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1. Introduction. Let Oι and O2 be compact and convex sets in R3 with

smooth boundary Γ\ and Γ2 respectively. Suppose that

Let us set

Consider a mixed problem

*2|—Σ—2 = 0 in Ωχ(0, oo)

u = 0 on Γx(0, oo)

' K*,0) = ιφO

where Ω,=R3— O. Here we treat as the boundary operator B the following two

operators:

Eλu = u

and

where w denotes the unit outer normal of Γ and σ(x) is a real valued C°°-f unction
defined on Γ.

Concerning the initial data the compatibility condition is always assumed,

that is, for uQy Uι^C°°(Ώ) defining successively w;eC°°(Ω), j=2, 3, ••• by the

formula

Uj = ΔUy_2

the condition

EH = 0 on Γ
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is satisfied for ally.
About the obstacles O^ O2 we set the condition

(SC) the Gaussian curvature of Γ never vanishes.

Under this condition we will consider the decay of solutions of (P). Let
us set

{*; \x\<R}

Theorem 1. Suppose that B—B^ that is, the Dirichlet boundary is posed.
Then there exists a constant cίi > 0 determined by O only with the following proper-
tie* : Let R and /c be positive numbers and let mbea positive integer. For any z/0, uλ

such that

U suppttydίX
y=o

we have an estimate

(1.1) Σ sup \Dtttu(x,t)\
W<« *<=ΩR

< CR^m€-*J {I |f*o| L+5,L2(Ω)+ I N L+4.L2(Q>} >

where CRtK>m is a positive constant depending on R, K and m but independent of uQ, u^

For P<ΞJ?3— Γ, let us set

DEFINITION. We say that σ(x) satisfies the condition A when there exists

a finite number of Pj^Oiyj=ly 2, •••,#! and Qye(52, y=l, 2, •••, n2 such that

y=ι
and

on Γ,

on Γ2

where VI means the summation of 7 such that x€=T1Pj or

Theorem 2. Suppose that B=B2, that is, the third kind boundary condition
is posed. If σ(x) satisfies the condition A there exists a constant #2>0 determined
by O and σ with the following properties : Let R and K be positive numbers and let
m be a positive integer. For any u0, uλ such that
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we have an estimate

(1.2) ^sup \Dΐ.tu(x,t)\

^CR,<,me~*2tϊ\\u0\\m+5,L\&+\\uι\\m+4,L2(Ω')}
where CR>Ktm is a positive constant depending on R, K, m but independent of u0, uλ.

It seems to us that until now studies on the uniform decay of the solutions
of the wave equation in the exterior domain are made mainly concerning the
existence of a function p(ί) such that

,

(p(t) -> 0 as t

for all u0, u1^C0(Ω,κ)ί where

E(u, *, f ) = JL f ( I Vu(x, t)\2+\ ut(x, t) 1 2)dx .
2 JΩR

About the necessary condition on the obstacle for the existence of p(t) we know
the work of Ralston [12]. Roughly speaking [12] shows that if the obstacle
admits a trapped ray there is no p(t) yerifying (*).υ

If O consists of two obstacles Oi, O2 there is always a trapped ray. Indeed,
let aj^Oj,j=l, 2 be the points such that

\x— y\

Then aγd2 is perpendicular to ΓΊ at aλ and a2a\ perpendicular to Γ2 at a2. There-
fore the ray starting at al in the direction aλa2 hits Γ2 at a2, and is reflected in
the direction a2dl. Then the reflected ray hits Γj at al9 and is reflected in the
direction aλd2. Namely, the ray plies between al and a2 and never goes to the
infinity. This shows that O is trapping. Then we see that the estimate of
the type (*) never holds. Therefore, when O consists of two obstacles, in
order to estimate the uniform rate of the decay of solutions it is necessary to
consider the decay in a weaker form than (*). Indeed, Walker [13] shows that

t) = 0
/-><*>

holds for any α>0, where

Pa.*(*) = SUP E(u,Ry O

1) Morawetz, Ralston and Strauss [11] shows that when there is no trapped ray there exists
p(t) verifying (*) under some additional conditions.
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But we cannot obtain from its proof any more informations about qualitative

nature of p<*fR(t) for general obstacles.

We would like to remark about the condition SC. If only the convexity of

obstacles is assumed, we can not expect in general the estimate of the form (1.1)
or (1.2). Namely in the appendix we will present convex obstacles Oι and O2

such that

holds for all positive integer m and positive constant 6 (Theorem A).
The essential part of the proof of the theorems is the construction of an

asymptotic solution for an oscillatory boundary data. There, we estimate

carefully the decay of the amplitude function while repeating the reflections.

2. Reduction of the problem

Let the supports of uQ, uλ be contained in Ωκ. Take v0, v1^C^(R3) so that

(2.1) vj(x) = uj(x) in Ω, * = 0, 1

and

(2.2) ll^ IL,

holds. Remark that the constant Cm depends on Ω, and my but is independent

of Uj. Let w(x, f) be the solution of the Cauchy problem

inΛ3x(0,

(2.3) w(x> °) = uo(*)

Since

supp v C {(#) I

the Huygens' principle assures that

(2.4) supp wd {(x, t); t—/c^ \x\<t+κ} .

Let us set

—Bw(x, t) I ΓX(0)0θ) =P= h(x, t) .

If we extend h to t<0 by setting h(xy t)= 0 for £<0, the compatibility condi-
tion of MO, tίi means that

Combining O^{x\ \x\ < ι̂} for some dλ and (2.4) we have
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(2.5) supp &CΓX(0, K+dt).

And it follows from the energy estimate of w that

where

if B = B2

€ = = 1 - SB-Bi.

Consider the boundary value problem with parameter p=μ-{-ik for boun-
dary data g e C °°(Γ)

\(Δ-p2)u =0 in Ω
(2.7) Γ P}

v ' (Bu=g onΓ.

It is well known that there exists μQ>0 such that for μ>μ0 (2.7) has a solution
uniquely in H2(Ω) and an estimate

,
y=o

holds for m=0, 1, 2, — . Define [/(£) a mapping from C°°(Γ) into C°°(Π) by

Then t/(/>) is analytic in Rep^μ0 as -Γ(C00(Γ), C°°(Π))-valued function, where
-£'(C00(Γ), C°°(Π)) denotes the set of all continuous linear mappings from C°°(Γ)
into C~(Π).

Theorem 2.1. Suppose that O satisfies the condition SC and that σ verifies
the condition A when B=B2. Then U(p) can be prolonged analytically into a
region containing

{p:

for some a > 0. And we have for Rep^—a

(2.8) sup Σ \Dl(U(p)g)(X)\

Note that the solution of the problem

rί*, 0 = ° i

\Bz(x, t) = h(x, t) on Γ X R

(suρp#dΠx(0, oo)
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is representes as

*(*> 0 = r (" e«k+»'(U(ik+μ)h( , ik+μ))(x)dk ,
Zπ J-°°

where μ^μ0 and

A(*, p) = ( e~pth(x, t)dt .

By using Theorem 2.1 the path of the integration can be changed to Re^= — α,
namely we have

*(*, f) = A Γ e^-^(U(ik-ά)h('y ik-ά))(x)dx .
2τr J-oo

With the aid of the estimate (2.8) we obtain immediately from this formula

(2.9) Σ sup I Z>2, ,*(*,*) I

Since the solution w(#, ί) of (P) is represented as

M(#J t) — «;(

we have Theorems 1 and 2 from (2.4), (2.6) and (2.9).
Concerning the analytic continuation the following results hold without

the condition SC:

(i) For the Dirichlet boundary condition U(p) can be prolonged analytically
into a region containing {p Re p ̂  0} .

(ii) For the third kind boundary condition U(p) can be prolonged into a region

containing {p] Re/>>0, ^>$[0, μo]}2) In the rest of this paper we will show
the following

Theorem 2.2. Suppose that O satisfies the condition SC. Let a

1, 2 be the points such that \a^—a2\ =dis(0!, O2) ana let us denote by Kίj9j=l, 2
the principal curvatures of Γ, at a{. Set

where J0-=dis(01, O2) and K= inf KSJ. Then for any 6>0, there exists &ε>0

2) See, for example, about (i) Chapter V of Lax-Phillips [6], Chapter 8 of Mizohata [9] and
about (ii) Asakura [1].
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such that U(p) can be prolonged into

{μ-{-ik] μ^—(c0—£), \k\ ϊ^&ε} .

Moreover an estimate

\Dΐ(U(p)g)(x)\

holds.

Then in order to show Theorem 2.1, if we admit Theorem 2.2, it remains

to prove that ̂ e[0, oo) is not the generalized eigenvalue of (2.7) for B—B2ί that

is, there is no non-trivial solution of (2.7) for £=0 verifying

(2.10) \ x \ \ u ( x ) \ + \x\2\Vu(x)\<C as |*|->oo.

Therefore we show

Lemma 2.3. Suppose that σ satisfies the condition A. Then for p e [0, oo)

there is no non-trivial solution of (2.7) for g=0 verifying (2.10).

Proof. Suppose that u(x) is a non-trivial solution of (2.7) for £=0 verifying

(2.10). Then by the integration by parts of (Δ— p2)u(x) u(x) it follows that

σ
r

(x)\φ)\2ds=( \Vu(x)\2dx+p2( \u\2dx.
J Ω J Ω

Therefore if we derive from the assumption on σ the estimate

(2.11) ( σ\u\2dS<(l-e) ( \Vu\2dx

for some £>0, u must be identically zero. Suppose that Pe(5lβ For #

Px ~>

setting ω =-n^-, r(ω) =\xP\
\Px\

S
oo Q Λoo

— u(sω)ds == — \ (ω
r(ω) QS Jr(ω)

Then

r(ω) 6 Jr(ω)

(ω)

ί
Setting ωιp=l
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Γ \Vu(sω)\2s2dsdω
Jrfa)

\Vu(x)\2dx.

Denoting by dS the surface element of Γly since dS = r (ω)2 _^ω' dω the
Px n(x)

condition

f λ \Px\2 .nsup σ(#) -̂  — ! — < C
*er^ PΛT )̂

implies

σ(x) \ u(x) \ 2dS < C ( r(ω) | u(x) \ 2dω

Suppose that Py, /—I, 2, •••, ̂  satisfy

, and ^
y=ι

Then it holds that

where σ (#)+==max(σ(#), 0). By the same way we have

Then it follows that

( σ(x)\u(x)\2dS <{ σ(x)+\u(x)\2dS
Jr Jr

<(!-£)[ \Vu(x)\2dx.
J Ω

Thus (2.11) is derived. Therefore Lemma is proved.

3. Properties of broken rays

For x^T, n(x) denotes the unit outer normal of Γ at x, and
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We denote by 3£(x, ξ) the broken ray according to the law of the geometri-
cal optics starting at xeΓ in the direction £eΣ*» by Xι(x, ξ), X0(x, ξ), •••
the points of reflection of the broken ray and by By(#, ξ) the direction of the
ray reflected at Xj(x, ξ). More precisely, if

; />0}ΠΓ = φ

we set L0(x, ξ)= {x+lξ; 1^0} . If {x+lξ; />0} Π Γφφ we set

(*, ξ} = *+u*. m
BK*. I) = ξ-2(n(X,(x, ξ))

When {XJ+/H!; / >0} Π Γ=φ, Lfc, ξ)= {.Xi+/Bι; l>fy . Otherwise we set

ψ, ξ) = inf {/; />0, X.+IB^Γ}

x2(X, ξ) =
E2(x, ξ) = B1-2(n(X2) E1)n(X2) .

Thus we define successively lj(x, ξ), Xj(x, ?), &j(x, I), Lj(x9 ξ) until
{Xj+I3j\ I >0} Π Γ—φ. If there exists ;0 such that for j <yo, /XΛI, ξ), Xj(x, ξ),
Bj(x, ξ) are defined and {J£y0+/B/0; />0} ΠΓ=φ, then we define

Otherwise

We set for (*,

J7,(̂ , «, f) = {(*/*, f)+/sχ*. I), ί+7χ*.

-A*, «, f) = U -£>(*>

where 7χ*,f)= /,(*,«.
ί=o

The following two lemmas are trivial.
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Lemma 3.1. For Oίy O2 there exists δjX) with the following property: If

the reflected ray does not pass the d0/2 neighborhood of Oίy i.e., L^x, ξ) is a half
line and

Lfa ξ) Π {y, dis(y, O^d.12} - φ .

Lemma 3.2. For each x(ΞT, ?eΣί verifying *3£(x, ξ)>J and

j(χ, £)) s,(*, ?)>o, y = i, 2, ...,/,

and

Xj&ύ

Bj(y, 77)

forj=l, 2, —,Jwhen (y, -η)-*(x, ξ).

Corollary. Le£ L ό^ ίA^ /m^ passing al and a2, where ajy j=l, 2 are those
in Theorem 2.2. Denote by Sj(8) the connected component containing a^ of

Γ, Π{*; dis(#, L)<δ} , δ>0.

For any f0>0> if we choose δ2>0 sufficiently small, every ray starting at
Λe*SΊ(δ2) in the direction f e2ί and fitting S2(S2) (starting at x^S2(82) and hitting

5Ί(δ2)) ίΛ/«^J

Proof. Note that for g0^
 a2~~aι

Then from Lemma 3.2 there exists £>0 such that

implies that

h-K^^ 97))-? o K îK fo)) I
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For any y^S^), η^^Σy such that Xι(y, -η)^S2(82) we have | y~ αj <2δ2 and

2. Then

must be small if δ2 is choosen so small. Then for any £>0 there exists S2>0

such that^e*?!, 97 ̂ Σί" and -^Ί(.y>

Using the above remark we have

Q.E.D.

Lemma 3.3. For each δ2>0 o/ Corollary of the previous lemma there exists

a positive integer K such that x<=Γ— S(82), f e]2ί and 3C(X> ξ) Π S(82)=φ imply

(3.1) *3?(*, ?)<*:,

wAβrβ *S'(δ2)=*S1(82) U 52(δ2).

Proof. Let δj > 0 be that of Lemma 3.1. Suppose that L= {(0, 0, /) / e R} .

For x = ( x i j X 2 , x 3 ) denote by x' the point (xl9 x2y 0). The strict convexity
assures that

(3.2) n(*)

if W(Λ;) ((— l)7"1^— #ι))>0, where c>0 depends on δ2. Suppose that

Then by Lemma 3.1 we have

(3.3) -n&ύ Bj.^ for y = 1, 2, -,/-! .

Note that, if *eΓ/— S/,

(3.4) n(JΓy) -((-l^-^-α^^O , / = 1, 2, j = 1, 2, - .

Let M(S)=(XI(S), x2(s)9 x3(s)) be the representation of 3£(x, ξ) by the length
of the broken ray from x to x(s). Then for s& {7; ; 7— 0, 1, 2, •••}

- |*(ί)Ί2 =

and i
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And we have

From (3.2) and (3.3) it follows that

(3.5) Xί

Since X{ ξ>— \Xλ\ >-max{|*| xeT}(=-A), we have

Then for y >yo= — — +2, we have -XΓy B/ >2cδ1, which implies
L 2col J

Therefore for s>//0, integrating the above inequality from. 7/0 to 5, we have

|*WΊ2-l*ft.)T>Ή*

Then if Λ(ϊ)eΓ we have 4(ί— 7^8^ A2, then

from which it follows that for any X—xfij^}

Since Ij^\a2—al\ for all y, *3f(Λ:, ξ) ^S0/\a2— aλ\ — J .̂ Thus the lemma is
proved. Q.E.D.

Corollary. If we choose S3 as S3>δ2 and sufficiently close to δ2, it holds
that for any xtΞS(S3), ξ<=Σϊ such that Xfa, ξ)^S(S3)—S(S2)

where K is the one in Lemma 3.3.

Proof. By the process of the proof of Lemma 3.3 we see that for #, ξ such
that x' ξ >0 it must holds the estimate

Therefore, if we can show that

(3.6)
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we have

Then we will show (3.6). Suppose that xtΞS^), Xfa ξ)^S2(S3)—S2(82) and
»' £<0. This means that

(3.7)

(3.8)
(3.9)

Since

(3.7) and (3.8) imply

SKδ3

2

By taking account of (3.9) we have

(δi

Since X& S2(82) we can use (3.5) and obtain

Then, if we choose δ3 sufficiently close to δ2, we have (3.6). Thus our assertion
is proved. Q.E.D.

4. The curvatures of the wave front of reflected rays

For φ(x) such that |V0>|=1, we w^l caH tne surface {y\ φ(y)=φ(x)}
the wave front of φ passing x and denote it by 6φ(x). Let ̂  be a neighborhood

in R3 of ί0eΓ and φ+

y φ~ be functions defined in ^U satisfying

Suppose that

(4.1) φ+(x) = φ~(x)

(4.2)
dn 9n

We will consider the relation between the principal curvatures of the wave
fronts 6φ+(s0) and 6φ-(s^). Hereafter the principal curvatures of βφ(x) signify

those with respect to — Vφ(x). Suppose that

"0

0

1
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and Γ is represented in V as {y(η)\ η^U}, UdR2, y(Q)=s0

(4.3)

Let {ω(er);

ω(Q)=s0 and

(4.4)

(4.5)

Qy - 1

.0.

be a representation of the wave front 6 =Sφ-(s0) such that

8σ/

where

at s0. Then β+=

uσj vσ-j

i(<r)=(V<P~)(ω(σ )) and κjy j=l, 2 are

Then 6+=βφ+(s0) is represented as

r(σ)=^(σ))-/(σMσ)

where

= i(σ)-2{i(σ) n(y(r,(σ)))}n(y(^σ))),

υjj^U, l(σ)^R are determined by

37(97) = ω(σ)+l(σ)i(σ) for σe

>+)(τ(σ)). When we denote

j=ι,2

the principal curvatures of

and 97(0-)=(971(0-);

(4.6)

Evidently r(σ)

r(σ).

0.

(4.7)

we can write

sin

0

COS V,

(4.8)
9ω

(0) =

COS 00 COS V

sin Θ0

cos 00 sin v _

9ω
-(0) =

for some Θ0. Differentiate (4.6) by σ, and we

cos(90

sin

have

Substituting (4.3), (4.5), (4.7), (4.8) and /(0)=0 we obtain

Ql
(4.9) (0) = tan v cos 00, (0) = — tan i; sin 00
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(4.10)

where

" ®Ή\ ®Ή\ ~

9*72 9?72

9<Γl 8σ°

- ΓΘ,

<r=0

OΊ V— cos00 s in# 0 ~
> θ =

1 J L sm #0 cos ^o _

Using (4.9) we have

(4.11)

where

"cos v

0

_sin z>

Denote by Kly K2 the principal curvatures with respect to — n(s0) of Γ at,

and by -ψ the angle from _^ (0) to the principal direction corresponding to K

Then it holds that

where

Therefore we have

(4.12)

ψ =

Γcosψ — sinΛ/r

|_sin cos -ψ

O

L 9cτ2

Note that

9r di dί \ Λ. dn\
- — w l w — 2u - — In—
8σ / \ 8 σ /

/. v dn

Since at cr—0

9(J"ι ^ 9<Tι /

-cos 00 cos v

sin ^o

-cos ΘQ sin z>

= /Ci . Λsin Θ0
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~2r'^r~2(*'w)^-=

\ OσJ 9σι

cosv
dn \ , o1 +2 cos v

where ί J denotes the/-th component of —-, we have

|̂ (0) = [Fj Y2](*1/+2 cos v Γ<Ψ^ΨΓ)Γ~cosf°Ί
9σι L sin Θ0 J

By the same way

-(0) = [Fj Y2](fc2I+2 cos z/ Γf

cos Θ

Namely

where

cos

*! 0

0

Taking account of (4.11) we see that the principal curvatures of 6+ at s0 are
the eigenvalues of the matrix

K+2cosvT'ΨKΨT.

Thus we have

Lemma 4.1. The principal curvatures KI , κ2 cf β+ at SQ satisfy the ine-
qualities

2(4.13) min κJ-{-2 min KJ ^K^ ̂  max #7+ max KJ

y, jRΓy, j=l, 2 tfr? ̂  principal curvatures of 6 and Γ #£ SQ respectively

and cos z/= — n(s0) Vφ~(s0).

Next we will show

Proposition 4.2. L*tf V be a neighborhood of *0eΓι(or Γ2)
and \Vφ\=lincU. Suppose that
(i) /or α// Λ eΓiΠ ̂  £λe principal curvatures of 6φ(κ) is positive.

(ii)

w/ 9>X^),y=0, 1, 2, •••,/>
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(a) φj e C -(ωy), I Vφj 1 = 1 in ωj

where ω~ [J Lj(y, Vφ(y)).

in ω0 ΓΊ V

Moreover it holds that

(d) the principal curvatures Kji(y), /—I, 2 of §φj.(Xj(y3 Vφ(y)) verify

(4.14) 2 min £"A(#) < /^( y) < ljd0+2/81 max ϋΓA(jc)
A=l,2

where d09 81 are the constants in Theorem 2.2 and Lemma 3.1 respectively.

Proof. In the proof we write Lj(y, Vφ(y)) and Xj(y, Vφ(y)) as Lj(y)
and Xj(y) in brief. Note that φ(x) can be extended as C '"-function verifying

|V0>|=1 in \y+lV<P(y}\ />0, ^eΓjΠ^} 'because (i) holds. Suppose that
there exist φ0, φly — , φjy jtζp—l, verifying (a), (b), (c) and (d). Taking
account of (ii) it holds that

from which it follows that

Then there exists ψ (Λ) defined in a neighborhood of (J -X"i+1(j) verifying | V ψ |
= 1 and

9-ψ dφ:

+ = φ' ' -fa=W on

Since the principal curvatures of fiφ.(Xj+ί(y)) at X} +ι(y) are given by

, 7 = 1 , 2 ,

we see from Lemma 4.1 that the principal curvatures κί+ll(y) of 6$(Xj+l(y)) at

2 min *,00 < Kj+ll(y) < l//Xj)+2/S1 max ΛΓ

Taking account of Ij(y)^d0 Kj+u(y) satisfies (4.14). Now since /cj+ll(y) > 0
ι/r(#) can be extended to C°°-function in {Xj+ι(y)+lVψ(Xj+ι(y)); yGΓ1Π

cU,
verifying |V-ψΊ=l. Setting this extended ψ(x) as 9>y+ι, we see that

(ic) satisfies the required properties. Thus Proposition is proved.
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5. Estimates of derivatives of the phase functions

Let the principal curvatures of SQ=6φ(x0) be ιcl^κ2

>>Q and let {ω(σ)\ σ-€Ξ ί/}
be a representation of βφ(x^) near x0 such that

(5.1)

ω(0) = x0

3ω

where v(σ) = (Vφ)(ω(σ)). Take />0 and set

Let {ω(η);

(5.2)

be a representation of ^1=βφ(x1) near ΛJj satisfying

C ω(0) = x,

Note that we can choose ω(σ) and ώ(η) satisfying (5.1) and (5.2) in such a way

ιyΣ, I Φ»(θ) I < CM| Σ, 1 (0fr»)(*b) I

Σ \(D&)
(5.3)

where Cw is a constant independent of x0ί xl and /.

On the other hand, since φ(x+lVφ(x))=φ(x)+l we have another repre-
sentation of 6λ

uniquely by the

Now from (5.1)

Therefore for η sufficiently near 0 there corresponds
relation

(5.4) = ω(σ)+lv(σ) .

Denote this correspondance as σ (η)=(σι(ηij η2)>
and (5.2) we have

(5.5)

Let us set
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For a=(alf a2ί α3)e*S2 we set

v 8 , 9 . 9
*a = βl^— +02^— +«3^— •

OX1 OX2 OX3

DEFINITION 5.1. We define | Vφ \ m(x) for nι=l, 2, ••• by

(x) = max max | (XaωXaω ••• XatDVφ)(x) \ .
j<m atr) eS2

We may assume without generality that

|̂ (0) = (1,0,0), |̂ (0) = (0,1,0), ι (O) = (0, 0, 1) .
O&1 O(Γ2

The correspondance from (<τ, r) near (0, 0) to x near x0 given by

x — ω(σ)-\-τv(σ)

verifies a relation

(5.6) Wt(*ά = S»> J>k=l>2>3>

where we denote r as σ 3. Then we have

because — ̂ =0. By the same way we have
Qr

(5.7)

where /^^(V^Xω^)). Since μ(η)=v(σ(η)) it follows from (5.5) and (5.7) that

Taking account of (5.1) we have

\ (XaVφ)(Xί) I = (Σ I ajKj(\+lKjΓ 1 2)1/2

j = ι

Thus we have

Lemma 5.1. For / >0 it holds that

(5.8) I Vφ I ι(*0+/V9>(*o)) <
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Differentiating (5.4) by ηk and ηh we have

^/8ω jQy \ ffσj J-, / 82ω f 82* \Qσi

£l\ Qσj 8σ/ 897*877* &ι \ 8<r, 8(7; 9cr, 8σ, / 877*

82ώ

877* 877*

Substitute 97=0 and take the scalar product with —^(0). Then it follows that

o oy θσkθσh

8ω 82o

Taking account of (5.3) we have

(5.9) '77*097;,

where C^ is independent of #2> ^0 and 9?. Using (5.5) we have

! =h=o

Take the scalar product with —^-(0) and substitute (5.9). Then we have
8σ,

(5.10) |5L(
1=0

Since —^ z>(σ)=0 we have

Qv dv

dσ j dσk

For a=(alt a2, aa), b=(bl3 b2,

(5-11)
1=1 j-l k,h

Then using =0 we have
8cτ3
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(5.12)

,|//0 |<C|V9>lι(*β).

By the same method we have

7J=0

(5.13)

using (5.10)

12+//0

where

and

Combining (5.11), (5.12) and (5.13) it holds that

max x0) \ +C ±

y=o

Thus, with the aid of (5.8), we have

Lemma 5.2. For I > 0 it holds that

(5.14) |^l2(^+/V^^))<(l+/^)-

where C2 is a constant independent of x0 and φ.

REMARK. By the same reasonning we can show for m=3, 4,

(5.15)
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Next consider the estimate of reflected rays. Let φ± satisfy (4.1) and (4.2),

and ω(σ) and τ(cr) be the same ones in § 4. We also suppose that ω(σ) verifies
(5.3). Since | (Z>Zι)(0) | < Cγ | φ~ \ m(j0) we have from (4.6)

Using this estimate we have

\(Dlr) (0)-(D

Evidently

.

(XaVφ-)(So)- aj -L (0) < C ,(*.)

Concerning derivatives of φ+, denoting

0 =1 a*
where |1|2L(0)+g2|L(0)+f3r(0)=fl, we have

Taking account of | a \ = \ ξ \ and that fact

we have immediately

Lemma 5.3.

(5.16)

REMARK. By the same reasonning we can show for m=2, 3,

Using the above lemmas let us show

Proposition 5.4. Suppose that φ(x) satisfies the assumptions of Proposition

4.2. Let φjy j=Q, 1, 2, •• ,^> be functions verifying (ά)>—'(d) of Proposition 4.2.

Then an estimate
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(5.18) \Vφj\m(x)<Cm\Vφ\m(y)

holds for x^Lj(y, Vφ(y)), j=l, 2, * ,^, where Cm is a constant independent of φ
and p.

Proof. Note that (5.18) holds for m—0 because | Vφ, \ — 1, vj. Suppose that
(5.18) holds for m=l,2, ,h. By Proposition 4.2 the principal curvatures

Kjl(y) of βφ.(Xj(y)) at Xj(y) satisfy

y=ι,2

Then by Lemma 5.2 and its remark we see that fory=l, 2, •• ,

and

On the other hand Lemma 5.3 and its remark assure that

I VφJ+1 1 M(XJ+1(y)) <

holds for y=l, 2, •••,/>. Using the assumption on the estimate of \ ψ j \ h we
have an estimate

^^
Thus our assuration is proved.

6. On the transport equation

First we will arrange some properties of asymptotic solution for Π^^O in
the free space.

Let φ e C °°(£>), DdR3 such that | Vφ | = 1 . Let us set

(6.1) w(x, t] k) - eikw-»v(x, t\ k)

(6.2) «(*,f;*) = Σ«Λ*,
y=o

Apply Π to w of (6.1) and we have
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Substituting (6.2) into the right hand side of (6.3) and setting all the coefficients
of k~i equal to zero we obtain so called transport equations, that is,

(6.4)0 2 ± +2Vφ Vv0+ Δ?> v0 = 0 ,
ot

(6.4)y 2 + 2 V 9 > V0y+Δ9> tfy+ιD«>y-ι = 0 , for j
ot

In an attempt to obtain successively the estimate of Vj, we consider the
solution of the equation

(6.5) 2—+2Vφ Vu+Aφ u = h(x, t) .
ot

When {x-{-lVφ(x)\ /e[0, /0]}cZ> the solution of (6.5) is represented as

t Cϊίv 7M1/2

§*0)J U(X't}

where ξ(x)—Vφ(x) and G(x, ΐ) denotes the Gaussian curvature of 6 φ(x-\-lξ(x))
at x+Iξ (x). This formula is due to Luneberg [7], Keller, Lewis and Seckler [4],
Let us denote the principal curvature of 6φ(x) by K^X) and κ2(x). Then those of

6φ(x+lξ(x)) are ^.(l+^y)"1, ;=1, 2. Thus we have

(β 7)
V ' ^ G(x,s)

= ί+2sH(x)+s2G(x)
l+2lH(x)+l2G(x)'

where H(x) and G(x) denote the mean and Gaussian curvature of 6φ(x) at x.
In the same way as § 5, we introduce the following norms. Set S3

for β=

dXj dt

DEFINITION. For «;eC00(cί7x J?1), ^UcjR3 we set

Iw I m(χ> t) = max max | (Xa^Xa^ Xaww)(x, t) \.

When x e ̂ U Π Γ we also define another norm by

|w|«(ίc, t) = max max KX^X^ X^pyzo^Xy ί)|,
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where S3'=S3Γί T(V)(Γ X Λ), where T(Xιt)(T X R) denotes the tangent space of
ΓxΛ at (x, t). And we set also for a suset

and for

C*» /)€=*>
\w\m(x,t)

Lemma 6.1. Lei m be a nan negative integer. For the solution (6.6) it holds
that an estimate

(6.8) *),*+/)

Cmis a positive constant independent of w and φ. Especially, for h=0 and
m=0 we have

(6.9) \w(x+lξ(x), ί+/)| <(l+/^))-1|w(*)|.

Proof. Note that (6.9) follows immediately from (6.6) and (6.7). Let {ω(σ)
σ€ΞU\ be a representation of 6φ(x^) which verifies ω(0)=#0 and the condition

(4.4), (4.5) and (5.3), where i(σ)=(V^)(ω(σ)). Suppose that — (0), ; = 1, 2
dcΓj

and ξ(xQ) coincide with ΛΊ, Λ?2

 and #3 axis respectively. Consider a mapping
Λ4a(σι, σ2, /, r)->(̂ , *2, Λ?3, /)e/24 defined by

'x = x(σ, I) = ω(σ)+K(σ)

Then the Jacobian matrix of the mapping at σ =0 is

'!+/«! 0 0 Ov

:
, 0 O i l ,

Moreover, the inverse mapping satisfies

(6.11) |0Z.*<ry|<C, |V9»lm, ; = 1,2,3,4

where we denote I=σ3, τ=σ4. Let us set for some />0
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#o), Ϊ1=t+l.

First we show (6.8) for x=x0 in the case h = 0. Suppose that for «(y)

3,y=l, 2, ~ 9p*ζm it holds that

(6.12) I w I m(%ι, ?ι) = I (XaωXat2 ) Xaap^w)(xlf t^ \.

On the other hand, taking account of (6.10) and (6.11) we have

(6.13)

Note that it follows from (6.7) that for 0<ί</.

Then using (6.6)

(6.14)

9 _ι_ ( 3 \ . ) 9

where

*=ϊ l+lκk(xa) 'dσk \dl ΰΎ> Vτ

By the same consideration we have

;(ή XaflWxo, o-Γ(π(Σ^')^-+(^)-^))|-)V(ω(σ),y=ι L \ y = ι v * = ι όσk or//

JV^U-iWIwI^Λίo, ί)

Therefore, setting

we have with the aid of (6.13) and (6.14)

(Λ;OJ 0)

I V?> I ,(«b) { I w I ,_ι(«b, ί)+ I »l *-ι(*ι» Ί)>

(*0, 0
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From (6.12) we have

1 ^ lG(xθJ 0) J y~ι

+ Cp I Vφ I p(xQ) {I w I ̂ -î o, 0+ Iw I ί-ι(Λι* *ι)} -

Since /2< , , . . and \w\„(*„, ί)> I ((Π Xfi>W(** t) \ we haye

(6.8).

When A^O, setting for each 0<ί</

[/7/v /\ ηι/2
ί̂i *(*+*?(*), ί+ί)

G(^ s) J
we have from the above result for all

+ Cm\Vφ\ M^(X0) { I hs I ..̂

Using this estimate we have immediately (6.8) from (6.6).

Lemma 6.2. Let φ+, φ~ be functions verifying l^l^l, (4.1) and (4.2).

Suppose that h+, A"eC°°(cUχJβ) and w+, I~ satisfy

(6.15) 2— +2Vφ± Vw±+Δφ± w± = h± in
at

(6.16) io+ = aw-+f(x,t) OΛ (Γ Π ̂  X

wA^rβ M = l. 7%έ?« ώ Ao/ώ ίAαί for all (x, t) e (Γ Π

|w+L(*, ί)< |w"L(*, 0+ l/l ί(Λ, t)+cm\ vφ-\m(χ){\w+\m_l(x) t)
+ \w~ \m.l(X) t)+ \h+\(x, ί)«-ι+ 1 A" L-ι(*, 0>

where Cm is a constant independent of w±, /?± ##<f 9?+.

Since we can prove this lemma as almost the same way as Lemma 5.3, we

omit the proof.

7. Construction of asymptotic solutions

Let $0eΓΊ an<3 V be a small neighborhood of s0 in R3. Suppose that

θ(x, η, β), p(x, η, β) are defined for x^V, ^^Σ^ {(ηi, ^}\ ^l+ηl=l9 β<=

[-β» β0]} (^o>0) and they satisfy

ί(Vθ)2+p(VP)
2= 1 (mod β00) in ΩW Π ̂

(7.1) JV^ VpΞO (mod β°°) in ίl^ Π <U

(p=-β
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(7.2) (V0)(ί0, rj, 0) = , , + ,
όσi Oσ2

where Ω(y) = Λ3— Ojy j= 1, 2 and {j(σ); σ-eC/} be a representation of

near ί0.

Lemma 7.1. Let u be an oscillatory data given by

(7.3) u(x, f *, A A) = *'*< c« * »-o/(Λ, ί; A)

For αwy positive integer N, there exists an asymptotic solution w(N\x, t\ η, β, k)
with the following properties :

(7.4) supp «?<">c U {*+/V(0+2/3 pz/2)(x)9C*,Oesupp/

(7.5) I w^ I .(Ωi" x Λ) <C/,ι.t Λ*"Cg I / 1 ̂ .(Γ, X

(7.6) /« |Λ;; dis(«, O1)>d0/2} wm is of the form

I βy I .(ΩS?' X Λ) < CΛ.ιS I / 1 ίoXΓ! X Λ)

ίAe principal curvatures of 6φ(x) are positive.

(7.7) I Π «w I .(Ωϊ} X Λ) < C .̂̂ - "̂ I /| ̂ .(̂  X Λ)

(7.8) I BWW-M I ί (Γx X Λ) < CNiMk-»+»> I / 1 K4A X Λ)

Since this lemma may be proved by the same process treated in § 4 and 6
of [2] we omit the proof.

Lemma 7.2. Let V be a neighborhood of Ol and let y(x, t K) be a function
defined in VxR of the form

fO, oo ) , \Vφ(x)\ = 1 .

Suppose that for some δ4>0 it holds that

(7.9) I Vφ(x) φ) I < 2δ4 ,
 vx e Proj (supp j Π A X Λ) ,

Proj denotes the projection to the x-space. Then we can construct for any
N positive integer a function z(N\x. t\ k) defined in Ω (1)xΛ with the following
properties :
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(7.10) \*w\m(Ω8>xR)*ZClltmk +1\v\l

m(Γ1xR)

(7.11) supple U U -£(*,«;£)
(*, 0 esuppu £e=Σ +

(7.12) 1 0(Λ" I .(Λi0 X R)<Cwk-N+>» I v \ K.(Γ, X Λ)

(7.13)

Proof. We may suppose that supp y Π (Tι X R) is sufficiently small. Then,
by using Cl?j of § 4 of [3] we have

y(x, t\k) = i£ cVjy on ΓΊ X R .

The definition ^Vj gives

), ί) = ω(s(σ), ί ) \ ^τ Γ da \ d? \ dσ' \ dt'
JR J — 1 J"2, J/tr *

exp {;τ(-

Taking out the integration with respect to t', if |τ — Λ | >fΛ we have an estimate
for any M

I J e' <
τ-^(cr'), *' k)dt'\ < c,tMk-M i v I ί̂ Γ, x Λ) .

For verifying | τ— k\ ^βk} since φ verifies (7.9) it holds that forj Φ2

when %, (l+α)Φθ if we choose £ and δ4 sufficiently small. Therefore we have
for φZ

These estimtae shows that when (7.9) holds for small δ4>0

~M r°°
where ^2 denotes an operator replacing I rfr in the definition of ^V by

J -00

S dr. By using the change of variables of page 87 of [3] it follows that
\r-k\<ξk

dr\ dΛ dβ\ dσ'(dt'
\τ-k\<sk JS J lβlOo J/σ J

exp {ir(θ(s(σ), ,, β)-θ(s(σ'), ,,
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,
D(η, β)

.v(s(σ'),t';k).

By applying Lemma 7.1 to an oscillatory boundary data

u(x, t β, r,, k) = «"<««•'•«-'>«(*,

we obtain w(N\x, t\ 97, /3, &, σ') verifying (7.4)^(7.8). Let us set

3 f Jσ' ( at'
J^σ J|τ-*|<β*

WW(Λ, ί; 77, /8, VO^τWs(^)i'iW"ίVw(f(^

Then we see immediately that zm is the rquired solution.

DEFINITION. Let <U be a neighborhood of s0^T1 and let Ψ (Λ) be a real
valued function on I^ΓiV. We say that ψ(x) satisfies Condition C in ^U if
there exists a real valued function φ(x) defined in V verifying

ίφ(x) = ψ (Λ) in T! Π ̂

|V9>I = 1 in <U

*^(^)>δ4 on ΓiΠ^U
3w

,the principal curvatures of βφ(x) are positive for all xEίTi Π ̂ U .

Lemma 7.3. L ί̂ w ό^ αw oscillatory data on TλxR in the form

(7.14) φ, t;k) = e »<*Wf(χ, t\ k)

where ψ satisfies the condition C in °u and f(x, t;
w^ have Vj(x, t] ^)eC°°(n(1)X/i), y=0, 1, 2, ••• a iϊA the following properties:

(7.15) supp ϋyc U
C*,oesupp/

(7.16) I py I .(ΩJ?' X Λ) < CΛM>δ I V<P 1 2m+XΩw) I / 1 ̂ XA x Λ)

ί"or αw N positive integer, if we set

(7.17) »<*>(«, ί; w = β'ww-*) Σ »»(*, ί *)*-•'
ί=o

it holds that

(7.18) Πw(W) = ett<»-') Λ-wD»w «nΩ«xΛ

(7.19) BwW-u = J«+-»k-ιrBvIl onΓ.xR.
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REMARK. Combining (7.16) and (7.18) we have

(7.20) I D^(jv) I m(nφ XR)< C^JΓ*** I / 1 U^Γ! x R)

and from (7.16) and (7.19) we have

(7.21) I Bw^-u I m(Tλ x R) < CNtmtSk-»+* \ f \ i^WA X R) .

When B=B1 from method of the construction we have BvN=0.

Proof. If we look for any asmptotic solution in a form (6.1) from the
consideration in the beginning of § 6, we require that Vj is the solution of (6.4),
in Ω(1). In the case of B=Bl we set a boundary condition

In the case of B=B2, since for wm of (7.17)

Bwm = eik(φ-t} f< ίίk tyv+to>ι+σv\k-j
j=ι \ Qn dn '

we set the following boundary condition for vs on T^

V0 =

and

With the aid of Lemma 6.1 we obtain successively the estimate (7.16), and
using (6.6) we have also successively (7.15). On the other hand, since vj satisfies
(6.4); we have (7.18) from (6.3). And (7.19) follows from the boundary con-
dition which Vj satisfy. Q.E.D.

Lemma 7.4. Let w(N\x, t\K)be a function constructed in the previous lemma.

Suppose that

(7.22) — »(AΊ(Λ?, Vφ(x))) Vφ(x)>δι F*<ΞProj(supp/) .

Then there exists a function w(N\x, t\ k) defined in Ω ( 2 )X/£ in the farm

(7.23) wW = e'W-v |] ϋj(x, t; k)k-j

satisfying

(7.24) supple U -£(*, f; Vp(*))
C^.Oesupp/

(7.25) I ϋs I m(Ω.P x Λ) < CΛM>51 /1 ί+2y(Γ1 X Λ)

(7.26)

(7.27)
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Proof. Taking account of Proposition 4.2 there exists φ defined in ωι=
(J Z/ι(#, Vφ(x)), which verifies

Proj *esupp /

' I v<^ 1 = 1 in 6>i

φ = φ on Γ:

9^ = ~3? °" i2'

Let ϋj be a solution of the equation (6.4)y replaced φ by φ. We set a boun-
dary condition for ϋj on Γ2.

2

(7.28) 0y

By using Lemma 6.2 we have

when B = Bλ

+ Cm\Vφ\m{\Vj.1\m(Γ2xR)+\vj.1\m_1(Γ2XR)

+ |Πf>/-ιL-ι(Γ2xΛ)}

And from Lemma 6.1 we have

Γ2xR)+

Then the estimate (7.25) can be derived inductively from the above two esti-
mates. Taking account of

we have immediately (7.24). (7.26) and (7.27) follows from the equations and
boundary conditions which ,̂ j=0, 1, 2, satisfy.

REMARK. Applying (7.25) to (7.26) we have

(7.29) I D0™ I „ W X K) < CNtmtRk-*+>» I / 1 ̂ +2(1̂  x R) .

Similary we have

(7.30) I fi(w<">+« <">) I m(Γ2 XR)< CNtm k-N+» I / 1 ̂ +2^ X Λ) .

Proposition 7.5, Let J be a positive integer and let u(x, t\k) an oscillatory
data on TλxR of the form (7.3) or of the form (7.24) with ψ satisfying the con-

dition C. Suppose that

(7.31) «3?(*, Vφ(x))<J for all x^Proj supp/,

where for u of the form (7.3) φ(x) means θ+2/3 p3/2. Then for any N positive
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integer there exists a function w(N\x, t\ k}^C°°(ΠxR) such that

(7.32) suppose U -£(#**: V9?(#))

(7.33) \w(N)\ (Ω xR)

(7.34)

, N>k-N+* I / 1 W'+«(Γι X /*)

(7.35) |β<">-«L(ΓxΛ)

w/ k~ N+m I / U^A X Λ)

JV'=20ΛΓ+40 and for u of the form (7.3) wί ίeί ^ m ίAe p/«ce o/ ^> o/
above estimates.

Proof. First we consider the case of u of the form (7.24). Let (% f0)
supp / and let us set

and ^Y"y— ̂ -(ί0, V<P(SO))> Ey=B/£0> V9?(ί0)) Taking account of Lemma 3.1,
for fixed £>0 there are three cases:

Casel. n^.E?^,^!,^..^
does not pass the £ -neighborhood of 02(0ι)

Case 2. n(Jf?).B5>^, j=l, 2, -.-, K, and if ̂
passes the ^-neighborhood of O2(Oι).

Case 3. n(X^E^>Sl9j=l9 2, -,-Ko-l and

Case 1. Taking account of Lemmas 3.1 and 3.2 we can take ̂  a neighborhood
of ΛO such that

) = Aβ and «(Λ y ).By>- δ ι . j=l,2,-,K
Z/

hold for all tfe^Uo Π T! and LKo(x, Vφ(x)) does not pass the £/2 neighborhood of
(52. Suppose that supp fdVoΓl IV Applying Lemma 7.3 we have

satisfying (7.15)^(7.19). Applying Lemma 7.4 to wjfc^ we have w(N} with the
properties (7.23)^(7.27). Next apply to w(^ we have wψ\ Repeating this
process, we obtain wf\ /=0, 1, 2, •••, XQ such that for j ' .
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2JV

Σ | f I / , Ίy-l+m
\ J I m + 2l R

" ' ' /=0

} I W(Ω* XR)< Cj^^k-^ I /1 ̂ .(ΓΊ x Λ)

1£«>+»}$) I M(Γ(,, X R)< Cj^^k-^ I /1 ίw+.p! X Λ),

where we set

Γ0) = {*χ*, Vp(*)); *e<U0}

Taking account of

8Uppwi*>n(Γ eXΛ) = φ, e = (l+(-l)Ό »)/2+l

we see immediately

v>w = %toW\ωjXRy=o 7

is the desired one.

For the case 2, we construct wψ\ 7=0, 1, •••, ̂ 0 by the same way as case 1.

And for w^ } |Γ eχΛ using Lemma 7.2 we have w(/^ι such that

\ I /-p v x ι?\ .x" /^ k-Λr+w^Π I f \ /-p \/ 1?\
1 j I m V J e X K) ̂  ^KQ,m,NK 2-1 I / I N'+m(l 1 X ̂

Then

^ == j^Lj^j l ω / X / 2
y=o

satisfies (7.32) (7.35).
For the case 3, we may show by the same process.
For u of the form (7.3), first construct w^ according to the process of Lemma

7.1. Then concerning
jy

α) j=o °;

ι/r=<p|Γα) satisfies the condition C. Then we may apply the consideration

for u of the form (7.24). On the other hand from (7.6)

Combining this estimate and the results for u of the form (7.24) (7.32)^7.35)
follow immediately.

8. Decay of asymptotic solutions

In this section we will prove the following

Proposition 8.1. Let u be an oscillatory data of the form (7.3) or (7.14).
Suppose that
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(8.1) suppβcΓiXίT, Γ+l).

Then for any N positive integer there exists a function s(N)^CM(ΠxR)

the following properties :

(8.2) supp*<*>cΠx(Γ, oo )

(8.3)

(8.4)

(8.5)

where CQ is the constant in Theorem 2.2, £ is an arbitrary positive constant and

CNtm,R>t depends on N, my R, £ and {| ψ | M ; m=l, 2, •••}.

First we note a simple lemma without proof.

Lemma 8.1. Let a be apositive constant <1. Suppose that ajyj=Q, 1, 2, •••

be a sequence of positive numbers verifying for some A > 0

-1 , j = 1, 2, - .

Then for any 6 > 0 we have an estimate

aj^(aQ+ACz)(aey , j = 0, 1,-

where Cz depends only on 8.

Let us fix £0>0 and we will show (8.2)~(8.5) for this £0. Let us choose
δ>0 so that we have

<b '

where /= max \oe — y\, K(y)=mm(fCj(y))y

 / c j ( y ) y j = = ^ ^ 2 are the principal cυr-
jce^cδ)
*es2Cδ:>

vatures of Γ at y. Fix δ2 and δ3 so that δ>δ3>82 and Corollary of Lemma 3.3
holds. Hereafter K denotes the one of Lemma 3.3 determined by δ2. Let us

set S=S(S2) and §=S(S3). Let v{j(x), i,j=l, 2 be functions defined on Γ,
such that

0

and vn+vi2=l on Γ, , ί=l, 2.
First we construct #OT for u of the form (7.14) verifying

r, τ+1).
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Let us set fory=l, 2, 3, •••

r0) = sn U xfc, vrt*)

such that Xj (x, Vφ(x))^S\ .

Then using Proposition 4.2 we have <PJ(X) defined in ώ; such that

(8.6) \Vφ;\ = 1 in ώ,

and

(<pj = φj-! on Γ0)

(8 7) ^*Λ ino n Γ0>

Applying Proposition 5.4 we have

(8.8)

Let

be the function constructed for u according to the process of Lemma 7.3. Set

Mlί = l;2ίβ«;(

0

JV)|Γ2XΛ) p=l,2.

In the case of the Dirichlet boundary condition

In the case of the third kind boundary condition

„ = *»('-'> Σ
j=o

For «u we can apply Lemma 7.3 and we have

«<*>(*, ί; *) = β'*d-') Σ βιy

Set

«2,(*' * •' *) = "iX^wΓ I r, x a ,

and construct for UΆ

wψ\x, t; k) = e»<».-« fjt»w(*, ^ *)*"'
j = 0

following the process of Lemma 7.3. Repeating this process construct for

2=0, 1, 2, - .
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X, t\ k) = *<*W*)-0 Vgj(x, ί; k)k~j .

Lemma 8.2. Let us set

a = max , / = mix \x—y \ .
y^s l+2lK(y)

that for g=0, 1, 2,

(8.9) k.yLίΩ^

Proof. First we show (8.9) for/=0 and w— 0. Note that z;ί0 satisfy

2-Qf+2Vφ^VvqQ+Vφq vq0 = 0 m ωq

and for q^l they verify the coundary condition on Γ(β>

^6i^-ι,o if B = B!

where 6=((- l)9+l)/2. Consider the case of B=Bl9 Then

ϋoo=/ on Γι-

Then applying (6.9) we have

Note that form Lemma 4.1 we see the principal curvatures of
From the definition we have for x GΞ Γ2

«Ίo(^ 0 ="2i(*Ho(*> 0
Then

Applying (6.9) for ^2o
 we have

I ϋ20 1 ..(Γ, X R) <α I Vla 1 0(Γ2X Λ) <α | / 1 ί(Γt X R)

Repeating this process we have for all q

Next, suppose that (8.9) holds for m when j=Q. Note thai

l»J.ri.ι(ΓιXΛ)<C1 |/|;+1(Γ1xΛ).

Then applying Lemma 6.1
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from which it follows that

Since from the definition

^0=^(^)1^-1.0 on

we have by applying Lemma 6.2

I »,-ι.o 1 «+ι(Γ(f ) X Λ)

And from Lemma 6.1

I vq0 1 β+1(Γ(ί+1) X Λ) < α I *;9o I «+ι(Γ(ί) X Λ)

Combining these estimates and using the assumption

I vq0 1 M+1(Γ(9+1) X Λ) < α I ̂  _ l t 0 1 w+1(Γ(ί) X R)+4C - Cf (^f)ff- J -

Applying Lemma 8.1 we have

) X Λ) < CmtJ(ae*Y for all ? .

Taking account of (6.8) the estimate (8.9) for j=0 follows from the above esti-
mate.

Next we will show (8.9) for/>l. Note that vqj, q=Qy 1, 2, ••• satisfy

Qv
n

and on Γ(?)

if B = Bt

»f y-i-^ifio..^-,) (ί ̂ ί) if B = B2.\ on /

Suppose that (8.9) holds for j and m=0, 1, •••. From the assumption

I [>„• I m(ΩP X Λ) < £,-.„.*(**')* I / 1 ί+2y +2(Γ! X Λ)

and

|5^.-β^uL(r(,)XΛ)<cΛ>^|/|^

Then we have from Lemma 6.1
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I vqj+1 1 Λ(Γ<f +1) xR)<a\ vqj+1 1 β(Γ(f > X R)

And applying Lemma 6.2 to *Vι>; +ι and vqj+1 on Γ(/7+1) we have

I vq+1J+1 1 W(Γ(?+1) X R) < I ϋ,,.+1 1 m(T(q+l) XR)+ C(ae*γ \ f \ m+2y+2(Γ1 X R) .

Then we have (8.9) for j+1 by combining the above two estimates and by
using Lemma 8.1. By the induction we have (8.9) for ally and m. Q.E.D.

Since 10™ = ^(^-o fj Vq.k~* and

Π^} - β^ -^A-^D^,

we have

(8.10) K)|.WxΛ)<C'J»,.,,ti(ββ )«Σ l/lί^y^^
y=o

(8.11)

Taking account of

SUpp Vqjd U -£q(x> *'> ^Φ(x}}

we have

therefore we can rewrite (8.10) and (8.11) as

(8.12) |<M«Wx/0<^iWf*^^
y=o

(8.13) I Dα>c/° I «(Ω(

5

f) x Λ) | < C^^e-^-^k-^ \ f | i^^^ίΓ,XΛ) .

Concerning the estimate on the boundary, we see that from the process of the
construction of w^

(8.14)

and for q ̂  1

(8.15) [B«$\+i

Remark that for q^ 1 it holds that

f3?(Λ?, V^?(Λ?))<^ , VX^L Proj supp wί2 .

Indeed, x^Proj supp w?2 is represented as

x = X^x, Vφq-i(X)) , ^eProj supp uq.l>λ

and x^S. Then Lemma 3.3 and its corollary assure our assertion.
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Now we can apply Proposition 7.5 to uq2, q^l taking J=K. Then we
havey(

q

N\x, t\ k) such that

fi I ί(Γ x Λ ) < Ck-N+m I fq2 1 ;+2*+40(Γe x Λ)

(8.16) supple U -4*, <; V9>f+1(*)) ,
C*,θesupp/?2

where we set M?2=t'*(*'ί~/)/ί2 Then we have from the definition

Using (8.9) it follows that

(8.17) IΛίWΓβXizxqβO ί j l/ i +ίAΓ^
y=o

Taking account of the support of uq2 and (8.16) we have

Then it follows that
jr

(R 18^ I vw4-w I ' (T v R\<p~(co-*)tJ?~N+m'^ I f \ 7 ίT v K\k~J^O.IO^ I «Xί I w?21 Jtt^J Axϊ'^^c; ϋ /< s \\ I I w+2jv+40+2yV * 1 ̂ -**'/'^
y=o

(8.19) I jf > I M(Ω* X Λ) < CA-+1«-<*e-f)' § | /1 i^H-zXΓj X ΛJA' '

(8.20) ID^ΓL(ΩJ?xΛ)<Ce-(co-8)'r"+B'Σ l/lm+4o+2U+ J )^'y

Then we see immediately that

is well defined and it verifies the properties of Proposition because for each t
only wψ} such that tl^q^t—Rll^—K do not vanish.

Now we will remove the assumption

, Γ+l).

Let $0e Proj supp/. If

Proposition 7.5 proves Proposition 8.1 if supp/ contained in a small neigh-
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borhood of SQ. If *3£(s0, Vφ(s0))^Kί Lemma 3.3 assures for some j

Then we may suppose that

j supp / .

Using the process of Proposition 7.5 we construct w(

Q

N)

9 zv[N), •• ,«0yY), then we
have

supp/ycSe(;.)(δ2)xΛ

and the estimate

holds. Thus we may apply the process of the construction of zm to eik(^φj~^fj and

we have the desired function.

Corollary. For an oscillatory boundary data of Proposition there exists
2(N\x, t\ k) satisfying

n

and (8.2), (8.3) zand (8.5).

Proof. Let z(N) be a function verifying (8.2)~(8.5). Take a function
h(x, t\ k) such that

h(x, t\ K) = -OOT in

\h\.(0, 0<C^.Af^^)(^)A-^|/|^

(#, t; K) be te the solution of

(Og = h ΊnR3χR

(g(x,t;k) = Q ίoιt<T.

And we have the estimate

Then we see immediately that

satisfies the required properties.
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9. Proof of Theorem 2.2

Let SQ^ΓO and let ^U be a small neighborhood in R3 of s0 such that for all

(9.1) A(

the representation

of § 4 of [3] is applicable. We will define "Wj an operator from C o ((Γj Π 11) X Λ)
intoC"(ΠxΛ). We set

(wax*, o = 5 Λ Γi^'L^'
*<">(*, r; α, £',

where

h(ξ, k) =

and z(N\z, t\ a> ξ', k) is the function of Corollary of Proposition 8.1 constructed

for an oscillatory data

u(s(σ)9 ί; A) = eik^«^'>-»ω(s(σ), t) .

Indeed, ψ(s(σ)) — (l+a)ζσ, ξ '> satisfies the condition C for α<— α0

we set

^ 0 = ( dk ( art ( dβ{ dσ' ( dt'^N\x, t; β, v, k)
J J2 J |βl<£β 0

 J J

O^ β)-/)-^^^ t')h(s(σ'), t')

where ^(ΛΓ) is the function of Corollary of Proposition 8.1 constructed for an
oscillatory boundary data

D(η, β)

And we set <Wj+3>j, j=3, 4 of §4 of [3] as S^/0, ;=3, 4 respectively. Remark

that <Wj+2>j of [3] satisfies

= n

and for any ΛΓ/

;.)/z = 0 for I * I > ί-2/! .
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Then we have for j— 1, 3

• j dk Jrfα J rfr^ft-M.+Iί+Λ)|A|"+1χχi+α)lAz(l+α)|A(f, ft)|,

where ^4; depends on the derivatives of ω(x, ί), and

where #(f(σ), £)= ( «-''*'' A(ί(σ), ί')Λ' Simillary it holds that

• j dk j rfα j dξf\ξ\m%i(l+a)2ff(ί+a)h(ξ, k) .

By the same way we have, for 7'=!, 3

}h\'m(T, ί)<C'/,>.β-<«.-t»'-1> j dk j rfα j rf|'

I ft I -JV+»+1 χ,(l+«)2A2(l+α) I Λ(|, ft) I ,

Λ J rf/

and

....*-^-1"'-" J <ft J ** J

Set

Then we have

(9.2) W>h = 0 for

(9.3)

(9.4) n^wA = 0 in
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(9.5) \Dt(BWN)h-h) I ;(Γ,

Foτp=ik+μ, μ>—c0 define Z(N\p)h by

(&N\p)h)(x) = Γ *-*
J -00

From (9.4) it follows that

(9.6) (p2-A)&N\p)h = 0 in Ω .

Taking account of (9.2) and (9.3) we have for Re/>>0

and

(0.7)

From (9.3) we have for Re p>—(ca—6)

(9.8) \&»\p}h\n(Clκ)

<CN,n,R Γ {\k\«+3\\h(',k)\
J -00

and also from (9.5) we have for Re/>>— (r0—

(9.9)

We see immediately that by using the partition of the unity we can define
for all AeCΓ(Γx(0, 1)) and (9.8) and (9.9) hold.

Define Uf>(p)g an operator from C"(Γ) into C~(Π) f o r p and q(ί) such that

(9.10)

where

A(*, ί) - ,?(%(/) , ^ eΞC-(Γ) , ?eCy(0, 1) .

Let m(ί) be a function of CT(0, 1) verifying

( m(t)dt = 1 .

Set

Since ^(zA'+^)=^ί(yti+z(Λ'— A)) there exist a0>0 and C0>0 such that for
all \k'~ k\ <ί?
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(9.11)

From the definition we have

(9.12)

where Cm depends only on m(t). Then by using (9.11) and (9.12) we have
from (9.8) for l>Re^>>-(£0-£), \k'-k\^aQ

(9.13) |^V+'*ΉΛ)<C*^

and from (9.9)

(9.14) |μ+ftΊI*ffEV+ft f^

Then, when CN m 2 / \ k \ ^ l j 2 9 for p = ik'+μ such that 1 > μ > (c0-6) and

is well defined as a mapping from Cm(T) into C""(Γ) and for all g^Cm(T) we
have

(9.15)

Define Uψ\p)g= U^(p)A^\p)g. Then it holds that

' BUψ\p)g = g o n Γ ,

(9.17) 1 ί/H/)kL(ΩJ?)<2Cw>M

For 1 >Re£>0 we have from (9.7)

(9.18)

For each k verifying CNιm^\k\<l/2, U' /l\p) is analytic in l>μ>— (c0— 6),
I k'— k I < α0. Since in Re p > 0 the solution of

Γ(/-Δ)φO = 0 in Ω

\Bu = g on Γ

is unique in L2(Ω), we see that U^(p} is independent of k and iV in Re/>>0.
Thus UiN\p)g is the analytic continuation of U(p}g. Then we have

Proposition 9.1. For any ε>0, ί&ere eΛ wίί &8>0 ίwcΛ ίAaί /or αwy g
Cm(Γ), w>3, ί7(/>) can be prolonged analytically into a region

{μ+ik; μ^-(c0-ε), \
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and the estimate

TO)?L(«*)<c«.^
holds.

Proof. First set m—0. Then we can choose kζ as the proposition holds.

By using the regularity theorem for Δ we get the estimate for all m^l if p

belongs to this region.

Appendix

Let Oι be a convex and bounded obstacle with smooth boundary Γi such
that

and O2 be a convex and bounded obstacle with smooth boundary Γ2 such that

For these Oj we consider the problem with the Dirichlet boundary condition.
Set

Pm.*(*) - SUP E(«> R> O^dklL+i.Λω+lklL.ΛΩ))"1

{«o,«i}eC5rG0iO

We like to show

Theorem A. Let Λ>2. For every positive integer m it holds that

for any positive number β.

To prove this theorem we consider the behavior of an asymptotic solution

U(N\x, y} z, t k) of the problem

n
( ' ) \BU=0 onΓx(0, oo).

First we construct an asymptotic solution of the problem

(A.2) O= 0 in Λ3x(0, oo)

in the form

(A.3) 10 = eik(χ-» J vj(x, y, z, t)k~j .
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Then Vj must satisfy

(A.4)0 2 + 2 - = 0 in Λ3x(0, oo)
dt dx

and for/>l

(A.4)y 2dvA+29v1 = _iΠv._ι in Λ3χ(0> oo) .
at ox

Lemma A.l. Let f(x, y, z)^C%(R3). If we require

(A.5)0 v0(x, y, *, 0) = f(x, yy z)

and for j ^l

(A.5); vj(x,y,*,0) = 0

Vj, y=0, 1, 2, ••• the solutions of (A4)y are determined successίvley and they are

represented as

(A.6)y »χ*, y, zt t) = JO ί'(Py,/)(*- ί, ̂  *)

where Pjt are differential operators with constant coefficients of order *ζ2j.

Proof. Let z;0 satisfy (A.4)0 and (A.5)0. Then for any (ξ,y, z)<=R3 and

-v0(ξ+sf y, zy s) = + - ξ + S } y, z, *) = 0 .
ds \ot ox/

Then we have for all s > 0

v<>(ξ+s, y> *> *) = «Ό(& y> *> °) =f(ξ> y> *}
Then taking ξ—χ—ΐy s=t it follows that

This is nothing but (A. 6) forj^O. Suppose that (A.6) holds for j=h. Then

we have

D*4<«, y, *, *) = Σ t' ((--^)phl

+Σ

where P4+ι_/ is a differential operator of order <2(A+1) with constant coeffi-
cients. Now from (A.4),,+1 and (A.5)A+1 it follows that
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s, y, *, s) = Σ *'(PMtlf)(ξ, y, *)

> y> x, 0) = o ,

from which we have

±, y, », ή = ί'+W+υΠA+M/Xf, * *)

Setting s=t, ξ=x—t and PA+ι,/=(2(/+l))-1Jβ

A+1>/ we see that (A.6) holds foi
;=A+1. ' ' Q.E.D.

Suppose that

(A.7) suPP/c{(Λ,>-, *);/+««< 1/16, l/4<*<3/4}

(A.8)

Let us define w(N) by

»W(Λ, v, *,*;*) = «'*(J|-ί) Σ »X*, ̂  *, 0*"y

Then by using (A.6) we have from (A.7)

(A.9) supp wWc {(Λ?, y, z, ί); /+^2<1/16, l/4<Λi-ί<3/4} .

We have immediately

Set

ω=

Then for any (#, y, af, ί)eωX/? (A.9) implies that the number of positive in-
teger p such that

x, yy

is at most one. Now we can define a function U(N) in ωXR by

= ιoW(x, y, z, tι k)- Σ {ιoW(2p-x, y, z, t)-w<N\2p+x, y, z, ί; k)} .

We see immediately

0 on Λ = 0 and x = 1
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-Σj {g(N)(2p-x, y, z, t)-gW(2p+x, y, z, t)}

where £(JV)=Π«>W. Since we have

( \Dt^llί(2p-x,yί x, t;
J ω

it holds that

(A.11) ( \D>Π&N\x, y, z, ί; k)
Jω

Let us set

(0 if (*,y,

Evidently we see that C7(ΛΓ)eC"(ίlx(0, oo)) and

lθ

Let F(Λr) be the solution of

in (Ω-ω)x(O, oo).

in Ωx (0,oo)

onΓx(0, oo )

Then we have from (A. 11)

(A.12) [|FW(.,ί)ll/.Λo)<CWt,ίw+'+2Λ-*-' ί>0.

Setting fF^)=[/(")+F<Ar) we have

fΠfF ( W ) = 0 inΩx(0, oo )

{ I^w = 0 onΓx(0, oo).

Taking account of the properties of U(N) and V(N) we have

*, y, », 0; ft) = -(ikf(x, y,

Then it follows that

, 0)|LiΛo)<C.Λ"+1 .

From the form of t/(JV) we have



508 M. IKAWA

= e^'-2"\f(X, y, *)-Σ ί] (2n')(Fjlf)(X, y, *)*
l=ι 1=1

Then we have

(A. 14) £(t/w, R, 2w)1/2>δ(l-Σ CVtX&->) .

Therefore it follows from (A.12) and (A.14) that

E(W&\ R, 2nY/2>E(U<N\ R, 2n)1/2-E(V<N\ <*>,

>A(1-Σy=ι
Then we have

max

Suppose that 8 >0 is given. Then take Λf >(!+£)/£ and k=n1+*. Then we

have for large n

from which we have

Thus Theorem A is proved.
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