

Title	A note on height of exceptional character degrees			
Author(s)	Usami, Yoko			
Citation	Osaka Journal of Mathematics. 1980, 17(3), p. 793-799			
Version Type	VoR			
URL	https://doi.org/10.18910/7091			
rights				
Note				

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

A NOTE ON HEIGHT OF EXCEPTIONAL CHARACTER DEGREES

Yoko USAMI

(Received July 13, 1979)

1. Introduction

We assume

(*) G is a finite group with a Sylow p-group P satisfying

$$C_G(x) = C_G(P), \quad all \ x \in P^*.$$

Hypothesis (*) implies that P is an abelian trivial intersection subgroup and $C_G(P)=P\times V$, for some p'-group V. In fact, $S=(P\times V)-V$ is a T.I. set. Furthermore, $N_G(P)/V$ is a Frobenius group with Frobenius kernel PV/V. We set |P|=q, $s=|N_G(P):C_G(P)|$ and st=q-1, where t is the number of p-classes of G. We set $N=N_G(P)$.

Under this hypothesis (*) R. Brauer and H.S. Leonard, Jr. [1,3] have shown the following results.

- (a) There is a one to one correspondence from the p-blocks of G of full defect onto the N-classes of irreducible characters of V. (See (1D) [3] for details.)
- (b) A p-block B of G of full defect associated with an N-class Φ of irreducible characters of V contains a family of exceptional characters $\{\Lambda_i\}$ $(1 \le i \le |\Phi|t)$, if $|\Phi|t > 1$.
- (c) Let $\varphi \in \Phi$, and let $W(\varphi)$ be the inertia group of φ in N. If $f = |\Phi|$ and $|W(\varphi)| = e|C_G(P)|$, then ef = s. Let Λ be any member of $\{\Lambda_i\}$. Then

$$\Lambda_{|S} = \delta \lambda + c \sum_{\varphi \in \Phi} 1_P \varphi$$
, (1)

$$\Lambda(1) \equiv \delta s \varphi(1) + c f \varphi(1) \equiv (\delta e + c) f \varphi(1) \pmod{q}, \tag{2}$$

where $\delta = \pm 1$, $\varphi \in \Phi$, $c \in \mathbb{Z}$, and λ is an appropriately chosen exceptional character of N. In particular, the p-block b of λ in N lifts to the p-block B of Λ in G. In addition $\lambda = (\mu \varphi)^N$, where μ is some nonprincipal irreducible character of P.

(d) Moreover it follows from (3.10) in [1] that

$$\Lambda_{|v|} \equiv \delta \lambda_{|v|} + c \sum_{\varphi \in \Phi} \varphi \equiv (\delta e + c) \sum_{\varphi \in \Phi} \varphi \pmod{q}$$
 (3)

794 Y. USAMI

in the ring of all algebraic integers.

Using (a),(b) and (c), D.A. Sibley has proved the following two theorems.

Theorem 1 (Sibley [4]). Suppose (*) holds and G has at least three classes of p-elements. Then c=0. In particular $\Lambda(1) \equiv \delta \lambda(1) \pmod{q}$.

Theorem 2 (Sibley [5]). Suppose

(#) G is a finite group with a Sylow p-group P satisfying

$$C_G(x) = P$$
, all $x \in P^*$.

Under this hypothesis (#), $p \times \Lambda(1)$ if G has at least two classes of p-elements.

We remark that instead of hypothesis (#), Sibley has proved Theorem 2 under the following hypothesis:

(#') A Sylow p-group P of G is an abelian T.I. set, and $N_G(P)$ is a Frobenius group with Frobenius kernel P.

It is easily seen that hypothesis (#) is equivalent to hypothesis (#').

In this paper we shall prove the following theorem, which has been conjectured by Sibley [5].

Main Theorem. Suppose (*) holds and G has at least two classes of p-elements. Then $p \not\setminus \Lambda(1)$.

EXAMPLE. Let G=SL(2,q), where q is a power of an odd prime p and $\frac{q-1}{2}$ is odd. Then G satisfies (*) with |V|=2 and has two classes of p-elements. $N_G(P)$ has two families of exceptional characters and both degrees are $\frac{q-1}{2}$. On the other hand G has two families of exceptional characters and their degrees are $\frac{q-1}{2}$ and $\frac{q+1}{2}$, which are prime to p. Moreover if we choose δ appropriately, we can take c=0 in both families.

2. Proof of Main Theorem

The main theorem can be proved by similar way to Theorem 2 with the addition of block calculations as the proof of Theorem 1.

Suppose by way of contradiction that $p \mid \Lambda(1)$. Then first of all we claim also $p \mid \Lambda(x)$ for any p-regular element x which is not conjugate to an element of V in G. Let $g_i \in P^*$ and K_i be the class of G containing g_i and K be the class of G containing g_i . We define a class function θ_{ix} by

$$\theta_{i}(a) = |\{(g_i', x') | g_i' \in K_i, x' \in K, g_i'x' = a\}|.$$

We have the well-known formula

$$\theta_{ix} = \frac{|G|}{|C_G(g_i)| |C_G(x)|} \sum_{\mathbf{x}} \frac{\overline{\chi}(g_i)\overline{\chi}(x)}{\chi(1)} \chi,$$

where the sum is over all irreducible characters χ of G. We now define another class function θ_{ix} by

$$\theta_{ix}'(a) = \begin{cases} \theta_{ix}(a), & \text{if } a \text{ is } p\text{-singular,} \\ 0, & \text{otherwise.} \end{cases}$$

We may write

$$\theta_{ix}' = \sum_{a} \frac{\theta_{ix}(a)}{|C_G(a)|} \sum_{\chi} \overline{\chi}(a) \chi$$
,

where the sum is over a complete set of representatives a of the p-singular classes a^{G} of G. By $\theta_{ix'|B}$ we mean

$$\theta_{ix'|B} = \sum_{a} \frac{\theta_{ix}(a)}{|C_G(a)|} \sum_{\chi \in B} \overline{\chi}(a) \chi$$
,

and by $\theta_{ix|B}$ we mean

$$\theta_{ix|B} = \frac{|G|}{|C_G(g_i)| |C_G(x)|} \sum_{\mathsf{x} \in B} \frac{\overline{\mathsf{X}}(g_i) \overline{\mathsf{X}}(x)}{\mathsf{X}(1)} \mathsf{X}.$$

Lemma 1. $\theta_{ix}(g_k v) \equiv 0 \pmod{q}$ for $g_k \in P^*$ and $v \in V$.

Proof. The lemma follows easily, because P acts by conjugation fixed-point-free on the set of the pairs (g_i', x') , where $g_i' \in K_i$, $x' \in K$ and $g_i'x' = g_k v$. (q.e.d.)

Let m be $\{\frac{z}{y}|y \text{ is a rational integer which is prime to } p, \text{ and } z \text{ is an algebraic integer}\}.$

Lemma 2. $\theta_{ix|B}(g_k)$ is in m and $\theta_{ix|B}(g_k) \equiv 0 \pmod{qm}$.

Proof. Since $\theta_{ix} - \theta_{ix}'$ vanishes on *p*-singular elements, the "Truncation of Relations" theorem (see [2] (IV.6.3)) shows that $\theta_{ix|B} - \theta_{ix'|B}$ vanishes on *p*-singular elements. In particular

$$\theta_{ix|B}(g_k) = \theta_{ix'|B}(g_k) = \sum_a \frac{\theta_{ix}(a)}{|C_G(a)|} \sum_{x \in B} \bar{X}(a) \chi(g_k)$$
.

We can claculate $\sum_{x \in B} \overline{X}(a)X(g_k)$ by (5)[4] and it becomes

$$heta_{ix'\mid_B}(g_k) = \sum_{ar{e}_k v} rac{ heta_{ix}(g_k v)}{|C_G(g_k v)|} \, q \sum_{arphi \in \Phi} ar{arphi}(v) arphi(1)$$
 ,

where the sum is over a complete set of representatives of p-singular classes in which g_k can be chosen as p-part. Since $\theta_{ix}(g_k v) \equiv 0 \pmod{q}$ by Lemma 1, the result follows. (q.e.d.)

Lemma 3. If $p \mid \Lambda(1)$, then $p \mid \Lambda(x)$ in m for any p-regular element $x \in V^G$.

Proof. We can compute the difference between $\theta_{ix|B}$ and $\theta_{jx|B}$ for $g_i, g_j \in P^{\sharp}$, as Sibley did in [5]:

$$\begin{split} \theta_{iz|B}(g_k) - \theta_{jz|B}(g_k) &= \frac{|G|}{|PV| |C_G(x)|} \sum_{\Lambda} \left\{ \frac{\bar{\Lambda}(g_i)\bar{\Lambda}(x)\Lambda(g_k)}{\Lambda(1)} - \frac{\bar{\Lambda}(g_j)\bar{\Lambda}(x)\Lambda(g_k)}{\Lambda(1)} \right\} \\ &= \frac{|G|\bar{\Lambda}(x)}{q|V| |C_G(x)|\Lambda(1)} \sum_{\Lambda} \left\{ \bar{\Lambda}(g_i)\Lambda(g_k) - \bar{\Lambda}(g_j)\Lambda(g_k) \right\} \,, \end{split}$$

where $\{\Lambda\}$ are the exceptional characters in B. (These equalities follow from the facts that $X(g_i)=X(g_j)$ for any nonexceptional character X in B ((1D) (v) [3]), and that $\Lambda(x)$ and $\Lambda(1)$ are independent of the choice of $\Lambda((2B)$ [1]).) On the other hand,

$$\begin{split} \sum_{\Lambda} \left\{ \bar{\Lambda}(g_i) \Lambda(g_k) - \bar{\Lambda}(g_j) \Lambda(g_k) \right\} &= \sum_{\chi \in B} \left\{ \bar{\chi}(g_i) \chi(g_k) - \bar{\chi}(g_j) \chi(g_k) \right\} \\ &= q f \varphi(1)^2 (\delta_{g,g_k} - \delta_{g,g_k}) \,, \end{split}$$

where δ_{gh} is defined for $g, h \in P^*$ by

$$\delta_{gh} = egin{cases} 1 & g \sim h \ 0 & ext{otherwise.} \end{cases}$$

The last equality holds by (5) [4]. As G has at least two classes of p-elements, we can choose $g_i = g_k$ and $g_j \sim g_k$. Then by Lemma 2

$$0 \equiv \theta_{ix|B}(g_k) - \theta_{jx|B}(g_k) = \frac{|G|\bar{\Lambda}(x)f\varphi(1)^2}{|V||C_G(x)|\Lambda(1)} \pmod{q\mathfrak{m}}.$$

Then
$$p \mid \Lambda(x)$$
. (q.e.d.)

We now calculate $||\Lambda||^2$. This gives

$$1 = ||\Lambda||^2 = \frac{1}{|G|} \sum_{z \in S} \frac{|G|\Lambda(z)\overline{\Lambda}(z)}{|C_G(z)|} + \frac{1}{|G|} \sum_{v \in V} \frac{|G|\Lambda(v)\overline{\Lambda}(v)}{|C_G(v)|} + \frac{1}{|G|} \sum_{x \in V} \frac{|G|\Lambda(x)\overline{\Lambda}(x)}{|C_G(x)|}, \tag{4}$$

where the first and the second sums are over complete sets of representatives of

G-conjugacy classes and the third sum is over that of G-conjugacy classes of p-regular elements which are not in V^{G} . Then by Lemma 3 we may write the third sum as $p^{2}R$ where $R=\frac{z}{y}$ for some algebraic integer z and some rational integer y which is prime to p.

Lemma 4. Let T_1 be the first term of (4). Then

$$T_1 = 1 + \frac{|V|f}{|N|} \{ -(\delta e + c)^2 + c^2 q \}$$
.

Proof. By (1),

$$T_1 = \frac{1}{|G|} \sum_{\ell \in S} \frac{|G|}{|C_G(g)|} (\delta \lambda(g) + c \sum_{\varphi \in \Phi} 1_P \varphi(g)) (\delta \overline{\lambda}(g) + c \sum_{\varphi \in \Phi} 1_P \overline{\varphi}(g)),$$

where the sum is over a complete set of representatives of G-conjugacy classes. Since S is a T.I. set, the representatives of G-conjugacy classes of S coincide with those of N-conjugacy classes of S and $|C_G(g)| = |C_N(g)|$. Then

$$T_1 = \frac{|G:N|}{|G|} \sum_{\emptyset \in S} \frac{|N|}{|C_N(g)|} \left(\delta \lambda(g) + c \sum_{\emptyset \in \Phi} 1_P \varphi(g) \right) \left(\delta \overline{\lambda}(g) + c \sum_{\emptyset \in \Phi} 1_P \overline{\varphi}(g) \right),$$

where the sum is over a complete set of representatives of N-conjugacy classes. Since λ is a character of N and $\sum_{n=1}^{\infty} 1_{p} \varphi$ is an N-invariant character of PV,

$$T_1 = rac{1}{|N|} \left\{ \sum_{g \in S} \lambda(g) \overline{\lambda}(g) + \delta c \sum_{g \in S} \left[\lambda(g) \left(\sum_{\varphi \in \Phi} 1_P \overline{\varphi}(g) \right) + \overline{\lambda}(g) \left(\sum_{\varphi \in \Phi} 1_P \varphi(g) \right) \right] + c^2 \sum_{g \in S} \left(\sum_{\varphi \in \Phi} 1_P \varphi(g) \right) \left(\sum_{\varphi \in \Phi} 1_P \overline{\varphi}(g) \right) \right\},$$

where the sums $\sum_{s \in S}$ are over all elements of S. We can express $\lambda_{|P \times V}$ as follows:

$$\lambda_{\mid P \times V} = \sum_{n} (\mu_1 + \mu_2 + \cdots + \mu_e)^n \varphi^n$$
 ,

where *n* ranges over a cross section of $W(\varphi)$ in N, and $\mu_1, \mu_2, \dots, \mu_e$ are distinct irreducible nonprincipal characters of P. Note that

$$\sum_{n} \varphi^{n} = \sum_{\varphi \in \Phi} \varphi.$$

From the orthogonality relations we get

$$\begin{split} \sum_{g \in S} \lambda(g) \overline{\lambda}(g) &= |N| - \sum_{v \in V} |\lambda(v)|^2 \\ &= |N| - \sum_{v \in V} |e \sum_{\varphi \in \Phi} \varphi(v)|^2 \\ &= |N| - e^2 |V| f, \end{split}$$

798 Y. Usami

$$\begin{split} \sum_{g \in S} \lambda(g) \left(\sum_{\varphi \in \Phi} 1_P \overline{\varphi}(g) \right) &= \sum_{g \in S} \left(\sum_n \left(\mu_1 + \mu_2 + \dots + \mu_e \right)^n \varphi^n(g) \right) \left(\sum_{\varphi \in \Phi} 1_P \overline{\varphi}(g) \right) \\ &= - \sum_{v \in V} \left(\sum_n e \varphi^n(v) \right) \left(\sum_{\varphi \in \Phi} \overline{\varphi}(v) \right) \\ &= -e \sum_{v \in V} \left(\sum_{\varphi \in \Phi} \varphi(v) \sum_{\varphi \in \Phi} \overline{\varphi}(v) \right) \\ &= -e \mid V \mid f \,, \\ \sum_{g \in S} \overline{\lambda}(g) \left(\sum_{\varphi \in \Phi} 1_P \varphi(g) \right) &= -e \mid V \mid f \,, \end{split}$$

and

$$\sum_{g \in S} |\sum_{\varphi \in \Phi} 1_{P} \varphi(g)|^{2} = (q-1) \sum_{v \in V} |\sum_{\varphi \in \Phi} \varphi(v)|^{2} = (q-1)|V|f.$$

Then

$$\begin{split} T_1 &= \frac{1}{|N|} \left\{ |N| - e^2 |V| f - 2\delta c e |V| f + c^2 (q - 1) |V| f \right\} \\ &= 1 + \frac{|V| f}{|N|} \left\{ -(\delta e + c)^2 + c^2 q \right\} \,. \end{split} \tag{q.e.d.}$$

Multiplying (4) by q|V| we get

$$rac{|V|f}{c}\left\{-(\delta e + c)^2 + c^2q
ight\} + T_2 + p^2qR|V| = 0$$
 ,

where

$$T_2 = \frac{1}{|G:PV|} \sum_{v \in V} \frac{|G|\Lambda(v)\overline{\Lambda}(v)}{|C_G(v)|}.$$

Then

$$\frac{|V|f}{s} \{-(\delta e + c)^2 + c^2 q\} + T_2 \equiv 0 \pmod{pqm}.$$
 (5)

Lemma 5.
$$T_2 \equiv \frac{|V| f(\delta e + c)^2}{s} \pmod{pqm}$$
.

Proof. Let $\{v_j\}$ $(1 \le j \le u)$ be the representatives of G-conjugacy classes of V. Then these are also the representatives of N-conjugacy classes, because $N_G(P)$ controls fusion of $C_G(P)$. Note that $p \mid (\delta e + c)$ from (2), because we have assumed that $p \mid \Lambda(1)$. By (3),

$$\begin{split} T_2 &= \frac{1}{|G:PV|} \sum_{j=1}^u \frac{|G|}{|C_G(v_j)|} \; \Lambda(v_j) \overline{\Lambda}(v_j) \\ &\equiv \frac{1}{|G:PV|} \sum_{j=1}^u \frac{|G|}{|C_G(v_i)|} \left(\delta e + c \right)^2 \{ (\sum_{\varphi \in \Phi} \varphi(v_j)) \left(\sum_{\varphi \in \Phi} \overline{\varphi}(v_j) \right) \} \pmod{pq\mathfrak{m}} \; . \end{split}$$

We now set $\zeta = \sum_{\varphi \in \Phi} \varphi$. Since ζ is an N-invariant character of V and $\{v_j\}$ are also the representatives of N-conjugacy classes,

$$|\zeta(v_j)|^2 = \frac{|C_N(v_j)|}{|N|} \sum_{v \stackrel{\sim}{N}^{j}_j} |\zeta(v)|^2$$
.

Then

$$\begin{split} T_2 &\equiv \frac{(\delta e + c)^2}{|G:PV|} \sum_{j=1}^{u} \frac{|G|}{|C_G(v_j)|} |\zeta(v_j)|^2 \\ &\equiv \frac{(\delta e + c)^2}{|G:PV|} \sum_{j=1}^{u} \left\{ \frac{|G| |C_N(v_j)|}{|C_G(v_j)| |N|} \sum_{v \in V} |\zeta(v)|^2 \right\} \\ &\equiv \frac{(\delta e + c)^2}{s} \sum_{v \in V} \frac{|\zeta(v)|^2}{|C_G(v):C_N(v)|} \quad \text{(mod } pqm) \, . \end{split}$$

Since $P \subseteq C_G(v)$ and P is a T.I. Sylow p-group of $C_G(v)$,

$$|C_G(v): C_N(v)| \equiv |C_G(v): N_G(P) \cap C_G(v)| \equiv 1 \pmod{q}.$$

Thus

$$T_2 \equiv \frac{(\delta e + c)^2}{s} \sum_{v \in V} |\zeta(v)|^2 \equiv \frac{|V| f(\delta e + c)^2}{s} \pmod{pq\mathfrak{m}}. \quad \text{(q.e.d.)}$$

Then by (5) we get the congruence

$$\frac{|V|f\epsilon^2q}{s}\equiv 0 \pmod{pq\mathfrak{m}}.$$

Hence we get $p|c^2$. This contradicts $p|\Lambda(1)$. This completes the proof of the main theorem.

Acknowledgment. The author would like to express her hearty thanks to Professor Yukio Tsushima for his helpful advices.

References

- [1] R. Brauer and H.S. Leonard, Jr.: On finite groups with an abelian Sylow group, Canad. J. Math. 14 (1962), 436-450.
- [2] W. Feit: Representations of finite groups (Lecture note), Yale University, New Haven, Conn., 1969.
- [3] H.S. Leonard, Jr.: Finite linear groups having an abelian Sylow subgroup, J. Algebra 20 (1972), 57-69.
- [4] D.A. Sibley: Finite linear groups with a strongly self-centralizing Sylow subgroup II, J. Algebra 36 (1975), 319-332.
- [5] D.A. Sibley: Height of exceptional character degrees, Proc. Amer. Math. Soc. 69 (1978), 16-18.

Department of Mathematics Ochanomizu University Ohtsuka, Bunkyo-ku, Tokyo 112 Japan