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Introduction

Let E6 be the exceptional compact simply-connected simple Lie group and

let PE6 be the projective group associated with E6. In other words PE6 = E6/ Z(E6)

with Z(E6) = Z/3 where Z(E6) denotes the center of E6. The complex AΓ-group
K*(PE6) of PE6 has been calculated by Held and Suter in [5] and by Hodgkin
in [7] independently. In this paper we calculate the real ΛΓ-group KO*(PE6) of
PE6. To our aim, however, we begin with the computation of K*(PE6) by a

different method from [5, 7] and we compute KO*(PE6) by applying the techniques

parallel to K*(PE6) and using some results obtained in course of calculation as
well as the result on K*(PE6).

We study these AΓ-groups along the way of getting the ^-groups of PEΊ in

[10]. In the case of EΊ we used the Z/2-equivariant ^-theories because of

Z(EΊ) = Z/ 2. In the present case we make use of the Z/ 3-equivariant Af-theories

and we reduce the structures of the ^-groups of PE6 to those of ^-groups of E6

and L"(3), the usual lens spaces, for 1 <n<6. We refer to [6, 12] for information
about the AΓ-groups of E6.

In Section 1 we review some basic materials and give the ring structures of

A^-groups of the relevant lens spaces. In Section 2 and in Sections 3, 4 we

determine the structures of K*(PE6) and KO*(PE6) respectively. The main results

are Theorems 2.1 and 3.1.

The author wishes to express his gratitude to Professor Z. Yosimura who
offered helpful advices for the computaion of KO*(Ln(3)).

1. Preliminaries

By Γ we denote the center of E6 which is a cyclic group of order 3 and set

Consider the symmetric pair (E6, Spin(\Q)-Sl) with the subgroup of maximal

rank. Then we see that Γ coincides with the central subgroup of S1 c= Spin(lQ) -Sl

or order 3.
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According to [13] we have the following irreducible representations

p:E6 -> £7(78), Pi :E6 -+ U(21) and p*:E6 -> U(21)

where p? denotes the complex conjugate of p j and p the adjoint representation
of E6. Moreover

Kerp = Γ and Kerp^Kerp*^!}.

And the fundamental representations of E6 are p, p1? A 2 p l 5 A3p1( = ̂ ,3pf), A2p? and
pj, in which in particular p and λ3pί are the complexification of real

representations. The same symbols p and Λ,3pι are used to denote also these real
representations hereafter.

By Lemma of [9] (see also [1], Chap. 10) we have
(1.1) The restrictions of the fundamental representations to Spin(10) Sl are

and

where p10 and t are the canonical non-trivial 10- and 1 -dimensional representations
of Spin(lO) and Sv respectively, and Δ* are the half-spin representations of
Spin (10). The restrictions of pf andΛ,2p? are immediate from (1.1) since (Δ±)* = ΔT.

Let V be the representation space of the canonical non-trivial complex
1 -dimensional representation of Γ. We write nV for the direct sum of n copies
of V. Let B(nV®Ck) and S(nV®Ck) denote the unit ball and unit sphere in
nV®Ck centered at the origin o, and let ΣnV+2k = B(nV®Ck)/ S(nV®Ck) with the
collapsed S(nV®Ck) as base point. And then the lens space Ln(3) is defined to be
the orbit space S((n+l)V)/Γ.

Let nVbe embedded in (n+ k)V=nV@kVby the assignment vι— >(v, 0). Then
there is an equivariant homeomorphism S((n + k)V)/ S(nV)&ΣnV /\S(kV)+ via which
these spaces are identified below. For our computation we use mainly the following
exact sequences, which are obtained from applying the equivariant A^-functor to
the cofibrations

S(n V) xX> B(nV) xX>Σ

and S(nV) xX^>S((n+k)V) x X^ ΣnV /\(S(kV) x
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where Γs and y"s are the canonical inclusions and projections and Y+ denotes
the disjoint union of a /"-space Y and a point.

(1.2) (i) '''

and (ii)

for Λ = ̂ 5 #0, in which there holds δ(xi*(y)) =
If A' is a compact free Γ-space then we have a canonical isomorphism

h*(X/Γ) £ hf(X) which we identify in the following.
Especially we consider (1.2) (ii) when k = 1 and X=a point, E6. Then we have

a homeomorphism

φ:(ΣnV/\(S(V)xX)+)/ΓπΣ2n/\(SlxX)+

arising from the map from B(nV)xS(V)x X to B(C")xSlxX given by the
assignment ((z1,- 9zn),z,x)ϊ-+((z~lzl, ',z~ίzn),z3

9z~ix) where z"1* is Λ: if X=a point
and denotes the product of z'1 and x in £6 if X=E6, under the identification
5'(F) = 5rl, the circle subgroup of E6 which is a factor of S/wiίlOJ S1 stated
above. Therefore we see that (1.2) (ii) yields the following exact sequence

(1.3) '••^h*(SίxX)^h?(S((n + l)V)xX)^h?(S(nV)xX)^h*(SίxX)^ .

for X=a point, E6, in which J=j*φ*, S=φ*~lδ (up to the suspension isomorphism)

and so there holds δ(xi*(y)) = δ(x)y.
For later use we write A g for the module over a ring A generated by g. We

recall from [11] the Thorn isomorphism theorem in complex AΓ-theory. Let
μeK(S2) be the Bott element. Then K(S2n) = Z μn and we have by [11] the

following.
(1.4) There exists an element τnV of KΓ(ΣnV) such that multiplication by τwF,
xh->τπFΛ;c, induces an isomorphism Kf(X) £ K?(ΣnV f\X+) for any Γ-space X, the
restriction of τnV to Kj{o) = R(Γ) is (ί-V)n and forgetting action τnV becomes μw,
where R(Γ) is the complex representation ring of Γ.

As is well known, given a map f:X-+ U(n) (resp. O(«)), the homotopy class
of the composite of this with an inclusion U(n) c U (resp. O(ri) a O) can be viewed
as an element of A:'1^) (resp. KO'^X)) for which β(f) we write in any case where
U (resp. O) is the infinite unitary (resp. orthogonal) group. According to [6], then

(1.5) /Π£6) = Λ05(,>),/^ as a ring.



1116 H. MINAMI

When we deal with the real J^-theory, we consider the complex Λ^-theory to

be Z/8-graded. The coefficient ring of each theory is given by KO*( + ) =

Z[.ηί9η4]/(2ηl,ηlηiη4,η
2

4-4) where neKO~l( + ) and K*(4-) = Z[μ]/(μ4-l) ( + =
point). Let us denote by r and c the realification and complexification

homomorphisms as usual. In [12], Theorem 5.6 KO*(E6) is determined by using

(1.5) as follows.

(1.6) There exist elements λi9λ2eKO°(E6) such that c(λ1) = μ3β(pi)β(p1[)9 c(λ2)

= μ3β(λ2pί)β(λ2p*ί) and as a Λ:0*( + )-module

Here F is the subalgebra of KO*(E6) generated by

β(p), β(λ3

Pίl λlt λ2

and is a free ΛΌ*(+)-module, and Γ is the submodule of K*(E6) generated by the
monomials

nβ(Pl), nβ(λ2

Pl), nβ(Pl)β(λ2

Pϊ),

nβ(Pl)β(λ2

PV, nβ(Pl)β(λ2

Pl)β(λ2rf), nβ(Pl)β(pΐ)β(λ2

Pl)

where n is a monomial in β(p\ β(Λ,3pι) with coefficients in K*(-\-). Further,
Λ,2_^2_Q ? ancι β(pγ and β(λ3pi) are divisible by η±.

REMARKS 1. In fact it follows from the square formula of [4], §6 that
2 = ηMλ2p) + 1Wp)) and β(λ*pί)

2 = ηί(β(λ2(λ3pί)) + 2Ίβ(λ*pJ). And we have
λ2p = λ*pί+p by (1.1), so that β(ρ)2 = ηί(β(λ3ρi) + β(p)). Using >hr(jc) = 0 stated in
the subsequent remark we see that η^β(λ2(λ^p^f) is only a linear combination of

ηιβ(λ*pι) and η±β(ρ\ and further observation of the restriction of l2(/l3/0ι) to

Spm(lO)'Sl leads to ηiβ(λ2(λ3pί)) = Q which therefore implies β(λ3pί)
2 = ηiβ(λ3pί).

As is noted in [12] all the other relations can be easily obtained from making

use of the equality

r(x)r(y) = r(xcr(y)) = r(xy) + r(xy *) for x, y e T

where y* denotes the complex conjugate of y.

2. The elements λl9 λ2 described above are unique. For example, if there

exists another element λ\ such that c(λl) = c(λ\) then, considering the Bott exact

sequence

• -> KO*(E6) Λ KO*(E6) Λ K*(E6) Λ - .

where χ is multiplication by ηi and δ is given by δ(μx) = r(x) [2], we see that

λ\ — λl can be written as λ\ — λl —η\a for some aGKO~Ί(E6). But we may assume
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that aeF because of χ<5 = 0 and the odd dimensional generators of F are only
β(ρ\ jS(ΛVι). Hence we see that a is divisible by η\, so that η^a must be zero. This
is quite similar to A2.

We next recall the Bott element of the equivariant A:0-theory associated
with Γ. Let W=r(V\ the realification of V, and we write nlV to denote the direct
sum of n copies of W as before. We show that W® W is provided with a Spin
/"-module structure. It suffices to prove that the composite homomorphism

ί: Γ -> (7(1) -> SO(2) Λ SO(2) x SO(2) -> S0(4), where the unlabelled arrows are

canonical inclusions and d is the diagonal map, may be lifted to a homomorphism Γ
from Γ to Spin(4), satisfying πΓ= / where π denotes the canonical projection from
Spin(4) to SO(4). Now we see that the map yι->(cosf+ e1e2sinfXcosf 4-e3e4sinf),
where el9 9e4 is an orthonormal basis of R4 such that e2=—l, eiej=-ejei if
ίVy, defines a required lifting i. So we see further that 2nW in general can be
provided with a Spin Γ-module structure. To state the Thorn isomorphism theorem
in the equivariant ΛΌ-theory moreover we need the following fact [11].
(1.7) Let A' be a compact trivial Γ-space. Then for a real Γ-vector bundle E
over X the assignment E\-^Homr{XxR9E)®W^c}

:ίom(Xx IV.E) induces an
isomorphism

KO?(X) ^ KO*(X}@Z- W®K*(X)

where Cis identified with Homr(W, W) normally. In fact the 2nd direct summand
of this equality is equal to r(Z- V®K*(X)\

From [3] we then have
(1.8) There is an element τ(4n + 2E}W+4ε£KOΓ(Σ(4n + 2ε)V+4ε) for ε = 0,l such that the
assignment x \—> τ(4n + 2ε)^+4ε Λ x induces an isomorphism KOf(X) = KO*(Σ(4n + 2ε}V+4ε

f\X+) for any Γ-space X and the restriction of τ(4π + 2ε)fr+4ε to /£0Γ(Σ
4ε)

= Z ηl®Z-Wμ2* is 3"(r(V- i))n(r(μ2- Vμ2))ε.
Finally we mention the structure of the ^-groups of lens spaces LΠ(3) for

l<fl<6. This can be obtained by easy calculations using (1.3) when X=&
point. As for the 0-terms it can be found in [8] for any lens space Ln(p] with p9

prime. But the technique used here is essential for our computation in the following
sections. In order to describe the results we introduce the ring generators. By
ξn we denote the complex line bundle S((n + l)V)x TV-+ L"(3). And we set

σn = ξn-lεK(L»(3)) and σΛ f ί

Let p be the composite L"(3) -» L%3)/(L"(3)-ΛO~S2M+1 of canonical projection
and homeomorphism where TV is a coordinates neighborhood of some element of

L"(3).
Then we set
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vn=p*(ιJεK2n + \L"(3)) and vn=p*

where p*:K2n+1(S2n+ί) -+K2n+ί(Ln(l)) and ιn denotes a generator of K2n+ί(S2n + 1)
^Z.

Observing the exact sequence (1.3) where X=a point we see that

(1.9) δ(vn_,} = leK»(S^ = Z \, J(h) = vn (up to sign) and /(!) = ( -σj".

Forgetting the action of 7", the v w _ j and τnV become 3z M _ t and μn respectively. So
we have δ(vn_l) = 3τnV/\l (up to sign), so that the 1st formula follows. The 2nd
formula is immediate from the definition of vn_l and the 3rd also follows from (1.4)
immediately. We ignore the sign below because it may be exchanged if
necessary. Then from this it follows that

(1.10) = vn and

Making use of (1.3) when X=& point together with these two facts (1.9), (1.10)
we can get the following results inductively by taking n in turn to be 0,1, ,6.

(1.11) (i) K°(Ln(3)) = Z/3s+r'σn®Z/3s σ2 and K-i(Ln(3)) = Z-vn

for 0<«<6 where s = [f], r = ((—l)n~1 + l)/2 and the ring structure is given by

n = 0 and vM

2 = 0.

(ϋ)
(«=0,4)

(otherwise),

0
Z vn

(» = 1,5)
(« = 2, 6)

(» = 3)
(«=0,4),

ηίvn (» = 3)

(otherwise),

Z v. (« = 2,6)

(» = 0,4),

[Z/ 3s σw 2 (otherwise),
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(« = 2,6)

0

and

(«=0,4)

t σ,,3®Z/2 ηlvn (n = l,5)
s σn>3 («=0,2,4,6)

Z/y σm,3 (ιι = 3)

Z/2 ^vΛ (/i =1,5)
Z >/4vπ (« = 2,6)
0 (n = 3)

Z v. (« = 0,4)

for 0<«<6 where s = [f], f^Pr1] and the ring structure is given by

*WA,; = ((̂

= 2σM ί + 2 and v^ = 0.

2. The complex /Γ-group of P£6

In this section we give the structure of K*(PE6).
We denote a canonical complex line bundle EβxΓV-+PE6 by ξ and set

Since p and Λ,3/?! are trivial on Z(E6) = Γ9 these can be regarded as representations
of PE6 and so the elements

β(p\ β[λ*Pi)εK-l(PE6)

can be defined in the manner as mentioned in the preceding section. From (1.1)
we see that p±(y) is a 27x27 scalar matrix with all diagonal entries ω = exp(^)

where y e Γ. Hence it follows that the assignments g h-» p*(g)pι(g), g H-> λ2pi(g)l ^ρ\(g)
and gι-» A2p*(g)13pί(g) induce three maps from P£6 to U where g e £6. We denote
also the homotopy classes of maps by

respectively. In order to describe the result we need one more element. Let TV
be the representation space of the (regular) representation Γ -> SΌ(3) of N given by
the assignment
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and put F=E6 x C2Ί®N which is viewed as a product bundle over E6. We define

a jf-equivariant bundle isomorphism f:F-+F by the assignment (g,(v1,v2,v3))

*-» fe5(Pι(y2^)vι5Pιte)v25Pιfe)v3)) Then/defines an element of AΓf V(E$) in the usual
way, which we denote by

In fact, this coincides with t(β(pι)) where t : K~ l(E6) -+ Kp l(E6) is the transfer map.
Then we have

Theorem 2.1 ([5, 7]). With the notation as above

),̂

as fl rwg. Here P is the subring of K*(PE6) generated by σ such that

/>^Z 10Z/27 <j©Z/27 σ2,

where the ring structure is given by

We prepare a lemma for a proof of the theorem. According to (1.4) the
restriction of τΊVeKj{ΣΊV) to R(Γ) is 27(F-1). From this fact we see that τlv

yields an equivariant bundle isomorphim α from S(Ί V)xE6x (27 Kφ S) to S(7 V) x E6

x(C2Ί@S) for some Γ-module S. On the other hand, ρ± induces an equivariant
bundle isomorphism / from S(Ί V)xE6x (C2Ί®S) to S(l V)xE6x (27 V®S) given

by f(x>g>(u>v)) = (x>gι(Pι(g)u>v))' Then, in the usual way, the composite α/ defines
an element of Krί(S(Ίy)xE6) = K~i(S(ΊV)xΓE6) which we denote by β(pά
Similarly, by taking λ2pί and A2α, pf and α*, and λ2ρf and Λ,2α* instead of px

and α respectively we get the elements β(λ2pi\β(ρ!f),β(λp:f) e A:Γ~
 1(5(7 K) x ^5). Also

we denote by the same symbols the restrictions of these elements to Kfl(S(nV) x E6)
for \<n<6.

Let π t (resp. π2) denote the projection from S(nV)xE6 to the 1st (resp. 2nd)

factor. Put $p) = π*(/?(p)), ^Vi) = *2W
3Pi)), ? = πf(σ»-ι) = πί(σ) and vn__,

Then we have

Lemma 2.2. Wzϊλ ίΛe notation as above
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K*(S((n + \)V) x E6) = Pn®\J(σ®vn)

as a ring for 0<«<6. Here Pn is the subring generated by σ such that

where s = [ξ]9 r = ( ( — ϊ f l ~ i + l)/2 and the ring structure is given by

σ3 + 3σ2-f3σ = 0,

and Λπ

In other words,

K (S((n + l ) V ) x E6) s

as a ring canonically.

Proof. For a proof we make use of (1.3) when X=E6 and we show this

inductively on n. In this case the exact sequence (1.3) is as follows.

- -> K*(Sl x E6) ^ Kf(S((n+\)V) x E6) ^ K?(S(nV) x £6) Λ -

in which the maps satisfy ί(^/*(y)) = ί(Λ:)̂ . Furthermore we see by (1.9) that there
hold the equalities δ(vn__l) = 3, J(ι0xl) = vn and /(!) = ( — σ)". We now check the

1st stage of our induction. Because S(V) may be viewed as a Γ-invariant subspace
of E6 as noted in the preceding of (1.3), it follows that S(V)x ΓE6&Sl xE6 which
is induced by the assignment (z,g)F-^(z3,z~1g) where zεS(V) and geE6, and so

by (1.5).
We consider the elements of K?(S(V)xE6) corresponding to the generators

of K*(Sl x E6) via this isomorphism. By definition we see that β(p^) ofKf(S(V) x E6)
can be decomposed into the form β(p±) + nμ for some neZ via this isomorphism

where nμ is constructed with pJS1 and α described in the preceding of Lemma
2.2. Now as mentioned above α arises from τlv and pί \ S1 = 14+ \6t+ lQί~2 which

follows from the 2nd formula of (1.1). So we get the case when n = Q by an

inspection of the construction of β(pι). For the same reasons the /?(α)'s correspond
to β(a)'s respectively. In particular, it is immediate as for a = p, λ3p^ And also

it is straightforward that v0 corresponds to ι0 up to sign. Hence we conclude that
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For the next stage of induction we observe the above exact sequence when

n=ί. Then clearly i*(β(ά)) = β(a\ /*(σ) = 0 and from the discussion above it follows

that

<5(v0) = 3, J(ι0xn) = vin and J(n)=—σn

where n is a monomial in β(p\ β(pί), β(λ2pv\ β(λ3pι), β(λ2p*)9 β(p*} and n the
monomial obtained by replacing by β(ctfs by β(d)9s in n. Furthermore we have

using the equality δ(xi*(y)) = δ(x)y. By applying these formulas and the result for

S(V)xE6 to the exact sequence above we can get Kf(S(2V)xE6) = Pί®\ί

/(CT®V!). Similarly we see that the remaining stages of induction can be done in
turn as in the computation of #*(LW(3)).

From this result and (1.11) (i) we infer that the last isomorphism is given by
using the canonical action of Kf(S((n + 1)F)) on Kf(S((n + l)V)xE6) induced by
the external tensor product, and the proof is completed.

Proof of Theorem 2.1. According to (1.2) (i) where X=E6 and n = Ί we have
an exact sequence

Here we have 7*(τ 7 V Λl) = 27σ by (1.3). But pi induces a bundle isomorphism

E6 x Γ21V ~ PE6 x C27 in a canonical way because /?ι(y) is the 27 x 27 scalar matrix
with entries ω = exp(^) where γ is the generator of Γ. So 27σ = 0 which implies
y"* = 0. Therefore the above exact sequence becomes the short exact sequence

(2.3) 0 -+ K*(PE6) ^ K?(S(Ί V) x E6) Λ K*(PE6) -* 0.

where δ also denotes the composition of the δ as above with the inverse of the

Thorn isomorphism.
Consider the images of the elements given in the beginning of this section by

/*. Then by an inspection of definition we have

(2.4) i*(σ) = σ9

and

By these formulas and Lemma 2.2 when n = 6 we see easily that the right-hand
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side R of the equality of Theorem 2.1 becomes a subalgebra of K*(PE6), since i*
is injective. Moreover by definition it follows that

(2.5) δφ(Pί))=l and <5(v6) = σ2 + 3σ + 3.

Using (2.4), (2.5) together with the equality δ(xi*(y)) = δ(x)y we can verify easily

that R fills K*(PE6\ because of the surjectivity of δ. This completes the proof
of Theorem 2.1.

3. The real tf-group of PE6

In this section and the following we study the real ΛΓ-group of PE6. To begin

with we recall the convention done in Section 1. The representations p and Λ3pι
of E6 are indeed real and are trivial on the center of E6. So we view these as

real representations of PE6 and for these the same notation is used. Furthermore

the complex Λ^-theory is regarded as a Z/8-graded cohomology theory with the

coefficient ring #*( + ) = Z[μ] / (μ4 - 1). Now we set

σ—rtfσ) for 0</<3.

Then we have

Theorem 3.1. There exist elements λ, IveKOQ(PE6) such that c(λ) = μ3β(13ρί

\ and as a KO*( + )-module

Here

P = Z/27[σ0,σ1,σ2,σ3]//

where I denotes the ideal 6>/Z/27[σθJσ1,σ2,σ3] generated by

F denotes the subalgebra of KO*(PE6) generated by β(p), β(λ3

Pl), λ, Σlt which is a

free KO*(+)-module, and T the submodule in K*(PE6) generated by the monomials

λ2

Pn nβ(Pl,Γ)β(llPl+λ2

Pll

(p1,nβ(^Pί + λ2

Pl)β(l^ + λ2^)

where n is a monomial in σ, β(p\ β(λ3

Pί) with coefficients in K*(+). Further,

REMARK. All the other relations can be obtained from the relations in K*(PE6),

K*(L6(3)) and KO*(L6(1)) by using the equalities r(x)r(y) = r(Xy)+r(xy*), r(x*)=r(X)
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and (2.4). The following is a sample calculation. For xeT

2xβ(Pί + p*)),

= 0, ι=l, 3,

We are now going to prove the theorem. The proof is done parallel to that
of the complex case. However we have a difference between the complex and
real cases in the real version of (2.3) for reasons of the real Thorn isomorphism
theorem.

Apply (1.2) (i) to X=E6, n — 1, then we have an exact sequence

• -> KOf(ΣΊV ^E6+)^ KO*(PE6) X KO?(S(1 V] x E6) Λ - .

Combining this with the Thorn isomorphism (1.8) such that KOk

Γ

+4(Σy /\E6+)

^KOk

Γ(ΣΊV/\E6+) gives the following.

Lemma 3.2. We have a short exact sequence

0 -> KO*(PE6) ^ KO?(S(1 V) x E6) Λ KO*(ΣV Λ £6 +) -» 0

where 5 is the composite of δ with the inverse of the Thorn isomorphism, so that S
is of degree 5 and satisfies δ(xi*(y)) =

Proof. The Thorn isomorphism is given by multiplication by τ6W+4. So any
element of KOf(ΣΊV /\E6+) may be written as x = τ6W+4f\xr for some x'
eKO?(Σv+4/\E6+). Now by (1.8) the restriction of τ6W+4r to KO^Σ4) is 9r(μ2V-μ2)
and by Theorem 2.1 27σ=0. Therefore we see that 3y%x) = 0.

Consider c(x)eKf(Σ7V /\E6+). Then c(x) may be written in the form
c(x} = τΊVί\y for some yeK?(E6) = K*(PE6). So the restriction of φ:) to K*(PE6)
is 21 σy which is, of course, zero. This shows that φ'*(x)) = 0, so that applying r

to this equality yields 2/*(x) = 0. By comparing these two results we see that j* = 0
whence the assertion follows.

We are in need of KOf(S(l V) x £6), which is given inductively as in the
complex case by changing 7 for 0,1, ,6 in turn.

In order to describe the result we give some elements of KOf(S(n V) x E6) for
1<«<7. Similarly to the complex case we write a for nf(a) (resp. πf(α)) where
aεKO?(S(nV)) = KO*(Ln-ί(3)) (resp. aεKO?(Es) = KO*(PE6}). Moreover, since
KO?(S(7Y)xE6) = KO*(S(ΊV)xΓE6), by [12], Proposition 4.7 we have elements

I15I2 E KOASP V) x E6) such that c(λv] = μ3β(pJβ(Pn c&) = μ*β(λ2

Pl}$(λ2pΐ\ which
satisfy 1̂  = 1̂  = 0. For the restriction of these elements to KO£(S(nV)xE6) for
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1<«<6 we use the same notation. We denote by F the subalgebra of
KO?(S(nY)xE6) generated by β(p), A^ViX *ι, *2 and by f the submodule of
Kf(S(nV)xE6) generated by the monomials nβ(Pl), nβ(λ2

Pί), nβ(p^(λ2pv\

*ftpM2Pn *P(PM2PM2PΪ), Λ/»(Pι)Λpί)ΛA2Pι) where n is a monomial in
β(pl fcppά

Using the canonical action of KO*(Ln(3)) = KO?(S((n + l)V) on KORS((n
+ \)V)x E6) induced by the external product we obtain the following isomorphism.

Lemma 3.3. With the notation as above

KOf(S((n+\)V)xEs)*KO\L\^^

for 0<«<6 as a KO*( + )-module and F is a free KO*( + )-module.

Proof. The proof is quite similar to that of Lemma 2.2 and so proceeds
inductively on n. Consider the exact sequence (1.3) when X=E6

••• -» KO*(Sl x E6) ̂  KO?(S((n + l)V) x E6) ̂  KOf(S(nV)x £6) Λ -

provided with the equality δ(xi*(y)) = δ(x)y. Viewing S(V) as a Γ-invariant subspace
of E6 as in the proof of Lemma 2.2 yields S(V)xΓE6&Sl xE6 so that
KORS(V)xE6)^KO*(Sl)®κo*(+)KO*(E6). So we^may write KOf(S(V)xE6)
= KO*(E6)®KO*(E6) IQ where ι0 is the generator ofKOl(Sl) as in Section 1. Hence
by (1.6) and the argument as in the proof of Lemma 2.2 we get Lemma 3.3 when
« = 0. This is, of course, the 1st stage of our induction.

Next consider the maps of the above sequence. Then clearly i*(x) = x for
jceF, xef and /*(£„. j) = σΛ-ι,i. By (1.10) we have (5(ίπ_1) = 3, J(ι0) = ϊn and
/(r(μί+w)) = r(μl( — σ")). Moreover we note that the degree of vn is considered to be
— 1, so that c(v) = μ3~wvM. Using these formulas together with the equality
$(xi*(y)) = δ(x)y, (1.6) and (1.11) (ϋ) we can go on with our induction. Thus we
get the lemma.

We are now ready to prove the theorem.

4. Proof of Theorem 3.1

We continue to prove the theorem. We identify the isomorphism of Lemma
3.3 below and consider the images of the elements of KO*(PE6) described in
Theorem 3.1 by i* of Lemma 3.2. It is immediate by definition that

t*(β(p))=P(ρ\ ί'W3Pι))=J8UVι) And by (2 4)

r((σ2-\-3σ-^3)μiβ(pί) — μiv6). Furthermore we may assume that
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(4.1) ί«W)= 132!, +I2 + 13r((σ6 + 1) VΛ

Because, by using the Bott exact sequence we see that the difference between the

elements on the both sides can be written as the form η^a where aεKOpΊ(S(ΊV) x E6)

which satisfies α2 = 0 by [4], Example (6.6) and hence if necessary it suffices to

replace either Ij or I2 by %i+η1a or I2 + n\a- (In fact these α's above must be
zero by the same reason as mentioned in Remark 2 for (1.6).) Similarly by
definition we can write as /'%Γι) = (σ6j0-f 3)^— v6r(μ2β(p ι)) + η ̂ a for some

a e KOr Ί(S(1 V) x E6). But the odd dimensional generators of the first direct

summand of KO*(S(7V)xE6) in Lemma 3.3 is only $(p\ /?(/lVι)> v6 and so we
see that the component of a which belongs to this direct summand is

divisible by η\. Therefore η^a must be zero since ηlr(x) = 09 so that we have

(4.2) i*^) = (σ6.0 + 3)̂  - v6r(μ2 API))-

Since ι* is injective by Lemma 3.2, it follows from this and the relation of (1.11) (ii)

that ^=0.

Because of the injectivity of i* of (2.3), we get by (2.4)

(The last element can be defined analogously to j8(pι+p*).)
Denote by R the algebra over KO*(+) on the right-hand side of the equality of

Theorem 3.1. In virtue of the formulas above and (1.11), Lemmas 3.2, 3.3 and
Theorem 2.1 we can then verify that R is a subalgebra of KO*(PE6). From now
on we prove that KO*(PE6) is filled with R. This is sufficient to show Theorem 3.1.

Observe the following exact sequence of (1.2) (i)

... -> KO?(Σvf\E6+) ^ KO*(PE6] ^ KO?(S(V) x E6) ̂  •••.

When we regard S(V) as the circle group which is a factor of Spin^Qty-S1 c: E6

as before we have S(V)xΓE6πSl xE6, so that KO?(S(V)xE6) * KO*(Sl xE6)9

and so this sequence can be written as

(4.3) ... -* KO*(ΣVΛE6+) d KO*(PE6) ^ KO*(Sl x E6) - -.

Moreover we can write as

) = KO*(E6)®KO*(E6)Ί0

where /0 denotes the generator of KO~Ί(Sl) ^ Z.
To investigate Im if under the identification above we consider iξ : hf(S(l V) x E6)
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-+hf(S(V)xE6) for h = KO, K where ι2 denotes an inclusion of S(V)xE6 into
5(7 V) x E6. From the arguments as in the proofs of Lemmas 2.2 and 3.3 it follows

that i*(β(a)) = β(a) for the fundamental representations α's of E6 so that **(Ik) = Afc

(*==!, 2), and /2>6) = /2*(v6) = 0 so that iϊ(σβtd = iζ(v6) = Q. Therefore we have

i*(β(Pι)) = β(Pι) For the same reasons we get i^(β(λ2pί)) = β(λ2p1). As to the
other generators of KOf(S(l V) x E6) it follows immediately by definition that

i*(σ6) = * *(V6) = 0» Ϊ2(σ6>f) = /*(v6) = 0. These formulas, Lemma 3.3 and (1.6) show that

i}(KO?(S(ΊV) x E6))=

and so because of if = i$i* where /* is as in Lemma 3.2 we have

if(KO*(PE6)) c KO*(E6)

in (4.3). More precisely we have

Lemma 4.4. if(KO*(PE6)) = if(R).

Proof. We use the same notation as in (4.3) below for the maps j f , if, (̂

of the same kind in the complex version of (4.3). Then by (2.4) we get

(4.5) imPι9n) = ̂ β(Pιlinβ(Pι+pT>) = β(Pι) + β(pί) and

For any x£KO*(PE6} we see by Theorem 2.1 that c(x) can be written as a

polynomial in

σ,

with coefficients in Z[μ]/(μ4-l). Therefore using (4.5) it follows that iftφ:)) is

written as a polynomial in

with coefficients in Z[μ]/(μ4-l).
On the other hand it follows from (1.5), (1.6) that c(/*(*)) can be written as

a sum of a polynomial in

β(ρl /

2μ2β(p\ 2μ2β(λ*Pί), 2μβ(pl)β(pt)9 2μβ(λ2

Pl)β(λ2p^

and the elements in the form

ι)jϊ(λ VT) + ( - 1) W
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where n is a monomial in β(p\ jf?(/lVι) w^h coefficients in Z. By combining these

two facts we see that i*(c(x)) must be written as a sum of a polynomial in

β(p\ β(λ3p), 2μ2β(p), 2μ2β(λ3

Pl), 3μ3β(Pl)β(tf), 3/i3/?(

n 6μβ(λ2

Pl)β(λ2p*),

-β(f>ΐ)β(λ2

Pl)),

and the elements in the form

VίflPi) + β(pf>\ nμ

2ί(β(λ2

Pί) + β(λ2pr>\ Inμ2i+ l

3nμ2ί+ I(β(λ2p,) -β(λ2pl )), 9nμ2i(β(Pl)β(λ2ri) + β(p*1

l) - β(p*l)β(λ2pl)), 6nμ(β(p

where n is as above.

From (4.1), (4.2) and (4.5) we get

Vi)) = 2μ2β(λ*Pl), c/fll,) = 3μ3β(Pl)β(pn

Ϊ), cif(τiffβ(pl,Γ)))=3μl(β(p1) + (-

and furthermore setting

1-13α, c=Λ-12lI1-4α

we get

ci«a) =
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By comparing these formulas with the above we obtain
(4.6) For any x e KO *(PE6) there exists an element y e R such that cif (x) = α f (y).

By (4.6) and (1.6) we have /*(*— y)eF ηί using the symbols of (4.6) where F
is as in (1.6). But ηιλi = if(η1Xl), ^ιA2 = ίf(^1l-ff/1I1) by (4.1), (4.2) and clearly
if(β(p)) = β(p), if(β(λ3pί)) = β(λ3pί). So we see that for any xεKO*(PE6) there exist
elements y, z ε R such that if(x) = i$(y + ηιz). This completes the proof of Lemma 4.4.

Finally we consider the image of of jf of (4.3). Then we have

Lemma 4.7. jf(KO?(Σv Λ£6+)) c R.

Proof. Consider the composition of y'f with S of Lemma 3.2. Then
Imjfδ=Imjf because of the surjectivity of δ. So it suffices to check that

According to Lemma 3.3, KOf(S(lV)xE6) = KO*(L6(3))®κo*(+)F®r(K^^
First we consider the image of the latter direct summand. Observe δ(K*(L6(3))®f)
where S is the coboundary homomorphism of the same kind in the complex
case. From (2.4) and the equalities c(τ6W+4) = τ6Vμ

2, τlv = τ6V/\τv it follows that
Sφ(p1))= — τvμ

2

9 <5(v6) = (σ24-3σ + 3)τrμ
2. Together with this, using the formulas

in the preceding of (2.4) and the equality δ(xi*(y)) = δ(x)y where /* is as in (2.3)
we can get S(K*(L6(?>))<S)f) and so it can be easily verified thatyf<5(r(A:*(L6(3))® f))
c: R by using c(τ6W+4) = τ6Vμ

2.
We now observe the image of another direct summand. Clearly j*S(x) = 0 for

x = σ6iί, β(p) and /JU3pι) As to the image of v6eKO-*(L*(3)) = KOf3(SVV)) by
j f δ we see by definition that jfS(v6)eKOf 6( + ) = Z Wμ3 and cjfδ(v6)=Q using
c(v6) = μv6. But c(\Vμ3)τ£Q, which shows that

By definiton we can write as c(I,)= — ί*(μ(σ + l)2)?(p1+pf))^(p1) where i* is
as in (2.3). Therefore cJΐS(Z1)=-(σ2 + 2σ)μβ(pl+pΐ), so that cjfS(Z1)=cr(μβ(p1

+ p*)). Now ίfr(μ/?(p1+p*))=0. So we can construct an element α1eίΓOf3(Σr

Λ£6+) such that yf(β1) = r(μ/l(ρ1 + />?)) and φt)= -M/r + lJV/Kpj+pT)- Then,
from the surjectivity of £and the uniqueness of Ij it follows that <5(J1)=ίJ1, so that
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Similarly we obtain

Using these three formulas we can easily prove that jfδ(KO*(L6(3))®κo*(+)F)

c R. For example, since ^r((σ6 + I)μ3β(p^(λ2p1[)) = r(c(^)(σ6 + I)μ3β(pjβ(λ2p1[))

= 0, we have I1ι*(A) = I1J2 by (4.1). Hence yf(5(I1I2) = >lr(/ijβ(/>1-fp?)). Thus the
proof is completed.

From Lemmas 4.4, 4.7 and the exactness of (4.3) it follows that
KO*(PE6) = R immediately. This completes the proof of Theorem 3.1.
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