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Le Fondement Constructif du Calcul Infinitésimal

dédié a Monsieur le Professeur Z. Suetuna a 1’Occasion
de sa Soixantiéme Anniversaire de la Naissance

Par Motokiti KONDO

Ce travail appartient complétement au domaine de la théorie des
ensembles projectifs et il est développé sur la base donnée dans mon
travail [19]. Son but principal est de discuter systématiquement le fonde-
ment constructif du calcul infinitésimal.

En le 24 novembre 1858, R. Dedekind avait arrivé pour la premiére
fois l'idée centrale de la théorie des nombres réels et il I'avait exposée
dans sa lecon de méme année sur ’analyse mathématique, dans I’école
polytechnique de Ziirich. Or, aprés presque vingt ans, elle a été publiée
dans son petit livre “Stetigkeit und irrationale Zahlen” [4]. Grace
a cette théorie, I’analyse mathématique avait trouvé une réalisation de
la pensée de A. Cauchy. Elle est un rationalisme dans les mathématiques
et héritée par plusieurs mathématiciens de ce siécle. R. Dedekind est
un parmi ceux et G. Cantor, le créateur de la théorie des ensembles,
appartient aussi a ce cercle.

Aprés le succés de la théorie des ensembles, les mathématiques pro-
gressent rapidement. Ceux contemporains sont appuyés parfaitement par
cette théorie. Comme on sait bien, les mathématiques sont reformées
largement par un mouvement “1’abstraction des mathématiques” pendant
derniers cinquante ans. Or, son origine a resté encore invariable.
La théorie de R. Dedekind sur les nombres réels et celle de G. Cantor
des ensembles, ce sont des grandes héritiéres du 19-iéme siécle dans les
mathématiques contemporaines. Or, on trouve en fin le jour auquel elles
seront reformées fondamentalement. Cette révolution remarquable est
basée sur les constructivismes contemporains dans les mathématiques.
Comme on le connait bien, ces pensées sont eommencées par les criticismes
pour la théorie cantorienne des ensembles et elles appartiennent aux
intuitionistes, aux empiristes et encore aux logiciens. D’ot, les points de
départ sont assez divergents, mais ils ont un terrain commun au profond
et elles discutent divers problémes communs sur celui-ci. La réformation
de la théorie dedekindienne sur les nombres réels et celle de la théorie
cantorienne des ensembles commencent sous telle circonstance.
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En concernant ce mouvement dans les mathématiques, on peut trouver
divers problémes importants qui sont fondamentaux dans les mathéma-
tiques. Le développement du fondement constructif du calcul infinitési-
mal, c’est aussi un probléme parmi ceux-ci et nous pouvons trouver déja
divers resultats sur celui-ci (voir les bibliographies posées a la fin de
ce travail). Mais, plupart de celles-ci ne sont pas systématiques et leur
considération sur les nombres réels n’est pas encore compléte. Or, la
discussion sur les nombres réels développée dans mon travail [19] est
presque achevée et elle est suffisante d’exposer systématiquement le
fondement constructif du calcul infinitésimal. Cest la raison que ce
travail est consacré a la considération de ce probléme.

Pour développer constructivement les analyses mathématiques dans
la théorie des ensembles projectifs, jai introduit une nouvelle notion
sur les analyses mathématiques (M. Kond6 [19]). D’aprés cette idée, une
analyse relative est définie par deux domaines relatifs de nombres réels
et elle est désignée par A(K,, K), si K, et K sont ceux-ci. Encore, ils
concernent respectivement la nommabilité des étres mathématiques et
les domaines de ces étres. Pour discuter précisément la structure de
JA(K,, K), il faut poser quelques conditions auxiliaires sur la continuité
de K, et K. Or, en concernant la continuité des domaines relatifs de
nombres réels, on connait diverses perfections relatives de ceux-ci, mais
la perfection relative 7= est fondamentale et dans ce travail, nous con-
sidérons la condition C:

T(K) S K.

Par exemple, si I'on a K,= R et K==(R), ’analyse relative A(K,, K) remplit
cette condition et 7#(R) est le domaine des nombres réels et définissables
arithmétiquement. Telle analyse relative concerne intimement celle de
H. Weyl [26] et de M. A. Grzegorczyk [10, 11]. Encore, la considération
sur les étres nommables (S}, K,, K) ou bien (E%, K,) dans celle-ci est
presque-équivalente a l'analyse récursive (R. L. Goodstein [6, 7, 8, 9],
A. Mazur [22], E. Specker [25]). Or, nous pouvons démontrer les théo-
rémes fondamentaux du calcul infinitésimal dans une analyse relative
A(K,, K) qui remplit la condition C. En effet, le théoréme de M. Rolle
(le théoréeme 1 de §3), celui de la valeur moyenne (le corollaire du
théoréeme 1 de §3), celui de Br. Taylor (le théoréme 3 de §4), celui de la
différentiation terme en terme de séries (le théoréme 4 de §3) et celui
de lintégrabilité (le théoréme 3 de §5) sont démontrés sans changement
essentiel dans J(K,, K).

Quelques parties de ce travail ont été présentées a la conférence
annuaire de la société physico-mathématique du Japon en I'avril, 1935,



Fondement Constructif 63

§1. Les nombres réels

1. Dans mon travail [19], jai discuté les nombres réels et nommables
(E, K,). Or, pour développer constructivement le calcul infinitésimal, nous
considérons encore quelque propriétés des nombres réels et nommables
(E, K,). Pour une suite {,} (=1, 2, ---) nommable (E?, K,) de nombres
réels, s’il existe une fonction f(x) nommable (EZ, K,), définie sur Uy(x)
et telle qu'on ait

1°, k>>f(p) entraine lak—ak+j|<% (G=1,2 ),
20) f(p)<f(p+]—) (ﬁ = 1’ 2> "'),

on dit que la suite {a,} (k=1,2,---) de nombres réels est convergente
(E7, K,). D’aprés la définition, si une suite de nombres réels est con-
vergente (En, K,), elle est aussi convergente. Or, on a le

Theéoréme 1. Si wune suite {a,} (k=1,2,---) nommable (Ey, K,) de
nombres réels est convergente, elle est aussi convergente (Ewii, K,) et, sa
limite lim a, est nonmmmable (E:i}, K,).

k>

Démonstration. Désignons par A I'ensemble de tous les points <x,
¥, 2> de Uplx, y, 2) tels qu’on ait la,,—ax+zl>%. D’aprés la définition, il

est nommable (E%, K,) et donc, B=CS(Uy{x, ¥), A) est nommable (E,, K,).
Or, pour chaque nombre naturel y, B<*> n’est pas vide. En effet, d’aprés

la supposition, il existe un nombre naturel x tel qu’on ait |ax—ax+z|<*};

(z=1,2,---) et ona<x,y, 2>€A (z=1,2,--). Donc, on a <{x, y>€ B, c’est-
a-dire, B*>+4=0. Comme il est nommable (E!!}, K,), il existe un unifor-
misateur U de B par rapport a Upn(y) et qui est nommable (E}i1, K,)
(21, §3, Chap. II, [19]). Désignons par f(y) la fonction dont I'image
géométrique est U. D’aprés le théoréme 11 (16, § 2, Chap. II, [19]), elle
est nommable (E2i1, K,). Encore, on a

@p—arpl <G (=12,
et donc, si 'on a k>f(2p), on a
@y S @] +1aap = <5
Posons encore g( y)=§y_] f(2k). D’aprés le théoréme 8 (20, §3, Chap. II,
[19]), elle est nomma"lb=lle (Et+1, K,) et on a

1°, k>>g(p) entraine lak—ak+,-r<-—115 (G=1,2 ),
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2°, g(p)<gp+1) (p=1,2,-).
Donc, la suite {¢,} (k=1, 2, ---) est convergente (Eri}, K,). Encore, d’a-
prés la définition, lim ¢, est nommable (E?:}, K,), c.q.f.d.
p>oo
Théeoréeme 2. Si une suite {a,} (k=1,2,.--) nommable (Ey, K,) de
nombres réels est conver gente (E%, K,), sa limite 1im a, est nommable (E7, K,)
E>eo

ou bien (E%, K,), suivant qu'on a n=2 ou bien n=1.

Démonstration. D’aprés la supposition, il existe une fonction f(x)
nommable (Ej, K,) définie sur Uy(x) et telle que k_>f(p) entraine

|ak—ak+j|<% (j=1,2, ). Deés lors, on a
’aj(p)-(-l_al g% (ﬁ = 1) 2) "') ’

ou a=lima, et donc, on a

k>oo

1 1
af<p)+1—? =a= af<p>+1+-£ .
Par suite, on a
1 . 1
boréps>up. (af(pm—?) = boz.plnf. <a,<1,)+1 +—p—> =a (1)

Encore, I'image géométrique G de f(x) est nommable (E;, K,) et infini.
Do, il existe les fonctions g,(z) (k=1, 2) nommables (E%, K,) ou bien
(E%, K,), définies sur Up(2) et telle que la transformation

X = gx(z) et y= gz(z)

applique Up(2) en G biunivoquement (Théoréme 9, 20, § 3, Chap. II, [19]).
Donc, si 'on pose

b, = akl—';z' et b,= ak1+‘l';1"2' )

ol b,=g,(k)+1et k,=g(k) (k=1,2, ---), les suites {b,} et {b,} (k=1,2,--)
de nombres réels sont nommables (E?, K,) ou bien (E%, K,) et d’aprés (1),
on a

bor. sup. b, = bor.inf. b, = a.
<k> <k>

Dou, a=lina, est nommable (E?, K,) ou bien (E%, K,), suivant qu'on a

E>eo

n=2 ou bien n=1, c.q.f.d,
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Remarque. Pour tout nombre naturel z, il existe une suite {a,}
(k=1, 2, ---) nommable (E?, K,), convergente et telle que lim ¢, soit pré-
E>oo
cisément nommable (E:ii, K,).

2. Puis, considérons la convergence des séries de nombres réels.
Posons d’abord le

Lemme 1. Pour une fonction F(z,, z,) nommable (E%, K,) et définie
sur Un(z,, z,), posons
21
G(zl) = IZI-"F(ZI’ k) .
Alors, elle est aussi nommable (Ev, K,) ou bien (E3, K,), suivant qu’on a
n=2 on bien n=1".

Démonstration. Considérons d’abord le cas ou F(z, 2,)=0 pour
chaque point de son domaine. Posons G(z,, z,, 2,) =2%F(z,,z,). Elle est
nommable (EZ, K)) ou bien (E%, K,) (20, §3, Chap. II, [19]) et donc,
I'ensemble A de tous les points <x, y, 2, 2,, 2,> tels qu’on ait

{x, y>€eRG(z,2,2) et y=1

est aussi nommable (E?, K,) ou bien (E%, K,), suivant qu'on a #=2 ou
bien #=1. De plus, A%*r*»%> contient précisément [G(z,, z,, 2,)] points.

Or, I’ensemble B de tous les points <x, 1, z,, 2,, 2, 2, tels que <x, 1,
2,, 2., 25, 20€A et 2,<z, est nommable (E?, K,) ou bien (E3}, K,) et

24
B<*r*+* contient précisément [>)G(z,, k, 2,)] points. D’ou, si 'on pose
p=1

F(xoy 2y, za) = XB(q)zz(xo), 2 (])21(xo)’ 23, 21) ’

on a
VP, 2., 2) = 31 [Glz,, b, 29)]
k=1 k=1

et ‘;“F(k, 2, 2,) est nommable (E”, K,) ou bien (E? K,). Or, on a

kZ:;F(k, 2y, 2) _ i [2%F (z,, k)]
2% E=1 2% ’

et d’ou

F(k> 4 23) 21
SO SR, B = G,

Me

bor. sup. *
<zg> p 2%

1) Sur les fonctions nommables (E, K,), dont les valeurs sont les nombres réels et nom-
mables (E, K,), voir 26, §1, Chap. III, [19].
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Par suite, G(z;) est nommable (E” K,) ou bien (E? K,).
Puis, posons F(z,, z,)=[F(z,, z,) +1]—F{(z,, 2,) et Go(zl)zi Fyz,, k).
k=1
Alors, de méme que le cas précédent, G,(z,) est nommable (E”, K,) ou
bien (E? K,). Or, on a
G(z)+Gi(z) = 3 [F(z,, )+1]
k=1

et il] [F(z,, k)+1] est nommable (E?, K,) ou bien (E%, K,). Donc, G(z,)
=1
est aussi nommable (E", K,) ou bien (E%, K,), suivant qu'on a =2 ou
bien n=1.
Puis, considérons le cas général. Posons

F(z,, z,) = bor. sup. (0, F(z,, 2,)),

F(z,, z,) = bor. sup. (0, —F(z,, z,)),

C(z) = STF(z,, k).

k=1

Alors, G™(z,) et G‘°(z,) sont nommables (E?, K,) ou bien (E}, K,) et on
a G(z,)=G"(2)—G(z)). Donc, G(z) est nommable (E%, K,) ou bien
(E%, K,), suivant qu’'on a =2 ou bien #=1, c.q.f.d.

Or, étant donnée une suite {a,} (=1, 2, ---) nommable (E%, K,) de
nombres réels, on peut définir formellement une série nommable (E?, K,)

SYa, de nombres réels. Prenons les sommes partielles s,=a,+a,+ -+ +a,
k=1

(k=1,2,..-). D’aprés le lemme 1, la suite {s,} (k=1, 2, ---) de nombres
réels est nommable (E!, K,) ou bien (E}, K,), suivant qu’on a #=2 ou

bien n=1 et alors, on dit que la série iak est convergente (E7, K,), si
k=1

la suite {s,} (k=1, 2, ---) de nombres réels est convergente (Em, K,). Deés
lors, on a les

Lemme 2. Si une série iak nommable (E”, K,) de nombres réels est
conver gente, elle est convergenkt_e (E?3:, K).

Lemme 3. Si une série gak nommable (E7, K)) de nombres réels est
conver gente (E%,K,), sa somme Zj_‘{ak est nommable (E*, K,) ou bien (E}, K,),
sutvant qu'on a n=2 ou bien :L_Z 1.

Remarque. De méme que les séries de nombres réels, on peut discuter

le produit IT a, de nombres réels.
k=1
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§2. Les fonctions continues

3. Puis, considérons la continuité des fonctions nommables (S, K,, K).
Soient F(s) une fonction continue nommable (S?, K,, K), finie et
définie sur l'intervalle fermé [a, b]x, ol a et b sont nommables (E%, K,).
Dés lors, on dit que F(s) est continue (E%, K,) & un point ¢ de son domaine,
s’il existe une fonction f(x) nommable (Epm, K (c)) définie sur Uy(x), telle

que Is—cl<]7(1p~) et s€[a, bk entrainent lF(s)—F(c)|<%. Encore, on

dit que F(s) est continue (S*, K,, K) a son domaine, s’il existe une fonc-
tion f(x, s) nommable (S7, K,, K) définie sur Ux(x)® Ui (5), telle que
ls_c'<ﬂ;795’ s€la, blx et c€[a, b]x entrainent lF(s)——F(c)l<%.

De méme, on dit que F(s) est continue (ET, K,) uniformément sur son
domaine, s’il existe une fonction f(x) nommable (EZ, K,) définie sur Upn(x)

et telle que lc—dl<~1 c€la,blx et dela,blx entrainent |F(c)

) f(py
—F(d)l<z-

D’aprés la définition, quand une fonction F(x) nommable (S?, K,, K)
est continue (S, K,, K) sur son domaine, elle est continue (Ep, K,) a
chaque point de son domaine. Or, on a le

Theoréme 1. Quand une fonction F(s) continue et définie sur [linter-
valle fermé [a, by, ot a et b sont nommables (E:, K,), est nommable (S;,
K,, K), elle est continue (En31, K\) uniformément sur son domaine.

Démonstration. On peut supposer, sans perdre la généralité, que
a=0 et b=1, puisque F(as+b(1—s)) est définie sur l'intervalle fermé
[0, 1] et remplit la condition donnée. Dés lors, posons

A= cx(%-— lF(%)—F<%1>‘> :
et B = S(Un(y, 2), A) .

Comme A est nommable (E?, K,), B est nommable (E”, K,). Encore B<*>
est fini pour tout nombre naturel z. En effet, si B<*” est infini, on peut
trouver une suite {<x®, y®, z>} (k=1, 2, ---) nommable (E, K;) de points
telle que

10) <x(k), y(k)’ zo>€ A (k = 1’ 2> "') ’
20, y(k)<y(k+1) (k — 1’ 2’ ”,) .

iz . xP
Encore, on peut supposer, sans perdre la généralité, que la suite {W}
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(k=1, 2, ---) de nombres rationnels soit nommable (E, K,) et convergente.
(kD
Posons c¢=1im % D’aprés la supposition, ¢ est nommable (E, K;) et on
k> Y
a 0=<c<1. Encore, F(s) est continue a ce point ¢ et d’ot, il existe un

nombre naturel N tel que |c— sl<N entraine IF(c) F(s)l<—z—. Or, on

peut trouver un nombre naturel / tel que |c— % s ’< N et d’ot1, on a
¢P)
{F(c) F(’;(,)> <L

C’est contradictoire avec la supposition et par suite, B<*” est fini. Or,
I’ensemble G=S(Ux(y, 2), B,), ou B, désigne I’ensemble de tous les points
{y, 2, w> de Uy(y, 2, w) tels qu’on ait {y+w, 2> € B, est nommable (E”, K,)
et donc, BNCG est nommable (Erii, K,). De plus, il est uniforme par
rapport 4 Uy(2), et S(Un(2), BACG) est nommable (EZii, K,). D’ou, si
I'on pose

f(z) =1, si (BNCG)<*> est vide, ,
= y+1, si (BNCG)<*> contient le point y.

Elle est nommable (E'ii}, K) et |c— d’<f(p) c€la, blg, dela, b]ken-
trainent IF(c)—F(d)|<$, c’est-a-dire, F(s) est continue (E?}i, K,) uni-
formément sur son domaine, c.q.f.d.

4. Or, les fonctions nommables (S, K,, K) et continues (E%, K,) ou
bien (E%, K,) uniformément sur son domaine, suivant qu’'on a #=2 ou
bien n=1, sont trés importantes dans notre considération et nous avons
le théoréme suivant qui est fondamental dans notre considération, c’est-
a-dire,

Theoreme 2. Si une fonction F(s) nommable (S, K,, K) et définie sur
lintervalle fermé [a, blx, ou a et b sont nommables (Ey, K,), est continue
(En, K,) ou bien (E3}, K,) uniformément sur son domaine, suivant qu’'on a
n=2 ou bien n=1, il existe le nombre t(c) nommable (E”, K,) ou bien (E* K,)
(nommable (E,, K,) ou bien (E,, K,)), tel qu’on ait F(E)zboi. sup. F(s) (F(c)
=b0£. i<nbf.F(s)) et que F(T)(F(c)) soit nommable (E?, K,) ou bien (E%, K,),
suizza—nt_qu’on a n=2 ou bien n=1.

Démonstration. On peut supposer, sans perdre la généralité, qu'on
ait a=0 et b=1.
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D’apres le théoreme 1 de §2, il existe une fonction f(x) nommable
(E%, K,) ou bien (E%, K,), suivant qu'on a #=2 ou bien n=1, définie
sur Up(x) et telle que Ic—dl<—1~

f(p)
IF(c)—F(d)I<%. Alors, 'ensemble A, de tous les points <{x, ¥, z,, 2,>

, C€[a, bk et d€[a, b]x entrainent

1
X, eR(F( zh)——) et 02, < ,
< y> f(zz) 22 == 1 —f(zz)
est nommable (E”, K,) ou bien (E? K,), suivant quon a #=2 ou bien
n=1. En effet, 'ensemble A, de tous les points <x,y, z,, 2,, 2,> tels
qu’on ait

<z, y>e R<F<i> . 1) et 0=z <z
2] 2,

est nommable (E?, K,) ou bien (E}, K,), suivant qu'on a #=2 ou bien
n=1. Or, on a

Al = S(U](x, y) 5> UN(zl) zz); Aznﬂ(f(zz—za) S>) Uj(x’ y) D UN(zl))

et par suite, A, est nommable (E” K,) ou bien (E”, K,. D'ou, si 'on
pose A3:S(U](x: Y, 22)) Al)) on a

R (bor. sup. F(s)) = U As%>,
a=s<b Z=1

et donc, boi. sup. F(s) est nommable (E”, K,) ou bien (E? K,), suivant

qu'on a =2 ou bien n=1.
Or, 'ensemble B, de tous les points <x, 3, z,, 2,> tels qu’on ait

(el = oznzse

est nommable (E,, K;) ou bien (E,, K,), suivant qu'on a #=2 ou bien
n=1. En effet, 'ensemble B, de tous les points <x,y, z,, 2,, 2,> tels
qu’on ait

y<F<f:1>+g-><x et 02, <2,

est nommable (E”, K,) ou bien (E? K,), suivant qu’on a #=2 ou bien
n=1. Or, on a '

B, = CS(Uj(x, y) ® Un (21, 2.), B, N M(f(2,)—2,) D Uj(x, 3) b Un(z,)),

et par suite, B, est nommable (E,, K,) ou bien (E,, K,). Dou, si l'on
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pose B,=S(U,(x, y, 2,), B)), il est encore nommable (E,, K,) ou bien (E,, K,),
d’aprés le lemme 4 (19, §3, Chap. II, [19]) et si bor. sup. F(s) n’est pas
a<"s<b

rationnelle, on a
R(bor sup F(s)) = B<’ >

et donc, bor. sup. F'(s) est nommable (E,, K,) ou bien (E,, K,). Par con-

a<{Ss<b

séquence, bor sup. F'(s) est nommable (E?, K,) ou bien (E%, K,), suivant

=S

qu’'on a n22 ou bien n=1. Puis, posons

G(s) = (boi.s sup. F(s)—F\(s).

Elle est nommable (St, K,, K) ou bien (S}, K,, K), suivant qu'on a =2
ou bien z=1 et non négative sur chaque point de [a, b]x. De plus, on
a bor. inf. G(s)=0. Or, ’ensemble D= _L(—G(s)), c’est-a-dire, celui de tous

a<S<b

les points s tels que G(s)=0 est non vide. En effet, les ensembles
CL (G(s)—%) (k=1,2,.--) sont ouverts et non vides. D’ou, on peut

définir une suit {a,} (k=1, 2, ---) nommable (E, K,) de nombres rationnelles
telle qu’on ait G(ak)<712~ (=1, 2, ---). Alors, il existe un nombre a,

d’accumulation de cette suite et qui est nommable (E, K,). Il appartient
au domaine de G(s) et on a G(a,)=0. D’ot, D n’est pas vide. Posons
t=bor.inf.s. Il est nommable (P, K,) et on a a<<c<b (41, §3, Chap.

=)
IV, [19]). Or, il remplit notre demande. Pour le démontrer, prenons
I'ensemble A de tous les points <z,, 2,, 2,> de Uy(z,, 2., 2,) tels qu’'on ait

G<?(zz%)>§_z2 et 12, <2,.

De méme que le cas précédent, il est nommable (E,, K,) ou bien (E,, K,)
et donc B=CS(Ux(z,, 2,), A) est nommable (E”, K,) ou bien (E’, K,),
suivant qu’on a n>2 ou bien n=1 (19, §3, Chap. II, [19]). Or, si 'on

z,> de

- f(z (
B. En effet, on a G( f(z )>>g pour tout nombre naturel z, tel que

1=<{z,<z, et dong, si 'on a z,— 1< sf(z,)<z,, on a

Fo-F( 2 ‘<

D’ou, on a
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co>6( 2)-L=2 1o,

Rz 2,

(zz)

Encore, si ’on a G(0)>0, on a

R(©) = <bor sup. f(zz)> (1)

<2,2,>€B

En effet, si 'on désigne par E le coté droit de (1), on a R(c)=FE. Puis,
soit s, un nombre réel de [a, bk, tel qu'on ait s,<'¢. Il existe alors un

point <z,, 2,, 2,> de A tel qu’on ait s,= f(l %) et d’ou, on a R(c)<E. Par

suite, on a (1). Or, comme B est nommable (E”, K;) ou bien (E? K,),
R(¢) et par suite ¢ est nommable (E”, K;) ou bien (E? K,) suivant qu’on
a n=2 ou bien n=1.

Puis, posons F(s)=—F(1—s). Alors, d’aprés les resultats ainsi
obtenus, il existe le nombre ¢ nommable (E”, K;) ou bien (E?, K,) tel qu’on
ait £'(¢)=bor. sup F(s) et que F(¢) soit nommable (E?, K,) ou bien (E%, K,),

H§S§b
suivant qu’on a #=2 ou bien #=1. Dés lors, on a bor. inf. F(s)=F(1—?)

a<LSs<b

et par suite, si 'on pose ¢=1—¢, il remplit notre demande, c.q.f.d.

Corollaire. Soit F(s) une fonction nommable (St, K,, K), définie sur
Uintervalle fermé [a, blk, on a et b sont nommables (Ev, K,), et continue
(E?, K,) ou bien (E5, K,) uniformément sur son domaine, suivant qu’on a
n=2 ou bien n=1. Alors, elle est bornée sur son domaine.

Dés lors, on a le

Théoréeme 3. Soit F(s) une fonction nommable (S, K,, K), définie sur
Uintervalle fermé [a, bk, o a et b sont nommables (Ev, K,), et continue
(Et, K,) ou bien (E3, K,) uniformément sur son domaine, suivant qu'on a
n=2 ou bien n=1. Alors, si l'on a F(a)>0 et F(b)< 0, il existe un
nombre ¢ nommable (E%, K,) ou bien (E3, K,) de son domaine tel qu'on ait
F(c)=0, suivant qu'on a n=2 ou bien n=1.

Démonstration. Posons ¢=bor. sup.s et ¢=bor. inf.s. De méme que
F($)>0 F($H<0

la démonstration du théoréme 2, ils sont nommables (E”, K,) ou bien
(E% K,) et (E,, K,) ou bien (E,, K,) respectivement, suivant qu'on a =2
ou bien #=1. De plus,on a ¢<c¢. Encore, d’aprés la continuité de F'(s),
on a F(c)=F(c)=0. D’ou, si 'on a ¢=¢, posons ¢=¢ et si 'on a ¢<g,
on désigne par ¢ un nombre rationnel entre ¢ et ¢. Il remplit notre
demande, c.q.f.d.



72 M. KoNDO

Corollaire. Soit F(s) une fonction nommable (S;, K,, K), définie sur
Uintervalle fermé [a, blx, ouw a et b sont nommables (E%, K,), et continue
(En, K,) ou bien (E3, K,) uniformément sur son domaine, suivant qu'on a
n=2 ou bien n=1. Alors, le contre-domaine de F(s) est Uintervalle fermé
¢, Tk on 5:b,?£;§?p' F(s) et c=bor. inf. F(s).

a<<s<b

Remarque. Si F(s) remplit les conditions du corollaire du théoréme 3,
il existe un nombre s, nommable (E!, K,), oit /=max(m, n)+1, tel qu’'on
ait F'(s,)=¢, pour tout nombre réel #, nommable (EZ, K,) de [c, ¢]x.

5. Puis, nous considérons la convergence des suites nommables
(Sp, K,, K) de fonctions. Pour une suite {F,(s)} (k=1, 2, ---) nommable
(Sr, K,, K) de fonctions définies sur l'intervalle fermé [a, b]x, ol @ et b
sont nommables (E}, K,), s’il existe une fonction f(x, s) nommable (S,
K,, K), définie sur Upy(x) D Uy, ;. (s) et telle qu'on ait

1°, k>>f(p, 5) entraine |Fk<s>—Fk+,.<s>|<~;; (G=1,2 -,

20> f(ﬁ; S)<f(p+1, S) (p = 1, 2, "');

on dit que la suite {F(s)} (k=1,2,---) de fonctions est convergente
(Sr, K,, K) sur son domaine. Dés lors, de méme que le théoréme 1 de
81, on a le

Théoréme 4. Si une suite {Fs)} (k=1, 2, ---) nommables (St, K,, K)
de fonctions définies sur Uintervalle fermé [ a, bk, ot a et b sont nommables
(E™, K,), est convergente sur son domaine, elle est aussi convergente (Snii,
K,, K) sur son domaine.

Démonstration. Désignons par A I’ensemble de tous les points <{x, y,
z, s> de Un(x, y, 2) D U5 (s) tels qu'on ait | F(s)—F,..(s)| >—}7. D’aprés

la définition et le théoreme 9 (38, §2, Chap. IV, [19]), il est nommable
(S", K,, K) et donc B=C(USn(x, 3) D U.01.(s), A)) est nommable (S,, K,,
K). Or, pour chaque nombre naturel y, B>~ n’est pas vide, de méme que
la démonstration du théoréme 1 de §1. Encore, comme il est nommable
Srit, K, K), il existe un uniformisateur U de B par rapport a Uy(y) D
Uivi(s) et qui est nommable (Siii, Ko, K) (39, §2, Chap. IV, [19]).
Désignons par f(y, s) la fonction dont I'image géométrique est U. D’apres
le corollaire du théoréme 11 (38, §2, Chap. IV, [19]), elle est nommable

(Sl K,, K) et définie sur [a, b]x. Posons encore g(y,s)= é_f(Zk, s).

D’aprés le théoréme 5 (35, §2, Chap. IV, [19]), elle est nommable (St*1,
K,, K) et on a
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F,k>mn9emmmlﬂ@~ﬂ4m<%¢j=L&mb
2°, g(p,s)< g(p+1,9),

de méme que le théoréme 1 de §1. Dongc, la suite {F.(s)} (k=1, 2, --+)
est convergente (S¥ii, K,, K) sur son domaine, c.q.f.d.
De méme, on a le

Theoréme 5. Si une suite {F.(s)} (k=1,2, ---) nommable (Si, K,, K)
de fonctions définies sur Uintervalle fermé [a, blg, ou a et b sont nommables
(EZ, K), est convergente (St, K,, K), sa limite lim F,(s) est nommable (S:,

k>
K,, K) ou bien (S}, K,, K), suivant qu'on a n=2 ou bien n=1.
Encore, pour une suite {F.(s)} (=1, 2, ---) nommable (S, K,, K) de

fonctions, s'il existe une fonction f(x) nommable (EZ, K,), définie sur
Up(x) et telle qu'on ait

1°, k> f(p) entraine le(s)—Fk_._j(s)|<% (j=1,2,--) sur son do-

maine,

2%, f(O<Sf(p+D),

on dit que la suite {F,(s)} (k=1, 2, --) est convergente (Em, K,) uniformé-
ment sur son domaine. Puis, s’il existe une fonction g(x, y) nommable
(Em, K,), définite sur Up(x, ¥) et telle qu’on ait |F.(c)—F k(d)|<% pour
1 .

——_, on dit que
gk, ) d
la suite {F.(s)} (k=1,2,.-) est continue (En, K,) uniformément sur son
domaine. Dés lors, on a le

deux nombres ¢ et d de son domaine tels que [¢—d|<

Theoréme 6. Soit {F,(s)} (k=1, 2, --) une suite nommable (St, K,, K)
de fonctions définies sur Uintervalle fermé [a, bk, ou a et b sont nommables
(En, K,). Quand elle est convergente (E},, K)) uniformément sur son domaine
et continue (Ey, K,) uniformément sur son domaine, sa limite Zim F.(s) est

aussi continue (Ey,, K,)) uniformément sur son domaine.
Démonstration. D’aprés les suppositions, il existe les fonctions f(x)
et g(x, ) nommables (E}, K,), définies sur Up(x) et Uy(x, y) respective-

ment, et telles que k>f(p) entraine |F(s)—F,, ;(s)|<_ ; (j=1, 2, ---) sur

son domaine et que c€la, bk, d€la, bl et |c—d|< ﬂ%ﬁ entrainent
PO~ Fld)| <.
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Posons F(s)=lim F(s) et h(x)=g(f(3x)+1, 3x). D’aprés la définition,
E>oo
k> f(p) entraine |F,(s)—F(s)| g% et h(x) est nommable (E, K;). Or,
si 'on a k>h(p), c€la, blk, de[a, b]x et lc—d[<h—(1‘5) entrainent

IE@—E@RQ%,

ol ¢g=f(3p)+1, et on a

1 1
[ Fo(c)—F(c)| ég et |Fy(d)—F(d)| é—s—p-
D’ouy, on a

[F(e)—F(d)| = |F(c)—Fy(c)| +Fo(c) —Fy(d) | + | Fo(d) - F(d)| <;

et par suite, F'(s) est continue (E?, K,) uniformément sur son domaine,
c.q.f.d.

Or, étant donnée une suite {F,(s)} (k=1, 2, ---) nommable (S;, K,, K)
de fonctions définies sur l'intervalle fermé [a, b]g, ou a et b sont nom-

mables (E7, K,), on peut définir formellement une série i}F W(S) nommable
k=1

(St, K,, K) de fonctions. Prenons les sommes partielles G.(s)=F,(s)+
Fy(s)+ -« +Fy(s) (k=1,2,--©). De méme que les séries de nombres, la
suite {G.(s)} (k=1, 2, ---) de fonctions est nommables (S?, K,, K) ou bien
(S3, K,, K), suivant qu'on a #=2 ou bien #=1, et on dit que la série

iF (s) est convergente (ST, K,, K) sur son domaine, si la suite {G,(s)}
=

(k=1, 2, --©) de fonctions est convergente (S, K,, K) sur son domaine.
Alors, on a

lim Gy(s) = 31 Fyls)

sur son domaine, et sa somme iFk(s) est nommable (S7, K,, K) ou bien
k=1

(St K, K), suivant qu'on a #=m=2 ou non.
Encore, si la suite {G,(s)} (=1, 2, ---) de fonctions est convergente

(E7, K,) uniformément sur son domaine, on dit que la série 2F W(s) est

conver gente (En, K)) uniformément sur son domaine. Deés lors,k _on a le
Théoréme 7. Soient 2F W(8) une série nommable (S;,, K,, K) de fonc-

tions définies sur l’intervallszermé La, bk, ot a et b sont nommables (E2, K,),

et fj ¢, une série nommable (En, K,) de nombres positifs, qui est convergente
k=1
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bien (S%, K,, K) sur son domaine, suivant qu'on a #==2 ou bien n=1,
c’est-a-dire,

Lemme 1. Soit F(s) une fonction nommable (S, K,, K) et définie sur
Uintervalle fermé [a, blk, o a et b sont nommables (E%, K,)). Si elle est
différentiable (E%, K) sur son domaine, elle est continue (S¢, K,, K) ou
bien (S3, K,, K) sur son domaine, suivant qu'on a n=2 ou bien n=1, et
sa dérivée F'(s) est nommable (St, K,, K).

Or, on a le

Théoréme 1. (de M. Rolle). Soit F(s) wune fonction nommable
(S», K,, K),définie sur lintervalle fermé [a, blx, ou a et b sont nommables
(Ez, K,)), et telle quon ait F(a)=F@®)=0. Alors, si elle est continue
(E?, K,) ou bien (E3, K,) uniformément sur son domaine, suivant qu'on a
n=2 ou bien n=1, et différentiable (E*, K,) a chaque point de =(K,) qui
appartient a [a, blg, il existe un nombre ¢ nommable (E", K,) ou bien
(E?, K,) de [a, blx tel qu'on ait

1°, elle est différentiable (E?, K,) a c,
2°, Fiec)y=0 et a<c<b,
sutvant qu'on a n=2 ou bien n=1.

Démonstration. D’aprés la supposition, s’il existe un point ¢’ de
[a, b]x tel qu'on ait F(c’)==0, on a bor. sup. F(s)=4=0, ou bien bor. inf.

ass<b a<s=b

F(s)==0. Or, sil’on a bor. sup. F(s)==0, il existe un nombre ¢ nommable

a<s<b
(E*, K,) ou bien (E?, K,) de [a, b]x tel qu'on ait F(c)= bor sup F(s),
d’aprés le théoréeme 2 de §2. Dés lors, on a

Fle+h) —Fe) < 0 ou bien =0
h — == b
suivant qu’on a #_>0 ou bien %<0 et donc, on a F’(c)=0.
De meéme, si 'on a bor. inf. F(s)==0, on a bor. sup. (—F(s))=1-0 et

a<s<b a<s<b

donc, il existe un nombre ¢ nommable (E”, K,) ou bien (E?, K, de
[a, b]x tel qu’on ait F’(c)=0 et a<c< b, c.q.f.d.

Corollaire (Théoreme de la valeur moyemme). Si une fonction F(s)
nommable (Sy, K,, K) définie sur Uintervalle fermé [a, blx, ou a et b sont
nommables (Ey, K,), est continue (Eyn, K,) ou bien (E}, K,) uniformément
sur son domaine et différentiable (Ey, K,) a chaque point de =(K,) qui
appartient a {a, blg, il existe un nombre 6 nommable (E*, K)) ou bien
(E?, K,) tel quon ait 0< 0<_1 et

F®) = Fla)+F'(a+0(b—a))(b—a), (1)
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(Em,K). Alors, si l'on a |F(s)|<c, (k=1, 2, --+) sur son domaine, la série

Em]Fk(s) est conver gente (En, K,) uniformément sur son domaine.
E=1

§3. La differentiation

6. Soient F(s) une fonction nommable (S?, K,, K), finie et définie
sur 'intervalle fermé [a, 0]k, ot @ et b sont nommable (E?, K,) et ¢ un
nombre réel de son domaine. Dés lors, on dit que F(s) est différentiable
(E®, K,) a ce point ¢, s'il existe une fonction f(x) nommable (EZ, K,(c)),

définie sur Uy(x) et telle que cl<f(p) et s €la, bl (k=1,2)
entrainent -
E(s)) —F(c) _ F(s,) —F(c) 1
S,—¢C S,—¢C <3 D

et que F(s) est différentiable (Sy., K,, K) sur son domaine, s’il existe une
fonction f(x, s) nommable (Su, K, K), définie sur Up(x) D Uy, 5, (s) et

telle que s, €[a, blx et 0<|s,—s|< ——— (k=1, 2) entrainent

f(ﬁ>
F(s) —F(s) _F(s,)—F(s)
} ) $;—S <P. (1)

D’aprés la définition, si F(s) est différentiable (E7, K,) a ce point c,
on a
lim ﬁl{fﬁéi@ -

h>0

F (o,

et F’(c) est nommable (EZ, K,(c)). De méme, si elle est différentiable
(S?, K,, K) sur son domaine, on a

im F(s+h}Z~F(s)

h>0

= F'(s)

sur son domaine et F’(s) est nommable (S?, K,, K). Encore, il existe
une fonction f(x, s) nommable (Sp, K,, K), définie sur Upn(x) P U, ,(s)

et telle qu’on ait (1). D’ou, 0<|bl<f(p — entraine

F(s+h)—F(s) 1
ST <o

1
et donc on a |F(s+h)— F(s)l(?, si 'on a lhl<m et g(p, s)

=f(p, s)+pLIF'(s)|]1+p+1. Par suite, F(s) est continue (S?, K,, K) ou
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sur Uintervalle fermé [a bk, ot a et b sont nommables (E;, K,), continue
(E%, K,) ou bien (E%, K,) uniformément sur son domaine, suivant qu’'on a
n=2 ou bien n=1, et différentiable (E?, K)) ¢ chaque point de =(k,) qui
appartient a [a, blx. Alors, si lona F'(s) >0 pour chaque point de =(K,)
qui appartient a [a, blx, F(s) est monotone croissante au sens strict, c’est-
a-dive, pour deux points ¢ et d de |a, blk, tel que c<_d, on a F(c)< F(d).

7. Or, pour discuter la différentiabilité des séries nommables
(S, K,, K) de fonctions, posons les définitions. Soit ile(s) une série
nommable (S%, K,, K) de fonctions définies sur un méi;le domaine. Des
lors, on dit que ki:]le(s) est différentiable (E2, K,) terme en terme a un

point ¢ de son domaine, s’il existe une fonction f(x, y) nommable

(En, K,(c)), définie sur Uylx,y) et telle que |[s, c|<f(p’ 9

sp€la, blx (k=1, 2) entrainent

Fy(s)=Fye) _Fy(s:)=Fyle)| - 1
$,—¢ S,—C q

et que 2F W(s) est différentiable (S, K,, K) terme en terme sur son
domainek—s’il existe une fonction f(x, y, ) nommable (S"", K,, K), définie
sur Un(x, ) @ U5 (s) et telle que 0<|s,—S|< m—— et sp€la, bl
(=1, 2) entrainent

Fy(s)) = Fp(8) _Fy(s:)—Fy(s)
' B $,—S S,—S < (1 '

f(p’ q,

Dés lors, on a le

Théeoréme 4. Soit f}Fk(s) une série nommable (Sy, K,, K) de fonc-
k=1

tions définies sur [intervalle fermé [a, blx, on a et b sont nommables
(E%, K,) et telle qu'on ait

1°, i F.(s) est différentiable (E%, K,) terme en terme sur son domaine ,
=1

2°, iF +(S) est convergente (E},K,) uniformément sur [a, b]x ,
=1

3°, ijk(a) est convergente (E%, K,).
=1 -
Alors, la série D>)F\(s) est convergente (E}, K)) uniformément sur son
=y

domaine et différentiable (E%, K,) ou bien (E3, K,) sur son domaine, sui-
vant quwon a n=2 ou bien n=1, De plus, on q
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suivant quon a n=2 ou bien n=1.
En effet, prenons la fonction G(s)=ps-+gq telle qu’on ait

F(b)—F(a) _ bF(a)—aF(b)
Tb—a 1T T g

et posons H(s)=F(s)—G(s). Elle est nommable (S2, K,, K) et on a H(b)
=H(a)=0. De plus, elle est continue (E?, K,) ou bien (E}, K,) uni-
formément sur son domaine et différentiable (E", K,) a chaque point de
7(K,) qui appartient a [a, b]x. Donc, d’aprés le théoreme 1, il existe
un nombre ¢ nommable (E®, K,) ou bien (E%, K,) de [a, b]x tel qu’on ait

P =

1°, elle est différentiable (E?, K,) a c,

2°, H(c)=0 et a<c<b.
Or, on a H'(s)=F’(s)—p et par suite, on a p=F'(c). D’ot, si 'on pose
0 = Z:Z, il remplit notre demande, c.q.f.d.

Encore, en se servant du théoréme 1, on peut démontrer le

Theoréme 2. Soit F(s) une fonction nommable (Sh, K,, K), définie
sur Uintervalle fermé [a, blg, ot a et b sont nommables (E%, K,), continue
(E2, K)) ou bien (E}, K,) uniformément sur son domaine, suivant quon a
n=2 ou bien n=1 et différentiable (E*, K,) a chaque point de =(K,) qui
appartient @ [a, blx. Alors, pour qu'elle est constante sur son domaine, il
faut et il suffit qu'on ait F'(s)=0 sur chaque point de =(K,) qui appartient
a [a, b]k.

En effet, il est évident que la condition donnée est nécessaire.
Puis, supposons que F(s) remplit la condition donnée. Alors, pour un
nombre % positif et nommable (E}, K,) tel qu'on ait z<_b—a, on a

Fa+h) = F@)+F'(c)h =F@) et a<c<a+h

pour un nombre ¢ nommable (E, K,). Or, d’aprés la supposition, F(s) est
continue sur son domaine. D’ou, on a F(s)=F(a) sur son domaine, c’est-
a-dire, la condition donnée est suffisante, c.q.f.d.

Corollaire. Soient F(s) et G(s) deux fonctions nommables (Si, K,, K),
définies sur Uintervalle fermé [a, blx on a et b sont nommables (Ey, K,),
continues (Ey, K)) ou bien (E3, K,) uniformément sur son domaine, suivant
quon a n=2 ou bien n=1 et différentiable (E}, K,) a chaque point de
w(k,) qui appartient & [a, blgx. Des lors, si l'on a F(s)=G(s) sur chaque
point de =(K)) qui appartient a [a, blx, on a F(s)=G(s) sur son domaine.

Theoréme 3. Soit F(s) une fonction nommable (Sy, K,, K), définie
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IF) = STFUs).

Démonstration. Posons S,(s)= Zk] F(s) et Sk(s): Zk}F (s) (k=1, 2, --+).

D’aprés la supposition, il existe deux fonctions f,(x) (=1, 2) nommables
(E?,K,) définies sur Upy(x) et telles qu’on ait

lépfkk<s>—§,<s>f<-;— h=1,2 ), si p>>£(0),
lgﬁm—&ww<§ h=1,2-),si p>>£0).

Alors, si un point s de [a, b]x est nommable (E, K,), on a

[S, Fk(S)__Sp(S) [=I[S,(@)—S,(a)]
+ls—allS, fa+0(s—a)—S,a+0(s—a)|

~livo-wl-Lasv-a k=12,
q q q

ot p>f(q)+f.(q) et 0 est un nombre réel et nommable (E, K,) tel que
0< 0< 1. Or, d’aprés la condition 1°, Fy(s) (=1, 2, ---) sont continues

sur [a, b]x et donc, i,F «(S) est convergente (EZ, K,) uniformément sur
son domaine. -

Puis, considérons la différentiabilité de séries ZF,@(S), Posons
S(s)= ﬁ;F W(s) et §(s)= i}F +(s). Pour un nombre ¢ nomkr;lable (E, K,) de
[a, b],:v,— on peut déﬁnirk_une fonction f(x y), nommable (EZ, K,) définie

sur Uy(x, y), et telle que 0<|s—c|< — 7 p——-~ et s€[a, b]x entrainent
Fp($)—=F8) _ 1 1
t T s—¢ F 2(C) < q

et donc, si I'on pose g(x, y)= ﬁ f(k, xy), on a
k=1

|SP(S) Sp(c) S ( )< 3) Fk(c) — Fl(c)

21 1 .
< =
zkgpq q’ si[s= c!<g(ﬁ,q)

Encore, g(x,y) est nommable (E:, K,) ou bien (E3, K,), suivant que
n=2 ou bien n=1,
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Puis, p>f.(q) entraine
l (Sp+k(c+h) _Sp(c"‘h)) - (Sp+k(c)—sp(c))[
= |Spealc+0R)—S,(c+0h)| lhl<—;— [kl (k=1,2,-),

ol /2 et & sont nommables (E, K,) et donc

S(c+h)—S(c) _S,(c+h)—S,c) <l
h B h q’

Encore, on a
S-S =2 si p>>fila).

. : 1 > 1
P te, si 1 , 2 g(p, 9)’
ar suite, si 'on a p_>f.(9)+1.(q) et |h|<g(1>, q) on a

‘S(c+h]z—$(_c)_§(c)l

= I S(c+h)—S(c) _S,(c+h)—S,(c)
= h h

N M}l,ﬁp@~§,,(c) +18,(e)—S(o) |
1,1,.1_3
YA A

et d’ou, S(s) est différentiable (E?, K,) ou bien (E%, K)) a4 ¢ et on a
S’(¢)=S(c), c.q.f.d.

8. Maintenant, nous considérons la différentiation d’ordre supérieur
de fonctions. Soit F(s) une fonction nommable (S?, K,, K) et définie
sur l'intervalle fermé [a, b]x, o a et b sont nommables (EZ, K,). Si
F(s) est différentiable (S, K,, K) sur son domaine, sa premiére dérivée
F’(s) est nommable (Siii, K,, K). Puis, supposons que sa k-iéme
dérivée F®(s) soit existante et qu’elle soit nommable (Spt:, K,, K).
Alors, si F(s) est différentiable (E7t:, K, sur son domaine, F%*(s)
est nommable (S7i¢1 K,, K). Donc, d’aprés l'induction mathématique,
on a le

Théoreme 5. Soit F(s) une fonction nommable (Sy, K,, K) et définie
sur lintervalle fermé [a, blx, ouw a et b sont nomwmables (Ey, K,). Quand
il existe sa k-iéme dérivée F®(s), elle est nommable (S*}:, K,, K).

§4. Les séries de Taylor

9, Pour discuter les séries de Taylor, nous considérons d’abord les
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series de puissances. Elles sont trés importantes dans le calcul infinité-
simal et définies en se servant des fonctions nommables (E, K;,). En
effet, étant donnée une fonction F(x) nommable (E, K,), définie sur
Un,(x) et dont les valeurs sont nommables (E, K,), on peut définir une

série i}F(k)sk de fonctions, oi s est une variable sur K. Elle est
k=0

désignée par P(F, s) et appelée une série nommable (S©, K,, K) de puis-
sance. Encore, F(k) est appelé le coefficient de s*, et designé souvent par
a,, b,, etc..

Or, d’aprés la définition, la suite {*\/[a,|} (k=1, 2, --), ot a,=F(k),
de nombres non négatifs est nommable (E®, K,) ou bien (E%, K,), suivant
qu'on a #=2 ou bien n=1, et donc son rayon de convergence

1

lim ™/ |a,|

E>oo
est infini ou bien fini et nommable (E”*, K,) ou bien (E®, K,), suivant
qu'on a #=2 ou bien n»=1. Maintenant, nous supposons que R soit
positif. Prenons un nombre r rationnel, positif et tel que < R. Deés
lors, on a lim */|a,|< »™' et par suite, pour un nombre 7’ rationnel,

koo

positif et tel que »<#’<_R, il existe un nombre naturel N tel qu'on ait

kN a,| < %7, c’est-a-dire, |a,|7’*< 1 (k<N). Dou, silona |a|<7, ona

ast<lal(5) =(2)" k=,

et, pour une fonction

_ [log x+1log 7’ —log (r’—r)]
S = [ log 7’ —log» +N,

k> f(p) entraine
IS(F) k’ S)_S(F) k+]7 S)l<% (j: 1) 2’ ”'))

x
ou S(F, x, 8)= Sla,s*. Doy, on a le
k=0

Lemme 1. Supposons qu'on ait R==0. Alors, pour un nombre ration-
nel v tel que 0<r<_R, la série de puissances P(F, s) converge uniformément
(E%2, R) sur Uintervalle [ —r, +7]k.

D’ot, on a le

Théoréme 1. Si le rayon de convergence R d’une série de puissances
P(F, s) nommable (S, K,, K) est aussi nommable (E%, K,), elle représente
une fonction nommable (S, K,, K) ou bien (S3, K,, K) sur lintervalle
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ouvert (—R, R)k, suivant qu'on a n=2 ou bien n=1.

Maintenant, nous considérons les opérations élémentaires sur les
séries de puissances. Pour deux fonctions F(x) (k=1, 2) nommables
(E?, K,), définies sur Uy(x) et dont les valeurs sont nommables (E}, K,),
considérons les séries de puissances P(F,, s) (k=1, 2) dont le rayon de
convergence est R,. D’aprés la définition, on a

P(Fl’ S):tP(sz S) = P(FI:I:F27 3)7
cP(F,, s) = F(cF,, s), —% P, s) = PG, 3),

oll ¢ est un nombre de #(K,)) et G,(x)=(x+1)F,(x+1). D’ol;, on a le

Lemme 2. Si /les séries de puissances P(F,, s) (k=1,2) sont nom-
mables (S, K,, K), la somme, la différence, le produit par un nombre réel
et nommable (E%, K,) et la différentiation de ces séries sont aussi nommables
(S, K, K).

Encore, on a le

Théoréme 2. Si les séries de puissances P(F,, s) (k=1, 2) sont nom-
mables (S:, K,, K), le produit P(F,, s)P(F,, s) est aussi nommable
(S, K,, K) ou bien (S}, K,, K), suivant qu’on a n=2 ou bien n=1.

En effet, si I'on pose

Gl = SIF() Fulk—J),

G(x) est nommable (E®, K,) ou bien (E%, K,) suivant qu’on a =2 ou
bien n=1, d’aprés le lemme 1 de §1. Donc, P(G,s) est nommable
(Sr, K,, K) ou bien (S}, K,, K) suivant qu'on a =2 ou bien n=1, et
on a P(G, s)=P(F,, s)P(F,, s), c.q.f.d.

Maintenant, nous considérons les séries de Taylor.

Théoréme 3. Soit F(s) une fonction nommable (St, K,, K) définie
sur lintervalle fermé |a, blg, ow a et b sont nommables (E:, K,) et telle
que sa k-iéme dérivée FP®(s) (k=0,1,2, ---, p—1) soient différentiables
(S2, K,, K) sur son domaine. Si sa p-iéme dérivée FP(s) est continue
(En, K,) ou bien (E3, K,) uniformément sur son domaine et différentiable
(E%, K)) @ chaque point de =(K)) qui appartient a [a, blg, il existe un
nombre 0 nommable (E", K) ou bien (E?, K,) suivant qu'on a n=2 ou
bien n=1 et tel que 0< 0<_1 et
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F@) = 31 5 FP@)b-a)"+R,,

1
1 (1)

(p+D!

Démonstration. Posons

R, = F (@4 0(b—a)(b—a)*™ .

G@:F@—ﬁ%ﬂwmmwh
k=0 .

Elle est nommable (S?, K,, K) et différentiable (E?, K,) a chaque point
de 7(K,) qui appartient a [a, b]x. Or, on a

G'(s) = ;—,1 Fo(s)b—s)?,

et donc, si 'on pose
(b—s)?

H(s) = G(s)— b—ay?

G( ),

ona H(a)=H(b)=0. De plus, elle est continue (E?, K,) ou bien (E%, K,)
uniformément sur son domaine et différentiable (E}, K,) a chaque point
de =(K,) qui appartient a [a, b]x. D’ou, d’aprés le corollaire du théoréme
1 de §3, il existe un nombre ¢ nommable (E", K,) ou bien (E?, K,) tel
que 0<0< 1 et H'(s+8(b—a))=0. Des lors, on a (1), c.q.f.d.

Corollaire 1. Soit F(s) une fonction nommable (Si, K,, K), définie
sur Uintervalle fermé | —a, alx, on a est positif et nommable (Ep, K,) et
telle que sa k-iéme dérivée F®(s) (k=0, 1, 2, .-, p—1) soient différentiables
Sz, K,, K) sur son domaine. Si sa p-iéeme dérivée FP(s) est continue
(En, K)) ou bien (E3, K)) uniformément sur son domaine et diférentiable
(E%, K)) a chaque point de =(K,) qui appartient ¢ [ —a, alx, il existe un
nombre 0 nommable (E", K,) ou bien (E?, K,) suivant qu'on a n=2 ou bien
n=1, tel que 0< 0< 1 et que

1

G o9,

F(s) = 31 FPO) s +R,, R, =

Corollaire 2. Soit F(s) une fonction nommable (Sy, K,, K), définie
sur Uintervalle fermé [ —a, alg, ou a est positif et nommable (E?, K,).
Alors, s'il existe umne fonction G(x,s) nommable (St, K,, K) définie sur
Un, (%) @ U, 53 (5) et un nombre naturel M, tels qu'on ait

1°, G(0, s) = F(s), et G(x, s) est différentiable sur son domaine ,

2°, Glk+1,8)=Gk,s) (=012, ),

3°, |G(x, s)|<M sur son domaine,
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la série de puissances F(G,(x, 0),s), ou G,(x, s)=% G(x, s), est convergente

(En, K,)) ou bien (E3, K,) uniformément sur son domaine, suivant qu'on a
n=2 ou bien n=1 et on a F(s)=F(G,(x, 0) ,s) sur son domaine.

§5. L’intégrale de Riemann.

10. Maintenant, nous considérons l'intégrale de Riemann des fonc-
tions nommables (S, K,, K). Soit [a, b]x l'intervalle fermé ot a et b
sont nommables (E%, K). Alors, une suite finie <c,, ¢,, -, c,> de points
de [a, b]x telle que c,=a,c,=b et ¢, ,<c, (k=1,2, -, p), est appelée
une division de [a, bk, ¢, son point de divison et p son ordre. Encore,

si ¢, (=0, 1, ---, p) sont nommables (E”, K,), on dit qu'elle est nommable
(Em, K.
Puis, pour deux divisions A,=<c{, ¢{¥, -+, c> (k=1, 2) de [a, blx,

si chaque point de A, appartient a A,, on dit que A, est une sous-division
de A, et on désigne ce fait par A,CA,, ou bien A ,2A,. Encore, si
'on a A,C A, et A,CA, en méme temps, on pose A,=A, et on dit que
ces divisions sont égales I'une a l'autre. Encore, pour une division
A=<c,, ¢, ,c,> de [a, bk, on pose

|A, = bor. sup. (CI—CO) Co—Cyy *t ycp_cp—l) ’

et on l'appele le norme de A. D’aprés la définition, A,2A, entraine
A ]=]4,].

Or, soit F'(s) une fonction nommable (S?, K,, K) et définie sur
Iintervalle fermé [a, b]gx, ol @ et b sont nommables (E?, K,). Alors,
pour une division A=<c,, ¢,, -+ ,c,> de [a, b]x, posons

» »
2, = ;Mk(ck_ck—l) et o, = ;mk(ck_ck—l) )

ol M, et m, désignent respectivement la bornée supérieure et celle in-
férieure de F(s) sur [c,_,, ¢, ]x. Dés lors, on a

03 ,—o,=Mb—a),
ou M=bor. sup. (M,—m,). Encore, pour une suite <F'(d)), F(d,), ---, F(d,)>

<k>
de nombres réels telle qu'on ait d,€[c,_,, ¢c.] (k=1, 2, ---, p), on pose

L = z Fd)(ch—cy)

et appelons-la la somme moyenne de F(s) sur [a, blx. Dés lors, on a
0'4§14§24-
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Or, s’il existe une fonction f(x) nommable (E7, K,), définie sur

Un(x) et telle que [A,|<——— 7 ( ) (k=1, 2) entraine

L= Lal< L,
on dit que F'(s) est intégrable (Er:, 0) sur [a, bk, et dans ce cas, il
existe un nombre réel 7 tel que |[A|<—— 7 ( ) entraine lI—I,fg%. Cest

Uintégrale définie de Riemann de F(s) sur [a, b]x, C’est-a-dire,

b
1=S F(s)ds.
Or, on a le

Theoreme 1. Quand wune fonction F(s) nommable (S?, K,, K) et
définie sur lintervalle fermé [a, blx, o a et b sont nommables (E:, K,),

est intégrable (E7, K)) sur [a, blx, son Uintégrale définie (bF (s) ds est
nommable (E%, K,) ou bien (E}, K,), suivant quon a n=2 oumbz'en n=1.

Démonstration. Prenons une fonction @(x, y) nommable (E?, K,)
définie sur D= _L(x—y) N Uy,(x, y) et telle qu'on ait

1°, o, 0)=a,px,x)=0,

2°, o y—1) <ok,

et posons A,=<{p(k, 0), ¢k, 1), --- .ok, k)> (k=1, 2, ---). Alors, nous avons
une suite {A,} (k=1,2, ---) nomwmable (E?, K,) de divisions de [a, b].
Encore, quand elle remplit les conditions

307 Ak ; Ak+1 (k: 1) 2, '“) )

40, hm'Akl = O>

k>0

on dit que la suite {A,} (k=1, 2, ---) est régulicre.

Maintenant, supposons qu’elle est nommable (E?, K, et réguliére.
Alors, on voit sans peine que la suite {|A,|} (k=1, 2, ---) de normes est

nommable (E;, K,) ou bien (E}, K,), suivant qu'on a #=2 ou bien n=1,
et donc, il existe une fonction f(x) nommable (E., K,) ou bien (E}, K)),

définie sur Uy(x) et telle que k& _>f(p) entraine IA,Z]<%.

Puis, posons

Px, y) = %(((p(x,y—1)+¢(x, ) (y=1,2, - ,%)
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et
Ly, = 2 F ik, D@k, )= Pk, 1)

Alors, la suite {I,,} (k=1,2,---) de nombres réels est nommable (E3}, K,)
ou bien (E3, K,), d’aprés le lemme 1 de §1.

Or, comme F(s) est intégrable (Ey, K,) sur [a, b]k, il existe une
fonction g(x) nommable (E?, K,), définie sur Up(x) et telle que |[A®|

< g}p) (k= 17 2) entraine IIA’_IA” l <%‘ , et d’Ofl, Si 1>0n pose h(x)

= kz] f(g(k)), elle est nommable (E%, K,) ou bien (E3, K,), suivant qu’on
k=1

a n=2 ou bien z=1. Encore, on a

1°, k> h(p) entraine l14—14k+,-|<% (j=12-).

En effet, k+j >k=h(p) = f(g(p)) entraine |Ak[<z(1;) et [A,.,l
1 1 .— e
<M DOIIC, on a IIAk_IAk+j|<? (]—]_, 2, ).

2°% mMPp)<Wp+l) (p=1,2,-).

Dou, la suite {I,} (k=1,2,:-©) de nombres réels est convergente
(E, K,) ou bien (E%, K,), et par suite, la limite lim I,, est nommable

b k>co

(E?, K,) oubien (E}, K), Or, on a S F(s) ds=1lim I, et donc, I'intégrale
a k>

définie de Riemann de F'(s) sur [a, b]x est nommable (E?, K,) ou bien

(E%, K,), suivant qu'on a =2 ou bien =1, c.q.f.d.

Théoreme 2. Quand wune fonction F(s) nommable (St, K,, K) et
définie sur Uintervalle fermé [a, bk, ou a et b sont nommables (E%, K,), est
intégrable (En, K) sur [a, blg, son intégrale définie Sb F(s)yds est nommable
(E3it, K). ’

Démonstration. De méme que la démonstration du théoréme 1,

prenons une suite {A,} (k=1,2,.--) nommable (E?, K, et réguliére de
divisions de [a, b],. Il existe alors une fonction nommable (Ej, K,)f(x)

définie sur Uy(x) et telle que k_>f(p) entraine IAk|<—11§~.

Puis, prenons la suite {I,} (k=1,2,.--) des sommes moyennes.
Comme F(s) est intégrable (EZ, K,), il existe une fonction g(x) nommable

(Er, K,), définie sur Uy(x) et telle que IA<’”I<§(17)) (k=1, 2) entrainent
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]IA/—TA//]<%, et f(g(x)) est au plus nommable (Enmin, K)). Donc, la

b
suite {I,} (k=1,2, ) est convergente et sa limite S F(s)ds est nom-
mable (E%ii, K,), c.q.f.d.
Theoréme 3. Soit F(s) une fonction nommable (Sy, K,, K) et définie
sur Uintervalle fermé [a, bk, ou a et b sont nommables (Ey, K)). Alors,
quand elle est continue (E%, K) ou bien (E3, K,) uniformément sur son

domaine, elle est aussi intégrable (E*, K,) ou bien (E%, K,) sur son domaine,
sutvant qu'on a n=2 ou bien n=1.

Démonstration. D’aprés la supposition, il existe une fonction f(x)
nommable (E?, K,) ou bien (E3}, K,), définie sur Uy(x), et telle que

cela blx, d€[a bl et c— dl<f(p) entraine |F(c)—F(d)|<l.

Par suite, pour une division A de [a, ]k telle qu'on ait |A|< 7 ( k

on a
z‘,—@g%(b—m et o =L =5,

ou =, o, et I, sont définies pour la fonction F(s).
Puis pour deux divisions A, (k=1,2) de [a, b]x telles qu’'on ait
[A, < - (k=1, 2), prenons une sous-division A4, telle que A,2A,

f (p)
(=1, 2). Alors, on a

IIAI_IAZI§1241*042| + IEAZ—O-AII
=34 —04l +loy—0s|+ |0y — 0
+ 2, =0l + los—0u,l + IG‘Aa_O‘AII

=3|24—0, | +3|2,—0,|= }, (b—a),

et par suite, |A k|<f(Np) (k=1, 2), ot N=[6(b—a)]+1, entraine |I, —L,|

<;— Donc, F(s) est intégrable (E7, K) ou bien (E}, K,) sur son
domaine, suivant qu’on a #=2 ou bien n=1, c.q.f.d.

11. Puis, nous discutons l'intégrale indéfinie de Riemann des fonc-
tion nommables (S, K,, K). Si une fonction F(s) nommable (S?, K,, K),
définie sur l'intervalle fermé [a, ]k, ol @ et b sont nommables (E;, K,),
est intégrable (E;, K, sur son domaine, elle est intégrable (E%, K,(c))
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sur [a, c]x, oit ¢ est un point arbitraire de [a, b]x. Dés lors, on a
I'intégrale indéfinie de Riemann de F'(s), c’est-a-dire, S F(s)ds. Désignons-
la par G(s). Elle est définie sur [a, b]x. D’aprés la supposition, il existe
une fonction f(x) nommable (E7, K,), définie sur Uy(x) et telle que |A,|

< - f( ) (k=1, 2) entrainent

1141—1,2|<%,

ou I,, désignent les sommes moyennes de F(s) sur [a, b]x. D’ou, sil'on
pose

A(ky S) = <Ck0(s) ’ Ckl(S) y " Ckk(s) > (k = 1’ 21 “'))

ol Cx;(8)= a+ (s a) (7=0,1, .-, k), et

27—1 )s“a _
Ik, 9 = 2 F(a+20 L (-a) S0 (e=1,2, ),
la suite {I(k s)} (k=1,2,.--) des sommes moyennes est nommable
(S™ K,, K) ou bien (S%, K,, K), suivant qu'on a #=2 ou bien n=1.
De plus, on a

Ik, 5)—I(i, )| <~]~15 ,

si |A(, S)|<f(p) et |A(J, s)l<f(p) c’est-a-dire, k>f(p)(s—a) et

i>f(p)s—a). Dou, si f(x) est nommable (E%, K,), la suite {I(%, s)}
(=1, 2, ---) est convergente (E%, K,) ou bien (E}, K, uniformément sur
[a, ]k, et donc, d’aprés le théoréme 5 de §2, G(s) est nommable
Sz, K,, K) ou bien (S%, K,, K), suivant qu'on a #=2 ou bien n#=1.
D’ou, on a le

Theoreme 4. Si wune fonction F(s) nommable (St, K,, K) et définie
sur Uintervalle fermé [a, bl o a et b sont nommables (E?, K,), est inté-
grable (E%, K, sur son domaine, son intégrale indéfiniec de Riemann

SSF(S) ds est définie sur [a,blx et nommable (St, K,, K) ou bien
(S%, K,, K), suivant qu'on a n=2 ou bien n=1.

Corollaire. Si wune fonction nommable (S, K,, K) et définie sur
Uintervalle fermé [a, bk, on a et b sont nommables (E;, K,), est intégrable
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sur son domaine, son intégrale indéfinie de Riemann S F(s)ds est définie

sur [a, blx et nommable (Stii, K,, K).
Dés lors, on a le

Theoréme 5. Quand wune fonction F(s) qui remplit les conditions
données dans le théoréme 4, est bornée sur [a, blx, son intégrale indéfinie

S F(s)ds est continue (E}., K)) uniformément sur son domaine et différ-

entiable (Ey, K,) a chaque point dont F(s) est continue (E%, K,).

§6. Les fonctions de plusieurs variables.

12. Déja, nous avons discuté les fonctions nommables (S, K,, K)
d’une variable et obtenu divers resultats fondamentaux, mais nous pouvons
les prolonger sur celles nommables (S, K,, K) de plusieurs variables et
telles considérations sont aussi importantes dans le calcul infinitésimal.
D’otll, nous les envisageons dans la suite. En correspondant aux inter-
valles qui sont les domaines des fonctions d’une variable, les rectan-
gulaires fermés sont ceux des fonctions de plusieurs variables. Ils sont
déterminés complétement par ses points extrémités, c’est-a-dire, pour les
nombres réels a, et b, (k=1,2, .-+, p) tels qu'on ait a,< b, (k=1,2, ---, p),

le domaine des points {s,, s,, **:,S,>, ou s, (k=1,2, .-+, p) sont les vari-
ables sur K, tels qu’on ait a: <s,<b, (k=1, 2, ---, p), est un rectangulaire
fermé et il est désigné par Q(a,, a,, ---,a,; b, b,, -+ ,b,). Alors on peut

généraliser les théorémes 1-3 de 82 pour les fonctions de plusieurs
variables. Par exemples, on a les

Theoreme 1. Soit F(s,, s,, -+ ,S,) une fonction nommable (Si, K,, K),
définie sur le rectangulaire fermé Q(a,, a,, -+ Ay by, by, b)), 00 ay et
b, (k=1, 2, -+, p) sont nommables (Ey, K,)). Alors, quand elle est continue
(Er, K,) ou bien (E}, K,) uniformément sur son domaine, suivant qu’on a
n=2 ou bien n=1, il existe les nombres t,(c,) (k=1, 2, ---, p) nommables
(E*, K,) ou bien (E*, K,) (nommables (E,, K;)) ou bien (E,, K,)), tels qu’on
ait  F(c,, T, -+ ,Cp) =bor. sup. F(s,, ,, =+ ,SHF(C,, €, =+, Cp) = bOr. inf.
F(s,, 8, 8,) et que F(t,, T, ,CF(C, ¢, ,C,)) soit nommable
(E?, K,) ou bien (E%, K,), suivant qu’on a n=2 ou bien n=1.

Théoreme 2. Soit F(s,, s,, - ,S,) une fonction nommable (S}, K,, K),
définie sur le rectangulaire fermé Q(a,, a,, - ,a,; b,, b,, -+ ,b,), ou a, et
b, (8=1,2, .-, p) sont nommables (E", K)) et continue (E?, K) ou bien
(E3, K,) uniformément sur son domaine, suivant qu'on a n=2 ou bien n=1.
Alors, s'il existe les nombres c, et d, (k=1, 2, -, p) nommable (E:, K,
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tels que <c,, ¢,, -+, ¢,y et <dy, d,, - ,d,> appartiennent & son domaine et
guw'on ait F(c,, ¢, ,c,) >0 et 0>F(d,, d,,-,d,), il existe les nombres
e, (k=1,2, -+, p) nommables (E%, K) ou bien (E%, K, tels quon ait
Fe,, e,, -+ ,e,)=0, suivant qu’'on a n=2 ou bien n=1.

Or, sur la nommabilité des fonctions implicites, on a le

Theoréeme 3. Soit  F(s,, s,, -, S,, 1) une fonction nommable
(St, K,, K), définie sur le rectangulaire fermé Q(a,, ay, - ,a,, Gpi1;
by, by, ,b,, b,), o a, et b, (k=1,2,---,p, p+1) sont nommables
(E, K,). Quand elle est continue (E*, K,) ou bien (E3, K,) uniformément
sur son domaine, sutvant qu'on a n=2 ou bien n=1, et F(s,, S;, =+, Sy, t)
=0 définit une fonction G(s,, s,, - ,s,) dont le domaine est le rectangulaire
fermé Q(a,, a,, -+, a,; b, b, ,b,), elle est aussi nommabdle (S;, K,, K)
ou bien (S%, K,, K) suivant qu'on a n=2 ou bien n=1.

Démonstration. Pour la simplicité, considérons le cas ou p=1.
Alors, on peut supposer, sans perdre la généralité, qu'on ait @,=0 et
b,=1 (=1, 2).

Dés lors, considérons d’abord le cas ou F(s, £)=0, F(s, 0)==0 et
F(s, 1)==0 pour chaques points s et # de [0, 1]x. D’aprés la supposition,
il existe une fonction f(x) nommable (E}, K,) ou bien (E}, K,), définie

sur UN(x) et telle que ak € [0’ 1]1(1 bk € [0) 1]K (k: 1» 2)’ |a1~a2|<f"-_(l:b—)
et |b,—b,|< }‘(ipj entrainent

|F(a,, b)—Fla,, b2)|<f};.

Encore, il existe un nombre naturel N tel que bor. inf. F(s, 0)>%7.

Puis, désignons par A l'ensemble de tous les points <%, y, z,, z,> de
Ux(x, v, 2,, 2,) tels qu'on ait z,=1 ou bien z,=2, ¥z, et y<<z,. Il est
élémentaire (K) et donc

G(x, », 2., 2,) = pi7, (1)

oll u=p,(x, y, 2,) et p, est le u-iéme nombre prime, est nommable (E3, R).
En effet, p, est une fonction nommable (E}, R) de la variable x et
d’ou, p,, ol u=p,x,y z,), est aussi nommable (E%, R). Par suite,
G(x, v, 2,, 2, est nommable (E%, R). Puis, étant donné un ensemble E
de points <x, y> de Uy(x, ») tels qu'on ait x <<z, et y<z,, posons

LSS
G(E, z,) = 11 11G(x, y, 2,, Xz(x, y)+1).
r=1 y=1

Dés lors, E,2E, entraine G(E, ,2,) <G(E,, z,). Or, ’ensemble B, de tous



Fondement Constructif 91

les points <z,, z,> tels qu’il existe un sous-ensemble E de Uy(x, y) ayant
G(E, z,)=2z,, est nommable (E%, R).

Puis, quand un sous-ensemble E de Uy(x, y) remplit pour un nombre
naturel z, les conditions suivantes :

1°, <x,y>€E entraine x <z et y<z,
2°, <x,y>€¢E et y>1 entraine <z, y—1>€E,
30; <x’ 1>EE (x = 1) 2) °et ,21) ’

nous dirons que E est normal par rapport a z,. Alors, d’aprés la défini-
tion, I’ensemble B, de tous les points <z,, z,> de B, tels que, si l'on a
2,=G(E, z,), E soit normal par rapport a z,, est aussi nommable (E3, R).
Puis, pour un point <{x,y> de Up(x,y) tel quon ait x=z, et y<z,,
posons

G(x, », z2,, ) = Y s xr—1<zs<x,

1
=0, si z,s<x—1 ou bien x<_2z,s,
F(E, z,, s) = bor. sup. G(x, y, z,, s),
<%, ¥>CH
pour un ensemble normal E par rapport a 2z,. Pour un ensemble E
donné, elle est définie sur [0, 1], et nommable (S;, R, K).
Encore, pour un ensemble E normal par rapport a z,, si I'on a

1°, f(p<a,

2°, <x,y>€ E entraine F(i, 2 >>—

2, 1
nous dirons que F(E, z,, s) est positive par rapport a p. Alors, pour
chaque point {x, y> de E, si 'on a xX— 1<zls§_x et y—1=2z2¢t<y, on a
2l < Fs, t)— F( y )

et donc,
2, 2z

Ap |

<%—. Par suite, on a

f(p)

Fs, t) >F<~§—, zy)—; ~0.

1

Dés lors, on a F(E, z,, s)<_G(s) pour chaque point s de [0, 1]x.

Or, 'ensembls B, de tous les points <z,, z,, z,> de Ux(z,, z,, 2,) tels
qu’on ait

1°, <z, 2€B,,

2°, sil'on a 2,=G(E, z), F(E, z,, s) est positive par rapport a z,,
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est nommable (E;, K;) ou bien (E%, K,), suivant qu'on a #=2 ou bien
n=1. En effet, 'ensemble C de tous les points <%, y, 2,, 2;, 2> de
Un(x, y, 2,, 2,, 2,) tels qu'on ait

10, {2z, ». 2,)€B,,
o p(x ¥\l
2°, F<zl’ zl>§z, et flz)<az,
3°, si l'on a 2,=G(E, z,), p., o0 u=p,(x, y, 2,), est un facteur de z,,

est nommable (E,, K,) ou bien (E,, K,), suivant qu'on a #=2 ou
bien n=1. Or, <z, y, 2z, 2,, 2€C entraine x<z, et y<z,. Douy,
S(Un(z,, 25, 2,), C) est nommable (E?, K,) ou bien (E}, K,), (19, §3,
Chap II, [19]), et on a B,=B,P Upy(z,)nCS(Ux(z,, 2z, 2,), C). Dou, B,
est nommable (E”, K,) ou bien (E?, K,). Encore, il est un ensemble

infini. Puis, posons F(z,, z,, z,, s)=Dbor. sup. G(x, ¥, z,, s), ou
<%¥,y>€H

2,=G(E, z,). Elle est définie sur B,P[0, 1]x et nommable (E”, K,) ou
bien (E?, K). Or, on a G(s)=bor. sup. F(z,, 2,, z,, s) et donc, G(s) est

<z,,2,,2,>¢B
aussi nommable (E”, K;) ou bienl(ézi KZ), suivant qu’on a =2 ou bien
n=1.

De méme, on peut démontrer que G(s) est nommable (E,, K, ou
bien (E,, K,) et d’ou, elle est nommable (EZ, K,) ou bien (E%, K,), suivant
qu’'on a #=2 ou bien n=1.

Puis, considérons le cas général ou F'(s, ¢) est définie sur Q(0, 1; 0, 1).
Posons

Fy(s, t) = F(s, 1)*+(—1), si 1<:<2,
= F(s, t)?, si 0=st<1,
= F(s, 0°—¢, si —1<t<0,

sur @O, 1; —1,2). Elle est aussi nommable (S?, K,, K) et continue
(Et, K) ou bien (E3, K,) sur son domaine. Or, F,s, —1)==0 et
F(s, 2)4=0 sont vrais sur chaque point de [0, 1]x et F(s, )=0 détermine
la fonction G(s). Donc, G(s) est aussi nommable (S?, K,, K) ou bien
(S%, K,, K), suivant qu’'on a #=2 ou bien #=1, c.q.f.d.

13. De méme qu’on connait bien, nous pouvons définir la différen-
tiation partielle et l'intégrale de Riemann des fonctions de plusieurs
variables en modifiant les recherches de § 3-5. Par exemple, pour une
fonction F(s,, s,,:+,s,, t) nommable (S, K,, K) et définie sur un
rectangulaire fermé @, on dit qu'elle est différentiable (ST, K,, K) par-
tiellement sur son domaine par rapport a #, s’il existe une fonction
f(x, 81, S, ,D,, t) nommable (S, K,, K) définie sur Uy(x) D Q et telle
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que 0<[t—12,|<(f(q, Si) S5+, S,, 1)) (k=1, 2) entrainent

F(su Sy ot ysjn t)_F(sn Szs 5 Spy tx)
t—1,

_F(SI) Say "5 Spy t)—F(Sl, S25 *** » Spy tz) <l
—1t,

ou sy, S,, ", 8, th,y€Q (k=1,2). Encore, on peut définir I'intégrale de
Riemann

SbF(SU Spy 0t )Sp’ t) dt

pour une fonction F(s,, s,, -+, s,, {) nommable (S, K,, K) et définie sur
un rectangulaire fermé @ dont la variable ¢ parcourt sur lintervalle
fermé [a, b]x. Or, on a le

Theoréme 4. Soit  F(s,, S,, " ,S,, }) une fonction nommable
(S, K,, K) définie sur le rectangulaire fermé Q(a,, a,, - ,a,, @y by b

by, 0,0, 0w a, et b, (B=1,2,-,p, p+1) sont nommables (Ey., K,).
Quand elle est continue (E?, K)) ou bien (E}, K, wuniformément sur son
domaine, suivant qu'on a n=2 ou bien n=1, la fonction

G(S“ Szy 00t )Sp) = S p+1F(31, Say 5 Spy t) dt

est définie sur le rectangulaive fermé Q(a,, a,, - ,a,; b, b,, -+ ,b,), nom-
mable (St, K,, K) ou bien (S%, K,, K), et continue (E:, K)) ou bien
(E3, K,) uniformément sur son domaine, suivant qu'on a n=2 ou bien n=1.

Démonstration. De méme que le cas du théoréme 3 de §5, on peut
démontrer que G(s,, S,,+,s,) est nommable (Si, K,, K) ou bien
(S%, K,, K).

Puis, considérons la continuité de G(s,, s,,:+,s,). D’aprés la sup-
position, il existe une fonction f(x) nommable (E?, K, définie sur Up(x)
et telle que, pour deux points <{c{”, ¢§”, -, ¢S, ¢¥1> (j=1,2) de son

domaine, |c,,—c2’|<f( ) (k=1, 2, ---, p, p+1) entrainent
,F(Ci, Cé, ce )CZIU p+1) F(Cl ’ CZ y °°° ’ p+1)'<—

D’oli, pour deux points <c{”, c¢§’, .-+ c<”> (=1, 2) du domaine de

G(s,, s,, -, $,) tels qu'on ait lc,,—c,,’|<f( ) a

IF(Ci’ Cé, o p’ t) F(C1 ’ 02 ,"',C;,’, t)|<_;"
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et donc, on a

[G(ct, c2,,c)—Glct!, ¢y, -, cx)]

2p+1

b

= (7P, ey D=F(, oy clf, B)ldE
1

g —q— 'apﬂ“bpﬂl-

Dou, G(s,, s,,-,s,) est continue (EZ, K;) ou bien (E3, K,) uniformé-
ment sur son domaine, suivant qu'on a #=2 ou bien n=1, c.q.f.d.

Or, en se servant de ces théorémes, on peut démontrer l'existence
de diverses fonctions. En effet, le domaine ,(K,, K) de fonctions
déterminés par les conditions :

1°, une fonction F(s,, s,, - ,s,) définie sur un rectangulaire fermé
Qa,, a,, - ,a,; b, b, - ,b,), ou a, et b, (k=1,2,---,p) sont
rationnels, et donnée en effectuant 'addition+ et la multiplica-
tion, sur les variables s, (k=1, 2, -+, p) et les nombres de K,
appartient a Y(K,, K),

2°, si F et G appartiennent a <(K,, K) et sont définies sur un
méme rectangulaire fermé @, la somme F+G et le produit FG
appartient aussi a J(K,, K),

3°, quand une fonction F(s,, s,,,Ss,, t) de F(K,, K) définit une
fonction G(s,, s,,:+,s,) implicitement, c’est-a-dire, F(s,, s,
,*** 5,85, 1)=0 détermine précisément une fonction G(s,, s,,**, S,),
elle appartient aussi a G(K,, K), (voir la théoréme 3 de §6),

4°, quand une fonction F(s,, S,, :+,S,, t) de F(K,, K) est différ-
entiable partiellement par rapport a ¢ et sa dérivée partielle

%? est continue sur son domaine, oF appartient a Y (K,, K)

ot
(voir 13, §3),
5°, quand une fonction F(s,, S,, - ,s,, t) de F(K,, K) est bornée

b
sur son domaine, l'intégrale définie de Riemann S F(s,, s,
a

,*,S,, £)dt, ou a et b sont rationnels, appartient a J(K,, K)
(voir le théoréme 4 de §6),

consiste de celui important dans A(K,, K) et comme on sait bien, il con-
tient diverses fonctions particuliéres de l’analyse moderne. D’ot, il
existe diverses fonctions dans A(K,, K), (voir §2, Chap. IV. [19]).

(Recu le 18 février, 1960)
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Notations

K les domaines relatifs de nombres reels tels qu’on ait 7(K,) < K.
N, : le domaine des nombres naturels et celui des nombres entiers
et non negatifs.

)

Z X

R le domaine de nombres rationnels.

X, 9, -+ . les variables sur N ou bien N,.

s, t,--+ : les variables sur K.

Ualx,, 2,, - ,%,), Ug(s,, s, -+ ,5,): le domaine des points {x,, x,, -+, x,>
(ou bien <s,, S,,:+,s,>) tels qu'on ait x,€ A (ou bien s,€ B)
k=12, -, p).

[a, O]k, (a, b)x: Vlintervalle qui consiste des nombres s de K tels qu'on
ait a<<s=<b (ou bien a<s<b).

L(F), m(G): Yensemble de tous les points tels que F=0 et celui de tous
les points qui remplit G=0.

R(a) " représentation réguliére d’un nombre reel a.
z(K) : la perfection relative de K (voir M. Kondo [197)).
f> & -+ : les foctions dont les valeurs sont naturels.

Xg : la fonction caractéristique d’un ensemble E.

Pr, Pr; o voir M. Kondd [19].

Remarque. Jai lu récemment une Note™ de M. E. Specker sur les
fonctions continues récursivement. D’aprés ses resultats, il me parait
que les nombres ¢ et ¢ réels donnés dans le théoréme 2 de §2.4 ne sont
pas en général nommables (E?, K) ou bien (Ej, K,), suivant qu'on a
n=2 ou bien n=1,

1) E. Specker: Der Satz vom Maximum in der rekursiven Analysis. Constructivity in
mathematics, Proceedings of the colloquim held at Amsterdam, 1957,





