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Abstract

Any finite simplicial complex K and a partition of the vertex set of X determines a canonical
quotient space of the moment-angle complex of K. We prove that the cohomology groups of
such a space can be computed via some Hochster’s type formula, which generalizes the usual
Hochster’s formula for the cohomology groups of moment-angle complexes. In addition, we
show that the stable decomposition of moment-angle complexes can also be extended to such
spaces. This type of spaces include all the quasitoric manifolds that are pullback from the linear
models. And we prove that the moment-angle complex associated to a finite simplicial poset is
always homotopy equivalent to one of such spaces.

1. Introduction

An abstract simplicial complex on a set [m] = {vy,--- ,v,} 1s a collection K of subsets
o C [m] such that if o € K, then any subset of o also belongs to K. We always assume that
the empty set belongs to K and refer to oo € K as an abstract simplex of K. The simplex
corresponding to the empty set is denoted by 0. In particular, any element of [m] is called
a vertex of K. We call the number of vertices of a simplex o the rank of o, denoted by
rank(o). Let dim(o) denote the dimension of a simplex o. So rank(o) = dim(o) + 1.

Any finite abstract simplicial complex K admits a geometric realization in some Eu-
clidean space. But sometimes we also use K to denote its geometric realization when the
meaning is clear in the context.

Given a finite abstract simplicial complex K on a set [m] and a pair of spaces (X, A) with
A C X, we can construct of a topological space (X, A)* by:

() (X, A)X = U(X,A)", where (X, A)” = l_[x x HA.

oekl vi€ET vi¢o

The symbol [] here and in the rest of this paper means Cartesian product. So (X, A)X is a
subspace of the Cartesian product of m copies of X. It is called the polyhedral product or
the generalized moment-angle complex of K and (X, A). In particular, Zx = (D?, S ¥ and
RZx = (D', S"X are called the moment-angle complex and real moment-angle complex of
KC, respectively (see [5]). Moreover, we can define the polyhedral product (X, A)X of X with
m pairs of spaces (X, A) = {(X1, A1), -+, (X, A} (see [2] or [6, Sec 4.2]).
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Originally, Zx and RZ were constructed by Davis and Januszkiewicz [9] in a different
way. We will only explain the construction of Zyx below (the RZx case is completely
parallel). Let £ denote the barycentric subdivision of K. We can consider K’ as the set of
chains of simplices in K ordered by inclusions. For each simplex o € K, let F, denote the
geometric realization of the poset K5, = {t € K |0 C 7}. Thus, F, is the subcomplex of K’
consisting of all simplices of the form o = 0o C o) C -+ C 0. Let Px denote the cone on
K'. If o is a (k — 1)-simplex, then we say that F,, C Py is a face of codimension k in Pg.
The polyhedron Py together with its decomposition into “faces” {F, } <k is called a simple
polyhedral complex (see [9, p.428]).

Let V(K) denote the vertex set of . Any map 4 : V(K) — Z' is called a Z"-coloring of
K, and any element of Z" is called a color. For any simplex o € I,

e let V(o) denote the vertex set of ¢ and,

e let G, (o) denote the toral subgroup of 7" = (S!)" corresponding to the subgroup of
Z" generated by {A(v) |v € V(0)}.
Given a Z"-coloring A of K, we obtain a space X(K, 1) defined by

2) X(K,2) =P xT"'| ~

where (p,g) ~ (p’,g’) whenever p’ = p € F, and ¢’g~' € G (o) for some o € K.
In particular, if » = [V(K)| = m and {A(v;); 1 < i < m}is a basis of Z", X(K, 2) is

homeomorphic to Zg. Let me : P X T™ — Z i be the corresponding quotient map in (2).
There is a canonical action of T™ on Z defined by:
3) g - mx(p.9) = 7e(p.99'), p € Pr. 9.9 € T".

Then any subgroup of 7" acts canonically on Z through this action.
The following is another way to view the canonical 7"-action on Z . Recall

4) Ze=L s = ([ ][ [st <[] v
]

oek vjeor vEo vj€[m

2 1
where D(j) and S 0
(the join of S ('j) with v;). So we can write

(5) Ze=0LSY = ([ [sh=vx]]s):

oek vjeor vj¢o

are the copy of D* and S associated to v;. Notice that D}, = S

0 G * i

We can identify S |, with the j-th §'-factor in 7" = (S')". Then for any (g1, -~ , gm) € T",
let g; acton § (lj) through left translations. This is equivalent to the canonical 7""-action on
Z e defined by (3).

For any map 4 : V(K) — Z" whose image spans the whole Z", we can view the space
X(K, ) in (2) as a quotient space of Zx by a toral sbugroup of 7. Indeed, let {e1,- - , e}
be a unimodular basis of Z" and define a group homomorphism

pa:Z" — 7', palej) = Avy), 1 <i<m.

The kernel of p, is a subgroup of Z" which determines an (m—r)-dimensional toral subgroup
H, c T™. It is easy to see that X(X, 1) is homeomorphic to the quotient space Zx/H,,
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where H, acts on Zx via the canonical 7" -action. Note that the action of H, on Zx is not
necessarily free.

The cohomology groups of Zx can be computed via a Hochster’s type formula as follows
(see [4] or [5]). For any subset J C [m], let K; denote the full subcomplex of K obtained by
restricting to J. Let k denote a field or Z below. We have

©) HI(Zi k) = (D B (3K, 9.2 0.

Jcim)

where H*(K; k) is the reduced cohomology groups of K; and |J| denotes the number of
elements in J. Here we adopt the convention that

H ' (Ky:K) = k.

Moreover, it is shown in [4] and [5] that there is a natural bigrading on H*(Zx; k) so that it
is isomorphic to Torg, ... ,,1(K[X]; K) as bigraded algebras, where K[K] is the face ring (or
Stanley-Reisner ring) of K over k (also see [10]).

The cohomology rings of free quotient spaces of Zx can be reprsented in a similar way.
Suppose a subtorus H C T™ acts freely on Zx through the canonical action. It is shown
in [15] (also see [5, Theorem 7.37]) that there is a graded algebra isomorphism

@) H*(Zx/H; k) = Torg: im0 KIK]; K)

where B(T™/H) is the classifying space for the principal 7" /H-bundle. However,
Torg-pcr=/myx(K[K]; K) is not so easy to compute in practice and it is not clear whether
there exists a Hochster’s type formula for H*(Zp/H; K) in general as we have for H*(Z p; k)
in (6).

Remark 1.1. For the calculation of the cohomology ring structure of general polyhedral
products, the reader is referred to [2, 3, 19].

An important class of quotient spaces of moment-angle complexes are quasitoric man-
ifolds. Let Kp be the simplicial sphere that is dual to an n-dimensional simple convex
polytope P with m facets. Then Zp = Zg, is an (m + n)-dimensional closed connected
manifolds, called the moment-angle manifold of P. Suppose H = T is a subgroup of 7"
that acts freely on Zp through the canonical action, the quotient space Zp/H is called a qu-
asitoric manifold over P. Quasitoric manifolds are introduced by Davis and Januszkiewicz
in [9].

In this paper, we study a special class of quotient spaces of Zx and show that their co-
homology groups can indeed be computed via some Hochster’s type formula. These spaces
are defined as follows.

o Let o = {ay, - ,ax} be a partition of the vertex set V(K) of a simplicial complex
K, i.e. @;’s are disjoint nonempty subsets of V(&) with @y U --- U a; = V(K).

e Let {&;,---,&) be a basis of Z*. We define a Zk—coloring of K, denoted by Ay,
which assigns é; to all the vertices in @; (1 < i < k).

Then we obtain a space X(XC, A1) via construction (2), which can be thought of as a
quotient space of Zx by the action of a rank m — k subtorus H,  of T™. Note that it is
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Fig.1. Examples of X(XC, 1)

possible that the two vertices of a 1-simplex in K are assigned the same color (see Figure 1
for example).

Let o«* denote the trivial partition of V(K), i.e. oc* = (a1, ,a,,) where each a; = {v;}
consists of only one vertex of K. Then according to our definition,

X(K,A) = Zc-

For a non-trivial partition & of V(K), the space X(K, 1) is a priori not a moment-angle
complex of any kind. But we will see that some topological properties of X(K, 1) are
very similar to moment-angle complexes. In particular, the cohomology groups of these
spaces can also be computed by some Hochster’s type formula as we do for moment-angle
complexes.

Let [k] = {1,--- ,k}. One should keep in mind the difference between [k] and the vertex
set [m] of K. For any simplex o € K, let

In(o) :={ie[k]; V(o) Na; # @} C [k],

which just tells us the set of colors on the vertices of o defined by 4,. Obviously we have
0 < |Ix(0)| < rank(o). For any subset L C [k], define

(8) K 1 := the subcomplex of K consisting of {o € K ; I(0) C L}.
The main results of this paper are the following two theorems.

Theorem 1.2. Let x = {a1, -, i} be a partition of the vertex set of a finite simplicial
complex K. Then we have group isomorphisms:

HI(X(K, 1) K) = EHHM (g 13 K), Vg 2 0.
Lclkl

Note that the above formula for o* gives (6). If the action of H;, € T™ on Zg is
free, we obtain from (7) that H*(X(KC, A«);K) = Torgprm/m, )10 KIK];K). In this case
the Tor-module splits by the refined Z*-graded components and then Theorem 1.2 gives
the Hochster’s formula for it. But generally X(K, 1,) may not be a free quotient of Zg.
For example let X = dA? be the boundary of a 2-simplex and k = 1, then A, assigns the
same color &; to all the vertices of JA%. It is easy to see that X(9A%, A,) is not even a
closed manifold while Zg4> = S3. So in general we can not directly apply (7) to compute
H*(X(K, 15); k).

In addition, it was shown in [2, Corollary 2.23] that the Hochster’s formula for the coho-



QUOTIENT SPACES OF MOMENT-ANGLE COMPLEXES 37

mology groups of Zx follows from a stable decomposition of Z,. We have parallel results
for X(KC, 1) as well.

Theorem 1.3. Let & = {ay, -, @} be a partition of the vertex set of a finite simplicial
complex K. There are homotopy equivalences:

TX(K, A)) =\ EM2 (K 1)
Lclk]

where the bold X denotes the reduced suspension.

The paper is organized as follows. In section 2, we construct some natural cell decom-
position of X(KXC, 1) and use it to compute the the cohomology groups of X(K, 1), which
leads to a proof of Theorem 1.2. In section 3, we use the same strategy in [2] to study the
stable decompositions of X(XC, 1) and give a proof of Theorem 1.3. In section 4, we show
that the moment-angle complex of any finite simplicial poset S is homotopy equivalent to
X(K, A4) for some finite simplicial complex K and a partition « of V(K). In section 5, we
generalize our results on X(K, 1) to a wider range of spaces.

2. Cohomology groups of X(C, 1)

Suppose the vertex set of K is [m] = {vy, - ,v,}. Let A" be the simplex with vertex set
[m]. For a partition & = {ay, - - - , ay} of [m], let A% denote the face of A" whose vertex set
is a;. Then K can be thought of as a simplicial subcomplex of A", Next, we construct a
cell decomposition of X(/C, Ay).

2.1. The cell decomposition of X(C, 1).
According to the construction of X(KC, 1) in (2), it is easy to see that X(KXC, 1) is home-

omorphic to the quotient space of Zx by the canonical action of the toral subgroup H,  of
T™ corresponding to the subgroup of Z™ = {ey, - - - , e,;,) generated by the set

. m
{ej—ejlvj,vy € o for some 1 <i <k} CcZ™.

In other words, the action H,, on Zx = Px X T™/ ~ identifies the S(lj) and S(lj,) in7" =

S ('1) XX S (lm) whenever v; and v; belong to the same ;. Considering the partition « of

the vertex set of IC, we can rewrite the decomposition of Zx in (5) as:
_ 1 1
©) Ze={JWC[] [] st=onx]]st)
ek i€ly (o) vjeV(o)Na; vi¢o

Then with respect to this decomposition of Z, we obtain a decomposition of X(C, 1) by
Lemma 2.1 below.

(10) X(K, o) = U ( l—l (S (li) * vEV(j)ﬂmv) % l_l S(li))

oek  iely (o) i€k« (o)

— 1 a; 1 1 a;

=J(]] sbr@namnx ] si)c[]sh=a
oek  iely (o) i€[k\L« (o) i€[k)

where S (li) is a copy of S! corresponding to i € [k], which can be considered as the join of
S with the empty face of A%,
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Lemma 2.1. If we identify all the S' factors in a product (S' * v() X --- x (S! % vy), the
quotient space (S' *v)) X -+ x (S % vy)/ ~ is homeomorphic to S' % (v| * - - - * vy). Note that
) * - -+ * Uy can be identified with a simplex whose vertex set is {vy, - - - , Us}.

Proof. The points in (S! # vy) X -+ X (S * v5) can be written as
((l]l)] + (1 =1)x1),- -, (tos + (1 = ts)xs)), X; € SI,O < <1,1<i<s.

In we identify all the S factors in the above product, the points in the quotient space can be
written as

Pposx= (o + (1= 1)x), -+, (t0s + (1 = t)x)), x€S,0<t;, < 1,1 <i<s.

Then mapping any P;, ... ;, » to the point IA’ZI,...?,MX inS! % (v) %% v,) below

N n tg 11—t - =1
Ppofox = U1+ 0+ ——————X
s s s
defines a homeomorphism from (S! xv;) X - -+ X (S % v5)/ ~t0 S % (v * - -+ x v). m|

Remark 2.2. We see from (10) that the building blocks of X(XC, A4) are spaces obtained
by mixtures of Cartesian products and joins of some simple spaces (i.e. points and S'). The
building blocks of polyhedral products (X, A)*, however, only involve Cartesian products
of spaces. In addition, we have polyhedral join (see [1]) and polyhedral smash product
(see [2]) whose building blocks only involve joins and smash products, respectively. It
should be interesting to study spaces whose building blocks involve mixtures of Cartesian
products, joins and smash products.

To obtain a cell decomposition of X(K, 1) from (10), we need to choose a cell decom-
position of the torus T*. First of all, a circle S' = {z € C;lz] = 1} has a natural cell
decomposition {€, '} where ¢” = {1} € S' and ¢! = S'\e". We consider T* as the product
Hle S (11.) and equip T* with the product cell structure (see [11, 3.B]). Then the cells in T* can
be indexed by subsets of [k] = {1,--- , k}. More specifically, any subset L. C [k] determines

a unique cell Uy in T* where
U= Jelyx [ ] el dimwp) =1L
ieL. ielkI\L

Here ¢, ¢! denote the cells in S (ll.) for each i € [k].

(O]
Observe that for any o € K, [[er, (o S (1,.) (00 N A%) is homeomorphic to a closed ball of
dimension rank(co) + [I4(0)|. Now for each L C [k]\I4(0), define

B(s1) := the relative interior of ( 1_[ S (li) x (oo N A% )) X UL.

i€ly (o)

Then from (10), a cell decomposition of X(KC, 1) is given by:
(11) Bx(K) :={Ber o€ L, L [k\ly(0)}

Note that B, is an open cell of dimension rank(c) + [I«(co)| + |L|.
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2.2. The cochain complex of X (X, 1,). For any coeflicient ring k, let C*(X(K, 14); k)
be the cellular cochain complex corresponding to the cell decomposition Z (K). If we want
to write the boundary maps of the cochains in C*(X(/C, 14); k), we need to put orientations
on the base elements. To do this, we need to first assign orientations to all the simplicies of
K. For convenience, we put a total ordering < on the vertex set {vy, -+, v,,} of A"l so that
they appear in the increasing order in @ until @;. In other words, for any 1 < i < k all the
vertices of A% have less order than the vertices in A*+'. Moreover, the vertex-ordering of
A" induces a vertex-ordering of any simplex w € A", which determines an orientation of
w. Then the boundary of w is

(12) ow = Z (o, w)o.
dim(a')zsiar)n(w)— 1

Here if V(w) = V(o) U {v}, then &(o, w) is equal to (-1)!®®) where I(v, w) is the number
vertices of w that are less than v with respect to the vertex-ordering <.

The following definition is very useful for us to simplify our argument later.

DEFINITION 2.3(SIMPLEX WITH A GHOST FACE). For any m > 1, let 0 denote the empty face of
A" (distinguished from the empty simplex 0 in £). In addition, we attach a ghost face —1
to A" with the following conventions.

e dim(0) = dim(~1) = —1, rank(0) = rank(-1) = 0.
e The interiors of 0 and —1 are themselves.

e The boundary of any vertex of A"l is 0.

e The boundaries of 0 and —1 are empty.

In the rest of the paper we use A" to denote A" with the ghost face —1.

Let {¢", '} be the cell decomposition of S ! where dim(e®) = 0, dim(e') = 1, and €Y, ¢!

are both oriented. Then given an orientation of each face of A", we obtain an oriented cell
decomposition of S A"l by

(), {e'), (S '+ o°|oisa nonempty simplex in A"},

If we formally define S! 0 = ¢' and S! + =1 = ¢°, we can write a basis of the cellular
chain complex C.(S! * Al"l;k) as {S!  0° |0 € A"} where the orientation of S! % o° is
determined canonically by the orientations of S! and o-.

Let{y” |o € K[m]} be a basis for the cellular cochain complex C*(S Ls Al k), where y”
is the dual of S! % o°. For any nonempty simplex o in A",

(13) dyH= ), ecDy

oCcCT
dim(7)=dim(o)+1
In addition, we have
(14) dy =0, dg= >y

ve[m]

Note that y‘i and yﬁ are cochains in dimension 0 and 1, respectively.
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By setting the o in (10) to the big simplex A", we obtain a homeomorphism
XA, A = [ ]s" A
i€[k]

Let X(A"™, 1) be equipped with the product cell structure of each S '+ A%. The correspond-
ing cellular cochain complex C*(X(A™, 1,); k) has a basis

y® =y XXy @ = (0, ,0%), where o € A%, 1 <i <kl

We need to introduce two more notations for our argument below.
e For any vertex v of K and a partition & = {ay, - - , a;} of V(K), leti,(v) € [k] denote
the index so that v belongs to the subset ;).
e Foranyi € L c [k], define (i, L) = (=1)"®Y, where r(i, L) is the number of elements
in L less than i. Moreover, for any simplex o € K1 we define

(15) k(o L) = ]_[ k(i (v),L).
veV(o)
(16) So if V(w) = V(o) U {v}, we have k(w, L) = k(o, L) - k(in(v), L).

The differential of y® in C*(X(A"™, 14);K) is given by:

(17) dy") = ) u®,0) Y7 XX dyT K Xy

1<i<k
where (®, o;) = (—=1)Zi=14m6™) | For a simplex o € Al and J ¢ [k]\I(c), let
D) = (0,0
cNA%,  iely(o);

(18) where 0! =4 0 e A%, i€l
~TeAn, iek\Iu(o) UJ);

So by our definition when @ = (D(J, = (o-{, - ,o-i), we have

rank(o)) + 1, i€ ly(0);
dim(y”) = { 1, iel;
0, i €[k\(Iyx(o)U]).
For ® = @’ , the formula (17) reads:

1<i<k

13

= ZL((Di.,O'g)yOJIX"'X( Z s(a'g,‘r)-yT)X---xy”i.
1<i<k olCTCA%

dim(7)=dim(o)+1
Note that if V(w) = V(o) U {v} where v € «;, then a)lJ. = (TIJ. U {v} and we have

k(i,Io(c)U]) - e(o,w) = L(@ﬂ,, a’f) . 8((TIJ-, 7).
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This is because for each i € [k]\(I4(0) UJ), dim(y"rj’) = 0. So we obtain

(19) d(yq’f,) - Z K(i“(w\(]'), I“(O') U J) ) 8(0’, (/_)) yq)(luo((zr)uj\lq(w)

oCw, [ (w)Cl & (0)U]
dim(w)=dim(c)+1

where w\o denotes the only vertex of w that is not in .
For the simplicial complex C ¢ A"l and any simplex o € K, yq’{r is a cochain of dimen-

sion rank(o) + [Ix(o)| + |J] in C*(X(K, 14); K) that is dual to the cell B (see (11)). So
C*"(X(K, 1y); Z) has a basis

¥ o ek, T kM\a(o))
Note that for any o € K, the differential d(yq’Jv) in C*(X(K, 14); K) is only the sum of those

‘DI o (UN  (w)

terms y™ on the right hand side of (19) with w € K.

Proof of Theorem 1.2.  For any subset L c [k], let C*(X(KC, A4); k) denote the k-
submodule of C*(X(K, 1); k) generated by the following set

(B llg()UJT =L, o€ K, J C[k\Ix(0)}.

From the differential of C*(X(KC, 14);Kk) in (19), we see that C*M(X(KC, 1); K) is ac-
tually a cochain subcomplex of C*(X(IC, A4);Kk). We denote its cohomology groups by
H*“(X(K, 1+); k). Then we have the following decompositions:

(20) H'(X(C, Ao K) = €D HHHX(C, 4003 ).
Lc[k]

For any subset L C [k], let C*(K 4 1; k) denote the simplicial cochain complex of X 1. For
any simplex o € K, let o be the cochain dual to o in C*(K41;k). Then we have the
following isomorphism of k-modules:

gL C' (Ko k) — CYHX(K, 1) K)

L\I & ()
o +— k(o L)y® "

Note dim(y‘bb\lam) = rank(o) + |L|. Moreover, <pl& is actually a chain complex isomorphism.
Indeed by the differential of C*(X (K, A«); k) shown in (19),

« L\l ()
d(@5 ()

d(k(o, L)y ")

. QLM a@)
KoL) Y Kia(\o),L) - &0, @)y
ocwelkl, I« (w)cL

dim(w)=dim(co)+1

Z k(. L) - &0, ) yq)uL)\m(w)

oCcwek, I« (w)cL
dim(w)=dim(o)+1

The third “="" uses the relation k(w,L) = «(o, L) - k(i (w\o), L) (see (16)). So we have an
additive isomorphism of cohomology groups

= <p%c(d0'*).

HY(K o3 k) = HHEE (X (K, 24); K).
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Let po = Phel 1 DA (Kar:ik) — HUX(C, Aa)iK).
Lclk] Lclk]

Then ¢ is an isomorphism that satisfies our requirement. m|

ExampLE 1(BALANCED SimMpPLICIAL COMPLEX AND PULLBACKS FROM THE LINEAR MODEL). An
(n—1)-dimensional simplicial complex K is called balanced if there existsamap ¢ : V(K) —
[#] = {1,---,n} such that if {v,v"} is an edge of I, then ¢(x) # ¢(y) (see [18]). We call ¢
an n-coloring on KC. It is easy to see that K is balanced if and only if K admits a non-
degenerate simplicial map onto A""!. In fact, if we identify the vertex set of A"~! with [n],
any n-coloring ¢ on K induces a non-degenerate simplicial map from K to A”~! which sends
a simplex o € K with V(o) = {v;,, -+ ,v; } to the face of A"! spanned by {oi), -+, (vi)}.

Suppose ¢ : V(K) — [n] is an n-coloring of an (n — 1)-dimensional simplicial complex
K. Let{ey,--- ,e,} be abasis of Z". Then ¢ uniquely determines a Z"-coloring 1? : V(K) —
Z" where 21%(v) = ey). The space X(K, %) is called a pullback from the linear model
in [9, Example 1.15]. On the other hand, we have a partition of V(K) defined by o, :=
{¢~'(1),--- ¢~ (n)}. By our notation in section 1, we have X(C, 1%) = X(K, A«,). Then by
Theorem 1.2, the cohomology groups of X(XC, 1) can be computed by

1) HIX(C, %) k) = @ HMN (1, 1K), Vg > 0.

Lc[n]

Remark 2.4. There are analogues of Hochster-type decompositions for pullbacks from
linear models in combinatorial commutative algebra, at least when K is Cohen-Macaulay.
Let ¢ : V(K) — [n] be an n-coloring of such a complex, A C [n] be a subset of colors and
K 4-1(4) be the full subcomplex colored in A. It is easy to show that: (1) Ky-1(4) is Cohen-
Macaulay again; (2) its top Betti number is the flag 2-number 24 (K) (see [17, Sec 3]); (3)
we obviously have 7;(K) = 3 4=; ha(K) which is Hochster’s formula for the 4-vector of K.

3. Stable decompositions of X (X, 1)

It is shown in [2] that the stable homotopy type of a polyhedral product (X, A)X is a
wedge of spaces, which implies corresponding homological decompositions of (X, A)X. In
this section, we prove a parallel result for X(&C, 14). Our argument proceeds along the same
line as [2].

Let ¢ = {ay, -, @} be a partition of the vertex set V(K) of K. For any i € [k], choose

: 1 _ 0 1 0
the base-point of § ;) = ep Ve to be €y So
° e?l.) is a base-point of S ('l.) * 7 for any simplex 7 € K, and

e (e ,e?l. )) is a base-point ofS('l.l) X oo X S(ll._) for any iy, --- , i € [k].

0 ...
(UK
Then for any subset L C [k] and any simplex o € K, it is meaningful to define
1 @
WS (o) = /\ St % (0 N A% A /\ St
il o ()L i€L\(I o (0)NL)

where A and /A denote the smash product with respect to the based spaces. So for L =
{i1,- -, i}, the base-point of Wi 1L(0_) is (e?i), - e?l_ ))- We adopt the convention that the
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smash product of a space with the empty space is empty. Then the following lemma is
immediate from the definition of folgL(a').

Lemma 3.1. For any subset L C [k] and any simplex o € KC, we have
. 1 1
() WS () = W8 (0N Kor)
(i1) W“;I’L(o') is contractible whenever 1,(0) N L # @,

(iii) W5, (0) = A Sfy = S™.

For any simplex o € IC, define

(22) Do) = [ | Shx@namx [] si,

i€lx (o) i€[k]\ & (o)

Note that all the D (o) have the same base-point (¢ ), which is the base-point of

a7 <k>
XK, Ax).
By [2, Theorem 2.8], there are natural homotopy equivalences

IDu(0) = 2( \/ Wi ()

Lc[k]

where X denotes the reduced suspension and \/ denotes the wedge sum with respect to the
base-point of WleL(O'). Now let

Eo(0) = \/ Wi ().

Lclk]

Let Cat(K) denote the face category of K whose objects are simplices o € K and there
is a morphism from o to T whenever o C 7. Then we can consider D, and E as functors
from Cat(K) to the category CW.,, of connected, based CW-complexes and based continuous
maps. It is clear that

XK, Ax) = U Dy (o) = colim(D 4 (0)).

oekl

For any subset L = {/y,--- , [} C [k], define
X(Kar, o) = W@ = [ ] Wi @)

ekl el L
For a fixed L C [k], all the spaces {WS(X I’L(O'),O' € K41} share a base-point, which then

defines the base-point of Y(IC(X,L, A). So ff\(lCoc’L, Ae) 18 the colimit of WleL((r) over the
face category Cat(KCy 1) of K. In addition, we clearly have

colimEx(0)) = \/ X(Kor doo.
Lclk]

Since the suspension commutes with the colimits up to homotopy equivalence (see [2,
Theorem 4.3]), we obtain the following homotopy equivalences.

(23) T(X(K, Ao)) = colim(E(Dy (07)) = colim(E(Eq (o))

=2 \/ X(Kar, ).
Lclk]
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Derinition 3.2(OrpER CoMPLEX). Given a poset (partially ordered set) (P, <), the order
complex A(P) is the simplicial complex with vertices given by the set of points of P and k-
simplices given by the ordered (k+1)-tuples (p1, p2, ..., pr+1) iIn P with p1 < py < ... < Pry1-

Lemma 3.3. For any L C [k], there is a homotopy equivalence:

XKoo de) = \/ TAKaL)<)|* W (@),

(TEK“'L

Here A((Ky1)<s) is the order complex of the poset {t € K1 |T 20} whose order is the
reverse inclusion, and | A(K «1.)<c) | is the geometric realization of A(K«.L)<c)-

Proof. Note that the natural inclusion S! < §! x A"l is null-homotopic for any m > 1.
Then the same argument as in the proof of [2, Theorem 2.12] shows that there is a homotopy
equivalence Hy (o) : Wi;L(o-) — Wi;L(o') for each simplex o € K4 so that the following
diagram commutes for any 7 C o € Ky 1,

Hy(7)
(24) WS (1) ——> W5, (1)
{ o, Co. T
Hy (o)

fo‘,L(a) /=% fo‘,L(a)

where £, ; is the natural inclusion and ¢, - is the constant map to the base-point. Then by [2,
Theorem 4.1] and [2, Theorem 4.2], there is a homotopy equivalence

X(Ko1r Ae) = colim(Wh (@) = \/ [A(Kap)eo) |+ W) ().
el

So the lemma is proved. m|

Proof of Theorem 1.3.  Putting the homotopy equivalences in the equation (23) and
Lemma 3.3 together gives us a homotopy equivalence:

XA =2\ 1A K aL)o) |+ W ().
LCIk] o€ o 1
Moreover, the space in the left hand side can be simplified by the following facts.
° fo I’L(O') is contractible whenever o # 0 € K «L (see Lemma 3.1(i1)).
e A((K«1) ) is isomorphic to the barycentric subdivision IC’(X’L of K as simplicial
complexes. So the geometric realization | A((K 1)) | is homeomorphic to that of
KuL.
Then by Lemma 3.1, we have the following homotopy equivalences:
ZX(E, A6)) = Z( ) Kol S™M) = \/ ZH2(1k o 1),
Lc[k] Lc[k]

So Theorem 1.3 is proved. O
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4. A description of moment-angle complexes of simplicial posets

A poset (partially ordered set) S with the order relation < is called simplicial if it has an
initial element 0 and for each o € S the lower segment

[0,0‘]={T€S:6STSO’}

is the face poset of a simplex.

For each o € S we assign a geometric simplex A” whose face poset is [0, o], and glue
these geometric simplices together according to the order relation in S. We get a cell com-
plex A% in which the closure of each cell is identified with a simplex preserving the face
structure, and all attaching maps are inclusions. We call AS the geometric realization of S.
For convenience, we still use A” to denote the image of each geometric simplex A” in A®.
Then A” is a maximal simplex of A® if and only if o is a maximal element of S

The notion of moment-angle complex Z s associated to a simplicial poset S is introduced
in [12] where Zs is defined via the categorical language. Note that the barycentric subdivi-
sion also makes sense for A®. Let Ps denote the cone of the barycentric subdivision of AS.
Let the vertex set of A® be V(AS) = {uy,--- ,ux}. Let Ag : V(AS) — Z¥ be a map so that
{As(u;), 1 < i < k} is a unimodular basis of Z¥. Then we can construct Z from Pg and Ag
via the same rule in (2). So we also denote Zs by X(S, As).

Define a map A : [m] = {v1,--- ,vp} = Z" by A(v;) = e;, 1 < i < m, where {e},- -, ep}
is a unimodular basis of Z". We identify A" with A x {0} in A" x [0, 1] (considered as
a product of simplices). Let the vertex set of A" x [0, 1] be {v}, - , Uy, vj,- -+, Uy} where
v, =v;x{1},1 <i<m. Defineamap A : {v, -, 0,0}, -+ ,0,,} > Z" by

>¥m
Aw) =AW) =e;, 1 <i<m.
It is clear that X(A", 1) can be considered as a subspace X(A" x [0, 1], Q).

Lemma 4.1. There is a canonical deformation retraction from X(A"™ x [0,1],2) to
X(A" Q) = Z .

Proof. Any m-simplex in A" x [0, 1] can be written as

4 ’ .
O-;",l:[vlf" ’ijvja"' avm]y 1S]Sm.

Note that O';T’ N a';fﬂrl = [vg,--- ,vj,v’/.H, <0 So of',o%, -+, o, is a shelling of Al %
[0, 1]. By the cell decomposition (10), we have
XA, ) = (S{y 50X X Sl xom) € [ ] S8 [0,

1<j<m

XA %101, = | ) Bic [] ${ 0] where

1<j<m I<j<m

-1y ¥ 1) X (S gy [0, ) X (S ¢

There is a canonical deformation retraction from A™ x [0, 1] to A" along the above
shelling of A" x [0, 1] as follows. We first compress the edge [v1,v]] to vy, which induces
a deformation retraction

Bj = (S xv) X X (S # U)X X (S L ).

ey J+D
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v} U4 V4

v} v, v v, V; v, U
Fig.2. Canonical deformation retraction from A" x [0, 1] to A"

ol = v, v}, 0] — v, vy v, ] =0l Noy.

It compresses A x [0,1] = U< jcm 0" 10 Upejem 077 Next, we compress the edge [v2, )]
to v, which induces a deformation retraction from o7 to o' N o' and hence compresses
Uz<jzm a’?’ 0 Us<jcm 0';.”, and so on. After m steps of retractions, A" x [0, 1] is deformed
to A" x {0} = A" (see Figure 2).

Using the above retractions of A" % 10, 1], we obtain parallel deformation retractions
from [T << S(lj) *[vj, ] to X(A", 1) in m steps. The j-th step is to compress S(lj) * [0, V7]
toS (1j) *v; along the edge [v;, v;], which compresses Bj to B; N Bj,. Then starting from the
first step, we obtain a sequence of retractions

~ step 1 step 2 step m-1
xa"xpo1h= ) B —= (B = — ] B — B
1<j<m 2<j<m m—1<j<m

step m

(S 01) XX (S (% vm) = XA, ).

The above deformation process is canonical since it only depends on the ordering of the
vertices of A"l |

The canonical deformation retraction from X(A"! x [0, 1], 2) to X(A"1, 1) in the above
lemma will serve as a model of homotopies in our argument below.

Theorem 4.2. For any finite simplicial poset S, there always exists a finite simplicial
complex K and a partition o of V(K) so that Z s is homotopy equivalent to X(KC, A).

Proof. We can construct K and « in the following way. Let p : AS x [0,n] — A® be the
projection where A® is identified with AS x {0}, and 7 is a large enough integer. For each
maximal simplex A” C AS, we can choose a simplex A7 c AS x {l,} for some 0 < I, < nso
that

e p maps AT simplicially isomorphically onto A“.
e ANA" = g for any maximal elements o and 7in S.

We call A” a horizontal lifting of A”. We consider A” X [0, n] as the Cartesian product of A~
and [0, n] as simplicial complexes (see [5, Construction 2.11]), where [0, n] is considered
as a 1-dimensional simplicial complex with vertices {0,--- ,n} and the set of 1-simplices
{li,i +1],0 <i < n—1}. If o and 7 are both maximal, A N A" is the geometric realization
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|
¢
|
t
|
!
l

-~
* —|-o— —

Fig.3. A stretch of a simplicial poset

of o A 7 (the greatest common lower bound of o and 7). Now define

K= U Z‘T)U( U (A7 A7) X [y, L)),

geSs o,TeS
maximal maximal
1<l

where [/, [;] is considered as a simplicial subcomplex of [0, n]. Then by our construction,
K is clearly a finite simplicial complex, called a stretch of AS (see Figure 3 for example).
Let V(AS) = {uy,--- ,u;} be the vertex set of AS. Define a partition & = {ay,--- ,a;} of
V(K) by

ai={ve V)| p) =u}, 1 <i<k.

Then we get a Z*-coloring 1, on K. In the following we show that the space X(KC, 1) is
homotopy equivalent to X(S, As) = Zs.

For a pair of maximal elements o, 7 € S, we have a decomposition

(A7 N ATY X [Ly, 1] = U (A" N A7) X [s,5+ 1] = U U A® X [s,5+ 1],
lr<s<l. I, <s<l. WETAT
Given the shelling of each A“ x [, s+ 1] as we do for A" x [0, 1] in the proof of Lemma 4.1,
we obtain a canonical shelling of (A” N A") X [/, [;]. If for all pairs of maximal elements
o, T € S we do the deformation retractions from (A” N A7) X [I, [;] to (A NA") X {l,} in K
along their canonical shellings, we obtain a space that can be identified with A in the end.
Note that all these retractions are caused by compressing {v} X[s, s+ 1] to {v} x{s} step by step
for each vertex v € A” N A™. So for different pairs of maximal elements of S, the retractions
we constructed are compatible with each other and hence can be done simultaneously at
each {v} X [s, s + 1]. In addition, the Z"-coloring 1, on K naturally induces a Z"-coloring
on the space in each step of the deformation and eventually recovers s on A® in the end.
So by applying Lemma 4.1 to every A X [s,s + 1] € (A N A") X [l5,[;], we see that
the above deformation retractions on K induce a homotopy equivalence from X(KC, A,) to
X(S,As) = Zs. This proves the theorem. O

For any subset L c V(S), let S denote the full subposet of S with vertex set L. By our
construction of the stretch X of S in the proof of Theorem 1.2, the geometric realization
A of S; is a deformation retraction of the subcomplex K« 1, of K. So by Theorem 4.2 and
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Theorem 1.2, we derive that for any g > 0,
HY(Zs3K) = HIX(K, A):K) = (D) HM (Ko sk = @D HOH (A% k).
LcV(S) Lcv(s)

The above equality can also be derived from [12, Theorem 3.5] easily.

5. Some generalizations

We can generalize our results on X(XC, 1) to a wider range of spaces as follows. For a
partition & = {a1, -, a;} of V(K), we can replace the S (10 in (10) by a sequence of spheres
S=(S%,.-.,8%) and define

xk, a9 =[] s@namnx [| s4)c]]shxam

oek el (o) i€lk\I & () ie[k]

We have the following two theorems which are parallel to Theorem 1.2 and Theorem 1.3,
respectively.

Theorem 5.1. For any coefficients Kk, there is a k-module isomorphism:

HYX(K, &, S); k) = @ﬁq-l-zfadf(lcu;k), Vg > 0.
Lc[k]

Theorem 5.2. There is a homotopy equivalence

LXK, 0, 8) = \/ EEed2(re, ),
Lclk]

The proofs of the above two theorems are completely parallel to the proofs of Theorem 1.2
and Theorem 1.3. So we leave them to the reader. There is only one technical point in the
proof here. The definition of x(i, L) and (o, L) (see (15)) in the proof of Theorem 1.2. need
to be modified to be adapted to Theorem 5.1. For X(K, «, S) we should redefine «(i,L) as
follows and adjust the definition of (o, L) accordingly.

k(i L) = (=100, where rg(i,L) = > dj;, Vie L c [k]
JeL, j<i
REmMARK 5.3. When «" is the trivial partition of V(K), X(K, «*,S) is nothing but the
polyhedral product X2 where (D,S) = {(D4*,8%),.--, (D%, §%)}. In this special
case, Theorem 5.1 coincides with [8, Theorem 4.2].

IfweletS = (8°,---,59), the space X(IC, «*, S) is the real moment-angle complex of K.
Then similar to Example 1, we obtain Hochster’s formula (with arbitrary coefficient k) for
small covers which are pullbacks from linear models from Theorem 5.1. More specifically,
if ¢ : V(K) — [n] is an n-coloring of an (n — 1)-dimensional simplicial complex K. Let
{é1,-++ ,&,} be a basis of (Z,)". Then ¢ uniquely determines a (Z,)"-coloring 1¢ : V(K) —
(Z»)" where

/_1¢(U) = é¢(v) .

We can construct a space X(K, A%) from X and A¢ in a similar fashion as we do for Z"-
colorings of KC (see [9]). The space X(KC, A?) is called a pullback from the linear model
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in [9, Example 1.15] as well. It is clear that X(XC, A%) is a quotient of the real moment-angle
complex of K by a subgroup of (Z,)V®) that satifies Theorem 5.1. So by Theorem 5.1, the
cohomology groups of X(KC, %)

(25) HIX(K, ) k) = () H (Ko, 1K), Vg 2 0.
Lcln]
where oy = {¢~1(1),--- ¢~ (n)} is the partition of V(K) defined by ¢.
The homology groups of a general small cover with Z,-coefficients (g is odd) and with ra-

tional coeflicients are studied in [7, 16]. But here in (25) we can let k be arbitrary cofficients
including Z. Moreover, we have the stable decomposition of X(X, A?) from Theorem 5.2.

EX(K, 1) = \/ ZX (K 1)-
Lc[k]
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