be a linear representation space f&& . For ea€i® map f: M — R"(6)
we definefio.0): K x M — R"(0), (g, x) — g~ 1f(gx). Then the map

Q: Cis(M, R"(9)) — Cis(K x M, R'(0)). f— flo.0).
is continuous.
Proof. We have thalfie,e) = ® o (id x f)o®a: K x M — R"(), where
Opr K xM— K xM, (g,x) — (g, gx),

and
@ K xR'(0) = R'(0), (g.y)— gy,

ThereforeQ2 equals the composite map

oS(M, R (0)) - CR(K x M, K x R"(6)) Aty 2(K x M, K x R"(0))

5 CR(K x M, R'(6)).

Here x(f) =id x f. The mapy is continuous by Corollary 3.2. The mab, is easily
seen to be proper, and hendg, is continuous by Proposition 2.5. The fact thaf
is continuous follows by Proposition 2.6. U
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Theorem 6.4. Let M be aC> K-manifold where K is a compact Lie group
and letR"(0) be a linear representation space fé&¢ . Then

A1 CR(M, R"(0)) — CxX (M. R"(0)). f+— A(S),
is continuous.

Proof. Note that for everyf € C3(M,R"(F)) we have thatA [ ) :fx(f(w.))),
that is, A(f) = @A o Q)(f). Hence Theorem 6.4 follows by Proposition 6.2 and
Lemma 6.3. O

7. Proof of Theorem C

Proposition 7.1. Let M be a real analytick -manifoldwhere K is a compact
Lie group and letR"(#) be a linear representation space f&& . Then-X (M, R*(9))
is dense inCJg X (M, R"(6)).

Proof. Letl/ be a non-empty, open subset org(f(M, R*(6)). By Theorem 6.4
we know thatA—1(/) is an open subset of (M, R"()), and sinceA is surjective
A~Y(U) is non-empty. Hence we have by Proposition 4.3 that theistser real ana-
lytic map f: M — R"(f), such thatf € A~Y(U). Since f :M — R*(f) is real an-
alytic, it follows that also theK -equivariant map f ( ¥ — R"*(0) is real analytic,
see [9], Theorem 1.16. Thus f(9UNCX(M,R*(#)), and this completes the proof.

O

Theorem 7.2. Let M and N be real analyticKk -manifoldsvhere K is a com-
pact Lie group and assume that the number &f -isotropy typesvVin  is finitenThe
CcX(M, N) is dense inCeX (M, N).

By [12], Theorem 1.1, we may consid&f aska -invariant realy¢inaclosed
submanifold of some linear representation sp@tép) for K. Then there exist a
K-invariant open neighborhoo® oY iR"(p) and a K -equivariant real analytic
retractionr :W — N, see [8], Theorem I. Furthermore we have by Proposition 5.2
that the induced map

Ty ! CS%’K(M, W) — CS%’K(M, N), fw—rof,

is continuous, and clearly. is surjective.

Let & be a non-empty open subset o;fgd((M, N). Thenr1(l{) is a non-empty
open subset of & (M, W). Since C>X(M,W) is an open subset of 8" (M, R"(p)),
see Lemma 1.4, it follows that 1(i/) is open in Qg’K(M, R"(p)). By Proposition 7.1
there exists a real analyti& -equivariant mgp M:— R"(p) such thatf € r71(U).
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Then f :M — W C R"(p), andro f: M — N is a K -equivariant real analytic map.
Now r o f =r,(f) €U N C~X(M, N), and this completes the proof.

8. The equivariant glueing lemma

The purpose of this section is simply to record the followisgaightforward
equivariant version of Lemma B in the introduction.

Lemma 8.1. Let f: M — N be aK -equivariantC>* map betweerC>* K-mani-
folds and letU be aK -invariant open subset & . Then there exists @m owigh-
borhood N of f|U in CJg*(U, N) such that the following holddf » € A/ and we
defineE(h): M — N by

_[hkx), xeU
E(h)(x)_{f(x), xXeEM-U,

then E(h) is a K -equivariantC® map. FurthermoreE: N — CX*(M, N), h
E(h), is continuous.

Proof. It is clear that it is enough to prove the lemma in theecahenk ={e},
and this case is given in [3], 1.4.3.4.4. O

9. A correction to the paper [6]

Lemma 2.3 in [6], given for the strong°€ topology, is not correct as stated. This
mistake was pointed out to me by Sarah Packman (a gradualenstat Berkeley)
[14]. The best way to correct this mistake is to simply repldemma 2.3 in [6]
by its valid very-strong € topology version, i.e., by Lemma 8.1 above. As a con-
sequence of this change one should also replace [6], The@r&nthis is the result
of T. Matumoto and M. Shiota [12], Theorem 1.2) by the coroesping result for the
very-strong C° topology, i.e., by Theorem 7.2 of the present paper. Whegethao
replacements have been done, the proof of the main resulglimefjuires no other
changes and is correct as it stands.
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