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Abstract

A covariant functor on the elliptic curves with complex niplication is
constructed. The functor takes values in the noncommetdtivi with real multi-
plication. A conjecture on the rank of an elliptic curve isrfulated.

Introduction

A. Let 0< 6 <1 be an irrational number given by the regular continuedtifvac

1

G:ao+—1:[ao,a1,az,...].

at.--

a +

Consider anAF-algebra, Ay, defined by the Bratteli diagram of Fig. 1, wheag in-
dicate the multiplicity of the edges of the graph. (For a defin of the AF-algebras
and their Bratteli diagrams, we refer the reader to [2]§bR2.) For the simplicity, we
shall say that\, is a noncommutative torus. Note that the classical defmitiba non-
commutative torus is slightly different but equivalentrfréhe standpoint of th& -theory
[3], [7], [13]. The Ay is said to have real multiplication, if is a quadratic irrationality.
Recall that the noncommutative takiy, A, are stably isomorphic whenevéy, ® K =
Ay ® K, where is the C*-algebra of the compact operators. It is known thaf Ay
are stably isomorphic if and only # = 6 modGL(2, Z), i.e.6’ = (ad + b)/(co + d),
wherea, b, ¢, d € Z andad — bc= +1.

B. Let A =wiZ+wyZ be a lattice in the complex plar@. Recall thatA defines
an elliptic curve E(C): y? = 4x3 — gox — gz via the complex analytic maf/A —
E(C) given by the formulaz — (p(z, A), 9'(z, A)), whereg; =60, _,. @ 4, gz =
140)° A« @8 A=A — {0} and

1 1 1
o )= 5+ ¥ (o~ )

weA*
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Fig. 1. TheAF-algebraA,.

is the Weierstrasg function. We identify the elliptic curve&(C) with the complex
tori C/A. If © = wp/w1, then E;(C), E.(C) are isomorphic whenever’ = t mod
GL(2,Z). The endomorphism ringEnd(C/A) is isomorphic either t&Z or to an or-
der in the imaginary quadratic number figtd[14]. In the second case, we say that
the elliptic curve has a complex multiplication and denatehsa curve byEcy.

C. Consider the cubiE;: y?> = x(x —1)(x—A), » € C—{0, 1}. The j-invariant of
E, is given by the formulgj (E,) = 26(A2—1+1)°A~2(L—1)~2. To find A corresponding
to an elliptic curve with the complex multiplication, oneshto solve the polynomial
equation j(Ecm) = j(E,) with respect tor. Since j(Ecym) is an algebraic integer,
rcm € K, whereK is an algebraic extension (of the degree at most six) of tHd fie
Q(j(Ecwm)). Thus, eactEcy is isomorphic to the cubig? = x(x —1)(X —Acwm) defined
over the fieldK. The Mordell-Weil theorem says that the set of therational points
of Ecwm is a finitely generated abelian group, whose rank we shalbtgeby rk(Ecv).

D. Let & be a category whose objects are elliptic curves and the areve iso-
morphisms of the elliptic curves. Likewise, let be a category whose objects are
noncommutative tori and the arrows are stable isomorphigfnthe noncommutative
tori. Our main goals can be expressed as follows.

OBJECTIVES (i) to construct a functor (if anyf: & — A, which maps iso-
morphic elliptic curves to the stably isomorphic noncomative tori; (ii) to study the
range of F on the elliptic curves with complex multiplication and )itio interpret the
invariants of the stable isomorphism classes of the nonaatamige tori in terms of the
arithmetic invariants of the elliptic curves.

In the course of this note, we were able to obtain an answei) &n (i), while (iii)
generates a conjecture. Namely, a covariant non-injedtmetor F: £ — A, which
maps isomorphic elliptic curves to the stably isomorphieig@mmmutative tori, is con-
structed (Lemma 1). It is proved th& sends the elliptic curves with complex mul-
tiplication to the noncommutative tori with real multipditon (Theorem 1). Finally, a
conjecture on the rank of an elliptic curve with the compleultiplication is formu-
lated §3). The functorF has been studied by Kontsevich [5] (e§d-.39), Manin [6],
Polishchuk [8]—[11], Polishchuk-Schwarz [12], Soibelm@d®] and [16], Soibelman-
Vologodsky [17], Taylor [18] and [19] et al. Our terminology freely and gratefully
borrowed from the above works.
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E. The existence and properties &f are part of a Hodge theory for the mea-
sured foliations on a closed surface. Such a theory has beegloped by Hubbard
and Masur [4], who were inspired by the works of Thurston [20¥e shall give in
§1 a brief account of the Hubbard-Masur-Thurston theory ardetkplicit formulas for
the functorF. At the heart of the construction is a diagram:

Fre D R2S RPT = 4,

whereh is a bijection andr is a projection map. For the sake of brevity, Isdbm(E) =
{E' € £ | E' = E} be the isomorphism class of an elliptic curé&e h(lsom(E)) =
ne(Z + 0gZ) := mg C R be aZ-module andF(E) = Ap.. A summary of our results
can be formulated as follows.

Lemma 1. Let¢: E — E’ be an isogeny of the elliptic curve§hené’ =6 mod
M2(Z), where M(Z) is an integer matrix of the ranR. In particular, F maps the
isomorphic elliptic curves to the stably isomorphic nonommative tori

Theorem 1. Let E € Ison(Ecy). Then there exists an,rsuch that
(i) meg is a full module in the real quadratic number field
(i) mg is an invariant of the class IsofBcu).
In particular, 6g is a quadratic irrationality

The structure of the note is as follows. In Section 1, we phiae the notation and
some preliminary facts. Lemma 1 and Theorem 1 are proved atid®e2. In Sec-
tion 3, a conjecture on the rank of an elliptic curve is foratat.

1. Preliminaries

This section contains a summary of measured foliatigsfs;algebras and the func-
tor F. The reader is encouraged to consult [2] (operator algglaad [4] (measured
foliations and Teichmdller space) for a systematic account

1.1. Measured foliations andT(g).

A. A measured foliation,F, on a surfaceX is a partition of X into the singular
points Xy, ..., X, of orderkg,...,k, and the regular leaves (1-dimensional submanifolds).
On each open coved; of X — {Xx3,..., Xy} there exists a non-vanishing real-valued
closed 1-formg¢; such that
() ¢ ==%g¢j on Ui NU;;

(i) at eachx; there exists a local charu(v): V — R? such that forz=u+iv, it
holds ¢ = Im(Z/2d2) on V NU; for some branch of"/2.
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The pair U;, ¢) is called an atlas for the measured foliatiéh Finally, a measurg.

is assigned to each segmety, {) € Ui, which is transverse to the leaves Bf via the
integral w(to, t) = ftz ¢i. The measure is invariant along the leaves of the foliation
hence the name.

B. Let S be a Riemann surface, argie HO(S, Q®2) a holomorphic quadratic
differential on S. The linesReq= 0 and Imq = 0 define a pair of measured folia-
tions on R, which are transversal to each other outside the set of kingoints. The
set of singular points is common to the both foliations anthades with the zeroes
of q. The above measured foliations are said to represent thealeand horizontal
trajectory structure ofy, respectively.

C. Let T(g) be the Teichmiller space of the topological surfateof genusg,
i.e. the space of complex structures &n Consider the vector bundlp: Q — T(g)
over T(g) whose fiber above a poirs € T(g) is the vector spac#l?(S, Q®?). Given
non-zerog € Q above§ one can consider the horizontal measured foliatfone ®x
of the quadratic differentiad, where®y is the space of (equivalence classes of) mea-
sured foliations onX. If {0} is the zero section 06, the above construction defines a
map Q — {0} - ®x. For anyF € &y, let Exr C Q—{0} be the fiber abover. In other
words, E is a subspace of the holomorphic quadratic differentialepse horizontal
trajectory structure coincides with the measured foliati&

Theorem ([4]). The restriction &= — T(g) of p to Er is a homeomorphism

D. Let ®x be the space of measured foliations on the topological seifa Fol-
lowing Douady and Hubbard [1], we shall consider a coordirgtstem ondy, suit-
able for the construction of the functdt. For clarity, let us make a generic assump-
tion thatq € HO(S, 2®?) is a holomorphic quadratic differential with the simpleaes
only. We wish to construct a Riemann surface @, which is a double cover o6
with the ramification over the zeroes qf Such a surface, denoted By is unique and
has an advantage of carrying a holomorphic differentialsuch thatw? = q. Denote
by 7: S— S a covering projection. The vector spatt(S, ) splits into the direct
sum HZ,. (S, ) ® HY,(S, ) in view of the involutionz—* of S, and the vector space
HO(S, Q®2) = H, (S, Q). Let HPY(S) be an odd part of the homology & relatively
the zeroes ofy. Consider a pairingH4S) x HO(S, ®?) — C, defined by the inte-
gration ¢/, q) — |, ». Take the associated mafy: H%(S, %) — Hom(H*(S); C)
and lethy = Reyy.

Theorem ([1]). The map k: H%(S,Q%2) — Hom(HY(S)[R) is anR-isomorphism
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Since eachF e ®y is the vertical foliationRe q= 0 for aq € HO(S, Q®?), the
theorem implies thatby = Horr(Hfdd(S); R). By the formulas for the relative homo-

logy:

= 6g—6, if g=>2,
odd >~ 7N —
H®(S) = Z", where n {2' it g=1.
Thus, if {y1,..., v} IS a basis iandd(é), the realsh; = f% Rew are natural coordinates
in the spacedy [1].

1.2. AF-algebras.

A. The C*-algebra is an algebra over C with a norma > |aj| and an involu-
tion a +— a* such that it is complete with respect to the norm dgad| < ||a|| ||b]| and
la*a| = ||a?|| for all a,b e A. If Ais commutative, then the Gelfand theorem says that
A is isomorphic to theC*-algebraCy(X) of continuous complex-valued functions on
a locally compact Hausdorff spacé For otherwise,A represents a honcommutative
topological spaceX.

B. Let A be aC*-algebra deemed as a noncommutative topological space. One
can ask when two such topological spad®sA’ are homeomorphic? To answer the
guestion, let us recall the topologicHl-theory. If X is a (commutative) topological
space, denote by¢(X) an abelian monoid consisting of the isomorphism classdbeof
complex vector bundles oveX endowed with the Whitney sum. The abelian monoid
Vce(X) can be made to an abelian groul,(X), using the Grothendieck completion.
The covariant functor=: X — K(X) is known to map the homeomorphic topologi-
cal spacesX, X’ to the isomorphic abelian group&(X), K(X’). Let now A, A" be the
C*-algebras. If one wishes to define a homeomorphism betwesmdhcommutative
topological space# and A, it will suffice to define an isomorphism between the abelian
monoidsV¢(A) and Ve (A) as suggested by the topologidéttheory. The role of the
complex vector bundle of degrae over the C*-algebra A is played by aC*-algebra
Mn(A) = A ® My, i.e. the matrix algebra with the entries 8 The abelian monoid
Ve (A) = Unz; Ma(A) replaces the monoiblc(X) of the topologicalK -theory. Therefore,
the noncommutative topological spacdsA’ are homeomorphic, ¥/c(A) = Vc(A) are
isomorphic abelian monoids. The latter equivalence isedadistable isomorphismof the
C*-algebrasA and A’ and is formally written aAQ K = A'® K, wherek = (J;2; Mn
is the C*-algebra of compact operators. Roughly speaking, theestabmorphism be-
tween theC*-algebrasA and A’ means thatA and A" are homeomorphic as the non-
commutative topological spaces.

C. Let A be a unitalC*-algebra and/(A) be the union (oven) of projections in
the n x n matrix C*-algebra with entries irA. Projectionsp,q € V(A) are equivalent if
there exists a partial isometry such thatp = u*u and q = uu*. The equivalence class
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of projection p is denoted by p]. The equivalence classes of orthogonal projections
can be made to a semigroup by puttimg$[q] =[ p+q]. The Grothendieck completion
of this semigroup to an abelian group is calle&Kggroup of algebraA. Functor A —
Ko(A) maps a category of unital*-algebras into the category of abelian groups so
that projections in algebr# correspond to a positive con€; C Ko(A) and the unit
element 1le A corresponds to an order unit € Ko(A). The ordered abelian group
(Ko, Kg, u) with an order unit is called @imension group

D. An AF-algebra (approximately finiteC*-algebra) is defined to be the norm
closure of an ascending sequence of the finite dimensiGrigdlgebrasM,’s, where
M, is the C*-algebra of then x n matrices with the entries ii€©. Here the index
n=(ny,..., Nk represents a semi-simple matrix algeva = M, @ - - - & M,,. The
ascending sequence mentioned above can be written as

M B M, B
where M; are the finite dimensionaC*-algebras andy; the homomorphisms between
such algebras. The set-theoretic limit= lim M, has a natural algebraic structure given
by the formulaa,, + by — a + b; herea,, - a, by — b for the sequencea,, € Mp,

by € M. The homomorphismg; can be arranged into a graph as follows. MMt =
M, &@---®M; andM; = M;; @ - -® M;; be the semi-simpl€*-algebras ang;: M; —

M;: the homomorphism. One has the two sets of vertidgs. .., Vj, and Vi, ..., Vi
joined by thea,s edges, whenever the summalg containsa,s copies of the summand
M;; under the embedding;. Asi varies, one obtains an infinite graph calle@mtteli
diagram of the AF-algebra.

E. By Ay we denote amAF-algebra given by the Bratteli diagram of Fig. 1. It
is known thatKo(Ag) = Z2 and K (Ag) = {(p, ) € Z? | p+6q > 0}. The AF-algebras
Ay, Ay are stably isomorphic, i.éy @ K = Ay Q IC, if and only if Z+0Z =7 +6'Z
as the subsets dk.

1.3. The functor F.

A. The Hubbard-Masur theory§1.1) has been treated in a general setting so far.
From now on, we switch to the cage= 1 (complex torus). Notice tha®= S= T2,
since every holomorphic quadratic different@lon the complex torus is the square of
a holomorphic differentiatv.
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Fig. 2. The measured foliatiof on T2 = R?/Z?2.

B. Let ¢ =Rew be a 1-form defined bw. Sincew is holomorphic,¢ is a closed
1-form on T2 The R-isomorphismhg: HO(S, ) — Hom(Hy(T?); R), as explained, is
given by the formulas:

)»1:/ o,
V1

A= | @,
Y2
where {y1, y»} is a basis in the first homology group @®. We further assume that,
after a proper choice of the basis;, 1, are positive real numbers.

C. Denote by®r. the space of measured foliations drf. EachF € &1z is
(measure) equivalent to a foliation by a family of the pasialines of a slope® and
the invariant (transverse) measyte(Fig. 2).

We use the notatio, for such a foliation. There exists a simple relationship
between the realsi(, ;) and @, n). Indeed, the closed 1-formd = Constdefines a
measured foliation,F}’, so that

By the integration:
1
Ay = / pdx=p,
0

1
A2:/ wh dx = ub.
0
Thus, one getgt =i andd = Ay/A1.
D. Recall that the Hubbard-Masur theoryl(1.C) establishes a homeomorphism

h: Ts(1) - @12, whereTg(1) = H={z: Imt > 0} is the Teichmiller space of the torus.
Denote bywy an invariant (Néron) differential of the complex tor@¥ (wiZ + w,Z).
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It is well known thatw; = fyl wn and w, = fyz wn, Wherey; and y, are the meridians
of the torus. Letr be a projection acting by the formul&,(u) — 6. An explicit
formula for the functorF: £ — A is given by the compositionF =z oh, whereh is
the Hubbard-Masur homeomorphism. In other words, one get$alfowing (explicit)
correspondence between the complex and noncommutative tor

B h )y h -
= E (o) (o) ) (o) ) () =R

where E, = C/(Z + tZ).

2. Proof

2.1. Proof of Lemma 1. Let ¢: E; — E. be an isogeny of the elliptic curves.
The action ofg on the homology basi$y:, y»} of T2 is given by the formulas:

y1=ayi+by, (a b)
1 ,  Wwhere € My(Z).
M {Vz’zCVl‘*dJ/z c d 22)

Recall that the functoF: £ — A is given by the formula:

VZwN '_)0_‘[;’2¢

2) T= T, on = ¢

wherewy is an invariant differential orE, and ¢ = Rew is a closed 1-form orT2
() From the left-hand side of (2), one obtains

w’l:/wN:/ a)N:a/ on+b | on =aw; + bwo,
2 ay1tby, 7 72

1
o= wN= on=C [ wy+d =cw, +d
2 N N N WN w1 + Qw2,
2 cyr+dy, iz V2

and thereforer’ = fyz, “)N/fyl’ wn = (c+dr)/(a+br).
(i) From the right-hand side of (2), one obtains

)\&:fﬁb:f ¢:a/¢+b ¢ =aky +Dbiy,
7 ay1+byz 7 V2

N2:/¢:/ ¢:c/¢+d ¢ =Chp +dAy,
72 cyi+dyz 71 r2

and therefored’ = fyz, ¢>/fy1, ¢ = (c+df)/(a+bv). Comparing (i) and (ii), one gets
the conclusion of the first part of Lemma 1. To prove the secpad, recall that

®3)

(4)
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the invertible isogeny is an isomorphism of the elliptic\as. In this case(;":1 g) €

GLy(Z) and 6’ = 0 modGLy(Z). ThereforeF sends the isomorphic elliptic curves to
the stably isomorphic noncommutative tori. The second phaitemma 1 is proved.

It follows from the proof thatF: & — A is a covariant functor. Indeed; pre-
serves the morphisms and does not reverse the arrégigz) = p192 = F(p1)F(@2)
for any pair of the isogenieg;, ¢, € Mor(€). O

2.2. Proof of Theorem 1. The following lemma will be helpful.

Lemma 2. Letm C R be a module of the ranR, i.e. m = ZA, + ZA,, where
0 =ix/0 ¢ Q. If M Cm is a submodule of the rank, thenm’ = km, where either
(i) keZ—-{0}andd e R—Q, or
(i) k and6 are the irrational numbers of a quadratic number field

Proof. Any rank 2 submodule ah can be written asn’ = 1}Z + A,Z, where
)\& =aky +bis a b
Mx(Z).
®) {A’zzcxl+dkz d g ) € M2

(i) Let us assume that Z0. Let A = (a+d)? —4(ad — bc) and A’ = (a+d)? — 4bc.
We shall consider the following cases.

CAsel. A>O0andA #Zm? me Z—{0}. The real numbek can be determined
from the equations:
(6) )»3_ = kA1 = aig +biy,

)»/2 = kAy = CAg +dAs.

Sinced = Ay/A1, one gets the equatiofh = (c6 +d)/(ad + b) by taking a ratio of the
two equations above. A quadratic equation fowrites ashf?+(a—d)9 —c=0. The
discriminant of the equation coincides with and therefore there exist the real roots
61, =(a—d=%+/A)/(2c). Moreover,k =a+bo =a+(b/(2c))(a—d ++/A). SinceA

is not the square of an integek,and 6 are the irrationalities of the quadratic number
field Q(v/A).

CASE2. A>0andA=m? meZ—{0}. Note thatd = (a—d +|m|)/(2c) is a
rational number. Sincé@ does not satisfy the rank assumption of the lemma, the case
should be omitted.

Case 3. A =0. The quadratic equation has a double réct (a — d)/(2c) € Q.
This case leads to a module of the rank 1, which is contrarynt@assumption of the
lemma.
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CAsE4. A<Oand A’ #m? me Z — {0}. Let us define a new basia/, A3}
in m’ so that

U — )\‘/,
@ bis,
Then:
)\.I =akiy +bis,
(8) {)\.g = —CA1 — d)\z,

and 6 = )j/)\] = (—c —d#)/(a+bs). The quadratic equation far has the formbs? +
(a+d)p +c =0, whose discriminant i\’ = (a + d)? — 4bc. Let us show thatA’ > 0.
Indeed, A = (a+d)? —4(ad—bc) < 0 and the evident inequality-(a—d)? < 0 have the
same sign, and we shall add them up. After an obvious elimimabne getdc < 0.
ThereforeA’ is a sum of the two positive integers, which is always a pasitnteger.
Thus, there exist the real roos , = (—a — d & +/A’)/(2b). Moreover,k = a +bo =
(1/2)(a—d++/A"). SinceA’ is not the square of an integet,andé are the irrational
numbers in the quadratic fiel@(v/A’).

CASES5. A <OandA’=m? meZ— {0}. Note thatd = (—a — d = |m|)/(2b)
is a rational number. Sincg does not satisfy the rank assumption of the lemma, the
case should be omitted.

(i) Assume thatb = 0.

Case l. a—d #0. The quadratic equation fer degenerates to a linear equation
(a—d)p+c=0. The rootd =c/(d —a) € Q does not satisfy the rank assumption again,
and we omit the case.

Case 2. a=d and c#0. Itis easy to see, that the set of the solutionséfas
an empty set.

Case 3. a=d and c=0. Finally, in this case all coefficients of the quadratic
equation vanish, so that amye R —Q is a solution. Note that in the view of (6k =
a=d e Z. Thus, one gets case (i) of the lemma. Since there are no ptssibilities
left, Lemma 2 is proved. O

Lemma 3. Let E be an elliptic curve with a complex multiplication andthre
Hubbard-Masur map which acts by the formulas o0£1.3.D. Consider a module
h(Isom(E)) = ue(Z + 6gZ) := mg. Then
() 6 is a quadratic irrationality
(i) aug € Q (up to a choice of h

Proof. (i) SinceE has a complex multiplicationEnd(E) > Z. In particular,
there exists a nontrivial endomorphism i.e. an endomorphism which is not the mul-
tiplication by k € Z. By Lemma 1,¢ defines a submodulev. of the rank 2 of the
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module mg. By Lemma 2, mp = kmg for a k € R. Since¢ is a nontrivial endo-
morphism, k ¢ Z. Thus, the option (i) of Lemma 2 is excluded. Therefore, by th
item (ii) of Lemma 2,0 is a quadratic irrationality.

(i) Recall thatExr c Q — {0} is the space of holomorphic differentials on the
complex torus, whose horizontal trajectory structure isivedent to given measured
foliation 7 = F,'. We shall varyF,’, thus varying the Hubbard-Masur homeomorphism
h =h(F)): Ef — T(1). Namely, consider a 1-parameter continuous family afhsu
mapsh =h,, wheref = Constand . € R. Recall thatug =11 = fy1q>, where¢ = Rew
and w € Ex. The family h, generates a familyy, = h;l(C), where C is a fixed
point in T(1). Denote byg, andA; the corresponding families of the closed 1-forms
and their periods, respectively. By the continuify, takes on a rational value for a
w =pu'. (Actually, every neighborhood ofg contains such a'.) Thus, ug € Q for
the Hubbard-Masur homeomorphism= h,,. O

Lemma 3 implies (i) of Theorem 1. To prove (ii), notice thatemhE;, E; €
Isom(Ecwm), the respective modulesi; = my. It follows from the fact that an iso-
morphism between the elliptic curves corresponds to a @aridoasis in the module
m (Lemma 1). Theorem 1 is proved. ]

3. Arithmetic complexity of the noncommutative tori

Let Ay be the noncommutative torus with a real multiplication. c8if is a qua-
dratic irrationality, the regular continued fraction éfis eventually periodic:

9) 0 =[a0, a1, ..., &1, .- -, apl,
where a1, . - ., a+p iS the minimal period of the continued fraction.

DEFINITION 1. Let us call the number(Ay) = p an arithmetic complexity of the
noncommutative torus with real multiplication.

Lemma 4. The number @\) is an invariant of the stable isomorphism class of
the noncommutative toru&,.

Proof. It follows from Lemma 1 thab,, A, are stably isomorphic if and only if
0’ =6 modGL(2, Z). By the main property of the regular continued fractiortsg e&x-
pansion of¢ and®’ must coincide, except possibly a finite number of the entri&ace
the continued fraction of is eventually periodic, so must be the continued fraction of
0’. Moreover, the minimal periods &f, 0’ must coincide as well as their lengths. Thus
c(Ag) = c(Ay). ]
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ExampLE 1. Let us find an arithmetic complexity of the noncommutativeus
Aj - The continued fraction expansion oft/8 =54 is [7;2, 1, 6, 1, 2, 14]. Since
the continued fraction is six-periodic, we havd; ;) = 6.

It is very useful to think of the normalized period @l2/8k+1, ..., k+p/ak+1) Of Ay as
coordinates of the ‘rational points’ of the noncommutativeus, taken up to a cyclic
permutation. In the sense, such points are the generatoas abelian group of all
rational points ofA, modulo the points of a finite order.

Conjecture 1. c(Ag_, ) =rk(Ecwm) + 1.
ACKNOWLEDGMENTS. | am grateful to Lawrence D. Taylor for the helpful re-
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