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1. Introduction

A link 1™ in $3 is said to haveperiod n(n > 2) if there is ann -periodic home-
omorphism¢ from S% onto itself such that®™ is invariant under¢ and the fixed
point set f of the Z,-action induced byp is homeomorphic to a 1-sphere &% dis-
joint from /™. By the positive solution of the Smith conjecture [10f, is unknot-
ted and so the homeomorphisgis conjugate to one point compactification of the
(2 /n)-rotation about the; -axis ifiR®. Hence the quotient map: S% — $3/Z, is an
n-fold branched cyclic cover branched aloa¢f) = f, and/ ==(I®) is also a link in
the orbit spaces®/Z, = 3, which is called thefactor link of /(.

There are several studies about the relationship betwelmamial invariants of
I and those ofl [5, 11, 14, 15, 16], and also some numerical iavar [3, 4, 9,
13] (see also references therein). In particular, Gorditmekland-Murasugi [4] gave a
necessary congruence condition mod 4 on the signature obaikns® for it to have
odd prime power perio@ , by using A&,-invariant Hermitian form.

Now let/ =k; U--- Uk, be an oriented link inS® of ; components and lef  be
the oriented trivial knot such thdtn f = (). For any integem > 2, let 7: S — $° be
the n -fold branched cyclic cover branched alofig . We denogepteimager—(/)
and 7 1(k;) by 1™ and k", respectively. Therk" = ki1 U --- Uk, is a link of v;
components, where; is the greatest common divisor af and = Lk(k;, f), the
linking numberof k; and f. We give an orientation tb,.(”) inherited fromk; . Then
[0 =k U UKD =k U Ukgy U~ Ukur U+ Uk, is an orienteds -periodic
link in S% with [ as its factor link. Throughout this paper we call such aiented
link {® the n-periodic covering link oved; =/ U f. Notice that every link ins® with
cyclic period arises in this manner.

Section 2 of the present paper reviews the definitions of i&osratrix for a link
and its invariants. In Section 3, we characteriz&, aequivariant Goeritz matrix for
an n -periodic covering link™ in terms of its factor link/ U f. In Section 4, we de-
rive a necessary congruence condition mod 4 on the signafuaelink for it to be an
n-periodic covering link over a certain link. In Section 5, \w&e a congruence mod
p between the reduced Alexander polynomial ofran -periodieedag link /() with
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Fig. 1.

odd prime power periode " r(> 0) and that of its factor link , which is a nat-
ural generalization of Murasugi’s congruence on periodiotk [14, Theorem 2]. Us-
ing this generalized congruence, we also generalize Thedré in Gordon-Litherland-
Murasugi [4]. In Section 6, we show that tl#&,-equivariant Goeritz matrix gives a
more practical way to calculate the signature invarign@, =) [4, 19] of a link /

in the 2-fold branched cyclic covem of §° branched along a certain link, where
w: N, — N is ann -fold branched cyclic cover of a 4-manifold  brancheeroa
surfaceF such thad(N, F) = (M, ).

2. Goeritz matrix

Let / be an oriented link inS® and letL be its link diagram in the plarig? C
R3 U {oc}. Color the regions oR? — L alternately black and white. Denote the white
regions byXo, X1,...,X,. (We always take the unbounded region to be white and
denote it byXy.) Let C(L) denote the set of all crossings bf . Assigniacidence
numbern(c) = +1 to each crossing € C(L) and define a crossinge C(L) to be of
typel or typell as indicated in Fig. 1.

Let g;; = _ZrecL(Xf,Xj)n(c) fori # j andgi =—3,; gy, whereCp i, X;) =
{c € C(L) | ¢ is incident to bothX; and¥;}. Let G'(L) = (gij)o<i, j<«- The principal
minor G(L) = (gij h<i j<u Of G'(L) is called theGoeritz matrixof / associated to
L [1, 2]. Let L, and L, be two diagrams of . Then Kyle [8] showed th@t L1} and
G(L,) are equivalent i.e., they can be transformed into each other by a finite rumb
of transformations of the following types and their invexse
() G —UGU', whereU is a unimodular matrix of integers,

me— (Co; i01>'
() G — (g 8)-

In that paper he also showed that a non-singular ma#Brix atpriv to the
Goeritz matrixG { ) associated to any diagran  of a lihk is ati@tamatrix for
the torsion group offHy(Mo(l); Z) of the 2-fold branched cyclic coveMy(l) of S3
branched along the link , and th& *(mod 1) is the linking matrix ofM (7).
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On the other hand, le§ I{ ) denote the compact surface with deoyri., which
is built up out of disks and bands. Each disk liesShi= R? U {oo} and is a closed
black region less a small neighborhood of each crossingh Eaassing gives a small
half-twisted band. Let5(L) denote the number of connected components of the sur-
face SC). LetCy(L) = {c1,¢c2, ..., ¢} denote the set of all crossings of type Il in
L and let A ) = diagEn(ci), —n(c2), ---, —n(cy)), ans x s diagonal matrix. Then
Traldi [18] defined themodified Goeritz matrix(L) of [ associated td. byd I( )=
G(L)® A(L) @ B(L), where B { ) denotes theS§(L) — 1) x (Go(L) — 1) zero matrix,
and showed that the signatusé/) and the Murasugi nullity\V'(7) [12] of an oriented
link 7 in $® are given by the formulaz(l) = o(H(L)) and N'(I) = N (H(L)) + 1, where
o(H(L)) and N (H(L)) denote the signature and the nullity of the symmetridrina
H(L), respectively.

3. Zn-equivariant Goeritz matrix

Let /; =1/ U f be an oriented link inS® with an unknotted component  such that
A= Lk(, f) is an odd integer. Applying an isotopy deformation if esgary, we can
choose an oriented link diagramy, = L U F in R? € R®U {co} which has the form
shown in Fig. 2, in whichL and® represent the diagramd of @nd spedively,
in the link /; and a; is identified withb; for eaci =,1 ,2..,m. Note that\ =
Lk(l, f)=2r —m andm is an odd integer.

Color the regions ofR? — L; alternately black and white. Without loss of gen-
erality we may assume that the surfaced.;)(and SL ) =S L1 — F) are connected
and the orientations of ang  are as indicated in Fig. 2. (If bt applying Rei-
demeister moves td.;, deform Ly to L] = L’ U F so thatLj is equivalent to the
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diagram L4, which has the required orientation arsdLi) and S (L') = S(L} — F)
are connected.) We denote the unbounded white regiorkpynd denote the other
white regions as follows. Le;, X, ..., X, denote the white regions af; each
of which does not meet the componefAt . The white regiond.pfeach of which
meets the componenf  are denoted By.1, Xu+2, ..., Xysm—1)/20 Xw+(m—1)/2+1s
Xoptm—1)/242s - - - » Xwtm—1, AN Xopam, Xuptm+1, - - -, Xyaan—1)/2 @S indicated in Fig. 2.

Let G(L1) = (gij)i<i j<w+@n—1)/2 b€ the Goeritz matrix ofl; associated to
L; and we denote submatrices @ Li} as follows: M = §;; )<ij<w, N1 =
(gij)w+1§i,j§w+(m—l)/2: NZ:(gij)w+(m—l)/2+l§i,j§w+m—l- P:(gij)1§igw,w+1§j§w+(m_1)/2.
0= (gij)lgigw,w+(m—1)/z+1§ j<wm—11 and Ry =(g; j)w+1§i§w+(m—l)/2w+(m—l)/2+1§ j<wtm—1-
In this situation, we obtain the following two lemmas:

Lemma 3.1 ([9]).

I, O O
M P-
VH(L)V' = (P, Do N_%) eAL)eY |0 -1, 0| YL,
0 0 2

whereV is a unimodular integral matqixN. = N1+N,, R = Riy+R}, a—b = —Lk(l, f)—
1,and Y is an invertible rational matrix.

Lemma 3.2. The Goeritz matrix of associated to the link diagrdrtr L1 — F)
is equivalent to the matrix

_( M P+Q
6Ly = (P’+Q’ N+R>'

Proof. LetL =L;—F, the diagram inR? obtained fromL; in Fig. 2 by deleting
the unknotted componert . Thdn is a diagram of the fink . Theric of L;
then induces a coloring of.  such that the white regidfhs.; and X,,.(,—1)/2+ in
L; become the same region ih , denoted %y.;, for eachi =1, 2...,(m — 1)/2.
Then it is not difficult to see that the matri& L( ) =if 1<), j<w+m—1)2 iS of the
required form.

Theorem 3.3. Letn be any integer greater than or equal 8 Then the Goeritz
matrix of then -periodic covering link™ over/; = [U f is equivalent to the symmetric
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block-wise circulant matrix of the form

MPOQOO:- 000 0
PPN OR OO-- 0 OQ'R!
O OMPOOQ:- - 00O O
Q'R.LP N OR,--- 00 O O
GrLm=|0o0o0oomP.-- 000 o0
O OQ R,PPN-- 00O O
0O QO0OO0OO0OO-—-0O0MP
OR OOOO:- QR,P N

ConsequentlyG(L™) is a relation matrix for Hy(My(I™); Z).

Proof. LetLi;=LUF be a diagram of; given by Fig. 2. We may assume that
F represents the -axis{oo} and L lies in an annulug C R? Let ¢,: R?2 — R? be
the n -fold branched cyclic cover branched at the origin andil¢) = ¢ Y(L). Then
L™ is an n -periodic diagram in an annulus C R? of the n -periodic covering link
I, Also the coloring ofR? — L induces a coloring oR2 — L™, Let $,: R> — R? be
the (2r/n)-rotation of R? about the origin. We denote the white regionsRs— L
as follows.

For eachi =1, 2..,(m —1)/2, let X1,, denote the white region iR? — L
which meets the lin@ = 0 in the polar coordinate system & such thaty,(X1,,) =
X,+i. Now let D be the closed domain iA  bounded by two half lifes 0 and
6 = 2r/n. Then for the white regionX; i( = 1,,2..,w) of R? — L, we denote the
white region ¢, 1(X;) N D in R2 — L™ by X1 Finally, for eachp = 2...,n and
i=1,2...,w+(m—1)/2 x" =31 (x1) and X2 = ¢, (Xo).

Forp,q =0, 1....n, let Gy, = (¢/" h<ij<u+(m—1)/2 b€ the matrix defined as
follows. If p # g ori # j, then g/’ :_ZreCL(,,)(X{’,Xjf)n(c)' If p=qgandi =,
theng/” =—>",-, o jzi &, - Then it is not difficult to see that the Goeritz matrix of
I associated td.(™ is equivalent to the symmetric block matrix given lay L)) =

(Gpg)i<p.g<n, Where

(M P (0 Q (0 0
Gll—(P, N>,G12— (O Rl)’Gl"' (Q’ R’1>’

O 0
Gy = (0 0) B<g<n—1), Gy =Gy Gpy =Gprgn(l<p, q<n),

and Gy,—; = G, (i =1,...,n —2). This completes the proof. O
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4. Signature and nullity

Lemma 4.1. Let/; =1U f be an oriented link inS® with an unknotted compo-
nent f such that\ = Lk(/, f) is an odd integer. For any integet > 2, let [ be
the n -periodic covering link ovefy. Let ¢ = ¢2™/", wherei = /-1, and define the
Hermitian matrix

; M P+¢/Q
B AN )
Apy(n:¢’) (P’ +§—th N+§le+§—JR’l>'

where M, N, P, Q, and Ry are matrices as inSection 3.
(1) If nis an odd integerthen

(n—1)/2
(4.1) o) =no()+2 > o(Anm:¢) e —G(L)),
Jj=1
(n—1)/2
(4.2) NI =ND+2 > N(ALm ).
j=1
(2) If nis an even integerthen
(n—2)/2
4.3) o™y =(m—Do()+o( U f)+Lk(, /)+2 > o(AL, ;€)@ —G(L))
j=1
(n—2)/2
4.4) NUW)=NO+N(@U)+2 Y N(ALm:E) -1
j=1

Proof. Let/, denote the: x n identity matrix and letT and/ be the x n
matrices:

010 0 11 1 ... 1
001---0 1 § 62 gn—l
o I LY R S R S
000..- 1 R
100---0 1§n—l 62(11,—1)_” g(n,—l)2

Let G(L™) be the Goeritz matrix of™ given by Theorem 3.3. Thetr L{?) =
G11®1,+G1o@T+---+G, @T" L andU~T/U =diag(l, &/, €%, ..., =0y (j =1,
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2,...,n—1). Hence, combining Lemma 3.2, we obtain that

(I, @ U)*G(L™)(1, ® U)
=0u® U_lInU +G12® U_lTU + + G, ® U—lTn—lU
= diag(Gll +Got---+Gyy, G121t fGlZ +... 4+ f"—lGlm

2
G+ T G+ -+ TGy

n—1
=G(L)& (@ Ap,(n: gf)) .

j=1

(4.5)

It is clear thatA (™) = @_; A(L) and A L") is nonsingular. Since the sur-
face S ™) is connected,B ™) is the empty matrix. It thus follows from (4.5)
that N(I®) = N(GL™) +1 = N(G(L) & (@' A (&) +1 = N(Q) +
Y N (AL (n;€) and

(™) = o(H(L™) = o(G(L™) © AL™M)
=0 (E”@(G(L) B ALY @ (HE_B:(ALl(n; &) -6w) )
= =
Therefore we obtain
(4.6) (1) = no(l) + f o(Ar,(n; &) & —G(L)).
=i

Since & = &I, Ap,(n; &) = A (n; €)', ie., Ap,(n;€f) is a Hermitian matrix,
and henceV (A, (n; &%) = N(Ar,(n;€"79)) and o (A1, (n; &) = o(Ar,(n; €777)). Thus
assertion (1) follows.

If n = 2, then it follows from [9] thato(I®) = o(l) + o(l U f) + Lk(l, f) and
N(IP)=N{)+N(U f)—1.If nis an even integer witlk > 2, then, by Lemma 3.1,
N(ALy(n;€73) = N(H(LUF)) = N(1U £) =1 ando(AL,(n; €)@ A(L)) =l U )+
Lk(l, f). This implies assertion (2). O

Theorem 4.2. Letl; =1U f be an oriented link inS® of ;. + 1 components such
that f is unknotted. For any integer > 2, let [ be then -periodic covering link
over [;. We assume that/'(I™) = N ().

(1) If either Lk(l, f) and N(I) are odd orLk(l, f) and N'(I) are eventhen

(1) = no(l) (mod 4)if n is odd
V=V = Do)+ o U f)+Lk(, f)  (mod 4)if n is even

(2) If either Lk(l, f) is odd andN (/) is even orLk(l, f) is even and\({) is odd
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ll
L leﬁh_
=
u
Fig. 3.
then

oy = {no@*rn—1 (mod 4)if n is odd
TV EN = Do) +o U £)+ Lk(, f)+n—2  (mod 4)if n is even
Proof.

Casel.  Lk(l, f) =1 (mod 2):

() If N(™)=N() is odd, then, from (4.2) and (4.4N (A, (n;¢7)) = 0 for each; .
Notice thatA (G(L)) = N(1)—1 is even andA,(n;&)®—G(L) is a (2w +m—1)x 2w+
m—1) square matrix for eacti . Sincev2 m+ 1 is also eveng (A, (n; &) ®—G(L))
must be even. By (4.1) and (4.3), the desired result follows.

(i) If N(™) = N(l) is even, then, from (4.2) and (4.4N(A,(n;&7)) = 0 for each
j. In this case, N (G(L)) = N(I) — 1 is odd and sar(Ar,(n;¢7) @ —G(L)) must be
odd, say 2, +1 for somé; € Z. From (4.1) and (4.3), we obtain that

sy = 70 + 22k + 1) if n is odd
(n— Do) +o( U £)+ Lk(. f)+ 230242k +1) if n is even

This implies the desired result.

Case ll.  Lk(l, f) = 0 (mod 2) : Letl, = I1#h~ denote the connected sum of
I; =1U f and the left handed Hopf link~ as shown in Fig. 3. It is easy to see that
I =l1h~ = (I U f)th~ is ambient isotopic to the link/ ¢ u) U f. The link ¢ o u)™ is
also ambient isotopic to the link™ o u. Note thatLk {ou, f) = Lk(l/, f) — 1 is odd,
wherel o u denotes the split link consisting éf and the unknot which ne of the
components oh~. Observe thatV'(lou) = N'()+1, N ((lou)™) = N (Mou) = N (1")+1
[12, Lemma 6.4].

If N(1®) = N'(0) is even, then, from (4.2) and (4.4N (A, (n;&7)) = 0 for each
j and N(( o u)™) = N(l o u) is odd. By the argument in (i) above, we have that
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o((l ou)™) =
no(l ou) (mod 4) ifn is odd
{ n—LVo(lou)+o((lou)U f)+Lk(lou, f) (mod 4) ifn is even

Finally, if A/(1®) = N(]) is odd, then (({ou)™) = N'(lou) is even. By the argument
in (i) above, we obtain that((/ o u)™) =

no(lou)+n—1 (mod 4) ifn is odd
{(n—l)a(lou)+a((lou)uf)+Lk(lou,f)+n—2 (mod 4) ifn is even

Note thato(lou) = o), o((locu)U f) =c((lU Hth~) =c(lU fl+o(h™)=c(lU f)+1
[12, Lemma 7.2, 7.4] and.k [$u, f) = Lk(l, f)—1. This completes the proof. [

Theorem 4.3. Let! =k,U---Uk, be an oriented link ins® of x components and
let ; =1U f be an oriented link inS® of x+ 1 components such that is unknotted.
For any integern > 2, let [ be then -periodic covering link ovdi. Then

N+ 20, if nis odd

)y =
N {J\/(l)+]\/(luf)+2p2—1ifniseven

where p; and p, are some integers with the following properties

_ H
QN < py <2 (Z”" —N(l)),

L NO+NeU szS%(

1
> Zu,-—fv(z)—f\/(luml),

i=1

wherey; denotes the greatest common divisornof  doidk;, f).

Proof.

Casel.  Lk(I, f) = 1 (mod 2). By (4.2) and (4.4), i is odd, theN' (") =
N()+2p, for some integeps, and if n is even, theoV(1") = N()+N (U f)+2p,—1
for some integetp,.

Case ll.  Lk(l, f) = 0 (mod 2). Letl, = l14h~ denote the connected sum of
I; =1U f and the left handed Hopf link— as shown in Fig. 3. As Case |, if is
odd, thenN((l o u)™) = N(l o u) + 2p1, and if n is even, thenV'((l o u)™) = N(l o u)
+N((Lou)U f) +2p, — 1. Note thatN (I ou) = N(I) + L, N((l o u)™) = N(I" o u) =
NIM)+1, andN(((ou)U f) =N U fth~) = NI U )+ N(Hh)—1=N(U f)
[12, Lemmas 6.3, 6.4]. Since the number of componentgfis equal to> /L, v;,
1< N(IM) < S 1 So 1< N(D)+2p1 < Y1, vi(n: odd) and 1< N()+N (U f)+
2p2 — 1< 3! vi(n: even). This implies the results. U
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5. The reduced Alexander polynomial

Let/ =kyU---Uk, be an oriented link ins® of x components, leE  be the exte-
rior of [, and letw1(E) be the link group off . Let; be the homology class A (E)
represented by a meridian &f & i < p). Then Hy(E) is a free abelian group of
rank p generated by, ..., 7,. Let v: m(E) — Hi(E) be the Hurewicz epimorphism
and let E, be the universal abelian covering space®f  correspondintheokernel
of v. Then Hy(E) acts onE, as the covering transformation group and BgE.) can
be regarded as a module over the integral group Aifj(E) of Hi(E). By regarding
Hy(E) as the multiplicative free abelian grouf, with basist#, ..., t,, we can iden-
tify ZH.(E) with the Laurent polynomial ring\ in the variables ..., r,, so that we
can regardHi(E,) as aA -module. The 0-th characteristic polynomial[/b{E,), i.e.,
the greatest common divisor of the elements of the O-th eiang ideal of H1(E,),
is called theAlexander polynomial of om variables and denoted by, #{, ..., 7,).

Now let v: Hi(E) — F, be an epimorphism fron#i(E) to the free abelian group
F, of rankr with basisf, ..., t and letE, be the covering space ovér  correspond-
ing to the kernel of the composite homomorphism: 71(E) — F,. Then Hi(E,) can
be regarded as @F,-module. Thereduced Alexander polynomial f on variables
associated tav is defined to be the 0-th characteristic polynomial of #E,-module
Hi(E,) and denoted byA (11, ..., #,). If [ is a knot, we haveA,(r) = A(t). For p > 2,
the relationship between the Alexander polynomfalz, (.., 7,) and the reduced one
&/(tl, ..., t;) is as follow[7, Proposition 7.3.10]:
5.1) {@(m = (- DA, . v() i r=1,

A[(l‘]_, ceey l‘r) = A[(l/(l‘]_), - l/(l‘#)) if r>2.

Now let /; = k U f be a two component link ir§3, where f is unknotted and
Lk(k, f) = A. In [14, Theorem 2], Murasugi showed that the Alexander poiyial
Ay (t) of the n -periodic covering knot™ over/; =k U f, wheren =p” ¢ > 1) and
p is an odd prime with X, p) = 1, satisfies the congruence:

(5.2) A (1) =@+t +---+2" YA 1) (mod p)

The following theorem is a natural generalization of Mugisucongruence (5.2)
on periodic knots.

Theorem 5.1. Let! be an oriented link inS® of ;. components, let; = U f,
where £ is unknottedand let A = Lk(l, f). Let{™ be the oriented: -periodic covering
link in S overl; of periodn = p’(r > 1), wherep is an odd prime. Then the reduced
Alexander polynomials\ . (r) and A,(t), where a meridian of each component/é
and!/ corresponds to , satisfy the congruence

(5.3) Aw(@) =@+t +---+2" 1" 1A,)"  (mod p).
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Proof. Let! =k;U--- Uk, be an oriented link inS® of ; components and let
1) = kY- - Uk = kpaU- - Uk, U- - -Uk,aU- - Uk, be the oriented: -periodic cov-
ering link in $* over /;. If pv, =1, then the congruence (5.3) is just the Murasugi's
congruence (5.2). Assume that, > 2. Let A (11, ..., t,) be the reduced Alexander
polynomial ofx -periodic covering linkK™ such that for 1< i < p, a meridian of each
component oﬂcf”) =~ 1(k;) corresponds ta; . By [16], the following formula holds:

n—1

(5.4) Aot oo t) = Ao, ) [T Aor (a1, €9,
=1

where¢ is a primitive n -th root of 1. From (5.1),

5.5) A () = (1 — DA (tr, ..., 1) if p=1anduv, >2,
' Aoyt oo 1) = Doty ooty e b s 1) B > 2,

(1) Letpu =1andpy, > 2, ie,l1 =k U f andl® =k U--- Uky,. By Torres
condition [17], Ayus(t1, 1) = (¢ — 1)(t1 — 1)~ A, (t1). From (5.4) and (5.5), we obtain
that

n—1

(tl)‘ — DAL 0) A (t1, - - -, 1) = Ay, (11) H Akluf(tl, fj)
j=0

From [14, Proposition 4.2] and the fact that, () Z 0 (modp ), we have that
At ... n) = (1 =1 — 1) A ()" (mod p)
Therefore, by (5.1), we obtain the congruence:
Aw(t)= L+t +-+ 7R, (1) (mod p)

(2) Let 4 > 2 and denote\; = Lk(k;, f) and so\ = Lk(l, f) = >_!-; \i. By Torres
condition [17], Ay s(te, ..., 1, 1) = (tlAl e t[)“—l)A,(tl, ..., t,). From (5.4) and (5.5),
we obtain that

= DA .  ON(t, ot 1)
n—1

=N ) [] A1 ).

J=0
From [14, Proposition 4.2], we obtain the congruence:

Aty DAttt )
= At 00 =1 A .. )" (mod p)
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By (5.1),
AiA (1) = AO) L+t +--+ A7 A 0)" (mod p)
Therefore we have that eithe;(r) = 0 (modp) or
A ()= @+t +--+27 )75, ()" (mod p).

If A)(r)=0 (modp), then by (5.4) it is obvious tha@, (1) =0 (modp). This com-
pletes the proof. O

Theorem 5.2. Let [ be an oriented link inS® of . components, lef; =1 U f,
where f is unknottedand let A = Lk(l, f). Let /™ be the oriented: -periodic covering
link in S® over/; of periodn = p’(r > 1), where p is an odd prime. Suppose that the
reduced Alexander polynomial. (r) of /") satisfies that
(i) Am(r) is not a product of non-trivial link polynomials
(i) Aw(r) 20, £1 (modp)

Then

(1) Aw() =L+t +---+271""1 (mod p).

(2) If Aw(—1)#0, then

(1) = {O (mod 4) ?f A ?s odd
n—1 (mod 4)if X is even

Proof. (1) From (5.1), (5.4) and (5.5), we obtain that

n—1

(5.6) A @) = 8@ T Awre. ... 1. 8).

j=1

By condition (i), eitherA. (1) = A;(r) or Ay(r) = 1.
If Ajw(?) = Ai(t), then, by Theorem 5.1,

Aty = @+t +-+ 27 IA ()" (mod p)
From condition (i), we obtain thaf\;(r) £ 0 (modp). So
1=QQ+7+---+2 YAt (mod p)

Hence all the polynomials ¥+ ++*~1 and A,(¢) are congruent ta-1 modulop .
Hence A;w(f) = +1 (mod p). This contradicts to condition (ii). Therefore(s) = 1.
By Theorem 5.1, the result follows.

(2) SinceA;w(—1) # 0, it follows from (5.6) thatA;ur(—1, ..., —1,&/) # 0 for each
j=0,1...,n—1. SoN(l) =1=N(™). Since A;(t) = 1, o(I) = 0. By Theorem 4.2,
the result follows.

U
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6. Applications

Let [ be a null-homologous oriented link in a closed orienteghahifold M and
let 7: M, — M be ann -fold branched cyclic cover o¥1 branched alond . We
shall always assume that each oriented meridiah of cornglspto a fixed generator
of the group of covering transformations. LEt  be a surfaagpery embedded in a
4-manifold N with 9(N, F) = (M, [) and supposer extends to a coveringy, — N
branched overr . Then the integer

(n*-1)
3n

is an invariant offl andr, where [F, OF]-[F, OF] denotes algebraic intersection hum-
ber of homology classH, OF] in Hx(N, ON).

If M is a homology 3-sphere, then Viro [19] shows thgfl/, ) can be calcu-
lated from a Seifert matrix fof . In general, It be a null-fedogous oriented link
in a closed oriented 3-manifold1 and letw., be an infinite cyclic cover ofM — [
such that each oriented meridian lof corresponds to a fixedrgtr of the group of
covering transformations. Then, in [4], the authors obseérthat this invariant, (I, )
can be calculated from a surfade C M, calleda spanning surface fo(/, 7.), such
that OF =1 and the epimorphisnHi(M — [) — Z which determinesr,, is given by
intersection number withF

Now let /; = /U f be an oriented link inS® such thatf is unknotted anal =
Lk(l, f) is an odd integer. Lef.; = L U F be a diagram of; = U f which has the
form as shown in Fig. 2 and le¥ ¥ P @ , amRhy be the matrices defined in the
Section 3. For any given integer > 2 and¢ = ¢2™/"(j = \/—1), defineS;,(n;¢/) to
be the Hermitian matrix given by

Loy M P+¢/Q -M —-P -0
Sp,(n; &) = (Pl+§—le N+§jR1+§_jR’1>@ (—P’—Q’ —N—Rl—R’l>'

T2(l, ) = o(N,) — no(N) +

[F,dF]-[F, F]

Theorem 6.1. Let/; =1 U f be an oriented link inS® such thatf is unknotted
and \ = Lk(l, f) is an odd integer. Letry: My(l) — S be the2-fold branched cyclic
cover branched along and let® =7, 1(f) € My(l). Then for any integen > 2,

n—1

ma(f@, 1) = Z o (St (n; &7)).

j=1

Proof. By Theorem 3.1 in [4]7.(f@, 7) = o(I"™) — no(l) + 20(f). Note that
o(f) =0 since f is unknotted. By (4.6), we have that

n—1

(6.1) (@, m) = o(™) —no(l) =) o(Se,(m; ¢%)).

j=1
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This completes the proof. U

ExampLE 6.2. Letg = 0101020201_102 € B3z be a braid of 3-strings and léf =
1U f, wherel =3" denotes the closed braid with braid axis (cf. 5% is the prime
knot 5). Then = Lk(3", f) =3 andM =(72 %), P=(3).0=(?).RL=(0),
and N =Nj + N, = (1) +(—1) = (0). For any integern > 2,

-2 1 1 2 -1-1
S,m;h=11 3¢ |a|-13 -1].
16770 —1-10
So 7,(f@, 7) = Z;’:—lla(SLl(n;fj)) = 0 for any integern > 2. Sinceo(s") = 2, it

follows from (6.1) thato((8")") = no(8") = 2n for any integern > 2. On the other
hand, N'((8")") = 1 for any integem > 2.

ExampLE 6.3. Let( = 01020202 € B3 be a braid of 3-strings and lét =/ U f,
where! =p"(cf. I = 8" is the right handed trefoil knot). Theh = Lk(3", f) =3 and
M=(725).P=(3).2=(2). Ri=(0), andN =N;+N,=(0)+(-1) = (-1). For
any integem > 2,

-2 1 1 2 —1-1
Sp,(n; &) = (1 -2 gf') ® (—1 2 —1) .
1 ¢7 -1 -1-11

So 7, (f@, ) = —a,(j) — 2b,(j), wherea, () and, { ) denote the numbers of the in-
tegersj (1< j < n — 1) such that—1 — 2cos2rj/n = 0 and—1 — 2cos2rj/n >

0, respectively. Sincer(5") = —2, it follows from (6.1) thate((5")") = —2n —
a,(j) — 2b,(j). On the other hand, we obtain from (4.2) and (4.4) of Lenthiathat
N((BM)") =3 or 1 according ag is a multiple of 3 or not.

ExampLE 6.4. Letf3 = ogi0102 € Bz be a braid of 3-strings and léf = [ U f,
wherel =g3"(cf. [ = 3" is the right handed Hopf link). Then = Lk(58", f) = 3 and
M=P =0 =(0),R,=(1), andN =N;+ N, = (1) + (—1) = (0). For any integer
n > 2, 8,(m¢d) = (2cos(Zj/n) @ (—2). So7(f@.7) = Y1 o(Se,(m &) =
Zj.:ll ¢; —n+1 and consequentlyr((8")") = Zj.:ll €; —2n +1 for any integem > 2,
wheree; is the sign of the real number cos(®/n) (¢; = 0 if cos(2rj/n) = 0). On
the other hand, we obtain from (4.2) and (4.4) of Lemma 4.1 M&3")") =3 or 1
according as: is a multiple of 4 or not.

RemArRks 6.5. (1) Example 6.2, 6.3, and 6.4 show that Theorem 6.1 gives a
method to calculate the signature and the nullity of a closgueriodic braid ()"
(n > 2) from the braids € By,+1(m > 0).
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(2) Letl =k U--- Uk, be an oriented link ofx components and leb, = U f be

an oriented link inS® such thatf is unknotted andl = Lk(/, f) is an odd integer.
For any integem > 2, let (™) be then -periodic covering link oveli. Suppose that
Ap(—1,...,-1,¢) #0 foreachj =0 1...,n—1. Let Ay,(n;&/) be the matrix
in Lemma 4.1. Then, from (4.5), we obtain the followings:

(i) Let O[H1(M)] denote the order ofH1(M) with integral coefficients. Then

n—1

(6.2) OLH1(M(I")] = Ol Hy(Ma(1)] | Idet(A L, (n; €7)].

j=1
More precisely, ifr is odd, then

(n—1)/2
OLHL(M(I™))] = O[Hy(Mo()] ] Idet(Ar, (n; €))%

=1
If nis even, then

(n—2)/2
OL(MoU)] = SOTH(MANOTHMo U ] T Idetias, (m; )P

j=1

where |det(A,(n; &7))| is the absolute value of the determinant of the Hermitian ma-
trix Az, (n;¢).
(i) It follows from (6.2), [6, Theorem 1] and [16, Theorem #jat

n—1 n—1
[T 1detr, ¢z &)= T 1Aws (-1, ..., =17,
=1 =1
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