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1. Introduction. Let O, and O, be compact and convex sets in R*® with
smooth boundary T'; and T, respectively. Suppose that
01 ﬂ Oz = ¢ .
Let us set
©0=0,U0,, T=T,UT,.
Consider a mixed problem
0°u N u .
——21— =0 0
atz j=1 ax? m QX( ’ OO)
Bu=20 on I'x (0, o0)
u(x’ 0) = uo(x)

S (3, 0) = )

(®)

where Q=R3*—(. Here we treat as the boundary operator B the following two
operators:

Bu=u
and

Byu = 6—“—{— o(x)u
on

where 7z denotes the unit outer normal of I" and o(x) is a real valued C *-function
defined on T.

Concerning the initial data the compatibility condition is always assumed,
that is, for u,, u;,&C=(Q)) defining successively u,€C=(Q2), j=2, 3, --- by the
formula

Uu; = Auj'_z
the condition
Bu; =0 onT
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is satisfied for all j.
About the obstacles O, O, we set the condition

(SC) the Gaussian curvature of I' never vanishes.

Under this condition we will consider the decay of solutions of (P). Let
us set
Q= QN {x; |x|<R}.

Theorem 1. Suppose that B=B,, that is, the Dirichlet boundary is posed.
Then there exists a constant o, >0 determined by O only with the following proper-
ties : Let R and r be positive numbers and let m be a positive integer. For any uy, u,
such that

U supp %; CQ,
=0

we have an estimate

(1.1) > sup |DYu(x, )]

lylsm zEQR

<CR,x,me_wlt{”uO'Im+S,L2(Q)+I|u1||m+4,L2(Q)} ’
where Cy,  ,, is a positive constant depending on R, x and m but independent of u,, u,.
For PER3*—T, let us set
Tjp= {x; x€T, {P+I1Px; I >1}CQ}.

DerINITION. We say that o(x) satisfies the condition 4 when there exists
a finite number of P;,€0,, j=1, 2, -, n, and Q;€0,, j=1, 2, -++, n, such that

™ gy
.UII‘IP,‘DFI > UII‘ZQ_,'DFZ
j= i=

and
a—(x)<(n1+n2)“12M on I
7 |Pj—x|?

@) <(r ) B on

Q;—x|*
where >} means the summation of j such that x&T',; or ¥ETy;.
7

Theorem 2. Suppose that B=B,, that is, the third kind boundary condition
is posed. If o(x) satisfies the condition A there exists a constant ;>0 determined
by O and o with the following properties: Let R and « be positive numbers and let
m be a positive integer. For any u,, u, such that

[j supp u; C O,
ji=o
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we have an estimate

(1.2) 3N sup | DY, u(x, t)|

lyls™ z€

< CR,K,m e {]] |m+5,L2(Q)+ (ot |m+4,L2(Q)}
where Cy « » 15 @ positive constant depending on R, r, m but independent of u,, u,.

It seems to us that until now studies on the uniform decay of the solutions
of the wave equation in the exterior domain are made mainly concerning the
existence of a function p(#) such that

{E(u, R, 1)< p(t)E(u, o0, 0)
pt)—>0 as t— oo

(%)
for all u,, u,& Cy(Q,), where
Eu R, )= L S 1V, £) 1+ |, £)|2)dx .
2 Qp

About the necessary condition on the obstacle for the existence of p(f) we know
the work of Ralston [12]. Roughly speaking [12] shows that if the obstacle
admits a trapped ray there is no p(¢) yerifying (*)."
If O consists of two obstacles O, O, there is always a trapped ray. Indeed,
let a;€0;, j=1, 2 be the points such that
lay—a,| = xleﬂgl lx—y]
€0,
Then a,a, is perpendicular to I'; at @, and @,a, perpendicular to I', at a,. There-
fore the ray starting at @, in the direction @,a, hits T'; at @,, and is reflected in
the direction @,4;. Then the reflected ray hits T, at a;, and is reflected in the
direction @;a,. Namely, the ray plies between a, and a, and never goes to the
infinity. This shows that © is trapping. Then we see that the estimate of
the type (*) never holds. Therefore, when @ consists of two obstacles, in
order to estimate the uniform rate of the decay of solations it is necessary to
consider the decay in a weaker form than (). Indeed, Walker [13] shows that

lim po (2) = 0
t-yo0
holds for any a>0, where

o,r(f) = su E(u, R, t)"*(||ug|| sy14ar0 \ +1ttal| yag 0 1) 7>
pax() {uo,u,}egg"(.QR) O HG* *(28) HHY2z)

1) Morawetz, Ralston and Strauss [11] shows that when there is no trapped ray there exists
p(t) verifying (¥) under some additional conditions.
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But we cannot obtain from its proof any more informations about qualitative
nature of p, z(¢) for general obstacles.

We would like to remark about the condition SC. If only the convexity of
obstacles is assumed, we can not expect in general the estimate of the form (1.1)
or (1.2). Namely in the appendix we will present convex obstacles &, and O,
such that

I o ()49 >0
1->o0
holds for all positive integer m and positive constant & (Theorem A).

The essential part of the proof of the theorems is the construction of an
asymptotic solution for an oscillatory boundary data. There, we estimate
carefully the decay of the amplitude function while repeating the reflections.

2. Reduction of the problem

Let the supports of %,, , be contained in Q,. Take v,, v,€C7(R?) so that

2.1) o () = u,(x)  inQ,i=0,1
and
(2.2) ”‘vj”m,Lz(Ra) < Cm“uj”m,Lz(Q)

holds. Remark that the constant C, depends on Q and m, but is independent
of u;. Let w(x, t) be the solution of the Cauchy problem

Ow=0 in R3x (0, o)
(2.3) w(x, 0) = vy(x)

%0, 0) = o).
Since

supp vC {(®); x| <}

the Huygens’ principle assures that
(2.4) supp wC {(x, t); t—r< |x| <t+x} .
Let us set

—Bw(x, t) | pxo=) = A%, ).

If we extend & to t<<0 by setting A(x, )=0 for ¢<0, the compatibility condi-
tion of u,, u; means that

heC*(I'XR).

Combining O€ {x; |x| <d,} for some d; and (2.4) we have
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(2.5) supp ACT X (0, x+d,) .

And it follows from the energy estimate of w that

(2.6) Bl 2oy < Co 110l re ol e}
where

{1 ifB=B,
€ —
0 if B=B,.

Consider the boundary value problem with parameter p= p-+ik for boun-

dary data g eC=(T")
A—pu=0 i
27 {( Pu=0 inQ

Bu=g onI'.
It is well known that there exists uy>0 such that for x> pu,(2.7) has a solution
uniquely in H%Q) and an estimate

sz, 2@ < Co 231 211l 30,7
holds for m=0, 1, 2, --. Define U(p) a mapping from C=(T") into C~(Q) by
U(pg = w(x) .

Then U(p) is analytic in Re p > py as L(C=(T), C=(Q1))-valued function, where
L(C=(T"), C=(82)) denotes the set of all continuous linear mappings from C=(T")
into C~(Q).

Theorem 2.1. Suppose that O satisfies the condition SC and that o verifies
the condition A when B=B,. Then U(p) can be prolonged analytically into a
region containing
{p: Rep=>—a}
for some 0e>0. And we have for Re p=> —a

(2.8) sup 33 | DXU(p)g)(*)!

€Q, 1yI<m

m+4 .
<Cor 23 (11 1) lig |l 20, TgEC (T -

Note that the solution of the problem
O=z(x,t) =0 in QX R
Bz(x, t) = h(x, t) onT'XR
supp 2C % (0, o)
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is representes as
a(x, 1) = 21_ r I Uikt (-, k4 p))(%)dk ,
T J—oo

where p > p, and

h(x, p) = Sle"‘h(x, 1)dt .

By using Theorem 2.1 the path of the integration can be changed to Re p=—a,
namely we have

o, 1) = 2% Slewz-“ﬂ( Ulik— (-, ik—a))(x)dx .

With the aid of the estimate (2.8) we obtain immediately from this formula

(2.9) > sup | DY i2(x, )]

I7Is™ x€Q

—oo

<Coae |” BIRIF)™ 5 NhC-, o)l 0
< Cp 2™ " [llms g, 2coxm) -
Since the solution u(x, t) of (P) is represented as
u(x, t) = w(x, t)+=2(x, t)

we have Theorems 1 and 2 from (2.4), (2.6) and (2.9).

Concerning the analytic continuation the following results hold without
the condition SC':
(i) For the Dirichlet boundary condition U(p) can be prolonged analytically
into a region containing {p; Re p=>0}.
(ii) For the third kind boundary condition U(p) can be prolonged into a region
containing {p; Rep=>0, pe=[0, uo]}?. In the rest of this paper we will show
the following

Theorem 2.2. Suppose that O satisfies the condition SC. Let a;ET;, j=
1, 2 be the points such that |a,—a,| =dis(O,, O,) and let us denote by K;;, j=1, 2
the principal curvatures of T'; at a;. Set

o= L log(1-24,K)
dy

where dy=dis(O,, O,) and K= inf K;;,. Then for any €>0, there exists k,>0

i,j=1,2

2) See, for example, about (i) Chapter V of Lax-Phillips [6], Chapter 8 of Mizohata [9] and
about (ii) Asakura [1].
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such that U(p) can be prolonged into
{;L+ik; ;L}—(CO—E), |%| =k} .
Moreover an estimate

> sup [DYU(p)g)(=)|

II=m seQ,
m=3 .
<Cerom ]g (Ik]+1)"gll; 12, "2EC™T)
holds.

Then in order to show Theorem 2.1, if we admit Theorem 2.2, it remains
to prove that p&[0, o) is not the generalized eigenvalue of (2.7) for B=B,, that
is, there is no non-trivial solution of (2.7) for g=0 verifying

(2.10) || Ju(x)|+ x| ?| Vu(x) | <C as |x|—>oo,
Therefore we show

Lemma 2.3. Suppose that o satisfies the condition A. Then for p&[0, co)
there is mo non-trivial soluwion of (2.7) for g=0 verifying (2.10).

Proof. Suppose that #(x) is a non-trivial solution of (2.7) for g=0 verifying
(2.10). Then by the integration by parts of (A—p?)u(x)-u(x) it follows that

j o () | () |2ds — L|Vu(x)12dx+p2 Sglulzdx.
r
Therefore if we derive from the assumption on ¢ the estimate
2.11) [ oluras<a—g | ivuras

r Q

for some £>0, u must be identically zero. Suppose that P€0O,. For xT,

—

setting = I:Jf ,r(w)=|a;l_3|

| Px|
u(x) = —S:m)%u(sw)ds = ——S:w)(co'Vu)(sco)ds .
Then
) P<[7 B | vutsa) 2ds
—r(o) [ Vu(sa) ?5%ds.

Setting wi1p=— {‘P__)—x, xEFlp}
| Px|
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S Iu(x)lzr(co)dm<s Sl)qu(.vco)lzszdsdw

o p @ p VT

2
SIZCIRES

Denoting by dS the surface element of T, since dS=r(m)2__>L(m)—dco the

Px-n(x)
condition
Do 2
sup o(x) :|>P_x|_ <C
e Pxen(x)
implies

[, c@uEras<c| r(o)luE)de

1P “1p
<CS | Vu(x) | %
Q
Suppose that P;, j=1, 2, :+-, m, satisfy

L_j T'p, DT, and 3] fwg(l—e)(n,—{-nl)'l .
o Px-n(x)
Then it holds that
[ ot iumiras <3 |
T, =idr

nl(l——é) 2
< SQIVu(x)I dx

(%) |u(x) |*dS

1P

where o(x)*=max(o(x), 0). By the same way we have
+ 248 g'&?) 2dx .
[, o e uas SELE | jvuce) o
Then it follows that
| o@u@ias < oy 1uw)2as
r r
<(1—8) ggIVu(x)lzdx.

Thus (2.11) is derived. Therefore Lemma is proved.

3. Properties of broken rays

For x€T, n(x) denotes the unit outer normal of T' at x, and
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2% = {&; 1E]=1, n(x)-£>0} .

We denote by X(x, £) the broken ray according to the law of the geometri-
cal optics starting at xT" in the direction £€23}, by X,(, ), X (x, £), -
the points of reflection of the broken ray and by E,(x, £) the direction of the
ray reflected at X;(x, £). More precisely, if

{x+Ig;1>0NT = ¢
we set Ly(x, £)={w+1&; [>0}. If {x+I&; >0} NT ¢ we set
Iy(x, &) = inf {I; 1>0, x+-IEET}
Ly(x, &) = {x+1&; O<I<I(x, &)}

Xi(x, §) = x+I(x, £)E
Ba(x, §) = E—2(n(Xy(x, £))-E)n(Xy(x, £)) .
When {X,+/E,; | >0} NT=¢, Ly(», &)= {X,+IE,; [>0}. Otherwise we set
L(x, &) = inf {{; >0, X,+IE,eT}
Ly(x, £) = {X,+IE;; 0<I<I}
Xo(x, &) = Xi+-LE,
Ey(x, §) = BEq—2(n(X>) - Ejn(Xy) .

Thus we define successively [;(x, &), X;(x, &), E;(x, &), Lj(», £) until
{X;+15;; 1>0} NT'=¢. If there exists j, such that for j <jy, /;(x, &), X;(x, &),
E;(, &) are defined and {X; +/E;; [>0} NT'=¢, then we define

o
%, &) = [ L &
FX(x, E) = o -

Otherwise
L, &) = [ Li(x )
B, £) = oo,

We set for (x, )ETX R, EEDW

-'Cj(x; ts g) = {(X_r(xr ‘E)‘}‘ZEJ("C’ E)s t+ij(x’ §)+l)’ 0<1<lf(x) ‘E)}
-fi(x: L E) = {(Xj(x’ §)+lEi(x’ E)’ t+ii(x’ E)'i‘l)’ 0<l}
—C(x’ t, E) = lj.J-Ej(x: t, E) ’

where ij(x, ’g’)=g l(x, ).

The following two lemmas are trivial.



468 M. Ixawa
Lemma 3.1. For O,, O, there exists §,>0 with the following property: If
xeTy, EED); and
0< —n(Xi(x, §))-E<9,,

the reflected ray does not pass the dyJ2 neighborhood of O, i.e., Li(x, &) is a half
line and

Ly(x, £)N {y; dis(y, 0))<dy/2} = ¢.

Lemma 3.2. For each xT, £} verifying *X(x, )= J and
n(Xj(x: E))'Ej(x’ £)>0’ ]: I 2, "'v.]’
there exists €>0 such that if yET', n€>; and
lx—y|+[E—n| <€,
it holds that
Xy, =]
and
Xi(y, m) = Xj(x, &)
Ei(y, n) > By, §)
for j=1,2, -+, ] when (y, n)—>(x, &).

Corollary. Let L be the line passing a, and a,, where a;, j=1, 2 are those
in Theorem 2.2. Denote by S;(8) the connected component containing a; of

;N {x; dis(x, L)< 8}, 5>0.

For any &>0, if we choose 8,>0 sufficiently small, every ray starting at
x € .8(8,) in the direction E >} and fitting Sy(8,) (starting at x = Sy(8,) and hitting
S1(8.)) satisfies
—E-n(Xy(x, £))>1-¢,.

B0 =%
ey
a,—a, |

Proof. Note that for &= |

_Eo'n(Xl(an Eo)) =1.
Then from Lemma 3.2 there exists €>0 such that
ly—al+n—&l<€  yETy, nEXY

implies that
[7-n(X:(y, 7)) —Eo-n(Xi(ay, &) <& -
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For any ye.S,(8,), €25 such that X (y, ) E.S5,(8,) we have | y—a,| <28, and
| Xi(y, 7)—a,] <28,. Then

—&, = Xy )=y _ _a—a
[ Xy, 7)—y| |ar—ai]

must be small if 8, is choosen so small. Then for any £€>0 there exists §,>0
such that y€ ), €23} and X,(y, 7)ES, imply

ly—al+9—&l<e.
Using the above remark we have

—n-m(Xy(y, 1)) = —E-n(Xy(ay, &) —& = 1—§&.
Q.E.D.

Lemma 3.3. For each 8,>0 of Corollary of the previous lemma there exists
a positive integer K such that x=T—S(8,), E€2); and X(x, £) N S(8,)=¢ imply

(3.1) X(x, E)<K,
where S(8,)=35,(8,) U SxS,).

Proof. Let 8,>0 be that of Lemma 3.1. Suppose that L={(0, 0, [); /= R}.
For x=(x,, x;, x3) denote by x’ the point (x;, x;, 0). The strict convexity
assures that

(3.2) n(x)ex'>c>0, Vxel—S,
if n(x)+((—1)""(a,—ay)) >0, where ¢>0 depends on 8,. Suppose that
X(x, E)=] -
Then by Lemma 3.1 we have
(3.3) —n(X;)E;,,=8, forj=1,2,-,J—1.
Note that, if x&T',—S,,
(34) n(X;) (—1)Y*" Y e—a))=>0, [=1,2,j=1,2,--.
Let x(s)=(1(s), %x(s), %5(s)) be the representation of X{(x, £) by the length

of the broken ray from x to x(s). Then for s {l;; j=0, 1, 2, --:}

L)1 = 29 L)+ () L ()

and if x(s)EL;
= 2AX;+(s—)E)) - E;>2X}-E; .
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And we have

X8y = X (B~ 2n(X,) By (X))
— X B+ 2= X) By ) (X (X )

From (3.2) and (3.3) it follows that
(3.5) X B;>2XE; +2¢,.
Since X{-£>— | X,| > —max{|x|; x&T}(=—4), we have

X}B,>—A+2jc3, .

Then for j>jo=|: 4 ]+2, we have X}-E;>2¢3,, which implies

2¢6,

%lx(s)’|2>4c81, s>,

Therefore for s>1;, integrating the above inequality from.I; to .S, we have
|2(s)" 12— |2(L;,) |2 >4(s—L;,)cd, .
Then if x(s)ET" we have 4(s—I; )c8,< 4% then

- A2
s ljo+—4:87 = 8,

from which it follows that for any X;=x(I;_,)
= j—1
lj-l S5 S} lh<50 .
h=0

Since I; > |a,—a,| for all j, *¥(x, &) <so/|a,—a,|=K. Thus the lemma is
proved. Q.E.D.

Corollary. If we choose 8, as 8;>8, and sufficiently close to §,, it holds
that for any x= S(8;), EE3)} such that X,(x, £)<S(8;)—S(8,)

Y, E)<K+1,
where K is the one in Lemma 3.3.

Proof. By the process of the proof of Lemma 3.3 we see that for x, £ such
that x’-£>0 it must holds the estimate

tFX(x, E)<K.
Therefore, if we can show that

(3.6) X{-E,>0,
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we have
FX(x, E)<K+1.

Then we will show (3.6). Suppose that x&.5,(8;), X,(x, £) € S,(85)— Sx(8;) and
x'+£<0. This means that

3.7) RN A

(3.8) 3 < (14L& 1)+ (%4 Lo 2)* < 83
(3.9) X6+ %,6,<0.

Since

(1181 + (w0t 1oE) = ol +ai 41" -E+D X1 -E,

(3.7) and (3.8) imply

iSOl - EHL X -E .
By taking account of (3.9) we have

(85—8%) /L <X{-E.

Since X, & S,(8;) we can use (3.5) and obtain

{<E.> (83— 8%)/l,+2¢8, .
Then, if we choose 8; sufficiently close to 8,, we have (3.6). Thus our assertion
is proved. Q.E.D.

4. The curvatures of the wave front of reflected rays

For ¢(x) such that |Ve|=1, we will call the surface {y; @(y)=@(*)}
the wave front of @ passing ¥ and denote it by 6,(x). Let U be a neighborhood
in R® of s,&€T" and @*, »~ be functions defined in U satisfying |Ve*|=1.
Suppose that

(4.1) pt(x) = @~ (x) "xeT' NU
(4.2) 950, %270 onTnU.
on on

We will consider the relation between the principal curvatures of the wave
fronts 6,+(s,) and 6,-(s,). Hereafter the principal curvatures of Gy(x) signify
those with respect to —V@(x). Suppose that

0
n(s)=|0
1
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and T' is represented in U as {y(x); n€ U}, UCR? y(0)=s,

1

0

G )
4.3 22oy=|0], 220 = :
(4.3) am() . 6772() Llj

Let {o(c); s U} be a representation of the wave front 6~ =8,-(s,) such that
»(0)=s, and

(44 o) 220)=5,, ij=12
0o, 0o
3 ) .

(4.5) 22 (0) = «;22(0), j=1,2

where i(oc)=(V@ )(w(s)) and «;, j=1, 2 are the principal curvatures of 6~
at 5. Then 6+=6,+(s,) is represented as

(o) = y(a(a))—Lo)r(c)

where

r(o) = @) —24{i(o) - n(y(n())} U ¥(n(c))) ,
and n(e)=(n(o), 7o))€ U, l(c)ER are determined by
(4.6) ¥(n) = o(a)+o)i(s) forecl.
Evidently 7(c)=(V@™*)(7(s)). When we denote

sin »
4.7) —1(0) = [ 0
cos v
we can write
—cos By-cos v sin @, cos v
(4.8) B0 y=| siné, } , Do )= { cos 6, }
90, . 90, . .
cos By+sin v —sin @y-sin v

for some ,. Differentiate (4.6) by o; and we have

8y 09y, Oy O _ Bw O, ;00

On 0g; On, 00; 0Oo; 0o, ds;
Substituting (4.3), (4.5), (4.7), (4.8) and /(0)=0 we obtain

(4.9) 66—[ (0) = tan »-cos 6,, E?L(O) = —tan v+sin §,
(v 02
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% %77_1
4.10 1% =Te,
(+.10) [
80’1 60'2 =0
where
T— (cosv)7! 0:! 6 ,: —cos §, sin 00}
0 1]’ sinf, cosé, |
Using (4.9) we have
(4.11) [ﬁ ﬁ] =Y, Y,)©
0o 0gple=0
where
cos v 0
Yl = 0 ’ YZ =11
sin v 0

Denote by K, K, the principal curvatures with respect to —(s,) of T" at s,
and by 4 the angle from a_y(O) to the principal direction corresponding to K.

a771
Then it holds that

[ang?(ln» a”(af,i"))Lo - [%;v g_ﬂqu\y

cosyr —sinqr . K, 0
\P_l:sin\[r cosx]r} K*[O Kzil'

Therefore we have

where

(4.12) l:a”(ya(n(o))) 6"(ygn(a)))] )
Bt (o] =0
-l [ai] = [a_y a_y] "WKWTO
[6’7‘ Oy =0l 81 jz12 Ly Bppin=o '
Note that

or _ ﬁi_z(ﬁ. )n_z(i.aa_” n_2(i-n)—61.

o T;j 30'_,-

—cos f,cos v

. . _ 9
9’_—2<9L-n>n — | sing, | =Y, Y2]|: cos °J

. sin 6,
—cos G, sin v
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cos v 0
~2(i-6_”)n—2(i-n)2’£ —2| 0 (3”_) +2eosv| 1 |(22)
00y 0o, . 0o/t 0g,/2
sin v 0

where (ﬁfi> denotes the j-th component of 2"4, we have
o1/i 60'1

'QL(O) =[Y, Y,J(x¢i[+2cosv T“I’K\PT)["C?S 00] .
o sin 6,

By the same way

_61(0) =[Y, Y,](x,]4+2cosv T"I’K\I’T)[Sin 00] ‘
Oa cos 6,

Namely
[ 2] =1, YiR+2cos» T'WKUT)O
=0

60’150?2
K’:["‘ 0]
0 «x

Taking account of (4.11) we see that the principal curvatures of 6% at s, are
the eigenvalues of the matrix

where

K+2cosv T"WKWT.
Thus we have

Lemma 4.1. The principal curvatures ri, 3 of 6% at s, satisfy the ine-
qualities

(4.13) min 5 -+2 min K; <f <max 5 + 2

max K
i=1,2 i=1,2 cos v.j=1

»2

where «3, K;, j=1,2 are the principal curvatures of 6~ and T at s, respectively
and cos v=—mn(s,)* VP (s,).

Next we will show

Proposition 4.2. Let U be a neighborhood of x,&T\(or T;) and o= C=(U)
and |Vo|=1in U. Suppose that
(i) for all x&€T\NU the principal curvatures of 6,(x) is positive.

(ii) (%, Vop(x))=p+1, "xeTZuU.
Then there exist @ (x), j=0, 1, 2, -+-, p such that
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(@) P, EC7(@;), Vil =1 ino;

where 0,= |) Ly, Vo()).
yel‘lﬂ’U

® e=9 in wNU
0, 0p;_,
© 2@ =@ia(n), )= —g (), we U X Vo).

Moreover it holds that
(d) the principal curvatures x;(y), I=1, 2 of Go(X;(y, VP(y)) verify

(4.14) 2 min K (%) <«#;(y)<1/d,+2/8, max K,(x)
h=1,2 hr=1,2
rer zer
where d,, 8, are the constants in Theorem 2.2 and Lemma 3.1 respectively.

Proof. In the proof we write L;(y, Ve(y)) and X;(y, Ve(y)) as L;(y)
and X,(y) in brief. Note that ¢(x) can be extended as C=-function verifying
IVol=1in {y+IVe(y); 1 =20, yeT N U} ‘because (i) holds. Suppose that
there exist @y, @, -+, @;, j<p—1, verifying (a), (b), (c) and (d). Taking
account of (ii) it holds that

—UX;(9)) Ei() >0,

from which it follows that
Op;
"a—nj(Xiﬂ(y)) >9;.

Then there exists yr(x) defined in a neighborhood of (JX;,,(y) verifying | V|
=1 and ’

o) Op;
V=95 —n = —a,‘,l on [:JXJ'H(y)'

Since the principal curvatures of 6, ;,(X;,:(y)) at X;,1(y) are given by
“5i() , 1=1,2,
1+1;(y)ei(y)

we see from Lemma 4.1 that the principal curvatures «;.,(y) of 6y(X;.1(y)) at
X;1(y) satisfy

2 rr;in Ky(y)<#i(3)<1/l;(y)+2/3, max Ky(y) .
34 34

Taking account of [;(y) >d, «;.u(y) satisfies (4.14). Now since x;.;(y) >0
Yr(x) can be extended to C=-function in {X; ,(y)+HIVY(X;1(»)); yET.NDU,
1>0} verifying |V4r|=1. Setting this extended +r(x) as @;,,, we see that
@;+1(x) satisfies the required properties. Thus Proposition is proved.
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5. Estimates of derivatives of the phase functions

Let the principal curvatures of 6,==64(x,) be x,>x,>0 and let {w(c); s U}
be a representation of 6,(x,) near x, such that

(O) = xo

=5
(5.1)

a0<0> 6(0) =12,

J
where v(c)=(V®)(»(c)). Take I >0 and set
% = X+ IVep() .
Let {&(n); 7€ U} be a representation of &,=6,(x,) near x, satisfying
CT)(O) = x1
¢-2) 0 0 =12
8—"( )= ——( )> J=L5L 4.
nj
Note that we can choose (o) and &() satisfying (5.1) and (5.2) in such a way

3 1(D)(0)| <Ca 3 | D))

(5.3)
mgm [(D3&)(0)| <C, E [(Dig)(x)) |

where C,, is a constant independent of x,, x; and /.
On the other hand, since @(x+IV@(x))=¢(x)+! we have another repre-
sentation of &,

0, = {w(a)+lv(a); ceU}.

Therefore for 5 sufficiently near 0 there corresponds o= U uniquely by the
relation

(5.4) a(n) = w(o)+v(a) .

Denote this correspondance as o(n)=(o (71, 72), o2(71, 72)). Now from (5.1)
and (5.2) we have

0o

(5.5) .

99i(0) = (14+1k;)*8,;, 4,j=1,2.

Let us set

= {(En &, Ea)? E?+E§+E§<l} .
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For a=(a,, a;, a;)= S* we set
0 0 0
X, =a,—+a—+a;—.
! 6x1+ 2 6x2+ * ou,
DerINITION 5.1.  We define | Ve|,(x) for m=1, 2, -+ by
|V | (%) = max max [(X,wX @ -+ X, hVe)(x)].
j<

m areS?

We may assume without generality that
6—"’(0):(1,0, 0), gﬂl(O):(O, 1,0), »(0)=(0,0,1).
60'1 60—2

The correspondance from (o, 7) near (0, 0) to x near x, given by

x = (o) +7u(a)

verifies a relation

3o ; .
(5.6) 5x—;(x0) =68, k=123,
where we denote T as o;. Then we have

(XVP) ) = 210,22 (0)

because 8_2(_")=0. By the same way we have
T

(57) (XTP)) = Fas 32 O
where u(n)=(V@)(@(n)). Since u(y)=wv(o(y)) it follows from (5.5) and (5.7) that
(X)) = 3] a,-<1+1x,->-1%;~j (0).
Taking account of (5.1) we have
(X)) = (3 ae; 19
|(XTP)) | = (B a1y 2.

Thus we have

Lemma 5.1. For [ >0 it holds that

(5.8) |V | (- IV p(0)) <ﬁ1 Vo ().
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Differentiating (5.4) by 7, and 7, we have

é(aa, av)azc,- +,.,.é=l( %w iy 8% )60-,.%

7=t 00 ;/ 073,07, 0000 ; 90,00 ;/ Oy, O,
_ &
07,07
Substitute »=0 and take the scalar product with 29’—(0) Then it follows that
oj
(1-+1;) Fo; | j0e (1L (1 4-Iiey) ™
[;aﬂh ao-, ao'kaa',,
) aw 0%
1+ A 4-1ky) ™ = .
8‘71 ao'hao'k( e (1) 60’1 aﬂka"?h

Taking account of (5.3) we have

¥a; (0) = —(Q4-1e)) Y(14-1ep) A+ k)" ll (O) O)+1; 41

(5.9) {99,
IIj,Ic,hI <SC{|Vp|(%)+ | Ve (%)}
where C, is independent of x,, x, and @. Using (5.5) we have

*(V)(@(x))
a’7k677k

ka (-

e O+ ) (1) Ly Fo;
7=1 8 ; 0,07,

=0 o'le

Take the scalar product with g—“’(O) and substitute (5.9). Then we have

gj
(V)&
(5.10) %(0).6 (Vafk)ém(v)) )
= ( ) 8 (0)(1+lt¢k) YA 4-Ley) (A 4-1ky) il 4 -
O'k
Since 8_”@ +»(e)=0 we have

]

o ey — v Ov

60‘j80'k 60'] g

<C|Veli(x) .

For a=(a1, a,, aa), bz(bl, bz, b3)ES2

3.8 3 0%v 0o, 0o ov ¥
5.1 (X,X.Ve)(x) = ba o o )
(5.11) (XX, Ve)(x) gjzﬂ u.2=1 d (i)o-kacrh Ox; Ox; N Oa Ox;0x;

Then using v g we have
g3
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(XX, Vp)(xo) = é ab; i 0)-+11,
(5.12) i7=t " 0000

11| <C |V¢’|1(xo) .

By the same method we have

(X, X,Vp) (%)) = 2 a6, L (VPN@(n))
OniBn;

+11,

n=0

|11, | <CV|‘P|1(xl) .
)

(5.13) ‘kzz:

k=l »am

a2 0 ) o

2 b (80 & 2 -
1+1 4 0 II
= 2 (I 1(1+1x,,)(1+1,c,,)\aa, 3o'k30'h( ))]+ '
<(1+l"2)_2,XaXbV¢(xo) '2+I]o
where
1| <C|Vel(x;), j=0,1
and

a= <1—|il;/cl’ ﬁ 0)’ b= <1—|{)ll/c1’ 1£21M2’ 0)‘
Combining (5.11), (5.12) and (5.13) it holds that
max | (XX Vo)(x1) |

< max (14-1e) | (X X5 Vo)) | +C 31 Vo ()

<(1+1) " max, | (X,X,V)(x) | +C 33 Vo ().
Thus, with the aid of (5.8), we have

Lemma 5.2. For [ >0 it holds that

(5.14) |2 | (%0 + IV (%)) < (14-112) | Vop | of(0) + C | VP [ 1) »
where C, is a constant independent of x, and .

REMARK. By the same reasonning we can show for m=3, 4, -

(5.15) VRl n(dH-IVP(%)) < (14+1ie) V| Ve | (%) +Cop | VP | ms0) -
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Next consider the estimate of reflected rays. Let @* satisfy (4.1) and (4.2),
and (o) and 7(o) be the same ones in §4. We also suppose that (o) verifies
(5.3). Since |[(D)(0)] <Cy|®™ | v(s) we have from (4.6)

I(DI0)| <Cy| @™ | 1y1-1(S0) -
Using this estimate we have

[(D3r) (0)—(D3i)(0)+2((D75)(0) - n(so))m(so) | S Cy | VP | im1-1(So) -
Evidently

(XIPI~F a5 O)<C1V9 o)
0%

(XXT7 )00 S abis 2 (0)|< CIV9 L)

Concerning derivatives of @*, denoting

§1~—+ E? -l-fs
(2
where 51—(0)+§z (O)—{—’g’ar(O) a, we have

}(Xvwxso) =317 (0)|<C|V¢ lo(s0)

'(XaXbV¢+)(so)—kglfjvk 0) |< CIVP* |1(s0) -

00 ;00
Taking account of |a|=|&| and that fact

| DYi(0) | = | D2i(0)—2(D3(0) - n{se)m(ss) |
we have immediately

Lemma 5.3.
Vo™ | ()< |V~ | 1(80)+Ci| Ve* lo(so)
[ V@™ | 3(80) < [V | o(80)+C2 | VP | 1(S0)

Remark. By the same reasonning we can show for m=2, 3,

(5.16)

(5.17) |VE™ | a($0) S IVPT [ n(80)+Con [ VP [ mos(S0) -
Using the above lemmas let us show

Proposition 5.4. Suppose that ¢(x) satisfies the assumptions of Proposition
4.2. Let @;, j=0, 1,2, .-+, p be functions verifying (a)~(d) of Proposition 4.2.
Then an estimate
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(5.18) VP, [ (%) <Co| Vo  u(y)

holds for xe Ly, Vo(»)), j=1, 2, -+, p, where C,, is a constant independent of @
and p.

Proof. Note that (5.18) holds for m=0 because | Ve;|=1, ;. Suppose that
(5.18) holds for m=1, 2, ---,h. By Proposition 4.2 the principal curvatures

#;() of G4 (X()) at X,(y) satisfy

*er

Then by Lemma 5.2 and its remark we see that for j=1, 2, -+« p

VP, | 141(Xj41(3) S(1+dKo) 71 VP, | 1ad(X;(0))+Co | Vo, | (X () 5
and

[V, (X)) < || h+1(}’) .

On the other hand Lemma 5.3 and its remark assure that

' Vi l h+l(Xj+1(y)) < Veo; | h+1(Xj+1(y))+Ch | Vo; l h(Xj+1(y))

holds for j=1, 2, ---,p. Using the assumption on the estimate of |®;|, we
have an estimate

IVl 1a(Xja ) S(AHIK) D[V [ 14(p)
+2C,(14+-(141Kp) =D oo 4 (14-IK)y /) [ Vo | 4(y) -

Thus our assuration is proved.

6. On the transport equation

First we will arrange some properties of asymptotic solution for [Jw=0 in

the free space.
Let peC=(D), DC R®such that |[Ve|=1. Let us set

(6.1) w(x, t; k) = e*@® Ny (x, t; k)
(6.2) o(x, t; k) = i} v (x, t; )k .

Apply [ to w of (6.1) and we have
(63) D‘w — _eik(qo-t) {(lk)z((ch)z— 1)‘2)

+z‘k(zg—f+zv;o-w+m'v)—mv} .
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Substituting (6.2) into the right hand side of (6.3) and setting all the coefficients
of k77 equal to zero we obtain so called transport equations, that is,

(6.4), 2%—?+2V¢-V00+A¢.% =0,
(6-4); 2%+2V¢°ij+A¢-vj+iva_l =0, forj>1.

In an attempt to obtain successively the estimate of v;, we consider the
solution of the equation

(6.5) 22_:‘+ZV¢-Vu+A¢-u — h(x, ).

When {x+IVep(x); /[0, L]} €D the solution of (6.5) is represented as

G(x, 1)
G(x, 0)

+ g[gg—g] h--sE(), t4-5)ds

1/2
(6.6) w(x+IE (x), t+1) = [ ] u(x, ?)

where £(x)=V@(x) and G(x, [) denotes the Gaussian curvature of G,(x+IE(x))
at x-+/E(x). This formulais due to Luneberg [7], Keller, Lewis and Seckler [4].
Let us denote the principal curvature of G4(x) by #,(x) and #,(x). Then those of
Go(x+1E(x)) are «;j(141lk;)7", =1, 2. Thus we have

(6.7) G(x, 1) _ (1+s)(14-555)
' G(x,s)  (14+1le)(1+1ky)

_ 14-2sH(x)+5°G(x)

1+-2iH(x)+PG(x)’

where H(x) and G(») denote the mean and Gaussian curvature of Gy(x) at x.
In the same way as §5, we introduce the following norms. Set S3=

{(El) 52’ ES’ 54); §§3<1} and fOI’ az(alr az: 03, a4)ES3

3 () ()
X, = — —.
nga, f)x,-_l—a4 ot

DEeFINITION. For w€C~(U X R"), UC R® we set
|| u(2, 2) = max max [(X,wX @ X ww)(x, t)].
<M Doy

When x=U NT we also define another norm by

|| (%, £) = max max |(X,@X @ - X,ww)(x, )],
<M (Degdf
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where S¥=83n T¢, »(T' X R), where T, »(I'X R) denotes the tangent space of
TXR at (x,¢). And we set also for a suset @CUXR

|20 | m(w) = max || m(, 2)
and for o’'CTX R

|| m(e”) = max |20 | m(x, ).

Lemma 6.1. Let m be a non negative integer. For the solution (6.6) it holds
that an estimate

(68) o (- IEC), 1+
<1+ bf)) ™ 0] o, )+ 1] sE(w), t-+5)ds
+Cal VL 8) { 191 s, O+ 0] s+ 1), 1)
VB e E), £ D)+ 1o, 24905 )

where C,, is a positive constant independent of w and @. Especially, for h=0 and
m=0 we have

(6.9) |w(x+IE(x), t+1)| < (1+liy(x)) ™ () |

Proof. Note that (6.9) follows immediately from (6.6) and (6.7). Let {w(c);
o€ U} be a representation of G,(x,) which verifies w(0)=x, and the condition

(4.4), (4.5) and (5.3), where i(0)=(V®)(w(c)). Suppose that 2—“’.(0), j=1,2

and &(x,) coincide with x;, ¥, and x; axis respectively. Consider a mapping
RS (o, a3, I, T)—(%,, X3, %5, t)ER* defined by

{x = (o, I) = w(a)+lio)
=741,
Then the Jacobian matrix of the mapping at =0 is

141k, 0 0 0

0 1+le, O 0
6.1
(6.10) 0 0 1 0
0 0 1 1

Moreover, the inverse mapping satisfies
(6.11) IDY.io;| <Cy|Vplwm, j=12,34

where we denote [=¢3, 7=0,. Let us set for some />0
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x = xy+1E(x,) , t=t+l.

First we show (6.8) for x=x, in the case /=0. Suppose that for a¥’=(a}{");_; 5 3,
€8, j=1, 2, -+, p<m it holds that

(6.12) |w] W(21, 1) = [(X, 0 X @0 X ow)(xy, 8,)].
On the other hand, taking account of (6.10) and (6.11) we have

(6.19) L Kaop e, ] (1 (B 0

+ap(2 a —67>+a(” 9 >>w(w(a')+h(o-) T+1)]

SCy VP | () |w] pos(21, 1) -

Note that it follows from (6.7) that for 0<{s<C/.

-0

D Gﬁf,ﬁii, ’; <CyIVo| m(a(o)) .

Then using (6.6)
(6.14) ‘[Yl Y, Y, w(o(o)+li(o), 'r—l—l)]ﬂt

—(gfiZ (l)))yﬂ[ﬁ(z ¥’ T+l_fle,,(x7)aak+( @ —a’) éa?»w(“’(")’ ™) J::?

<C,|Velylwl (), 1),

where

| o _0 Ny
Y. = (J)__—_ (J) ) (Ol
P 1+ Ly () b @ <61 or) %

By the same consideration we have

(1 Xyt [ (1 (60 240049 ) Jatot), ) | .,

o=t

<G, VP por(0) |20 ] pos(x0, 2) -
Therefore, setting

. . 1 . 1 L
b)) — ( ) , (7) , ;)’ (I))
W ey “ Ty @

we have with the aid of (6.13) and (6.14)

‘ ((g X cn)w)(x,, 1) —[ggzz é;]m(jljl X0)w)(xo, 1) ’

<G|Vl (%) {lw] p-s(%0, 1)+ | ] p-a(x1, 1)} .
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From (6.12) we have
|20 | (%1, tl)<|:g_gm—i))) :ll/ZI ((;li Xyn)w)(x,, 2)
+C, | VPl (%) { ] p-r(%o, £)+ | ] pa(, 21)} .

G(xo: l )
G(xlb O)

Since (

(6.8).
When A=£0, setting for each 0<<s</

s and [w] (%, )3 | (1T Xh)w) (5, )| we haye

1
1+ Lrey(axy)

heHIE), 141) = [—g%’—i%]llzh(x+a§(x), t45)

we have from the above result for all 0<{s<</

s, ) <( G ) e, 149
0»

+Cm l V¢ I m—l(xo) { | hs l m—l(xl.v t1)+ |hs I m—l(xO_}_sE('xO)) t+$)} .
Using this estimate we have immediately (6.8) from (6.6).

Lemma 6.2. Let @*, ¢~ be functions verifying |@p*|=1, (4.1) and (4.2).
Suppose that h*, " €C*(UXR) and w*, I~ satisfy

(6.15) zaa_”fjuzw’—mkumt.wr —h*  inUXR

(6.16) wt = aw™+f(x, t) on TNU)XR,
where |a|=1. Then it holds that for all (x, t)e(T'NU)X R
|w* | (&, )< |07 |, )+ | f (%, )+ C| V™ [ () {| 907 | a3, 2)
w7 [ per(, O)F [ BT | (%, D)pert |27 | a2, 2)}
where C,, is a constant independent of w*, h* and @...

Since we can prove this lemma as almost the same way as Lemma 5.3, we
omit the proof.

7. Construction of asymptotic solutions

Let s, and U be a small neighborhood of s, in R3. Suppose that
0(x, , B), p(x, n, B) are defined for x€U, nE€23={(n), 72); ni+mi=1, B
[—Bo Bo} (By>0) and they satisfy
(VO +p(Vp)=1 (mod B%) in QO NU
jV%VpEO (mod B~) in Q®NU
p=—p on TN U

(7.1)
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9

>
60'2

(72) (V0507 0) = a4
g
where QW =R3—0;, j=1,2 and {y(c); €U} be a representation of T,
near s,.
Lemma 7.1. Let u be an oscillatory data given by
(7.3) u(x, t; n, B, k) = *C=ED f(x ¢, k)
f(x, t; R)eCT(TNU)XR) .

For any positive integer N, there exists an asymptotic solution w™(x, t; 5, B, k)
with the following properties:

(7.4) suppw™C U {x+IV(0+42/3 p*%)(x), t-+1); 1 >0}

Cx,Esupp £
(75) 10| XR)<Co  xk (D f oy m(Ti X RYE)
(7.6) In {x; dis(x, O,)>d,[2} w™ is of the form

™ = *¢ Ny = Fvk

|91 QR X R)<C; ,, & Ilf [50;(Ty X R)
and the principal curvatures of 6 4(x) are positive.
(7.7) | O™ [ QX R)<Cr k™" | fluram(T1X R)
(7.8) | Bo™ —u| 4(Ty X R)<Cy ok f | frem(Ti X R)
where QP =Q® N {x; |x| <R} and N'=20N.

Since this lemma may be proved by the same process treated in §4 and 6
of [2] we omit the proof.

. Lemma 7.2. Let U be a neighborhood of ©, and let y(x, t; k) be a function
defined in U X R of the form

y(x, t; k) = e*¥ Dy(x, t; k)
suppyCUX[0, ), |Ve()|=1.
Suppose that for some 8,>0 it holds that
(7.9) | Vo(x) n(x)| <28,, "x&Proj(suppyNIyXR),

where Proj denotes the projection to the x-space. Then we can construct for any
N positive integer a function z™(x. t; k) defined in QWX R with the following
properties :
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(7.10) |20] (O X R)< Cy k™ || 4Ty X R)

(7.11) supp 2™ C (x,t)eguppu EEL%;.CO(x, t; &)

(7.12) |2 | QP X R)< g k™[0 | fran(Ty X R)
(7.13) | B(y-+2%) | 4Ty X R) < Cyy k™" |0y (TsX R) .

Proof. 'We may suppose that supp y N (T', X R) is sufficiently small. Then,
by using €; of § 4 of [3] we have

y(x,t;k):éCij onT\ X R.
=
The definition €{/; gives

(Vi9s(o), §) = wls(o), 1) | ar |” daf ag'{ ao'(ar

exp {ir(—t+t'+(1+a)o—0o', ED} X(1+ ")k (1+a)
a(s(a"), t)e*v(s(a’), t'; k).

Taking out the integration with respectto ¢',if |7—k| =&k we have an estimate
for any M

| S ETDo(s(a"), 13 Rt | <Co k™ |0 4W(TyX R) .

For verifying |7—Fk| <&k, since @ verifies (7.9) it holds that for j 2

|grado(@(s(a")) —(1+a)a’, ED) | = af2

when X ;(14a)=0 if we choose & and 3§, sufficiently small. Therefore we have
forj=+2

IS ,‘mwsw’»—<1+~><a”5>)xj(1+ a®v(s(a’)) t'; R)do’ |
SCyul7mI ™o (T1XR) .
These estimtae shows that when (7.9) holds for small §,>0
|Voy—-3 14T X R)<Cy k4" 0| 4(Ty X R)
where €/, denotes an operator replacing S‘;dT in the definition of ¢{/ by

Sl | dr. By using the change of variables of page 87 of [3] it follows that
T-ki<ek

(CT/Zy)(s(o-), 1) = ols(), 2) Slr—kl<ede Sz dn glﬂl<ﬂodﬂ Sla-do-l S ar'
exp {im(0(s(o), 7, B)—0(s(c”), n, B))+1—1")}
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. 27,2 D(&’, a)&-) o). t)eik@se)=t")
X(14-a)’k (1—|—a)D~——(77, 3 (s(a), t')etr®sC
~o(s(a’), t'; k).

By applying Lemma 7.1 to an oscillatory boundary data

u(x, t; B, 7, k) = eik(O(s-ﬂ:ﬂ)—t)w(x, t)x2(1+a)k2(l+a)g_ggi_’ﬁa))
B

we obtain w™(x, t; 5, B, k, ') verifying (7.4)~(7.8). Let us set

s )= arf dy;S d,ej da'gdt’
IT—ki<ek 2 1B1<Bo Ig
W, 15 7, B, k') OUN DI n(s( o), 1 ).

Then we see immediately that 2™ is the rquired solution.

DrrFinITION. Let U be a neighborhood of s,&T; and let 4r(x) be a real
valued function on I'NU. We say that y(x) satisfies Condition C in U if
there exists a real valued function ¢(x) defined in U verifying

@(x) = Y(x) in T,NU
V| =1 in U
02 (x)> s, on T,NU
on
the principal curvatures of 6,(x) are positive for all x &I, N U .
Lemma 7.3. Let u be an oscillatory data on T, X R in tke form
(7.14) u(x, t; k) = e *YOD f(x t; k)

where p satisfies the condition C in U and f(x, t; R)eCT(T'N U)X R). Then
we have v(x, t; R)ECT(QV X R), j=0, 1, 2, -+- with the following properties:

(7.15) suppv;C U Lyx, t; V()
(x,t)Esupp f

(7.16) [9; [ (X R)<C; 2| VP | oms QD) | f | s 2i(T1 X R)
For an N positive integer, if we set
(7.17) w®™(x, t; k) = e+ ZN‘, v;(x, t; R)k™

j=o
it holds that
(7.18) Oa®™ = * @D k~N[o, in QOXR

(7.19) Buw®™ —y = *¥"0k"¥Byy on T\ XR.
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RemMARk. Combining (7.16) and (7.18) we have

(7.20) [Cew™ [, (QR X R)<KCy p gk ™| f | mizn+2(Ti X R)
and from (7.16) and (7.19) we have
(7.21) | Bw™ —ul, (T X R)< CN,m,Rk_N+m [ flmienso(T1X R).

When B=B, from method of the construction we have Bvy=0.

Proof. If we look for any asmptotic solution in a form (6.1) from the
consideration in the beginning of § 6, we require that v; is the solution of (6.4);
in Q®. In the case of B= B, we set a boundary condition

vo=f, ;=0 forj=1 onI\XR.
In the case of B=2R,, since for w™ of (7.17)

Bw® = ¢i=H i (ik a—qpvj+—a—v~i+av,>k'j
=1\ On on

we set the following boundary condition for v; on TYyX R

v = (1R)"f

.(0v;_ op\™!
or=i(Tg o)

With the aid of Lemma 6.1 we obtain successively the estimate (7.16), and
using (6.6) we have also successively (7.15). On the other hand, since v; satisfies
(6.4); we have (7.18) from (6.3). And (7.19) follows from the boundary con-
dition which v; satisfy. Q.E.D.

and for j >1

Lemma 7.4. Let w™)(x, t; k) be a function constructed in the previous lemma.
Suppose that

(7.22) —#(X,(x, Vo(¥)-Vo(®)>8,  'xeProj(suppf).
Then there exists a function W™N)(x, t; k) defined in Q® X R in the form
(7.23) B = G0 3V 5 (x, t; )k
j=o
satisfying
(7.24) supp 7, U L, £ Vo(#))
(7.25) 19,1 W(Q X R)SC; o | f 1 42/(T1 X R)
(7.26) O™ = e*E-Dk=Np,

(7.27) B ™4 @) = ¢#¢=0%=N(Byy+ B ).
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Proof. Taking account of Proposition 4.2 there exists @ defined in w,=
L,(x, Vo(x)), which verifies

Proj xEsupp f
|V¢I =1 in w1
P=¢9 on I
0 0
£ == _5%) on Pz .

Let #; be a solution of the equation (6.4); replaced @ by . We set a boun-
dary condition for #; on T,.

—0

when B = B,

i
7.28 D= -
(7.28) 9, v,+i(g—¢’) Bv;.+Bv,.)  whenB=B,.
n
By using Lemma 6.2 we have
[0, (T X R)< |0 | u(ToX R)+ |91 | (T2 X R)
+Cm l V¢ | m{lvj—l | m(FZX R)+ I‘vj-l ' m-—l(FZXR)
+ 1081 | m-r(T2 X R)} .
And from Lemma 6.1 we have

19,1 X R)< C,y 2| VP {1 0| (T X R)+ 1010, | f(QP X R)}

Then the estimate (7.25) can be derived inductively from the above two esti-
mates. Taking account of

Lo(Xy(x), En(x)) = Li(x, Vo(x)) »

we have immediately (7.24). (7.26) and (7.27) follows from the equations and
boundary conditions which v;, j=0, 1, 2, satisfy.

Remarx. Applying (7.25) to (7.26) we have
(7.29) [O@™ | QP X R)Cy py k™| f | nian+AT1X R) .
Similary we have
(730) | B@®4@®)] (T;X R)< Co k™| f L hsonsdTiX R) .

Proposition 7.5. Let ] be a positive integer and let u(x, t; k) an oscillatory
data on T\ X R of the form (7.3) or of the form (7.24) with «r satisfying the con-
dition C. Suppose that

(7.31) ¥¥(x, Vo(x))<J  for all x&Projsuppf,
where for u of the form (7.3) @(x) means 0-+2/3 p**. Then for any N positive
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integer there exists a function w®™)(x, t; k)= C=(QX R) such that

(7.32)  suppwMc ) L, t: Vo(x))

(x,tDEsupp f

(7.33) o™ | L (Qr X R)
b
<Cr yvmel Vol m+mk"’“§ 7 f | mrojsaT1 X R)

(7.34) 1O W(QrXR)
gcf,N,m,RlV¢'m+N’k_N+nlf|N’+m(FlXR)
(7.35) |BM—u|, (TXR)
<SCrnume| VPl wiw BV flyrem(T1 X R)

where N'=20N+40 and for u of the form (7.3) we set 0 in the place of @ of the

above estimates.

Proof. First we consider the case of # of the form (7.24). Let (s, t))E
supp f and let us set

PX(sor V(s0) = Ko

and X{=X(so, V(50)), EF=E (s, V(s,)). Taking account of Lemma 3.1,
for fixed £>0 there are three cases:

Case 1. n(X))-EI=>S, j=1, 2, -, K, and if X% &T(T,) Lk,(S» VP(55))
does not pass the &-neighborhood of O,(0,).

Case 2. n(X})-E}>S§,, j=1,2, -, K, and if X%, €T(T,) Lk, (S0 VR(So))
passes the &-neighborhood of O,(O,).

Case 3. n(X$)-E}>38, j=1,2,,K,—1and

0<n(X%,) E%, <8, .

Case 1. Taking account of Lemmas 3.1 and 3.2 we can take U, a neighborhood
of s, such that

A, Vo) =K, and w(X)E>18, j=12-K

hold for all x&U,NT, and Ly (», Vo(x)) does not pass the &/2 neighborhood of
O,. Suppose that supp fCU,NT;. Applying Lemma 7.3 we have

N .
w§) = *@=H 20 0o, t; k)R
£

(N)

satisfying (7.15)~(7.19). Applying Lemma 7.4 to w{"’ we have w{"’ with the
(N) (N)

properties (7.23)~(7.27). Next apply to w{"’ we have w§". Repeating this
process, we obtain w${"), j=0, 1, 2, -, K, such that for j >1
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2N
lw(J'N) I m(‘QRXR)SCj,m,N,R 1—20 lf I r/n+21 k‘Hm

suppw¥c | Lix, t; Vo(x))

(x,t)Esupp f

| DO | w( Qe X R)SC; v gk ™™ | flins2m(TiX R)
[ B+ i) | w(Tip X R)SCj v 2™ | flins24em(TiX R),
where we set
T = {Xj(x, Vo(x)); x€ U} .
Taking account of
supp w¥y N(TeXR) = ¢, €= (14(—1)%*)2+1
we see immediately

K, N
w®) :gws )lexR

is the desired one.
For the case 2, we construct @$"), j=0, 1, -+, K, by the same way as case 1.
And for w{) |, g using Lemma 7.2 we have wj),, such that

|B(w§f?+w%\;ll) | w(TexX R)< CKo,m,Nk_N-H”E ‘f | N’+m(F1 XR) .
Then
K,
w0 = S10
=

satisfies (7.32) (7.35).
For the case 3, we may show by the same process.
For u of the form (7.3), first construct w{"’ according to the process of Lemma

7.1. Then concerning
: A .

wi"| TayXR = etrn g UNT IR
V= @]y, satisfies the condition C. Then we may apply the consideration
for u of the form (7.24). On the other hand from (7.6)

[90j | (T2 X R)SC; | fl20(T1 X R) .
Combining this estimate and the results for # of the form (7.24) (7.32)~(7.35)
follow immediately.
8. Decay of asymptotic solutions

In this section we will prove the following

Proposition 8.1. Let u be an oscillatory data of the form (7.3) or (7.14).
Suppose that
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(8.1) suppuC Iy X (T, T+1).

Then for any N positive integer there exists a function 3 eC~(QXR) with
the following properties:

(8.2) supp 2N COX(T, =)

N
(8.3) |2 (Qp, )< Crvm,ze8” ™D XE 2R | f s 2i500(T1 X R)
=
(8.4) |2 ( Qg ) <Cvpm,ree” ™ORN L avsao(Ti X R)

(8.5)  |Bz™—u| (T, )<Cy,, e~ @ DR Ntm| 17 0 (T'XR),

where c, is the constant in Theorem 2.2, & is an arbitrary positive constant and
Cy m.r,e depends on N, m, R, & and {|V],; m=1, 2, ---}.

First we note a simple lemma without proof.

Lemma 8.1. Let « be a positive constant <<1. Suppose that a;, j=0, 1, 2, ---
be a sequence of positive numbers verifying for some A>0

a;<aa; ,+Aa’t, j=1,2,
Then for any &€ >0 we have an estimate

a;<(ay+A4C,)(ae’)’ , j=0,1,-.
where C, depends only on &.

Let us fix £§>0 and we will show (8.2)~(8.5) for this &. Let us choose
6>0 so that we have

K(y) K(a,)
(IR ~ L1+ | <

where /= max |x—y|, K(y)=min(«(y)), #;(y), j=1, 2 are the principal cur-
LERX)

VyESi(S)’ ]: 1> 2’

YES,8)

vatures of I" at y. Fix §, and §, so that §>8,;>8, and Corollary of Lemma 3.3
holds. Hereafter K denotes the one of Lemma 3.3 determined by §,. Let us
set S=.5(8,) and S=5(8;). Let v,;(x), 7, j=1, 2 be functions defined on T;
such that

_{1 xeSi(5,)
Tl xeES(sy)

and v;+v,=10on T}, =1, 2.
First we construct 2™ for u of the form (7.14) verifying

supp f CSy(8,) X (T, T+1).
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Let us set for j=1, 2, 3, -
T'yp==S ﬂ,ES[;JCBZDXi(x, V()

&; = {X;(x, Vo(x))+IE (%, Vo(x)); 120
x€.5)(8,) such that X; (x, Vo(x))eS} .

Then using Proposition 4.2 we have ¢,;(x) defined in &; such that

(8.6) IVpjl=1 in &
and

Pj= Pj-1 on I'¢
& %_ %0y,
Applying Proposition 5.4 we have
(8.8) IVP; | (3;) < C | VP n(@0) < Cpl ¥ | aa(T) -
Let

. N :
w§") = ket zo} vi(%, 1; R)k™
~
be the function constructed for u according to the process of Lemma 7.3. Set
ulp:uzpBwﬁ,N)lpsz, P: 1,2

In the case of the Dirichlet boundary condition
. N .
Uy, = ¥ 3Ny, v,k
i=0
In the case of the third kind boundary condition
N .
Uy, = et@=H 3 vzl,<i6—¢'voj—i— Bvoj_,)k"“ .
=0 on
For u;, we can apply Lemma 7.3 and we have
. X .
w®M(x, t; k) = e* ™D 30, (%, t; KR .
i=0

Set
Ugy(%, t; R) = v1,(%)Bwt™ | 1 g p=12,

and construct for
. N .
w(x, t; k) = €*®270 D vy(x, 2 k)R
&

following the process of Lemma 7.3. Repeating this process construct for
q=0,1, 2, ---.
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. N .
wM(x, t; k) = &+ EO 0,;(, t; Rk .
£

Lemma 8.2. Let us set

a:max—17, l:le{x—‘yI’
ves 14-21K(y) oS
2°02.

Then it holds that for ¢=0, 1, 2, .-
(8.9) |07 | m(Qe X R) <K Cj g o(a€°)| f I ms2;(Ti X R) .

Proof. First we show (8.9) for j=0 and m=0. Note that v, satisfy

09,4 .
2 ot +2V@,* VU + VP, v = 0 m o,

and for ¢>1 they verify the coundary condition on T,

vav,., if B=B,
’qu =

—Va1Vgo10 if B=B,,
where e=((—1)?+1)/2. Consider the case of B=B,. Then
Voo = f on I';.
Then applying (6.9) we have
[P0l o(T2 X R)< | f§(T1X R) .

Note that form Lemma 4.1 we see the principal curvatures of 64 ,(X;)>2K(X)).
From the definition we have for x&T,

V1(%, 1) =vyu(X)ve(x, 1) .
Then
[Vl o(TeX R) | flo(Th X R) .

Applying (6.9) for v,, we have
[V (Ti X R) <@ |0y ] o( To X R)<a| f (T X R) .
Repeating this process we have for all g
|20l o(Te X R)<a*™*| f|3(T1 X R).
Next, suppose that (8.9) holds for m when j=0. Note that
120] mis(TiX R)SC | fl7s1(T1X R) .

Then applying Lemma 6.1
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|021'Uw|m+1(F2XR)<C [ flm(TiX R),
from which it follows that
(021900 | wrr(Te X R)SC {] f | 5 e(TyX R)+ | vgo | (T X R)} .
Since from the definition
Vg0 = Ve(g194-1,0 on F(q)
we have by applying Lemma 6.2

l‘vqo I m+1(P(q) X R) < | 'vq—l,ol m+l(1—‘(q) X R)
—|_C { I 'qu I m(I‘(q) X R)_l_ | ‘vq—l,ol m(]-—‘(q) X R)} .

And from Lcmma 6.1

' Vg0 l m+1(F(q+1) X R) <a I Vg0 | m+1(1-‘(q) X R)
+C { | vqo | m(l—‘(q+1) X R)+ |7)qol m(F(q) X R)} .

Combining these estimates and using the assumption
[0g0| mi1(Tgry X R)< @ |0,y o] mi1(T() X R)4-4C - Co(ae®)™* .
Applying Lemma 8.1 we have
[ 040 mr1(Tigrn X R)S C,, o(a€®)? for all ¢.

Taking account of (6.8) the estimate (8.9) for j=0 follows from the above esti-

mate.
Next we will show (8.9) for j>1. Note that v,;, ¢=0, 1, 2, -+- satisfy

0v,; . o
2 8;]+2V(p‘l.vv"j+A¢’l'vqf —_ ’quj—l in mq
and on T'(,
Ve1Vgj-1 if B= B,
V,; = ' ‘
" Va1 V-1 (BUgj1—va B,y ;1) (l %) if B=B,.

Suppose that (8.9) holds for j and m=0, 1, ---. From the assumption

| 0205 | (' X R) <K Cj i (a€°)| f | 142 42(T1 X R)
and

|Bv,j—Bv, 1 ;| (T X R)<C; (a€’)| f | mazjs1(TiX R) .

Then we have from Lemma 6.1
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|9, 741 m(Tian X R)K @] 0, ;1| (T X R)
+C(ae®)?| f | maz2j+2(T1X R) .
And applying Lemma 6.2 to v,4, ;4 and v, ;,; on T, we have
[Vgs1, 41 m(Tian X R)Y |01 | m(Tigan X R)+-C(a€®)| f | mazjro(TiX R) .

Then we have (8.9) for j+1 by combining the above two estimates and by
using Lemma 8.1. By the induction we have (8.9) for all j and m. Q.E.D.

Oaf® = "% k"o,
we have
(3:10) 106”1 X R)<Coyp ,(ae)* 331 f I nszs ool Ty X RYE7 7
(8.11) | D% | (0 X R) K Cly o .o(@€)| | haons2(TiX R)E N7
Taking account of

suppv,;C | L,(x,t; Vo(x))

(x,t)Esupp f

we have
supp w§" N (Qr X R)C Qr X [qh,, (g+1)L+R],

therefore we can rewrite (8.10) and (8.11) as

N
(8.12) || (O X R)< Covp @ 23| Flhszsa(Tyx RYk5m
(8.13) 10w | QR X R)| <Chype™ ™RV [ ano(Ti X R)-

Concerning the estimate on the boundary, we see that from the process of the

construction of w{"’

(8.14) But™ |1, g = f+€*® k¥ By,

and for ¢>1

(8.15) [Bw{ +va Bw(M nx g = € k"B, ) y+vaBu,y) .

Remark that for ¢>1 it holds that

X (%, Vo (%) <K, "x& Proj supp u,, .
Indeed, x&Proj supp u,, is represented as

x = X\(X, Vo,_i(X)), X &Proj supp u,_1,

and x&S. Then Lemma 3.3 and its corollary assure our assertion.
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Now we can apply Proposition 7.5 to u,, ¢>1 taking /=K. Then we
have y{V(x, ¢; k) such that

| ¥+ | (T X R)<SCR Y| foo| mionsao(Te X R)
5 .
01X BYSCR™ 3 fal s T X RI

Oy | QX R)SCE 4| fiol mron+ao(Te X R)
(8'16) supp yt(lN)C U -L.(x, L V‘Pqﬂ(x)) ’

(*,t)Esupp £,
where we set u,=c*®9f,  Then we have from the definition
N . .
062121 ‘vqjk_’ if B= Bl

i=0

fa=1,, 8 (i %vq,—l—Bqu_l Jei if B=B,.

Using (8.9) it follows that
(8.17) | fael (T ex R) < C(ae)s 33| loas(Tyx RYE
Taking account of the support of %, and (8.16) we have

supp ¥ N (Qr X R)C QX [log, Li(g+K)+R] .
Then it follows that
(B18) |5l AT X R)<e TR 3 | pras(Ts X R
(8.19) | 9¥7] (Qex B)<Chm*le=@ ot zﬁ" | Flrioraf(Ta X R
(820) 1058 |a(eX RS Ce kS| £l gt

Then we see immediately that

2 ®(x, t; k) = 3 wi(x, t; R)+y{(x, t; k)

=0

is well defined and it verifies the properties of Proposition because for each ¢
only @ such that #/,>¢>¢—R/,—K do not vanish.
Now we will remove the assumption

supp f ©S(8;) X (T, T+1).
Let s, Projsupp f. If
P50, Voso)) <K,

Proposition 7.5 proves Proposition 8.1 if supp f contained in a small neigh-
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borhood of s,. If ¥(s,, Vp(s,)) =K, Lemma 3.3 assures for some j <K
X (s Vo) €S .
Then we may suppose that
X;(5, Vo(s))eS, Vs&Proj supp f.
)

Using the process of Proposition 7.5 we construct ™, w{®, .-, w{¥, then we
have

() — pik(¥;—t
Buw; lrf(i)xlz = e*¢iT0f;

supp f; CSe(p(82) X R

and the estimate
N
| fila<C 21 f lrssorn(TiX R

holds. 'Thus we may apply the process of the construction of 2™ to e*¢“;~?f; and
we have the desired function.

Corollary. For an oscillatory boundary data of Proposition there exists
ZWN)(x, t; k) satisfying

2™ =0  in QXR
and (8.2), (8.3) aand (8.5).

Proof. Let 2™ be a function verifying (8.2)~(8.5). Take a function
h(x, t; k) such that

h(x, t; k) = —[J=2™ in QX R
Ihlm(O) t)<CN,m,R,ee—(co—e)(t_T)k_N+mlfl£N+m+40(F1XR) .

Let g(x, t; k) be te the solution of

{Dg=h in R R
g(x,t; k) =0 for t<T.

And we have the estimate
t
g late )< || 11151 <R, 9.
Then we see immediately that
2N — )t g

satisfies the required properties.
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9. Proof of Theorem 2.2

Let 5,&T, and let U be a small neighborhood in R? of s, such that for all
9.1) h(x, t)eCs(T'NU)X R)
the representation

W, 1) = 3V J)(x, 1)
of § 4 of [3] is applicable. We will define 9; an operator from Cg((I',N U)X R)
into C*(Qx R). We set
(Wm0 = | ak | da | ag
-1 =
2M(x, t; a, E', R)X,(1+a)?R(1+a)h(E, k),

where
h(E, k) = S do' | dt' et~ D h(s(a), 1),
and 2™z, ¢; a, &', k) is the function of Corollary of Proposition 8.1 constructed
for an oscillatory data
u(s(c), t; k) = eI D(5(a), 1) .
Indeed, Y(s(c)) = (14+a)o, £"> satisfies the condition C for a<<—a, And

we set

(T h) (x, 1) = Sdk S dnS dg S do’ S dt' 2(x, t; B, 7, k)
) 1B1<Bo
RO TR 55 (5( ), Yhs(a), 1)
where 2 is the function of Corollary of Proposition 8.1 constructed for an
oscillatory boundary data

u(s(c), t') = eI y(s(a), )X, (1+ (o, ', 1, B))

(+a(a, o, 7, ﬁ))%%“—))@, o'y 7 ).

And we set W;+Z;, j=3, 4 of §4 of [3]as W), j=3, 4 respectively. Remark
that U ;+Z; of [3] satisfies
OW;+2,)=0 in QO
and for any N’
(W42 )k w(ToX R)<Cop o [k ™| 2| (T X R)
(W;+2Z)h=0 for |x|>t—2I.
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Then we have for j=1,3
| TSR] Qs 1) < Cp g 6™ @7
S dk Sda S dE’(g k7 A, 12000) | RI™TX;(14- ) B2 (14 ) \h(E, k)|,
where 4; depends on the derivatives of w(x, ¢), and
| WEOR| Qi )< Cp g e C™DED

N/ .
(i § an [ 483 111 A sy 21+ )

(J1Btste, By1da),
where Fi(s(c), k)= S e=* h(s(o), #')d¢’. Simillary it holds that

|1 | (e )< Co g™ DD
S dk s da S aE |E|"X,(1+ PR (1+-Q)h(E, k) .
By the same way we have, for j=1, 3
| Th—CV;h|(T, )< Co e [k [ dar | ag
*Aponen Rl VX (1 a)R(14-a) LA(E, B,
| GYEOh—CU k| (T, £)< Cy e~ Co™ED S dk S B S dy

Aok Xl 1+ [ 1), B)lda),
and
I‘Wﬁ”’h—QAhl,’n(I‘, t)<CN,m,ee“(‘o“’)(“1) S dk Sdagdgl

kYA pion s EI"X (1 a2+ )R | A(E, k).
Set

gy — "‘v_} P
Then we have
9:2) WNhp =0  for t<0
9:3) | TYNR| o (Qgy £) < Cy o€ DD
-S{(1+ 'kl)’”“SI’N!(S(a), k) lda+S |E1" |h(E, k)| dE}dR
(94) OWMh=0 in QXR
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95)  IDUBTVOh—R) AT, < Cop 5,06 s e
For p=ik+p, p>—¢, define ZW)(p)h by

(BN = [ e BOh, B

From (9.4) it follows that

(9.6) (P—AZEM(ph=0 in Q.

Taking account of (9.2) and (9.3) we have for Re p >0
EW(phe () HY(Q)

and ”

(0.7) NZN( P, 220 < C(Re p) 1Bl |, 20 x

From (9.3) we have for Re p=>—(c,—¢)
9.8)  [ZN(D)h] m(Q2e)
<Crmr | ARSI, Bl Bllass, s} dk

and also from (9.5) we have for Re p>—(c,—&)
(99) | pAB(Z™(p)h—h(-, p)} | w(T")
<CN,m,e”h”—-N+m+1,L2(I‘><R)

We see immediately that by using the partition of the unity we can define
GYPMN for all heC3(I'x (0, 1)) and (9.8) and (9.9) hold.
Define U{"(p)g an operator from C=(T') into C =({}) for p and ¢(¢) such that
Re p>—c,, §(p)=+0 by
9.10) 0(p)g = - (Z(p)h)
4(»)
where

h(x, t) = g(x)9(t),  g€C"(T), ¢&C7(0, 1).
Let m(t) be a function of C7(0, 1) verifying
S m(t)dt = 1.

Set
g:(t) = e"*m(2) .

Since §,(tk'+ p)="m(p+i(k'—k)) there exist a,>0 and C,>0 such that for
all |B'—k|<ay, 1>p>—c,
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(9.11) | Gu(ik + 1) > C, -
From the definition we have

(9.12) Slk’"’q,,(ik’—|- w|dk'<C,|k|", VRER

where C,, depends only on m(¢). Then by using (9.11) and (9.12) we have
from (9.8) for 1>Re p=>—(c,—&), |k'—k| <a,

(9.13) l ﬁgﬁ')(p—l—ik')g | () < CN,m,R,e{|k [+ gll 2+ ”g”m+3,L2(I‘)}

and from (9.9)

(9.14) | -tk BU (u+ik")g—g | ()< Cov,mellgl 2o -

Then, when Cy,./1k|<1/2, for p=ik’+ u such that 1> pu>(c,—€) and
|k —k| <a,

AP(p) = T+2} (I—BUG(p)Y

is well defined as a mapping from C™T) into C™(T") and for all g C™(T") we
have

(9.15) BUAM(p)g =g
Define UM (p)g=UM(p)A$"(p)g. Then it holds that

(9.16) (P —A)UP(pg=0 in Q

BUM(p)g =g on T,
(9.17) | U;eN)(P)glm(QR)<ZCN,m,R,z{'klm+3||g||L2<r)+”g||m+3,L2(r‘)} .
For 1>Re p>0 we have from (9.7)
(9.18) ||UﬁN)(P)gHm,Lzm)<C'm(ReP)'l{IPl’”llglILz(r)-l-Ilgllm,L2<r)} .

For each k verifying Cy ,, ./|k|<1/2, U(p) is analytic in 1> p>—(c,—€),
|k'—k| <a, Since in Re p>0 the solution of

{( PP—A)u(x) =0 in Q
Bu=g onT

is unique in LX(Q), we see that U§{"(p) is independent of k£ and N in Rep>0.
Thus U{V(p)g is the analytic continuation of U(p)g. Then we have

Proposition 9.1. For any £>0, there exists k,>0 such that for any g €
C™(T"), m=3, U(p) can be prolonged analytically into a region

{n-t-ik; #‘2_(60'_'6)’ |k| >Ek,}
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and the estimate

| U(p)glm('QR)<Cm,R,e{,klm+3“g”1.2(r‘)+“g||m+3,L2(1")}
holds.

Proof. First set m=0. Then we can choose k, as the proposition holds.
By using the regularity theorem for A we get the estimate for all m>1 if p
belongs to this region.

Appendix

Let O, be a convex and bounded obstacle with smooth boundary T, such
that

Fl'_—){(x) Y, z); X = 0) yz+22<1}
O, {(x, y, 2); x<0}

and O, be a convex and bounded obstacle with smooth boundary T'; such that

o {(x, p, 2); x = 1, y*+22<1}
O.C{(x, y, 2); x=>1} .

For these O, we consider the problem with the Dirichlet boundary condition.
Set

Pm,R(t) = sup E(u, R, t)llz(”uollm+l,L2(Q)+“ulllm,Lz(Q))_l .
{up, 3= Cy (2r)

We like to show
Theorem A. Let R>2. For every positive integer m it holds that
I8 o 170790
Jor any positive number &.
To prove this theorem we consider the behavior of an asymptotic solution

U™ (x, y, 2, t; k) of the problem

A {DUz 0 in QX(0, =)

BU=0 on I'x (0, o).
First we construct an asymptotic solution of the problem
(A.2) Ow=20 in R3x(0, o0)
in the form

(A.3) w = et gj 0%, y, 7, kI .
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Then v; must satisfy

(A4), 2%?’t_°+2%£9 —0 in R®x(0, )
X
and forj>1
(A4); 2% +2% = —i[Jv;_, in R*x(0, o).
X

Lemma A.l. Let f(x, y, 2)€CF(R?). If we require

(A'S)O z’0("": ¥, % 0) :f(x) Y 2‘)
and for j >1
(AS)J vj(x) Y, 3 0) =0

v;, j=0, 1, 2, -+- the solutions cf (A.4); are determined successivley and tkey are
represented as

(A.6); v, 9, % 1) = 23 (Puf)(x—1, y, 2)
where P, are differential operators with constant coefficients of order <2j.
Proof. Let v, satisfy (A.4), and (A.5),. Then for any (£, y, 2)ER? and

s=0

0 0 0
Dot 3,29 = (2o +20) g +e 3,29 = 0.

Then we have for all s>0
v(E+s, ¥, 2, 8) = v(E, ¥, 2, 0) = fIE, y, ).
Then taking E=x—1, s=t it follows that
(%, ¥, 2, t) = f(a—t, ¥, 2).
This is nothing but (A.6) for j=0. Suppose that (A.6) holds for j=h. Then

we have

Do, 3,5 0 = 330 (= 25— g )Puf Jot 3,9

3 {11t 3, =20 (2 Puf Yot 3,9))
= gtl(ﬁh+l,lf)(x“t, v, %),

where P,,HJ is a differential operator of order <2(h+1) with constant coeffi-
cients. Now from (A.4),, and (A.5),,, it follows that
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h

2-‘%‘();,+1(E+8, y: 2’, S) = 120 "I(Ijh+1,lf)(g, .’)’, Z)

7)h+1(E.v J’, .2', O) = O 1)
from which we have
13 ~
Vpa(E+s, ¥, 2,5) = ,Eo S2IHD)) (Prr f)E, 3, 2) .
Setting s=1, E=x—t and P4, ,;=(2(I+1))7*P,4,, we see that (A.6) holds fo

j=ht1. QE.D.
Suppose that

(A7) supp f C {(, ¥, 2); ¥*+2°<1/16, 1/4<x<3/4}

(A.8) g | f(x, v, %) | *dudydz — 1.

Let us define @™ by
. ; N .
w®(x, v, 2, t; k) = et 25 vi(x, v, 2, k7.
=

Then by using (A.6) we have from (A.7)
(A.9) supp M C {(x, y, 2, t); Y*+2°<1/16, 1/4<x—t<3/4} .
We have immediately
(A.10) Oaw® = ¢*==HJo,,
— g N }ﬁ #(Pyrif)(2—1, 9, 2).
Set
o= {(x, v, 2); 0<x<1, y*+2°<1}.

Then for any (x, y, 2, t)EwX R (A.9) implies that the number of positive in-
teger p such that

w™M(2p—x, v, 2, {)—wM(2p+x, y, 2, 1)%+0
is at most one. Now we can define a function U® in wX R by
U, y, 2, t; k)
= w®™(x, y, 2, t; k)—;;zl {w™2p—x, y, 2, )—wM(2p+x, v, 2, t; k)} .
We see immediately

UM =0 onx=0and x=1
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OU® = g™z, y, 2, t; k)
—SV {g®(2p—2,y, 7, )—g™(2p+2, 3, 2, 1)}
=1

where g™M=Jw®). Since we have
S |D'g®)(2p—x, y, 2, t; k) |2dxdydz < Cy 4tV =N+
it holds that

(A.11) S [D'] [7(N)(x, ¥, 2, t; k) |2dxdydz<CN,.ytN“‘Ylk-NHV' .
Let us set
[7() . .
U(N)(x,y, 2, t; k): {U (x’y’ 3,15 k) lf (x)y: z)eco
0 if (%, 9,2)€Q—0w.

Evidently we see that UM eC~(Q X (0, o)) and

U@ = {DU(N) in (0, )
0 in (Q—w)x(0, o).
Let V™ be the solution of
OV®™ — _Quw in Q% (0, =)
Vi =0 on IT'x (0, o)

V|, o =VM|,,=0.
Then we have from (A.11)
(A.12) 17O, Dl 2 < #7251 120,
Setting W®™M=U MV ™ we have

{DW‘N)=0 in QX (0, o)
W™ =0  onTIx(0,c0).
Taking account of the properties of U® and V'® we have
W®(x, y, 2, 0; k) = e** f(x, y, 2)
W, 3, 2, 03 K) = —(ikf(x, 3, 2)+ 2 (3,3, D)e™.
Then it follows that
(A.13) NPy Ol 2e) Wy Ol 220 < Crk™

From the form of U™’ we have
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UM(x, y, 2, 2n; k)
N

= e*CT(f(x, y, 2)—23 23 (2n')(Fuf)(x, 3, )k77) .

s
j=11=0

Then we have

(A.14)

E(U®™, R, 20y >k(1—3) Cy mik).
ji=1

Therefore it follows from (A.12) and (A.14) that

E(W‘N), R, Zn)1/z>E(U(N)’ R, Zn)’/z——E(V(N), oo, Zn)llz
>k(l—§ C'N_jnjk_j)—CN(Zn)N“k'N'” .
i=1

Then we have

Pm,R(Z”) > I:lax {k(l _é CN,jn"k"j)— CN(Zn)N+1k—N+1} (Cm km-l—l)—l X
N j+i

Suppose that £€>0 is given. Then take N >(1+¢&)/& and k=n'"". Then we
have for large n

D r(2n)=(2C,,) " (2m)m+®

from which we have

fim p,, 2(£) "0+ > Tim p,, 2(21)(21)"0+9 > (2C,) "
t-yoo fyo0

Thus Theorem A is proved.
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