
Title Zn-equivariant Goeritz matrices for periodic
links

Author(s) Lee, Sang Youl

Citation Osaka Journal of Mathematics. 2003, 40(2), p.
393-408

Version Type VoR

URL https://doi.org/10.18910/7094

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



Lee, S.Y.
Osaka J. Math.
40 (2003), 393–408

Zn-EQUIVARIANT GOERITZ MATRICES FOR PERIODIC LINKS

SANG YOUL LEE

(Received January 20, 2001)

1. Introduction

A link ( ) in 3 is said to haveperiod ( ≥ 2) if there is an -periodic home-
omorphismφ from 3 onto itself such that ( ) is invariant underφ and the fixed
point set ˜ of the Z -action induced byφ is homeomorphic to a 1-sphere in3 dis-
joint from ( ). By the positive solution of the Smith conjecture [10],˜ is unknot-
ted and so the homeomorphismφ is conjugate to one point compactification of the
(2π/ )-rotation about the -axis inR3. Hence the quotient mapπ : 3 → 3/Z is an

-fold branched cyclic cover branched alongπ( ˜ ) = , and =π( ( )) is also a link in
the orbit space 3/Z ∼= 3, which is called thefactor link of ( ).

There are several studies about the relationship between polynomial invariants of
( ) and those of [5, 11, 14, 15, 16], and also some numerical invariants [3, 4, 9,

13] (see also references therein). In particular, Gordon-Litherland-Murasugi [4] gave a
necessary congruence condition mod 4 on the signature of a knot in 3 for it to have
odd prime power period , by using aZ -invariant Hermitian form.

Now let = 1 ∪ · · · ∪ µ be an oriented link in 3 of µ components and let be
the oriented trivial knot such that∩ = ∅. For any integer ≥ 2, let π : 3 → 3 be
the -fold branched cyclic cover branched along . We denote the preimageπ−1( )
and π−1( ) by ( ) and ( ), respectively. Then ( ) = 1 ∪ · · · ∪ ν is a link of ν
components, whereν is the greatest common divisor of andλ = ( ), the
linking numberof and . We give an orientation to( ) inherited from . Then
( ) = ( )

1 ∪ · · · ∪ ( )
µ = 11 ∪ · · · ∪ 1ν1 ∪ · · · ∪ µ1 ∪ · · · ∪ µνµ

is an oriented -periodic
link in 3 with as its factor link. Throughout this paper we call such anoriented
link ( ) the -periodic covering link over1 = ∪ . Notice that every link in 3 with
cyclic period arises in this manner.

Section 2 of the present paper reviews the definitions of Goeritz matrix for a link
and its invariants. In Section 3, we characterize aZ -equivariant Goeritz matrix for
an -periodic covering link ( ) in terms of its factor link ∪ . In Section 4, we de-
rive a necessary congruence condition mod 4 on the signatureof a link for it to be an

-periodic covering link over a certain link. In Section 5, wegive a congruence mod
between the reduced Alexander polynomial of an -periodic covering link ( ) with
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Fig. 1.

odd prime power period = (> 0) and that of its factor link , which is a nat-
ural generalization of Murasugi’s congruence on periodic knots [14, Theorem 2]. Us-
ing this generalized congruence, we also generalize Theorem 1.1 in Gordon-Litherland-
Murasugi [4]. In Section 6, we show that theZ -equivariant Goeritz matrix gives a
more practical way to calculate the signature invariantτ ( π) [4, 19] of a link
in the 2-fold branched cyclic coverM of 3 branched along a certain link, where
π : → is an -fold branched cyclic cover of a 4-manifold branched over a
surface such that∂( ) = (M ).

2. Goeritz matrix

Let be an oriented link in 3 and let be its link diagram in the planeR2 ⊂
R3 ∪ {∞}. Color the regions ofR2 − alternately black and white. Denote the white
regions by 0, 1 . . . . (We always take the unbounded region to be white and
denote it by 0.) Let ( ) denote the set of all crossings of . Assign anincidence
numberη( ) = ±1 to each crossing ∈ ( ) and define a crossing∈ ( ) to be of
type I or type II as indicated in Fig. 1.

Let = −∑ ∈ ( ) η( ) for 6= and =−∑ 6= , where ( ) =
{ ∈ ( ) | is incident to both and }. Let ′( ) = ( )0≤ ≤ . The principal
minor ( ) = ( )1≤ ≤ of ′( ) is called theGoeritz matrix of associated to

[1, 2]. Let 1 and 2 be two diagrams of . Then Kyle [8] showed that (1) and
( 2) are equivalent, i.e., they can be transformed into each other by a finite number

of transformations of the following types and their inverses:
(I) → , where is a unimodular matrix of integers,

(II) →
(

0
0 ±1

)
,

(III) →
(

0
0 0

)
.

In that paper he also showed that a non-singular matrix equivalent to the
Goeritz matrix ( ) associated to any diagram of a link is a relation matrix for
the torsion group of 1(M2( ); Z) of the 2-fold branched cyclic coverM2( ) of 3

branched along the link , and that−1(mod 1) is the linking matrix ofM2( ).
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Fig. 2.

On the other hand, let ( ) denote the compact surface with boundary , which
is built up out of disks and bands. Each disk lies in2 = R2 ∪ {∞} and is a closed
black region less a small neighborhood of each crossing. Each crossing gives a small
half-twisted band. Letβ0( ) denote the number of connected components of the sur-
face ( ). Let II ( ) = { 1 2 . . . } denote the set of all crossings of type II in

and let ( ) = diag(−η( 1) −η( 2) . . . −η( )), an × diagonal matrix. Then
Traldi [18] defined themodified Goeritz matrix ( ) of associated to by ( ) =

( ) ⊕ ( ) ⊕ ( ), where ( ) denotes the (β0( ) − 1)× (β0( ) − 1) zero matrix,
and showed that the signatureσ( ) and the Murasugi nullityN ( ) [12] of an oriented
link in 3 are given by the formula:σ( ) = σ( ( )) andN ( ) = N ( ( )) + 1, where
σ( ( )) and N ( ( )) denote the signature and the nullity of the symmetric matrix

( ), respectively.

3. Zn-equivariant Goeritz matrix

Let 1 = ∪ be an oriented link in 3 with an unknotted component such that
λ = ( ) is an odd integer. Applying an isotopy deformation if necessary, we can
choose an oriented link diagram1 = ∪ in R2 ⊂ R3 ∪ {∞} which has the form
shown in Fig. 2, in which and represent the diagrams of and , respectively,
in the link 1 and is identified with for each = 1 2. . . . Note thatλ =

( ) = 2 − and is an odd integer.
Color the regions ofR2 − 1 alternately black and white. Without loss of gen-

erality we may assume that the surfaces (1) and ( ) = ( 1 − ) are connected
and the orientations of and are as indicated in Fig. 2. (If not, by applying Rei-
demeister moves to 1, deform 1 to ′

1 = ′ ∪ so that ′
1 is equivalent to the
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diagram 1, which has the required orientation and (′1) and ( ′) = ( ′
1 − )

are connected.) We denote the unbounded white region by0 and denote the other
white regions as follows. Let 1, 2 . . . denote the white regions of 1 each
of which does not meet the component . The white regions of1 each of which
meets the component are denoted by+1, +2 . . . +( −1)/2, +( −1)/2+1,

+( −1)/2+2 . . . + −1, and + , + +1 . . . +(3 −1)/2 as indicated in Fig. 2.
Let ( 1) = ( )1≤ ≤ +(3 −1)/2 be the Goeritz matrix of 1 associated to

1 and we denote submatrices of (1) as follows: = ( )1≤ ≤ , 1 =
( ) +1≤ ≤ +( −1)/2, 2 = ( ) +( −1)/2+1≤ ≤ + −1, = ( )1≤ ≤ +1≤ ≤ +( −1)/2,

=( )1≤ ≤ +( −1)/2+1≤ ≤ + −1, and 1=( ) +1≤ ≤ +( −1)/2 +( −1)/2+1≤ ≤ + −1.
In this situation, we obtain the following two lemmas:

Lemma 3.1 ([9]).

( 1) =

( −
− −

)
⊕ ( ) ⊕


 −

2


 −1

where is a unimodular integral matrix, = 1+ 2, = 1+ 1, − = − ( )−
1, and is an invertible rational matrix.

Lemma 3.2. The Goeritz matrix of associated to the link diagram(= 1− )
is equivalent to the matrix:

( ) =

(
+

+ +

)

Proof. Let = 1− , the diagram inR2 obtained from 1 in Fig. 2 by deleting
the unknotted component . Then is a diagram of the link . The coloring of 1

then induces a coloring of such that the white regions+ and +( −1)/2+ in

1 become the same region in , denoted by+ , for each = 1, 2. . . ( − 1)/2.
Then it is not difficult to see that the matrix ( ) = ( )1≤ ≤ +( −1)/2 is of the
required form.

Theorem 3.3. Let be any integer greater than or equal to3. Then the Goeritz
matrix of the -periodic covering link( ) over 1 = ∪ is equivalent to the symmetric
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block-wise circulant matrix of the form:

( ( )) =




· · ·
1 · · · 1

· · ·
1 1 · · ·

· · ·
1 · · ·

...
...

...
...

...
...

. . .
...

...
...

...
· · ·

1 · · · 1




Consequently, ( ( )) is a relation matrix for 1(M2( ( )); Z).

Proof. Let 1 = ∪ be a diagram of1 given by Fig. 2. We may assume that
represents the -axis∪{∞} and lies in an annulus ⊂ R2. Let ϕ : R2 → R2 be

the -fold branched cyclic cover branched at the origin and let ( ) = ϕ−1( ). Then
( ) is an -periodic diagram in an annulus ⊂ R2 of the -periodic covering link

( ). Also the coloring ofR2− induces a coloring ofR2− ( ). Let ϕ̃ : R2 → R2 be
the (2π/ )-rotation of R2 about the origin. We denote the white regions ofR2 − ( )

as follows.
For each = 1, 2. . . ( − 1)/2, let 1

+ denote the white region inR2 − ( )

which meets the lineθ = 0 in the polar coordinate system ofR2 such thatϕ ( 1
+ ) =

+ . Now let be the closed domain in bounded by two half linesθ = 0 and
θ = 2π/ . Then for the white region ( = 1, 2. . . ) of R2 − , we denote the
white regionϕ−1( ) ∩ in R2 − ( ) by 1. Finally, for each = 2. . . and

= 1, 2 . . . + ( − 1)/2 = ϕ̃ −1( 1) and 0
0 = ϕ−1( 0).

For , = 0, 1 . . . , let = ( )1≤ ≤ +( −1)/2 be the matrix defined as
follows. If 6= or 6= , then =−∑ ∈ ( ) ( ) η( ). If = and = ,

then =−∑ 6= or 6= . Then it is not difficult to see that the Goeritz matrix of
( ) associated to ( ) is equivalent to the symmetric block matrix given by (( )) =

( )1≤ ≤ , where

11 =

( )
12 =

(

1

)
1 =

(

1

)

1 =

( )
(3 ≤ ≤ − 1) = = +1 +1(1 ≤ ≤ )

and 1 − = 1 +2( = 1 . . . − 2). This completes the proof.
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4. Signature and nullity

Lemma 4.1. Let 1 = ∪ be an oriented link in 3 with an unknotted compo-
nent such thatλ = ( ) is an odd integer. For any integer ≥ 2, let ( ) be
the -periodic covering link over1. Let ξ = 2π / , where =

√
−1, and define the

Hermitian matrix

1( : ξ ) =

(
+ ξ

+ ξ− + ξ 1 + ξ− 1

)
,

where , , , , and 1 are matrices as inSection 3.
(1) If is an odd integer, then

σ( ( )) = σ( ) + 2
( −1)/2∑

=1

σ( 1( ; ξ ) ⊕ − ( )),(4.1)

N ( ( )) = N ( ) + 2
( −1)/2∑

=1

N ( 1( ; ξ ))(4.2)

(2) If is an even integer, then

σ( ( )) = ( − 1)σ( ) + σ( ∪ ) + ( ) + 2
( −2)/2∑

=1

σ( 1( ; ξ ) ⊕− ( ))(4.3)

N ( ( )) = N ( ) +N ( ∪ ) + 2
( −2)/2∑

=1

N ( 1( ; ξ )) − 1(4.4)

Proof. Let denote the × identity matrix and let and be the ×
matrices:

=




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0




=




1 1 1 · · · 1
1 ξ ξ2 · · · ξ −1

1 ξ2 ξ4 · · · ξ2( −1)

...
...

...
. . .

...

1 ξ −1 ξ2( −1) · · · ξ( −1)2




Let ( ( )) be the Goeritz matrix of ( ) given by Theorem 3.3. Then (( )) =

11⊗ + 12⊗ +· · ·+ 1 ⊗ −1 and −1 = diag(1 ξ ξ2 . . . ξ( −1) ) ( = 1,
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2 . . . − 1). Hence, combining Lemma 3.2, we obtain that

( ⊗ )−1 ( ( ))( ⊗ )

= 11 ⊗ −1 + 12 ⊗ −1 + · · · + 1 ⊗ −1 −1

= diag( 11 + 12 + · · · + 1 11 + ξ 12 + · · · + ξ −1
1

· · · 11 + ξ −1
12 + · · · + ξ( −1)2

1 )

= ( )⊕




−1⊕

=1
1( : ξ )




(4.5)

It is clear that ( ( )) =
⊕

=1 ( ) and ( ( )) is nonsingular. Since the sur-
face ( ( )) is connected, (( )) is the empty matrix. It thus follows from (4.5)
that N ( ( )) = N ( ( ( ))) + 1 = N ( ( ) ⊕ (

⊕ −1
=1 1( ; ξ ))) + 1 = N ( ) +

∑ −1
=1 N ( 1( ; ξ )) and

σ( ( )) = σ( ( ( ))) = σ( ( ( )) ⊕ ( ( )))

= σ

(⊕

=1

( ( ) ⊕ ( )) ⊕
( −1⊕

=1

( 1( ; ξ ) ⊕− ( ))

))

Therefore we obtain

(4.6) σ( ( )) = σ( ) +
−1∑

=1

σ( 1( ; ξ ) ⊕ − ( ))

Since ξ − = ξ̄ , 1( ; ξ ) = 1( ; ξ̄ ) , i.e., 1( ; ξ ) is a Hermitian matrix,
and henceN ( 1( ; ξ )) = N ( 1( ; ξ − )) andσ( 1( ; ξ )) = σ( 1( ; ξ − )). Thus
assertion (1) follows.

If = 2, then it follows from [9] thatσ( (2)) = σ( ) + σ( ∪ ) + ( ) and
N ( (2)) = N ( ) +N ( ∪ )−1. If is an even integer with > 2, then, by Lemma 3.1,
N ( 1( ; ξ /2)) = N ( ( ∪ )) = N ( ∪ )−1 andσ( 1( ; ξ /2)⊕ ( )) = σ( ∪ )+

( ). This implies assertion (2).

Theorem 4.2. Let 1 = ∪ be an oriented link in 3 of µ + 1 components such
that is unknotted. For any integer ≥ 2, let ( ) be the -periodic covering link
over 1. We assume thatN ( ( )) = N ( ).
(1) If either ( ) and N ( ) are odd or ( ) and N ( ) are even, then

σ( ( )) ≡
{

σ( ) (mod 4) if is odd
( − 1)σ( ) + σ( ∪ ) + ( ) (mod 4) if is even

(2) If either ( ) is odd andN ( ) is even or ( ) is even andN ( ) is odd,
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Fig. 3.

then

σ( ( )) ≡
{

σ( ) + − 1 (mod 4) if is odd
( − 1)σ( ) + σ( ∪ ) + ( ) + − 2 (mod 4) if is even

Proof.
CASE I. ( ) ≡ 1 (mod 2):

(i) If N ( ( )) = N ( ) is odd, then, from (4.2) and (4.4),N ( 1( ; ξ )) = 0 for each .
Notice thatN ( ( )) = N ( )−1 is even and 1( ; ξ )⊕− ( ) is a (2 + −1)×(2 +
−1) square matrix for each . Since 2 +−1 is also even,σ( 1( ; ξ )⊕− ( ))

must be even. By (4.1) and (4.3), the desired result follows.
(ii) If N ( ( )) = N ( ) is even, then, from (4.2) and (4.4),N ( 1( ; ξ )) = 0 for each

. In this case,N ( ( )) = N ( ) − 1 is odd and soσ( 1( ; ξ ) ⊕ − ( )) must be
odd, say 2 + 1 for some ∈ Z. From (4.1) and (4.3), we obtain that

σ( ( )) =

{
σ( ) + 2

∑( −1)/2
=1 (2 + 1) if is odd

( − 1)σ( ) + σ( ∪ ) + ( ) + 2
∑( −2)/2

=1 (2 + 1) if is even

This implies the desired result.
CASE II. ( ) ≡ 0 (mod 2) : Let 2 = 1♯

− denote the connected sum of

1 = ∪ and the left handed Hopf link− as shown in Fig. 3. It is easy to see that

2 = 1♯
− = ( ∪ )♯ − is ambient isotopic to the link (◦ ) ∪ . The link ( ◦ )( ) is

also ambient isotopic to the link( ) ◦ . Note that ( ◦ ) = ( ) − 1 is odd,
where ◦ denotes the split link consisting of and the unknot which is one of the
components of −. Observe thatN ( ◦ ) = N ( )+1 N (( ◦ )( )) = N ( ( )◦ ) = N ( ( ))+1
[12, Lemma 6.4].

If N ( ( )) = N ( ) is even, then, from (4.2) and (4.4),N ( 1( ; ξ )) = 0 for each
and N (( ◦ )( )) = N ( ◦ ) is odd. By the argument in (i) above, we have that



Z-EQUIVARIANT GOERITZ MATRICES 401

σ(( ◦ )( )) ≡
{

σ( ◦ ) (mod 4) if is odd
( − 1)σ( ◦ ) + σ(( ◦ ) ∪ ) + ( ◦ ) (mod 4) if is even

Finally, if N ( ( )) = N ( ) is odd, thenN (( ◦ )( )) = N ( ◦ ) is even. By the argument
in (ii) above, we obtain thatσ(( ◦ )( )) ≡
{

σ( ◦ ) + − 1 (mod 4) if is odd
( − 1)σ( ◦ ) + σ(( ◦ ) ∪ ) + ( ◦ ) + − 2 (mod 4) if is even

Note thatσ( ◦ ) = σ( ) σ(( ◦ )∪ ) = σ(( ∪ )♯ −) = σ( ∪ ) +σ( −) = σ( ∪ ) + 1
[12, Lemma 7.2, 7.4] and (◦ ) = ( )−1. This completes the proof.

Theorem 4.3. Let = 1∪· · ·∪ µ be an oriented link in 3 of µ components and
let 1 = ∪ be an oriented link in 3 of µ + 1 components such that is unknotted.
For any integer ≥ 2, let ( ) be the -periodic covering link over1. Then

N ( ( )) =

{N ( ) + 2ρ1 if is odd
N ( ) + N ( ∪ ) + 2ρ2 − 1 if is even

whereρ1 and ρ2 are some integers with the following properties:

(1−N ( ))
2

≤ ρ1 ≤ 1
2

(
µ∑

=1

ν −N ( )

)

1− N ( ) + N ( ∪ )
2

≤ ρ2 ≤ 1
2

(
µ∑

=1

ν −N ( ) −N ( ∪ ) + 1

)

whereν denotes the greatest common divisor of and( ).

Proof.
CASE I. ( ) ≡ 1 (mod 2). By (4.2) and (4.4), if is odd, thenN ( ( )) =

N ( )+2ρ1 for some integerρ1, and if is even, thenN ( ( )) = N ( )+N ( ∪ )+2ρ2−1
for some integerρ2.

CASE II. ( ) ≡ 0 (mod 2). Let 2 = 1♯
− denote the connected sum of

1 = ∪ and the left handed Hopf link − as shown in Fig. 3. As Case I, if is
odd, thenN (( ◦ )( )) = N ( ◦ ) + 2ρ1, and if is even, thenN (( ◦ )( )) = N ( ◦ )
+ N (( ◦ ) ∪ ) + 2ρ2 − 1. Note thatN ( ◦ ) = N ( ) + 1 N (( ◦ )( )) = N ( ( ) ◦ ) =
N ( ( )) + 1, andN (( ◦ ) ∪ ) = N (( ∪ )♯ −) = N ( ∪ ) + N ( −) − 1 = N ( ∪ )
[12, Lemmas 6.3, 6.4]. Since the number of components of( ) is equal to

∑µ
=1 ν ,

1 ≤ N ( ( )) ≤∑µ
=1 ν . So 1≤ N ( )+2ρ1 ≤∑µ

=1 ν ( : odd) and 1≤ N ( )+N ( ∪ )+
2ρ2 − 1 ≤∑µ

=1 ν ( : even). This implies the results.
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5. The reduced Alexander polynomial

Let = 1∪ · · ·∪ µ be an oriented link in 3 of µ components, let be the exte-
rior of , and letπ1( ) be the link group of . Let be the homology class in1( )
represented by a meridian of (1≤ ≤ µ). Then 1( ) is a free abelian group of
rank µ generated by1 . . . µ. Let γ : π1( ) → 1( ) be the Hurewicz epimorphism
and let γ be the universal abelian covering space of corresponding tothe kernel
of γ. Then 1( ) acts on γ as the covering transformation group and so1( γ) can
be regarded as a module over the integral group ringZ 1( ) of 1( ). By regarding

1( ) as the multiplicative free abelian groupµ with basis 1 . . . µ, we can iden-
tify Z 1( ) with the Laurent polynomial ring in the variables1 . . . µ, so that we
can regard 1( γ) as a -module. The 0-th characteristic polynomial of1( γ), i.e.,
the greatest common divisor of the elements of the 0-th elementary ideal of 1( γ),
is called theAlexander polynomial of onµ variables, and denoted by (1 . . . µ).

Now let ν : 1( ) → be an epimorphism from 1( ) to the free abelian group
of rank with basis 1 . . . and let ν be the covering space over correspond-

ing to the kernel of the composite homomorphismνγ : π1( ) → . Then 1( ν ) can
be regarded as aZ -module. Thereduced Alexander polynomial of on variables
associated toν is defined to be the 0-th characteristic polynomial of theZ -module

1( ν) and denoted bỹ ( 1 . . . ). If is a knot, we have˜ ( ) = ( ). For µ ≥ 2,
the relationship between the Alexander polynomial (1 . . . µ) and the reduced one
˜ ( 1 . . . ) is as follow[7, Proposition 7.3.10]:

(5.1)

{
˜ ( 1) = ( 1 − 1) (ν( 1) . . . ν( µ)) if = 1
˜ ( 1 . . . ) = (ν( 1) . . . ν( µ)) if ≥ 2

Now let 1 = ∪ be a two component link in 3, where is unknotted and
( ) = λ. In [14, Theorem 2], Murasugi showed that the Alexander polynomial
( ) ( ) of the -periodic covering knot ( ) over 1 = ∪ , where = ( ≥ 1) and
is an odd prime with (λ ) = 1, satisfies the congruence:

(5.2) ( ) ( ) ≡ (1 + + · · · + λ−1) −1 ( ) (mod )

The following theorem is a natural generalization of Murasugi’s congruence (5.2)
on periodic knots.

Theorem 5.1. Let be an oriented link in 3 of µ components, let1 = ∪ ,
where is unknotted, and letλ = ( ). Let ( ) be the oriented -periodic covering
link in 3 over 1 of period = ( ≥ 1), where is an odd prime. Then the reduced
Alexander polynomials̃ ( ) ( ) and ˜ ( ), where a meridian of each component of( )

and corresponds to , satisfy the congruence:

(5.3) ˜ ( ) ( ) ≡ (1 + + · · · + λ−1) −1 ˜ ( ) (mod )
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Proof. Let = 1 ∪ · · · ∪ µ be an oriented link in 3 of µ components and let
( ) = ( )

1 ∪· · ·∪ ( )
µ = 11∪· · ·∪ 1ν1∪· · ·∪ µ1∪· · ·∪ µνµ

be the oriented -periodic cov-
ering link in 3 over 1. If µνµ = 1, then the congruence (5.3) is just the Murasugi’s
congruence (5.2). Assume thatµνµ ≥ 2. Let ˜ ( ) ( 1 . . . µ) be the reduced Alexander
polynomial of -periodic covering link( ) such that for 1≤ ≤ µ, a meridian of each
component of ( ) = π−1( ) corresponds to . By [16], the following formula holds:

(5.4) ˜ ( ) ( 1 . . . µ) = ( 1 . . . µ)
−1∏

=1

∪ ( 1 . . . µ ξ )

whereξ is a primitive -th root of 1. From (5.1),

(5.5)

{
˜ ( ) ( 1) = ( 1 − 1) ( ) ( 1 . . . 1) if µ = 1 andµνµ ≥ 2
˜ ( ) ( 1 . . . µ) = ( ) ( 1 . . . 1 . . . µ . . . µ) if µ ≥ 2

(1) Let µ = 1 andµνµ ≥ 2, i.e., 1 = 1 ∪ and ( ) = 11 ∪ · · · ∪ 1ν1. By Torres
condition [17], 1∪ ( 1 1) = ( λ1 −1)( 1−1)−1

1 ( 1). From (5.4) and (5.5), we obtain
that

( λ1 − 1) 1( 1) ( ) ( 1 . . . 1) = 1 ( 1)
−1∏

=0
1∪ ( 1 ξ )

From [14, Proposition 4.2] and the fact that 1( ) 6≡ 0 (mod ), we have that

( ) ( 1 . . . 1) ≡ ( λ1 − 1) −1( 1 − 1)− 1( 1) (mod )

Therefore, by (5.1), we obtain the congruence:

˜ ( ) ( ) ≡ (1 + + · · · + λ−1) −1 ˜
1 ( ) (mod )

(2) Let µ ≥ 2 and denoteλ = ( ) and soλ = ( ) =
∑µ

=1 λ . By Torres

condition [17], ∪ ( 1 . . . µ 1) = ( λ1
1 · · · λµ

µ −1) ( 1 . . . µ). From (5.4) and (5.5),
we obtain that

( λ − 1) ( . . . ) ( )( . . . . . . . . . )

= ( . . . )
−1∏

=0

∪ ( . . . ξ )

From [14, Proposition 4.2], we obtain the congruence:

( . . . ) ( ) ( . . . . . . . . . )

≡ ( . . . )( λ − 1) −1 ( . . . ) (mod )
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By (5.1),

˜ ( ) ˜ ( ) ( ) ≡ ˜ ( )(1 + + · · · + λ−1) −1 ˜ ( ) (mod )

Therefore we have that either̃ ( ) ≡ 0 (mod ) or

˜ ( ) ( ) ≡ (1 + + · · · + λ−1) −1 ˜ ( ) (mod )

If ˜ ( ) ≡ 0 (mod ), then by (5.4) it is obvious that̃ ( ) ( ) ≡ 0 (mod ). This com-
pletes the proof.

Theorem 5.2. Let be an oriented link in 3 of µ components, let1 = ∪ ,
where is unknotted, and letλ = ( ). Let ( ) be the oriented -periodic covering
link in 3 over 1 of period = ( ≥ 1), where is an odd prime. Suppose that the
reduced Alexander polynomial̃ ( ) ( ) of ( ) satisfies that
(i) ˜ ( ) ( ) is not a product of non-trivial link polynomials,
(ii) ˜ ( ) ( ) 6≡ 0, ±1 (mod ).
Then
(1) ˜ ( ) ( ) ≡ (1 + + · · · + λ−1) −1 (mod ).
(2) If ˜ ( ) (−1) 6= 0, then

σ( ( )) ≡
{

0 (mod 4) if λ is odd
− 1 (mod 4) if λ is even

Proof. (1) From (5.1), (5.4) and (5.5), we obtain that

(5.6) ˜ ( ) ( ) = ˜ ( )
−1∏

=1

∪ ( . . . ξ )

By condition (i), either ˜ ( ) ( ) = ˜ ( ) or ˜ ( ) = 1.
If ˜ ( ) ( ) = ˜ ( ), then, by Theorem 5.1,

˜ ( ) ≡ (1 + + · · · + λ−1) −1 ˜ ( ) (mod )

From condition (ii), we obtain that̃ ( ) 6≡ 0 (mod ). So

1 ≡ (1 + + · · · + λ−1) −1 ˜ ( ) −1 (mod )

Hence all the polynomials 1+ +· · ·+ λ−1 and ˜ ( ) are congruent to±1 modulo .
Hence ˜ ( ) ( ) ≡ ±1 (mod ). This contradicts to condition (ii). Thereforẽ ( ) = 1.
By Theorem 5.1, the result follows.
(2) Since ˜ ( ) (−1) 6= 0, it follows from (5.6) that ∪ (−1 . . . −1 ξ ) 6= 0 for each

= 0, 1 . . . − 1. SoN ( ) = 1 =N ( ( )). Since ˜ ( ) = 1, σ( ) = 0. By Theorem 4.2,
the result follows.
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6. Applications

Let be a null-homologous oriented link in a closed oriented 3-manifold M and
let π : M → M be an -fold branched cyclic cover ofM branched along . We
shall always assume that each oriented meridian of corresponds to a fixed generator
of the group of covering transformations. Let be a surface properly embedded in a
4-manifold with ∂( ) = (M ) and supposeπ extends to a covering →
branched over . Then the integer

τ ( π) = σ( ) − σ( ) +
( 2 − 1)

3
[ ∂ ] · [ ∂ ]

is an invariant of andπ, where [ ∂ ] · [ ∂ ] denotes algebraic intersection num-
ber of homology class [ ∂ ] in 2( ∂ ).

If M is a homology 3-sphere, then Viro [19] shows thatτ ( π) can be calcu-
lated from a Seifert matrix for . In general, let be a null-homologous oriented link
in a closed oriented 3-manifoldM and letπ∞ be an infinite cyclic cover ofM −
such that each oriented meridian of corresponds to a fixed generator of the group of
covering transformations. Then, in [4], the authors observed that this invariantτ ( π)
can be calculated from a surface⊂ M, called a spanning surface for( π∞), such
that ∂ = and the epimorphism 1(M − ) → Z which determinesπ∞ is given by
intersection number with .

Now let 1 = ∪ be an oriented link in 3 such that is unknotted andλ =
( ) is an odd integer. Let 1 = ∪ be a diagram of1 = ∪ which has the

form as shown in Fig. 2 and let , , , , and1 be the matrices defined in the
Section 3. For any given integer≥ 2 and ξ = 2π / ( =

√
−1 ), defineS 1( ; ξ ) to

be the Hermitian matrix given by

S 1( ; ξ ) =

(
+ ξ

+ ξ− + ξ 1 + ξ− 1

)
⊕
( − − −
− − − − 1 − 1

)

Theorem 6.1. Let 1 = ∪ be an oriented link in 3 such that is unknotted
and λ = ( ) is an odd integer. Letπ2 : M2( ) → 3 be the2-fold branched cyclic
cover branched along and let (2) = π−1

2 ( ) ⊂ M2( ). Then for any integer ≥ 2,

τ ( (2) π) =
−1∑

=1

σ(S 1( ; ξ ))

Proof. By Theorem 3.1 in [4],τ ( (2) π) = σ( ( )) − σ( ) + 2σ( ). Note that
σ( ) = 0 since is unknotted. By (4.6), we have that

(6.1) τ ( (2) π) = σ( ( )) − σ( ) =
−1∑

=1

σ(S 1( ; ξ ))
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This completes the proof.

EXAMPLE 6.2. Let β = σ1σ1σ2σ2σ
−1
1 σ2 ∈ 3 be a braid of 3-strings and let1 =

∪ , where =β∧ denotes the closed braid with braid axis (cf. =β∧ is the prime
knot 52). Then λ = (β∧ ) = 3 and =

(
−2 1
1 −3

)
=
(

1
0

)
=
(

0
1

)
1 = (0),

and = 1 + 2 = (1) + (−1) = (0). For any integer ≥ 2,

S 1( ; ξ ) =



−2 1 1
1 −3 ξ

1 ξ− 0


⊕




2 −1 −1
−1 3 −1
−1 −1 0




So τ ( (2) π) =
∑ −1

=1 σ(S 1( ; ξ )) = 0 for any integer ≥ 2. Sinceσ(β∧) = 2, it
follows from (6.1) thatσ((β )∧) = σ(β∧) = 2 for any integer ≥ 2. On the other
hand,N ((β )∧) = 1 for any integer ≥ 2.

EXAMPLE 6.3. Let β = σ1σ2σ2σ2 ∈ 3 be a braid of 3-strings and let1 = ∪ ,
where =β∧(cf. = β∧ is the right handed trefoil knot). Thenλ = (β∧ ) = 3 and

=
(
−2 1
1 −2

)
=
(

1
0

)
=
(

0
1

)
1 = (0), and = 1 + 2 = (0) + (−1) = (−1). For

any integer ≥ 2,

S 1( ; ξ ) =



−2 1 1
1 −2 ξ

1 ξ− −1


⊕




2 −1 −1
−1 2 −1
−1 −1 1




So τ ( (2) π) = − ( )−2 ( ), where ( ) and ( ) denote the numbers of the in-
tegers (1≤ ≤ − 1) such that−1 − 2 cos 2π / = 0 and−1 − 2 cos 2π / >

0, respectively. Sinceσ(β∧) = −2, it follows from (6.1) thatσ((β )∧) = −2 −
( ) − 2 ( ). On the other hand, we obtain from (4.2) and (4.4) of Lemma4.1 that

N ((β )∧) = 3 or 1 according as is a multiple of 3 or not.

EXAMPLE 6.4. Let β = σ1σ1σ2 ∈ 3 be a braid of 3-strings and let1 = ∪ ,
where =β∧(cf. = β∧ is the right handed Hopf link). Thenλ = (β∧ ) = 3 and

= = = (0) 1 = (1), and = 1 + 2 = (1) + (−1) = (0). For any integer
≥ 2, S 1( ; ξ ) = (2 cos (2π / )) ⊕ (−2). So τ ( (2) π) =

∑ −1
=1 σ(S 1( ; ξ )) =

∑ −1
=1 ǫ − + 1 and consequently,σ((β )∧) =

∑ −1
=1 ǫ − 2 + 1 for any integer ≥ 2,

where ǫ is the sign of the real number cos (2π / ) (ǫ = 0 if cos (2π / ) = 0). On
the other hand, we obtain from (4.2) and (4.4) of Lemma 4.1 that N ((β )∧) = 3 or 1
according as is a multiple of 4 or not.

REMARKS 6.5. (1) Example 6.2, 6.3, and 6.4 show that Theorem 6.1 gives a
method to calculate the signature and the nullity of a closed-periodic braid (β )∧

( ≥ 2) from the braidβ ∈ 2 +1( ≥ 0).
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(2) Let = 1 ∪ · · · ∪ µ be an oriented link ofµ components and let1 = ∪ be
an oriented link in 3 such that is unknotted andλ = ( ) is an odd integer.
For any integer ≥ 2, let ( ) be the -periodic covering link over1. Suppose that

∪ (−1 . . . −1 ξ ) 6= 0 for each = 0 1. . . − 1. Let 1( ; ξ ) be the matrix
in Lemma 4.1. Then, from (4.5), we obtain the followings:
(i) Let O[ 1(M)] denote the order of 1(M) with integral coefficients. Then

(6.2) O[ 1(M2( ( )))] = O[ 1(M2( ))]
−1∏

=1

|det( 1( ; ξ ))|

More precisely, if is odd, then

O[ 1(M2(
( )))] = O[ 1(M2( ))]

( −1)/2∏

=1

|det( 1( ; ξ ))|2

If is even, then

O[ 1(M2( ( )))] =
1
2
O[ 1(M2( ))]O[ 1(M2( ∪ ))]

( −2)/2∏

=1

|det( 1( ; ξ ))|2

where |det( 1( ; ξ ))| is the absolute value of the determinant of the Hermitian ma-
trix 1( ; ξ ).
(ii) It follows from (6.2), [6, Theorem 1] and [16, Theorem 2]that

−1∏

=1

|det( 1( : ξ ))| =
−1∏

=1

| ∪ (−1 . . . −1 ξ )|
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