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The main purpose of this paper is to prove Theorem C, given below. Let us how-
ever in this introduction first discuss the role of the very-strong C∞ topology and its
relation to the strong C∞ topology.

Let and be C∞ manifolds. By C ( ), where 1≤ ≤ ∞, we denote
the set of all C maps from to . In the case when is finite, and may be
non-compact, there is a well established, standard choice of a topology for C ( ),
namely the strong C topology, also called the Whitney C topology, see e.g. [5], Sec-
tion 2.1, and [11], Section 2. We denote C ( ) with the strong C topology by
CS( ), 1 ≤ < ∞. In the case when is finite the strong C topology is clearly
the right topology to use on C ( ). However, when =∞ the question concerning
the right topology for C∞( ) is more complex and interesting.

One possible choice of a topology for C∞( ) is the strong C∞ topology,
introduced by Mather in [11], Section 2, see also [5], Section 2.1. The strong C∞

topology on C∞( ) has as a basis the union of all strong C topologies on
C∞( ) 1 ≤ < ∞. (The strong C topology on C∞( ) is the relative
topology from CS( ) 1 ≤ < ∞.) Mather calls the strong C∞ topology the
Whitney C∞ topology, but as we shall see this choice of terminology is not well
founded. It is only in the case when is finite that the strong C topology should
be named the Whitney topology. In fact du Plessis and Wall, see [15], p. 59, pro-
pose that the strong C∞ topology on C∞( ) be named the Mather topology. Note
that the strong C∞ topology is completely determined by the strong C topologies on
C∞( ) 1 ≤ < ∞, and in this sense the strong C∞ topology on C∞( ) is
not a genuine C∞ topology. We let C∞S ( ) denote C∞( ) with the strong C∞

topology.
There is however a genuine C∞ topology on C∞( ), namely thevery-strong

C∞ topology. This topology was introduced by Cerf in [3], Definition I.4.3.1. We give
the definition of the very-strong C∞ topology on C∞( ) in Definition 1.1, in a
slightly different way than Cerf does. Cerf does not give this topology any special
name, but it is named the ‘very strong topology’, and denotedτ ∞, by du Plessis
and Wall, see [15], p. 59. We shall denote C∞( ) with the very-strong C∞ topol-
ogy by C∞

vS( ).
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There are some basic and clear facts which show that the very-strong C∞ topol-
ogy is a better topology for C∞( ) than the strong C∞ topology. Let us first
present the following.

The very-strong C∞ topology on C∞( ) provides the right means to express
classical approximation results by Whitney [16] in a modernframework. Suppose
is an open subset of some euclidean spaceR , and let Cω( R ) denote the set of
all real analytic maps from toR ≥ 1. Using the C∞ case of Lemma 6 in [16]
(see Lemma 4.1), we first prove that Cω( R ) is dense in C∞vS( R ), see Proposi-
tion 4.2. We then proceed to establish the following result,see Theorem 4.4.

Theorem A. Let and be real analytic manifolds. Then the setCω( ),
of all real analytic maps from to , is dense in the spaceC∞

vS( ).

We do not wish to claim originality concerning the result in Theorem A, but on
the other hand we do not know of any place in the literature where it is proved. The-
orem A is a stronger result than the well-known result that Cω( ) is dense in
C∞

S ( ).
The C∞ case of Lemma 6 in [16] proves the existence of an approximation of

a given C∞ map : → R by a real analytic map : → R , and the estab-
lished approximation involves approximation of the partial derivatives of by the par-
tial derivatives of , of increasingly high order as one approaches the boundary of

, i.e., as one moves out towards infinity. This phenomenon is captured by the very-
strong C∞ topology, butnot by the strong C∞ topology. Here lies the reason why
it is the very-strong C∞ topology on C∞( ) that should be called the Whitney
C∞ topology on C∞( ), and the strong C∞ topology on C∞( ) could well
be named the Mather topology on C∞( ), as was already pointed out above. It is
however usually very difficult to change accepted mathematical terminology, even in
cases where there is a good reason for a change, so we have mentioned these termi-
nology questions here without any real expectation of a change. In this paper we only
use the terminology “strong C∞ topology” and “very-strong C∞ topology”, and re-
frain from using the terminology “Mather topology” and “Whitney topology” in order
to avoid misunderstandings.

Another important property that the very-strong C∞ has, but which the strong C∞

topology lacks, is that by using the very-strong C∞ topology one can glue together
two C∞ maps, as in Lemma B, see [3], I.4.3.4.4.

Lemma B. Let : → be a C∞ map betweenC∞ manifolds, and let be
an open subset of . Then there exists an open neighborhoodN of | in C∞

vS( )
such that for each ∈ N the map ( ) : → defined by

E( )( ) =

{
( ) ∈
( ) ∈ − ,
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is a C∞ map. Moreover : N → C∞
vS( ) 7→ ( ), is continuous.

For 1 ≤ < ∞, the C case of Lemma B holds for the strong C topol-
ogy, see [5], Lemma 2.2.8, or [15], Lemma I.3.4.18. However,in the C∞ case
Lemma B does not hold if we use the strong C∞ topology, see the remark after Corol-
lary I.3.4.19 in [15]. Thus it is necessary that one uses the very-strong C∞ topology,
and not the strong C∞ topology, in Lemma B.

Now let be a compact Lie group. By a C∞ -manifold we mean a C∞

smooth manifold on which acts by a C∞ smooth action. If and are C∞

-manifolds we let C∞ ( ) denote the set of all -equivariant C∞ maps from
to . We give C∞ ( ) the very-strong C∞ topology, i.e., the relative topology

from C∞
vS( ), and we denote the obtained topological space by C∞

vS ( ). If
and are real analytic -manifolds, we denote the set of all -equivariant real

analytic maps from to by Cω ( ).
SupposeR (θ) is a linear representation space for . Using the invariant Haar in-

tegral on one obtains an averaging map , which is a retractionmap from the set
C∞( R (θ)) onto the subset C∞ ( R (θ)). We prove in Theorem 6.4 that the av-
eraging map is continuous in the very-strong C∞ topology, i.e., that

: C∞
vS( R (θ)) → C∞

vS ( R (θ))

is continuous. This result plays a key role in the proof of ourmain result, namely The-
orem C below.

As we have already mentioned the main purpose of this paper isto prove the fol-
lowing.

Theorem C. Let and be real analytic -manifolds, where is a com-
pact Lie group, and assume that the number of -isotropy types in is finite. Then
Cω ( ) is dense inC∞

vS ( ).

T. Matumoto and M. Shiota [12], Theorem 1.2, prove, under thesame assump-
tions as in Theorem C, that Cω ( ) is dense in C∞S ( ). By [10] the set
Cω ( ) is dense in C∞S ( ), even without the assumption of only a finite
number of -isotropy types in . It would be interesting to knowif one also in The-
orem C can drop the assumption of only a finite number of -isotropy types in . A
student of mine is at present working on this question.

In Section 9 we correct a mistake in [6]. The author wants to thank Sarah
Packman for pointing out this mistake and for her very careful reading of [6].

This paper is written in such a way that all manifolds are assumed to be Haus-
dorff and second countable. However, the assumption of second countability is made
purely for convenience, the results hold for paracompact manifolds, compare with Re-
mark 6.3 in [7]. Here we content ourselves with recalling thewell-known fact that a
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manifold is paracompact if and only if each connected component of is second
countable.

1. The very-strong C∞ topology on C∞(M N)

Let be an open subset ofR , and let : → R be a C∞ map. Let be an
integer, 1≤ <∞, and let ⊂ . Then we define

‖ ‖ = sup {|Dα ( )| | ∈ 1 ≤ ≤ 0 ≤ |α| ≤ }

whereα = (α1 . . . α ) is an -tuple of non-negative integers, and|α| = α1 + · · · +α .
Here

Dα ( ) =
∂|α| ( )

∂ α1
1 · · · ∂ α

Now suppose that and are C∞ manifolds. By C∞( ) we denote the set
of all C∞ maps from to . Suppose that∈ C∞( ). Let ( ϕ) be a chart in

, and a compact subset of . Furthermore we let (ψ) be a chart in , such
that ( )⊂ , and ε > 0 is a positive real number, orε = ∞. We then denote

N ( ; ( ϕ) ( ψ) ε)

= { ∈ C∞( ) | ( ) ⊂ and ‖ψ ◦ ◦ ϕ−1 − ψ ◦ ◦ ϕ−1‖ϕ( ) < ε}
(1)

Note that hereψ◦ ◦ϕ−1−ψ◦ ◦ϕ−1 : ϕ( −1( )∩ −1( )∩ ) → R is a C∞ map, and
that ϕ( ) ⊂ ϕ( −1( ) ∩ −1( ) ∩ ). We call such a setN ( ; ( ϕ) ( ψ) ε)
as in (1)an elementaryC neighborhood of inC∞( ).

Throughout this paper the notationN ( ; ( ϕ) ( ψ) ε) will denote a set of
the form given in(1).

In the case when =R , and the chart ( ψ) in R is (R id), we instead of the
full notation N ( ; ( ϕ) (R id) ε) use the simpler notationN ( ; ( ϕ) ε).
If furthermore is an open subset ofR , and the chart ( ϕ) equals ( id), we
denoteN ( ; ( id) ε) by N ( ; ε). Thus

N ( ; ε) = { ∈ C∞( R ) | ‖ − ‖ < ε}

where ⊂ ⊂ R , and is compact.
Before we give the definition of the very-strong C∞ topology on C∞( ) we

recall, for comparison, the definition of the strong C∞ topology on C∞( ). First
recall that for 1≤ <∞ the strong C topologyon C∞( ) is the topology, which
as a basis has the family of all sets of the form

(2) S =
⋂

∈

N ( ; ( ϕ ) ( ψ ) ε )
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where ∈ C∞( ), and the family{ } ∈ is locally finite in . In the defini-
tion of the strong C topology some authors require that the family { } ∈ is locally
finite, see e.g. [5], Section 2.1. However, this definition and the one given above are
equivalent, see Section 1 in [8].

Then recall that thestrong C∞ topology on C∞( ), introduced by Mather
in [11], Section 2, is the topology which as a basis has the union of all strong
C topologies on C∞( ) 1 ≤ < ∞, see also [5], Section 2.1. We denote
C∞( ) with the strong C∞ topology by C∞S ( ).

Let us now turn to the definition of thevery-strongC∞ topologyon C∞( ).
Suppose ∈ C∞( ). By a basic very-strongC∞ neighborhoodof we mean a
set of the form

(3) U =
⋂

∈

N ( ; ( ϕ) ( ψ ) ε )

where 1≤ <∞ ∈ , and the family{ } is locally finite in . By Lemma 1.3
below the family of all sets of the form (3), i.e., the family of all basic very-strong
C∞ neighborhoods of all ∈ C∞( ), is a basis for a topology on C∞( ).
Thus we can give the following definition.

DEFINITION 1.1. The very-strong C∞ topology on C∞( ) is the topology
which as a basis has the family of all sets of the form (3), for all ∈ C∞( ).
We denote the set C∞( ) with the very-strong C∞ topology by C∞vS( ).

The very-strong C∞ topology is defined in [3], Definition I.4.3.1, in a slightly dif-
ferent way. Note that in (3) we may very well have that

sup{ | ∈ } = ∞

It is this property that is the crucial one, and this propertymakes the very-strong C∞

topology to differ from the strong C∞ topology, in the case when is non-compact.
The very-strong C∞ topology on C∞( ) is always at least as strong (i.e., at least
as fine) as the strong C∞ topology. In other words, the map

id : C∞
vS( ) → C∞

S ( )

is continuous.

Lemma 1.2. Let N = N ( ; ( ϕ) ( ψ) ε) be an elementaryC neighbor-
hood of ∈ C∞( ), and let 0 ∈ N . Then there existsε0 > 0 such that if we set
N0 = N ( 0; ( ϕ) ( ψ) ε0), then N0 ⊂ N .

Proof. We have that =‖ψ ◦ 0 ◦ ϕ−1 − ψ ◦ ◦ ϕ‖ϕ( ) < ε, and by choosing
ε0 = ε − the claim follows.
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Lemma 1.3. Let U andU ′ be basic very-strongC∞ neighborhoods of and ′

respectively, where , ′ ∈ C∞( ). If 0 ∈ U ∩ U ′, then there exists a basic very-
strong C∞ neighborhoodU0 of 0, such thatU0 ⊂ U ∩ U ′.

Proof. HereU =
⋂

∈ N andU ′ =
⋂

∈ N ′, where

N =N ( ; ( ϕ ) ( ψ ) ε ) ∈
and

N ′ =N ( ′; ′ ( ′ ϕ′ ) ( ′ ψ′ ) ε′ ) ∈

are elementary neighborhoods of and′, respectively, and 1≤ < ∞, for all ∈
, and 1≤ < ∞ for all ∈ , and the families{ } ∈ and { ′} ∈ are locally

finite in . By Lemma 1.2 there exists for each∈ an ε0 > 0 such thatN0 =
N ( 0; ( ϕ ) ( ψ ) ε0 ) ⊂ N , and also for each ∈ an ε′0 > 0 such that
N ′

0 = N ( 0; ′ ( ′ ϕ′ ) ( ′ ψ′ ) ε′0 ) ⊂ N ′. Since the family{ ′} ∈ ∈ is
locally finite in , it follows thatN0 =

⋂
∈ N0 ∩⋂ ∈ N ′

0 is a basic very-strong
C∞ neighborhood of 0, and we have thatU0 ⊂ U ∩ U ′.

The following easy lemma will be used later on in the paper.

Lemma 1.4. Let and beC∞ manifolds, and let be an open subset of
. Then the setC∞( ) is open inC∞

vS( ).

Proof. Let ∈ C∞( ). We choose a locally finite family{ } ∈ of com-
pact subsets of such that:
(a)

⋃
∈ = ,

(b) ⊂ , where ( ϕ ) is a chart in , ∈ ,
(c) ( ) ⊂ ⊂ , where ( ψ ) is a chart in , ∈ .
Let ε > 0 be arbitrary, e.g.,ε = ∞ ∈ . Then

U∗ =
⋂

∈

N 1( ; ( ϕ ) ( ψ ) ε )

is a basic C1 neighborhood of . FurthermoreU∗ ⊂ C∞( ), since if ′ ∈ U∗,
then ′( ) =

⋃
∈

′( ) ⊂ ⋃
∈ ⊂ . Thus C∞( ) is an open subset of

C∞( ) in the strong C1 topology, and therefore also in the strong C∞ topology
and hence also in the very-strong C∞ topology.

2. Continuity of induced maps in the very-strong C∞ topology

Throughout this section , and denoteC∞ manifolds.The main purpose of
this section is to prove Propositions 2.5 and 2.6, both of which are about the continu-
ity of induced maps in the very-strong C∞ topology. We also establish Proposition 2.3,
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which is concerned with the continuity of the composition map

: C∞( ) × C∞( ) → C∞( ) ( ) 7→ ◦

We begin by proving the following lemma.

Lemma 2.1. Let ( ) ∈ C∞( ) × C∞( ) and let N = N ( ◦ ;
( ϕ) ( ω) ε) be an elementaryC neighborhood of ( ) = ◦

in C∞( ), where 1 ≤ < ∞. Then there exist finitely many elementary
C neighborhoodsM = N ( ; ( ϕ) ( ψ ) ε ) of , and M′ =
N ( ; ( ′ ψ′ ) ( ω) ε′ ) of , 1≤ ≤ , such that (

⋂
=1(M ×M′ )) ⊂ N .

Moreover, if is any neighborhood of ( ) in , then we can choose the sets
such that ⊂ 1 ≤ ≤ .

Proof. Since ( ) is compact, and∩ −1( ) is a neighborhood of ( ), there
are finitely many charts (′ ψ′ ) in and open subsets of ′, with compact,
and compact subsets of 1≤ ≤ , such that
(a) ( )⊂ ⋃ =1 ,

(b) ⊂ ⊂ ⊂ ′ ⊂ ∩ −1( ).
We set = ∩ −1( ) 1 ≤ ≤ . Then
(c)

⋃
=1 = ,

(d) ( ) ⊂ ⊂ 1 ≤ ≤ .
We denoteψ = ψ′ | . Sinceψ ( ) ⊂ ψ′ ( ) and sinceψ′ ( ) is compact, we

have that‖ω ◦ ◦ ψ−1‖ψ ( ) < ∞. Hence there existsε > 0 such that the following

holds: If ˜ : → is a C∞ map, with ˜( ) ⊂ , then

(1) ‖ψ ◦ ˜ ◦ ϕ−1 − ψ ◦ ◦ ϕ−1‖ϕ( ) < ε

implies that‖(ω ◦ ◦ ψ−1) ◦ (ψ ◦ ˜ ◦ ϕ−1 − ψ ◦ ◦ ϕ−1)‖ϕ( ) < ε/2, i.e., that

(2) ‖ω ◦ ◦ ˜ ◦ ϕ−1 − ω ◦ ◦ ◦ ϕ−1‖ϕ( ) < ε/2

Here above one should note the following. If (1) holds, then in particular

ˆ = (ψ ◦ ˜ ◦ ϕ−1 − ψ ◦ ◦ ϕ−1)(ϕ( )) ⊂ ˚ (ε )

where ˚ (ε ) = { ∈ R | ‖ ‖ < ε }. We may assume that 0∈ ψ ( ) 1 ≤ ≤ ,
and hence we have, forε small enough, that

ˆ ⊂ ˚ (ε ) ⊂ ψ ( ) 1 ≤ ≤

We define

M = N ( ; ( ϕ) ( ψ ) ε ) 1 ≤ ≤
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Thus we have shown that if̃ ∈ M , then (2) holds.
Sinceϕ( ) is compact we have that‖ψ ◦ ◦ ϕ−1‖ϕ( ) < ∞. Furthermore we

have that for all ˜ ∈ M the inequality (1) holds, and hence there is a finite number
such that

(3) ‖ψ ◦ ˜ ◦ ϕ−1‖ϕ( ) < for all ˜ ∈ M

Hence there existsε′ > 0 such that the following holds: If̃ ∈ M , and if ˜ : →
is a C∞ map, with ˜( ) ⊂ , then

(4) ‖ω ◦ ˜ ◦ (ψ′ )−1 − ω ◦ ◦ (ψ′ )−1‖
ψ′( )

< ε′

implies that‖(ω ◦ ˜ ◦ (ψ′ )−1 − ω ◦ ◦ (ψ′ )−1) ◦ (ψ ◦ ˜ ◦ ϕ−1)‖ϕ( ) < ε/2, i.e., that

(5) ‖ω ◦ ˜ ◦ ˜ ◦ ϕ−1 − ω ◦ ◦ ˜ ◦ ϕ−1‖ϕ( ) < ε/2

We define

M′ = N ( ; ( ′ ψ′ ) ( ω) ε′ ) 1 ≤ ≤

If ˜ ∈ M and ˜ ∈ M′ , then (̃ ◦ ˜)( ) ⊂ ˜ ( ) ⊂ , and by (2) and (5) we have
that

‖ω ◦ ˜ ◦ ˜ ◦ ϕ−1 − ω ◦ ◦ ◦ ϕ−1‖ϕ( ) < ε 1 ≤ ≤

Thus, if ( ˜ ˜ ) ∈ ⋂ =1 M ×M′ , then (̃ ◦ ˜)( ) ⊂ , and

‖ω ◦ ˜ ◦ ˜ ◦ ϕ−1 − ω ◦ ◦ ◦ ϕ−1‖ϕ( ) < ε

holds, which means that̃◦ ˜ = ( ˜ ˜ ) ∈ N ( ◦ ; ( ϕ) ( ω) ε) = N .

If we in Lemma 2.1 take = and =̃ = id , we see that the proof of
Lemma 2.1 proves the following.

REMARK 2.2. Let ∈ C∞( ), and letN = N ( ; ( ϕ) ( ψ) ε) be an
elementary C neighborhood of . Suppose that we are given compact subsets of

and charts ( ψ ) in 1 ≤ ≤ , such that
(a) =

⋃
=1

(b) ( ) ⊂ ⊂ ⊂ ′ ⊂ , where ( ′ ψ′ ) are charts in ψ = ψ′ | and
are compact, 1≤ ≤ .

Then there existε 1 ≤ ≤ , so that if we setN = N ( ; ( ϕ) ( ψ ) ε ),
then

⋂
=1 N ⊂ N .
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Using Lemma 2.1 we can now easily prove Proposition 2.3 below, see [3], Propo-
sition I.4.5.5.

Proposition 2.3. Let ( ) ∈ C∞
vS( ) × C∞

vS( ), where the map : →
is proper. Then the map

: C∞
vS( ) × C∞

vS( ) → C∞
vS( ) ( ˜ ˜ ) 7→ ˜ ◦ ˜

is continuous at( ).

Proof. LetV =
⋂

∈ N be any basic very-strong C∞ neighborhood of ( ) =
◦ in C∞

vS( ). Here eachN = N ( ◦ ; ( ϕ ) ( ω ) ε ) ∈ , is
an elementary C neighborhood of◦ , and 1≤ < ∞ ∈ , and the family
{ } ∈ is locally finite in . Since the map is proper it follows that the family
{ ( )} ∈ is locally finite in . Each set ( ) is compact, and thus there exists, for
each ∈ , a compact neighborhood of ( ) in , such that the family{ } ∈

is locally finite in , see [2], Theorem 30.C.10.
By Lemma 2.1 there exist for eachN finitely many elementary C neighborhoods

M =N ( ; ( ϕ ) ( ψ ) ε )

and

M′ =N ( ; ( ′ ψ′ ) ( ω ) ε′ )

of and , respectively, 1≤ ≤ ( ), such that (
⋂ ( )

=1(M × M′ )) ⊂ N . Here
⋃ ( )

=1 = and ⊂ 1 ≤ ≤ ( ).
Since the family{ | ∈ 1 ≤ ≤ ( )} is locally finite in , we have

that U =
⋂

∈

⋂ ( )
=1 M is a basic very-strong C∞ neighborhood of in C∞vS( ).

Moreover, since the family{ } ∈ is locally finite in it follows that the family
{ | ∈ 1 ≤ ≤ ( )} is locally finite in . HenceU ′ =

⋂
∈

⋂ ( )
=1 M′ is a

basic very-strong C∞ neighborhood of in C∞vS( ). Furthermore (U × U ′) ⊂ V.
This completes the proof.

Let Prop∞( ) denote the set of all proper C∞ maps from to . We give
Prop∞( ) the relative topology from C∞vS( ), and denote the obtained topolog-
ical space by Prop∞vS( ). As a corollary of Proposition 2.3 we obtain.

Corollary 2.4. The map : Prop∞vS( ) × C∞
vS( ) → C∞

vS( ) ( ) 7→
◦ , is continuous.

As another corollary of Proposition 2.3 we have the following result.
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Proposition 2.5. Let : → be a properC∞ map. Then the induced map

∗ : C∞
vS( ) → C∞

vS( ) 7→ ◦

is continuous.

Using Lemma 2.1 we can also prove the following.

Proposition 2.6. Let : → be a C∞ map. Then the induced map

∗ : C∞
vS( ) → C∞

vS( ) 7→ ◦

is continuous.

Proof. Let ∈ C∞
vS( ), and let V =

⋂
∈ N be any basic very-strong

C∞ neighborhood of ∗( ) = ◦ in C∞
vS( ). Here eachN = N ( ◦ ;

( ϕ ) ( ψ ) ε ), ∈ , is an elementary C neighborhood of◦ , and
1 ≤ < ∞ ∈ , and the family{ } ∈ is locally finite in . By Lemma 2.1
we find for eachN finitely many elementary C neighborhoodsM of 1 ≤

≤ ( ), such that (
⋂ ( )

=1 M × { }) = ∗(
⋂ ( )

=1 M ) ⊂ N . Here M =

N ( ; ( ϕ ) ( ψ ) ε ) and
⋃ ( )

=1 = . Now the family { |
∈ 1 ≤ ≤ ( )} is locally finite in , and henceU =

⋂
∈

⋂ ( )
=1 M is a basic

very-strong neighborhood of . Furthermore we have that∗(U) ⊂ V. This completes
the proof.

3. The product theorem

By the product theorem we mean the result in Proposition 3.1 below. Using the
product theorem and also Proposition 2.5 we prove Corollary3.2, which will be im-
portant for us later on in the paper. Corollary 3.2 plays a keyrole in the proof
of Lemma 6.3. Note that Corollary 3.2 is the very-strong C∞ topology version of
Lemma 2.2 in [6].

Proposition 3.1. Let , 1 and 2 be C∞ manifolds, and let : 1× 2 → ,
= 1, 2, denote the projection maps. Then the natural bijection

ι : C∞
vS( 1 × 2) → C∞

vS( 1) × C∞
vS( 2) 7→ ( 1 ◦ 2 ◦ )

is a homeomorphism.

Proof. It follows by Proposition 2.6 thatι is continuous. The fact thatι−1 is
continuous is seen as follows. Let (1 2) ∈ C∞

vS( 1) × C∞
vS( 2), and denote

ι−1( 1 2) = . Let V =
⋂

∈ N be any basic very-strong C∞ neighborhood of in
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C∞
vS( 1 × 2). Here eachN = N ( ; ( ϕ ) ( ψ ) ε ) ∈ , is an ele-

mentary C neighborhood of in C∞( 1× 2), and 1≤ <∞ ∈ , and the
family { } ∈ is locally finite in . It follows by Remark 2.2 that we may assume
that each of the elementary C neighborhoodsN ∈ , is of the type where the
chart in 1 × 2 is a product chart, i.e., we can assume that eachN is of the form

(1) N = N ( ; ( ϕ ) ( (1) × (2) ψ(1) × ψ(2)) ε ) ∈

It is readily seen that ifN is as in (1), and we set

N ( ) = N ( ; ( ϕ ) ( ( ) ψ( )) ε ) = 1 2

then ι−1(N (1) ×N (2)) ⊂ N . Now U ( ) =
⋂

∈ N ( ) is a basic very-strong C∞ neigh-
borhood of = ◦ in C∞( ) = 1, 2. Furthermoreι−1(U (1) × U (2)) ⊂⋂

∈ N = V. This proves thatι−1 is continuous.

Corollary 3.2. Let and beC∞ manifolds, and let be a compactC∞

manifold. Then the map

χ : C∞
vS( ) → C∞

vS( × × ) 7→ id ×

is continuous.

Proof. It follows by Proposition 3.1 that it is enough to prove that the maps

(i) C∞
vS( ) → C∞

vS( × ) 7→ 1 ◦ (id × )

and

(ii) C∞
vS( ) → C∞

vS( × ) 7→ 2 ◦ (id × )

are continuous. Here1 : × → and 2 : × → denote the projection
maps. The map in (i) is the constant map from C∞

vS( ) onto the element 1 ∈
C∞( × ), where 1 : × → is the projection, and hence (i) is continuous.

Observe that 2 ◦ (id × ) = ◦ 2, where 2 : × → is the projection.
Thus the map in (ii) equals the map∗2 : C∞

vS( ) → C∞
vS( × ) 7→ ◦ 2.

Since is compact, the projection2 is a proper map, and hence∗2 is continuous
by Proposition 2.5.

4. Whitney approximation

In this section we prove Theorem A. The following basic result was proved by H.
Whitney in 1932–33.
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Lemma 4.1 (H. Whitney). Let be an open subset ofR , and let 1, 2 . . .

be bounded open sets(some of which may be empty) such that
⋃∞

=1 = and ⊂
+1 for all ≥ 1. Then if : → R is a C∞ map, and ε1 ≥ ε2 ≥ · · · are given

positive numbers, and 1 ≤ 2 ≤ · · · are given positive integers, there is real analytic
map : → R such that, for each1 ≤ ≤ , we have that

|Dα( − ) ( )| < ε for all ∈ −

and all α = (α1 . . . α ) with |α| ≤ , = 1, 2 . . . .

Proof. See [16], Lemma 6. In [16] the formulation of this result is given in the
case when = , for ≥ 1. The above form of the result is an immediate conse-
quence of this one.

We begin by showing that Lemma 4.1 gives us the following result.

Proposition 4.2. Let be an open subset ofR . Then the setCω( R ) is
dense inC∞

vS( R ).

Proof. Suppose ∈ C∞
vS( R ) and let U =

⋂
∈ N ( ; ε ) be any basic

very-strong C∞ neighborhood of . Here 1≤ < ∞, and ε > 0 ∈ , and each
∈ , is a compact subset of , and the family{ } ∈ is locally finite in .

First we choose bounded open subsets∅ = 1, 2 . . . of such that
a)

⋃∞
=1 = ,

b) ⊂ +1, = 1, 2 . . . .
Next we define subsets of ≥ 1, in the following way. We set

= { ∈ | ∩ +1 6= ∅} = 1 2 . . .

Clearly 1 ⊂ 2 ⊂ · · · ⊂ ⊂ +1 ⊂ · · · , and
⋃∞

=1 = . Since +1 is
a compact subset of and the family{ } ∈ is locally finite in , it follows that

∩ +1 6= ∅, and hence also that ∩ +1 6= ∅, for only finitely many ∈ . Thus
each is a finite set. We define

= max { | ∈ } = 1 2 . . .

ε = min {ε | ∈ } = 1 2 . . .
(1)

Then 1 ≤ 2 ≤ . . . , and ε1 ≥ ε2 ≥ . . . .
By Lemma 4.1 there exists a real analytic map :→ R such that, for each

1 ≤ ≤ ,

(2) |Dα( − ) ( )| < ε for all ∈ −
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and all α = (α1 . . . α ) with |α| ≤ = 1, 2 . . . .
Now consider a fixed compact set ∈ . We let ( ) be the least integer for

which ∈ ( ). Thus

∈ ( ) − ( )−1

where 0 = ∅. Since 6∈ ( )−1 we have that

(3) ⊂ − ( )

Since we for each ∈ have that ∈ ( ), it follows by (1) that

( ) ≥ and ε ( ) ≤ ε for each ∈

It now follows by (2) and (3) that, for each 1≤ ≤ ,

|Dα( − ) ( )| < ε ( ) ≤ ε for all ∈

and all α = (α1 . . . α ) with |α| ≤ ( ), and hence in particular for allα with
|α| ≤ ∈ . Thus we have that

‖ − ‖ < ε ∈

Hence ∈ ⋂ ∈ N ( ; ε ) = U . Now ∈ U ∩ Cω( R ), and this proves that the
set Cω( R ) is dense in C∞vS( R ).

Using Proposition 4.2 we prove the following.

Proposition 4.3. Let be a real analytic manifold. Then the setCω( R ) is
dense inC∞

vS( R ).

Proof. By the Grauert-Morrey imbedding theorem, see [4], Theorem 3, we may
consider as a real analytic closed submanifold of some euclidean spaceR . Let
: → R denote the inclusion. By Proposition 2.5 the induced map

∗ : C∞
vS(R R ) → C∞

vS( R ) 7→ |

is continuous. Furthermore∗ is surjective, since each C∞ map ′ : → R can be
extended to a C∞ map :R → R , see e.g. [13], Proposition 2.5.14.

Let U be a non-empty open subset of C∞
vS( R ). Then (∗)−1(U) is a non-empty

open subset of C∞vS(R R ), and hence we have by Proposition 4.2 that there exists a
real analytic map :R → R such that ∈ ( ∗)−1(U). Then ◦ = | : → R is
real analytic, and thus ◦ = ∗( ) ∈ U ∩ Cω( R ).
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We can now prove Theorem A, given in the introduction.

Theorem 4.4. Let and be real analytic manifolds. ThenCω( ) is
dense inC∞

vS( ).

Proof. By the Grauert-Morrey imbedding theorem, [4], Theorem 3, we can con-
sider as a real analytic closed submanifold of someR . It is well known that
there then exist an open neighborhood of inR and a real analytic retraction

: → , see the corresponding step in the proof of Theorem 7.2. By Proposi-
tion 2.6 the induced map

∗ : C∞
vS( ) → C∞

vS( ) 7→ ◦

is continuous, and clearly∗ is surjective.
SupposeU is a non-empty open subset of C∞

vS( ). Then −1
∗ (U) is a non-

empty open subset of C∞vS( ), and since C∞( ) is open in C∞vS( R ), see
Lemma 1.4, it follows that −1

∗ (U) is open in C∞vS( R ). By Proposition 4.3 we now
know that there exists a real analytic map : → R such that ∈ −1

∗ (U). Then
: → ⊂ R , and ◦ : → is a real analytic map. Thus◦ = ∗( ) ∈

U ∩ Cω( ), and this completes the proof.

5. The very-strong topology C∞ on C∞ K (M N)

Let be a compact Lie group. If and are C∞ -manifolds, we let
C∞ ( ) denote the set of all -equivariant C∞ maps from to . We give
C∞ ( ) the relative topology from C∞vS( ), and denote the set C∞ ( )
with this topology by C∞vS ( ). As immediate consequences of Propositions 2.5
and 2.6, respectively, we now obtain.

Proposition 5.1. Let , and beC∞ -manifolds and let : → be
a -equivariant properC∞ map. Then the induced map

∗ : C∞
vS ( ) → C∞

vS ( ) 7→ ◦

is continuous.

Proposition 5.2. Let , and beC∞ -manifolds, and let : → be a
-equivariantC∞ map. Then the induced map

∗ : C∞
vS ( ) → C∞

vS ( ) 7→ ◦

is continuous.
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6. The averaging map and the very-strong C∞ topology

Let be a compact Lie group and assume to begin with that is any C∞ man-
ifold. Suppose that we are given a C∞ map

: × → R

We then define

ˆ ( ) : → R

by

ˆ ( )( ) =
∫

( )

Here the integral is the Haar integral, obtained by integrating each coordinate function
of . That is if ( ) = ( 1( ) . . . ( )), then ˆ ( )( ) = ( 1( ) . . . ( )),
where ( ) =

∫
( ) 1 ≤ ≤ . It is a well-known fact thatˆ ( ) : → R

is a C∞ map, see e.g., [1], Theorem 0.3.3. Hence we have that

(1) ˆ : C∞( × R ) → C∞( R ) 7→ ˆ ( )

We show in Proposition 6.2 that̂ is continuous when we give both function spaces
the very-strong C∞ topology. First we prove the following.

Lemma 6.1. Suppose ∈ C∞( × R ), and let N = N ( ˆ ( ); ( ϕ) ε)
be any elementaryC neighborhood of ˆ ( ) in C∞( R ), where 1 ≤ < ∞. Then
there exist finitely many elementaryC neighborhoodsM of , of the formM =
N ( ; × ( × ω × ϕ) ε) 1 ≤ ≤ , such that ˆ (

⋂
=1 M ) ⊂ N .

Proof. Since is compact we can find finitely many charts (ω ) in and
compact subsets of 1≤ ≤ , such that

⋃
=1 = . We set

M = N ( ; × ( × ω × ϕ) ε) 1 ≤ ≤

If ∈ M , then we have for each 1≤ ≤ that

∣∣Dγ( ◦ (ω × ϕ)−1 − ◦ (ω × ϕ)−1) ( )
∣∣ < ε

for all = ( 1 . . . 1 . . . ) ∈ ω ( )×ϕ( ) ⊂ R ×R , and every ( + )-tuple
γ = (α1 . . . α β1 . . . β ) with |γ| ≤ . Here = dim and = dim . In partic-
ular we have that

(2)
∣∣Dβ( ◦ ϕ−1 − ◦ ϕ−1) ( )

∣∣ < ε 1 ≤ ≤
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for all ∈ and all = ( 1 . . . ) ∈ ϕ( ) ⊂ R , and everyβ = (β1 . . . β )
with |β| ≤ . Here ( ) = ( ) and ( ) = ( ), for all ∈ and all ∈ .

We have that

( ˆ ( ) ◦ ϕ−1 − ˆ ( ) ◦ ϕ−1) ( ) =
∫

( ◦ ϕ−1 − ◦ ϕ−1) ( ) 1 ≤ ≤

for all ∈ ϕ( ). Hence

Dβ( ˆ ( ) ◦ ϕ−1 − ˆ ( ) ◦ ϕ−1) ( ) =
∫

Dβ( ◦ ϕ−1 − ◦ ϕ−1) ( ) 1 ≤ ≤

for all ∈ ϕ( ).
By (2), and since

⋃
=1 = , it now follows that if ∈ ⋂ =1 M , then

∣∣Dβ( ˆ ( ) ◦ ϕ−1 − ˆ ( ) ◦ ϕ−1) ( )
∣∣ ≤

∫ ∣∣Dβ( ◦ ϕ−1 − ◦ ϕ−1) ( )
∣∣ < ε

for 1 ≤ ≤ , and for all ∈ ϕ( ), and everyβ with |β| ≤ . Thus ˆ ( ) ∈
N ( ˆ ( ); ( ϕ) ε) = N .

Proposition 6.2. The map ˆ : C∞
vS( × R ) → C∞

vS( R ) is continuous.

Proof. Let ∈ C∞
vS( × R ) and let V =

⋂
∈ N be any basic very-strong

C∞ neighborhood of ˆ ( ) in C∞
vS( R ). Here eachN = N ( ˆ ( ); ( ϕ ) ε ),

∈ , is an elementary C neighborhood ofˆ ( ) in C∞( R ), where 1≤ <

∞ ∈ , and the family{ } ∈ is locally finite in . By Lemma 6.1 we find for
eachN ∈ , finitely many elementary C neighborhoodsM of 1 ≤ ≤
( ), such that ˆ (

⋂ ( )
=1 M ) ⊂ N . Here

M = N ( ; × ( × ω × ϕ ) ε ) ∈ 1 ≤ ≤ ( )

and
⋃ ( )

=1 = . Now the family{ × | 1 ≤ ≤ ( ) ∈ } is locally finite

in × , and henceU =
⋂

∈

⋂ ( )
=1M is a basic very-strong C∞ neighborhood

of in C∞
vS( × R). Furthermore we have that̂(U) ⊂ V.

Let us now turn our attention to the case where is a C∞ -manifold. We let

: × → ( ) 7→

denote the given action of on . SupposeR (θ) is a linear representation space for
, and let

: × R (θ) → R (θ) ( ) 7→ θ( ) =
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denote the corresponding action of onR (θ). If : → R (θ) is any C∞ map,
we define

(3) ( ) : → R (θ)

by

( )( ) =
∫

−1 ( ) ∈

Then ( ) is a -equivariant C∞ map, and ( ) = , if is -equivariant. Thus
we obtain a surjective map, in fact a retraction,

(4) : C∞( R (θ)) → C∞ ( R (θ)) 7→ ( )

We prove in Theorem 6.4 that is continuous in the very-strongC∞ topology.
In order to do this we first establish the following key lemma.

Lemma 6.3. Let be aC∞ -manifold, where is a compact Lie group, and
let R (θ) be a linear representation space for . For eachC∞ map : → R (θ)
we define ( ) : × → R (θ) ( ) 7→ −1 ( ). Then the map

: C∞
vS( R (θ)) → C∞

vS( × R (θ)) 7→ ( )

is continuous.

Proof. We have that ( ) = ′ ◦ (id × ) ◦ △ : × → R (θ), where

△ : × → × ( ) 7→ ( )

and

′ : × R (θ) → R (θ) ( ) 7→ −1

Therefore equals the composite map

C∞
vS( R (θ))

χ−→ C∞
vS( × × R (θ))

∗
△−→ C∞

vS( × × R (θ))

′
∗−→ C∞

vS( × R (θ))

Hereχ( ) = id× . The mapχ is continuous by Corollary 3.2. The map is easily
seen to be proper, and hence∗△ is continuous by Proposition 2.5. The fact that′∗
is continuous follows by Proposition 2.6.
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Theorem 6.4. Let be aC∞ -manifold, where is a compact Lie group,
and let R (θ) be a linear representation space for . Then

: C∞
vS( R (θ)) → C∞

vS ( R (θ)) 7→ ( )

is continuous.

Proof. Note that for every ∈ C∞
vS( R (θ)) we have that ( ) = ˆ ( ( )),

that is, ( ) = (ˆ ◦ )( ). Hence Theorem 6.4 follows by Proposition 6.2 and
Lemma 6.3.

7. Proof of Theorem C

Proposition 7.1. Let be a real analytic -manifold, where is a compact
Lie group, and let R (θ) be a linear representation space for . ThenCω ( R (θ))
is dense inC∞

vS ( R (θ)).

Proof. LetU be a non-empty, open subset of C∞
vS ( R (θ)). By Theorem 6.4

we know that −1(U) is an open subset of C∞vS( R (θ)), and since is surjective
−1(U) is non-empty. Hence we have by Proposition 4.3 that there exists a real ana-

lytic map : → R (θ), such that ∈ −1(U). Since : → R (θ) is real an-
alytic, it follows that also the -equivariant map ( ) : → R (θ) is real analytic,
see [9], Theorem 1.16. Thus ( )∈ U∩Cω ( R (θ)), and this completes the proof.

Theorem 7.2. Let and be real analytic -manifolds, where is a com-
pact Lie group, and assume that the number of -isotropy types in is finite. Then
Cω ( ) is dense inC∞

vS ( ).

By [12], Theorem 1.1, we may consider as a -invariant real analytic closed
submanifold of some linear representation spaceR (ρ) for . Then there exist a

-invariant open neighborhood of inR (ρ) and a -equivariant real analytic
retraction : → , see [8], Theorem I. Furthermore we have by Proposition 5.2
that the induced map

∗ : C∞
vS ( ) → C∞

vS ( ) 7→ ◦

is continuous, and clearly∗ is surjective.
Let U be a non-empty open subset of C∞

vS ( ). Then −1
∗ (U) is a non-empty

open subset of C∞vS ( ). Since C∞ ( ) is an open subset of C∞vS ( R (ρ)),
see Lemma 1.4, it follows that−1

∗ (U) is open in C∞vS ( R (ρ)). By Proposition 7.1
there exists a real analytic -equivariant map :→ R (ρ) such that ∈ −1

∗ (U).
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Then : → ⊂ R (ρ), and ◦ : → is a -equivariant real analytic map.
Now ◦ = ∗( ) ∈ U ∩ Cω ( ), and this completes the proof.

8. The equivariant glueing lemma

The purpose of this section is simply to record the followingstraightforward
equivariant version of Lemma B in the introduction.

Lemma 8.1. Let : → be a -equivariantC∞ map betweenC∞ -mani-
folds, and let be a -invariant open subset of . Then there exists an open neigh-
borhoodN of | in C∞

vS ( ) such that the following holds: If ∈ N and we
define ( ) : → by

( )( ) =

{
( ) ∈
( ) ∈ − ,

then ( ) is a -equivariantC∞ map. Furthermore : N → C∞
vS ( ) 7→

( ), is continuous.

Proof. It is clear that it is enough to prove the lemma in the case when ={ },
and this case is given in [3], I.4.3.4.4.

9. A correction to the paper [6]

Lemma 2.3 in [6], given for the strong C∞ topology, is not correct as stated. This
mistake was pointed out to me by Sarah Packman (a graduate student at Berkeley)
[14]. The best way to correct this mistake is to simply replace Lemma 2.3 in [6]
by its valid very-strong C∞ topology version, i.e., by Lemma 8.1 above. As a con-
sequence of this change one should also replace [6], Theorem2.1 (this is the result
of T. Matumoto and M. Shiota [12], Theorem 1.2) by the corresponding result for the
very-strong C∞ topology, i.e., by Theorem 7.2 of the present paper. When these two
replacements have been done, the proof of the main result in [6] requires no other
changes and is correct as it stands.
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