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Abstract
In this note, for a Brauer tree algebra A and a star-shaped Brauer tree algebra B which is

derived equivalent to A, we give operations on the two-sided tilting complex DT of A ⊗ Bop-
modules constructed in [3] which is isomorphic to the Rickard tree-to-star complex T con-
structed in [5] in Db(A), and we show that the operations on DT correspond to operations called
f oldings on the Rickard tree-to-star complex T given in [7].

1. Introduction

1. Introduction
Throughout this paper, we denote by A a Brauer tree algebra with e edges numbered as

0, 1, · · · , e − 1 and by B a star-shaped Brauer tree algebra with the same number of edges as
A and with the same multiplicity as A.

Brauer tree algebras with the same number of edges and the same multiplicity are derived
equivalent. This fact is shown by Rickard in [5, Theorem4.2] by constructing a one-sided
tilting complex of A-modules with endomorphism ring B. We denote the one-sided tilting
complex constructed by Rickard by T , and call T a Rickard tree-to-star complex. Also
in [7, Section 3] Rickard and Schaps constructed various one-sided tilting complexes of
A-modules with endomorphism ring B by using pointings on the Brauer tree (see Section
2.4). We call each of the one-sided tilting complexes a Rickard-Schaps tree-to-star com-
plex. In particular the Rickard tree-to-star complex is one of the Rickard-Schaps tree-to-star
complexes. For any Rickard-Schaps tree-to-star complex T ′, by applying operations, called
foldings, several times to the Rickard tree-to-star complex T we can get it (the definition of
the folding can be seen in Remark 2.19).

T
folding �� T1

folding �� T2 �� · · · �� Tn−1
folding �� Tn = T ′

On the other hand, in [6] and [2] it is shown that for a one-sided tilting complex over an
algebra Γ there exists a two-sided tilting complex isomorphic to the one-sided tilting com-
plex in the bounded derived category of Γ-modules in theory. The existence of the two-sided
tilting complexes are abstract, but in [3], by using concrete bimodules we constructed a two-
sided tilting complex of A-B-bimodules isomorphic to the Rickard tree-to-star complex T in
the bounded derived category of A-modules for any Brauer tree algebra A. We denote this
two-sided tilting complex by DT . This two-sided tilting complex DT has an indecomposable
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A-B-bimodule M in degree 0 inducing a stable equivalence of Morita type induced by T , and
each non-zero terms except for degree 0 is of the form

⊕
P(S i) ⊗k P(Vj)∗ for some simple

A-modules S i and some simple B-modules Vj (see Section 2.2). Hence all of the terms of
the two-sided tilting complex DT are projective on both sides, so we have an equivalence
DT ⊗L

B − � DT ⊗B − between Db(A) and Db(B) with the reverse equivalence D∗T ⊗A −.
Since any Rickard-Schaps tree-to-star complex T ′ is obtained by applying foldings sev-

eral times to the Rickard tree-to-star complex T , there should be operations corresponding
to foldings which enable us to construct a two-sided tilting complex DT ′ with DT ′ � T ′ in
Db(A). We call these operations on two-sided tilting complexes two-sided folings, and we
get the following commutative diagram, where vertical arrows mean the restrictions to A
from A ⊗k Bop and where DTi � Ti in Db(A) for each 1 ≤ i ≤ n.

DT

��

two-sided folding �� DT1

��

two-sided folding �� DT2

��

�� · · · �� DTn−1

��

two-sided folding �� DTn

��
T

folding �� T1
folding �� T2 �� · · · �� Tn−1

folding �� Tn

The aim of this paper is giving such operations on the two-sided tilting complexes.
The first result of this paper is the following.

Theorem 1. Let DT be a two-sided tilting complex of A ⊗k Bop-modules isomorphic to
the Rickard tree-to-star complex T of A-modules. Let C be a complex of A ⊗k Bop-modules
obtained by applying the following operations several times to DT :

(i) Deleting the direct summand of the form P(U) ⊗k X from the leftmost non-zero term
and the one of the form P(U) ⊗k X′ from the second leftmost term for a simple module
U not adjacent to the exceptional vertex.

(ii) Deleting the direct summand of the form
⊕n

i=1 P(Ui) ⊗k Xi from the leftmost non-zero
term and the one of the form

⊕n
i=1 P(Ui) ⊗k X′i from the second leftmost term for the

all simple modules U1, · · · ,Un adjacent to the exceptional vertex.

Then the resulting complex C is a two-sided tilting complex of A ⊗k Bop-modules.

We remark that we can apply the operations in Theorem 1 to DT any number of times by
using an isomorphism

C = (· · · → 0→ Pn → · · · → P1 → M)

� (· · · → 0→ Pn → · · · → P1
ϕ−→ P(Ω−1M)→ P(Ω−2M)→ · · · → P(Ω−lM)→ Ω−lM)

where ϕ is the composition P1 → M ↪→ I(M) � P(Ω−1M) and by the fact that P(Ω−n′M) is
of the form

⊕e−1
i=0 P(S i) ⊗k P(Vj,−n′)∗ for each n′ by [8, Lemma 2].

The second result of this paper is that operations in Theorem 1 are two-sided foldings.
Hence for any Rickard-Schaps tree-to-star complex T ′ we can construct a two-sided tilting
complex corresponding to T ′ by using concrete bimodules.

Theorem 2. Let DT be a two-sided tilting complex of A⊗k Bop-modules isomorphic to the
Rickard tree-to-star complex T in Db(A) and T ′ be a Rickard-Schaps tree-to-star complex.
Then we can construct a two-sided tilting complex DT ′ corresponding to T ′ by applying the
operations in Theorem 1 to DT several times.
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Since the resulting two-sided tilting complexes are projective on both sides, the derived
equivalences induced by them are given by taking the ordinary tensor, which are easy to un-
derstand in comparison with the ones induced by the one-sided tilting complexes. Hence we
can understand how the equivalence induced by the Rickard tree-to-star complex is different
from the one by each Rickard-Schaps tree-to-star complex obtained by applying foldings to
T several times. We give the detailed construction of the two-sided tilting complex DT ′ in
Section 4.

Throughout this paper, let k be an algebraically closed field. Algebras mean finite di-
mensional symmetric k-algebras, and modules mean finitely generated left modules unless
otherwise stated. We denote the k-dual Homk(−, k) by (−)∗ and denote ⊗k by ⊗ to simplify
these. For k-algebras Γ and Λ, we denote the opposite algebra of Γ by Γop and we identify
Γ-Λ-bimodules with Γ⊗Λop-modules. For a Γ-module U, we denote its projective cover by
P(U), and denote U/rad U by topU.

Our ‘complexes’ are chain complexes, so the differentials will have degree −1. If

X : · · · dX
d+2−−−→ Xi+1

dX
i+1−−→ Xi

dX
i−−→ Xi−1

dX
i−1−−→ · · ·

is a complex, then X[1] will be a complex with i-th term X[1]i = Xi−1 and with i-th differen-
tial dX[1]

i = (−1)dX
i−1, in the other words, X[1] will be the following complex

X[1] : · · · −dX
d+1−−−−→ Xi

−dX
i−−−→ Xi−1

−dX
i−1−−−−→ Xi−2

−dX
i−2−−−−→ · · ·

where Xi−1 is in degree i. Moreover we define X[m] := X[m − 1][1] inductively, and define
X[−m] as a complex satisfying that X[−m][m] = X.

For an algebra Γ, Kb(Γ) means the homotopy category consisting of bounded complexes
of Γ-modules and Db(Γ) means the derived category consisting of bounded complexes of
Γ-modules. For a morphism f of complexes, C( f ) means the mapping cone of f .

2. Preliminaries

2. Preliminaries
2.1. Rickard’s result.
2.1. Rickard’s result. In [5, Theorem 4.2], Rickard showed that two Brauer tree algebras

with the same number of edges and with the same multiplicity are derived equivalent. The
proof of this statement is done by constructing a tree-to-star complex of A-modules with
endomorphism ring B. The construction is as follows:

For each edge i of the Brauer tree of A, there is a unique path in the Brauer tree from
the exceptional vertex to the farther vertex of the two adjacent to the edge i. This path
defines a sequence i0, i1, · · · , ir = i of the edges. For this sequence, we define a complex
corresponding to i as follows:

T (i) : · · · → 0→ P(i0)→ P(i1)→ · · · → P(ir)→ 0→ · · ·
where P(i0) is in the degree 0, and where all the maps are non-zero. Finally, put T ′ =⊕e−1

i=0 T (i). Then T ′ is a tree-to-star complex. In this paper, we put T = T ′[m − 1], where
m is the maximal distance of the all edges of A from the exceptional vertex, so that the
rightmost non-zero term of T ′ is in the degree 0. We call this tilting complex T a Rickard
tree-to-star complex.
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Example 2.1. Let A be a Brauer tree algebra associated to the following Brauer tree.
S 1 S 2 S 3 S 5

S 4

Then T is as follows,
P(S 3) → P(S 2) → P(S 1)

⊕
P(S 3) → P(S 2)

⊕
P(S 3)

⊕
P(S 4)

⊕
P(S 5)

where P(S 1) is in the degree 0.

2.2. Two-sided tilting complexes corresponding to T .
2.2. Two-sided tilting complexes corresponding to T . We fix some notation on the

Brauer tree algebra A. Let M be an indecomposable A⊗ Bop-module inducing a stable
equivalence of Morita type induced by the Rickard tree-to-star complex T . For a simple
A-module S i we define its distance to be the number of edges between the exceptional ver-
tex and the farther vertex on the edge S i, and denote it by d(S i) and the maximal distance
of all simple A-modules by m. We fix a simple A-module with distance m, and denote it by
S . Then M∗ ⊗A S is a simple B-module (see [3, Proposition 3.8]), and we denote this simple
module by V .

In [3], we constructed a two-sided tilting complex of A⊗Bop-modules which is isomorphic
to T in Db(A). The construction is as follows:

As will be explained in Remark 2.6 below, since B is the Brauer star algebra, {Ω2iV |0 ≤
i ≤ e − 1} is the set of all simple B-modules. By standard properties of the functor Ω, since
M is projective on both sides, so is ΩnM for each n. By [8, Lemma 2], we have

P(ΩnM) �
e−1⊕
i=0

P(ΩnM ⊗B Ω
2iV) ⊗ P(Ω2iV)∗ �

e−1⊕
i=0

P(Ωn+2iS ) ⊗ P(Ω2iV)∗.

We then get a minimal projective resolution

· · · → P(Ωn−1M)→ · · · → P(M)→ M → 0

of M as an A ⊗ Bop-module, where M is in the degree 0 and P(Ωn−1M) is in the degree n.
Then from this projective resolution we define DT = (Dn, dn) as follows:

Dn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

M n = 0,⊕
d(topΩn−1+2iS )≤m−n

P(Ωn−1+2iS ) ⊗ P(Ω2iV)∗ 1 ≤ n ≤ m − 1,

0 otherwise,

and dn : Dn → Dn−1 is the restriction of the differential of the projective resolution to each
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left term for each n. Then this complex DT is a two-sided tilting complex and isomorphic to
T in Db(A).

Example 2.2. We consider the case where A is the Brauer tree algebra in Example 2.1.
Let M be the indecomposable A ⊗ Bop-module inducing a stable equivalence of Morita type
between A and B induced by T , and let Vi be the simple B-module such that top (M ⊗B Vi) �
S i for 1 ≤ i ≤ 5. We then have a minimal projective resolution of M as an A ⊗ Bop-module
as follows.

P(S 2) ⊗ P(V1)∗ P(S 1) ⊗ P(V1)∗

⊕ ⊕
P(S 1) ⊗ P(V2)∗ P(S 2) ⊗ P(V2)∗

⊕ ⊕
· · · → P(S 4) ⊗ P(V3)∗ → P(S 3) ⊗ P(V3)∗ → AMB

⊕ ⊕
P(S 5) ⊗ P(V4)∗ P(S 4) ⊗ P(V4)∗

⊕ ⊕
P(S 3) ⊗ P(V5)∗ P(S 5) ⊗ P(V5)∗

By deleting some summands from each term, we have a two-sided tilting complex DT of
A ⊗ Bop-modules isomorphic to the Rickard tree-to-star complex described in Example 2.1
in Db(A) as follows.

P(S 2) ⊗ P(V2)∗

⊕
P(S 4) ⊗ P(V3)∗ → P(S 3) ⊗ P(V3)∗ → AMB

⊕ ⊕
P(S 5) ⊗ P(V4)∗ P(S 4) ⊗ P(V4)∗

⊕ ⊕
P(S 3) ⊗ P(V5)∗ P(S 5) ⊗ P(V5)∗

2.3. Pointed Brauer tree.
2.3. Pointed Brauer tree. In this section we explain the pointed Brauer tree.

Definition 2.3. Let  be a Brauer tree. A pointing on  is a choice of a sector from an
edge adjacent to v to the previous one in the cyclic ordering for each non-exceptional vertex
v, and we indicate each sector by placing a point there. We denote a sector from an edge i
to the previous edge j in the cyclic ordering by (i, j), where if there is only one edge i at the
vertex v we denote the pointing by (i, i). A Brauer tree  with this additional structure is
called a pointed Brauer tree.

We define some notation on pointed Brauer trees.

Notation 2.4. Given a pointed Brauer tree  , we define a Brauer tree algebra Γ associated
to  as usual. For each edge of  , we associate the edge to the farther point of the two on
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vertices adjacent to the edge. Hence we have one-to-one correspondences among all the
points, all the edges and all the non-exceptional vertices. For a point r = (i, j) of a pointed
Brauer tree, let U(r) = U(i, j) be a uniserial module whose composition factors are given by
S i, · · · , S j in the cyclic ordering around the vertex v adjacent to the edges i and j if i � j.
If i = j, then U(r) = S i. Any pointed Brauer tree does not have a point on the exceptional
vertex, but, for convenience, we define a uniserial module corresponding to a point on the
exceptional vertex to be a uniserial module given by the turning around the exceptional
vertex from the point μ times, where μ is a multiplicity.

Example 2.5. We consider the following pointed Brauer tree.

S 1

S 4

S 5

S 7

S 6S 2

S 3

We assign each point ri to the number of the closest edge from the exceptional vertex adja-
cent to the vertex on which the point is. Then each point ri can be denoted by as follows:
r1 = (S 1, S 1), r2 = (S 2, S 2), r3 = (S 3, S 3), r4 = (S 4, S 2), r5 = (S 4, S 5), r6 = (S 6, S 6), r7 =

(S 7, S 7). Then each uniserial module U(ri) has the following structure.

U(r1) U(r2) U(r3) U(r4) U(r5) U(r6) U(r7)

S 1 S 2 S 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 4

S 3

S 1

S 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

S 4

S 5

]
S 6 S 7

Remark 2.6. It can easily be seen that for the simple A-module S , ΩnS can be written
as U(r) for some point r on the Brauer tree. Letting r0 be the point corresponding to the
terminal vertex on the edge S and letting r0, r1, · · · , rn, · · · be the sequence of points in
unpointed Brauer tree encountered by moving along a Green’s walk [1] from S , we then
have ΩnS � U(rn).

By this remark, we have that {Ω2iV |0 ≤ i ≤ e − 1} is the set of all simple B-modules.

Remark 2.7. For an integer n and a uniserial module ΩnS , if topΩnS and socΩnS are
adjacent to the exceptional vertex, then the vertex corresponding to ΩnS is the exceptional
vertex.

On these uniserial modules, we easily see the following result.

Lemma 2.8. Let A be a Brauer tree algebra associated to a Brauer tree  . For points
(i, j) adjacent to the vertex v and (i′, j′) adjacent to the vertex v′ of a Brauer tree  ,
HomA(U(i, j),U(i′, j′)) � 0 if and only if v = v′ or i = j′. Moreover if v = v′ and it is
a non-exceptional vertex or if i = j′ and v � v′, then dim HomA(U(i, j),U(i′, j′)) = 1 and
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if v = v′ and it is the exceptional vertex, then dim HomA(U(i, j),U(i′, j′)) is equal to the
exceptional multiplicity.

We associate the two-sided tilting complex DT to a pointed Brauer tree. We now first
bring the following lemma.

Lemma 2.9. [3] Let DT be the two-sided tilting complex defined in [3] isomorphic to
the Rickard tree-to-star complex T in Db(A). This two-sided tilting complex DT has the
following properties.

(1) For the above simple A-module S and for any simple B-module Ω2iV there exists an
integer li such that DT ⊗B Ω

2iV � Ω2i+liS [li] in Db(A).
(2) Ω2i+liS is a uniserial module with multiplicity of each composition factor one and a

pair of simple modules (socΩ2i+liS , topΩ2i+liS ) are in the cyclic ordering at the vertex
adjacent to both of socΩ2i+liS and topΩ2i+liS . Thus (topΩ2i+liS , socΩ2i+liS ) is a point
of the Brauer tree and Ω2i+liS � U(topΩ2i+liS , socΩ2i+liS ).

(3) For the uniserial module Ω2i+liS , the edge corresponding to socΩ2i+liS is closer to the
exceptional vertex than the edge corresponding to any composition factor of
Ω2i+liS/socΩ2i+liS .

Since DT is a two-sided tilting complex of A ⊗ Bop-modules, for non-isomorphic simple
B-modules Ω2iV and Ω2 jV it holds that HomDb(A)(DT ⊗B Ω

2iV,DT ⊗B Ω
2 jV[−n]) = 0 for all

n ≥ 0. Combining this fact for n = |li − l j| with Lemma 2.9 gives

HomA(Ω2i+liS ,Ω2 j+l jS ) = 0 or HomA(Ω2 j+l jS ,Ω2i+liS ) = 0.

Hence by Lemma 2.8 we have the following result.

Proposition 2.10. There is a one-to-one correspondence between all of the non-
exceptional vertices of  and {Ω2i+liS | 0 ≤ i ≤ e − 1}.

Notation 2.11. By this proposition and Lemma 2.9 (2), by giving a point (topΩ2i+liS ,
socΩ2i+liS ) on each vertex of  we have a pointed Brauer tree. We denote this pointed
Brauer tree by DT . By Lemma 2.9 (3), DT is a pointed Brauer tree with each point in the
sector which the Green’s walk from the exceptional vertex meets first.

Example 2.12. We consider the two-sided tilting complex DT in Example 2.2. We can
rewrite this two-sided tilting complex as follows, where V = V1:

P(S 2) ⊗ P(Ω8V)∗

⊕
P(S 4) ⊗ P(Ω2V)∗ → P(S 3) ⊗ P(Ω2V)∗ → AMB

⊕ ⊕
P(S 5) ⊗ P(Ω4V)∗ P(S 4) ⊗ P(Ω4V)∗

⊕ ⊕
P(S 3) ⊗ P(Ω6V)∗ P(S 5) ⊗ P(Ω6V)∗

For the projective resolution P•(M) of the A⊗Bop-module M, P•(M)⊗BΩ
2iV is a projective

resolution P•(M ⊗B Ω
2iV) of an A-module M ⊗B Ω

2iV � Ω2i(M ⊗B V) � Ω2iS . Also,
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P(Ω2iV)∗⊗BΩ
2 jV � Hom(P(Ω2iV),Ω2 jV) � δi jk for 0 ≤ i ≤ 4. Hence we have DT⊗BΩ

2iV �
σ≥li P•(Ω2iS 1) for some li where σ≥li means stupid truncation (see [9, Remark 3.5.21]), and
we have σ≥li P•(Ω2iS 1) � Ω2i+liS 1[li] in Db(A). Hence we have the following results (we
refer the reader to [3, Proposition 5.3] for the details).

i 0 1 2 3 4
DT ⊗B Ω

2iV S 1 Ω2+2S 1[2] Ω4+2S 1[2] Ω6+2S 1[2] Ω8+1S 1[1]

Since we have

Ω4S 1 � S 4, Ω
6S 1 � S 5, Ω

8S 1 �
[

S 2

S 3

]
and Ω9S 1 �

[
S 1

S 2

]

by easy calculations, we have the following pointed Brauer tree DT .
S 1 S 2 S 3 S 5

S 4

2.4. Rickard-Schaps tree-to-star complexes.
2.4. Rickard-Schaps tree-to-star complexes. In [5] for any Brauer tree algebra A,

Rickard constructed a one-sided tilting complex of A-modules with endomorphism ring B.
By the complex, we get that Brauer tree algebras with the same number of edges and the
same multiplicity are derived equivalent. In that sense, one-sided tilting complexes over
Brauer tree algebras with endomorphism rings star-shaped Brauer tree algebras play impor-
tant roles.

For a Brauer tree algebra such a complex is not uniquely determined in general. Rickard
constructed one particular tree-to-star complex for each Brauer tree algebra in [5]. In [7]
Rickard and Schaps constructed some tree-to-star complexes by using pointings. In partic-
ular for a Brauer tree algebra A, the Rickard tree-to-star complex in [5] is obtained from a
pointing on the Brauer tree of A (see Remark 2.14). Moreover for any pointing, a Rickard-
Schaps tree-to-star complex of A-modules associated to the pointing is obtained by applying
the operation called folding to the Rickard tree-to-star complex several times.

For a pointing on a Brauer tree, the tree-to-star complex is obtained by the following
process.

Algorithm 2.13. [7, Section 3]
(1) Pick an arbitrary edge at the exceptional vertex as a starting point, and let the exceptional

vertex be numbered as 0.
(2) Number all non-exceptional vertices by taking the Green’s walk around the tree, assign-

ing a number to each vertex whenever the corresponding point is reached.
(3) Give each edge the same number as the vertex farthest from the exceptional vertex.
(4) We build the complex T ′ =

⊕
Ts by recursion on the distance of s from the excep-

tional vertex. For any s, we let Ps be the projective module corresponding to the edge
numbered by s in (2) and let d be the distance of s from the exceptional vertex.
(a) If the edge numbered s is adjacent to the exceptional vertex, then Ts is the stalk

complex with Ps in degree 0.
(b) If n(1), · · · , n(d) = s are the numbers assigned to the edges in a minimal path from
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the exceptional vertex to the edge s, assuming we know by recursion that Tn(d−1)

contains one copy of Pn(d−1), then we distinguish two cases:
(b.1) n(d − 1) > n(d): Let jd−1 be the integer such that Pn(d−1) is on the jd−1-th

degree of Tn(d−1). Then we can take a non-zero morphism

fs : Ps[ jd−1]→ Tn(d−1)

uniquely up to scalar multiplication, and we define Ts = C( fs). We then have
jd = jd−1 + 1, since taking the cone of fs will shift the degree of Ps by 1.

(b.2) n(d − 1) < n(d): Let jd−1 be the integer such that Pn(d−1) is on the jd−1-th
degree of Tn(d−1). Then we can take a non-zero morphism

gs : Tn(d−1) → Ps[ jd−1]

uniquely up to scalar multiplication, and we define Tr = C(gs)[−1]. We then
have jd = jd−1 − 1, since taking the cone of gs will not shift the degree of Ps.

Remark 2.14. It can easily be seen that the Rickard tree-to-star complex T in [5] is ob-
tained from the pointing such that the sequence in (b) satisfies the condition that n( j) <
n( j + 1) for any 1 ≤ j ≤ d − 1 and any d, that is, DT in Notation 2.11 (see Example 2.16).

Remark 2.15. We define the Rickard-Schaps tree-to-star complexes in the opposite di-
rection from the original ones in [7], because the cyclic ordering of Brauer tree is defined
moving by clockwise in [7], but we define it to be counter-clockwise.

Example 2.16. We consider a Brauer tree algebra associated to the following pointed
Brauer tree.

S 1 S 2 S 3 S 5

S 4

By taking the Green’s walk around the tree, we number each edge 1 to 5.

4 3 2 1

5

From this numbering, we have the following tree-to-star complex. (Note that each projective
module now has two names, either P(S i) accoding to the numbering of the unpointed Brauer
tree, or Ps according to its numbering in the pointed Brauer tree.)
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P(S 3) → P(S 2) → P(S 1)
⊕

P(S 3) → P(S 2)
⊕

P(S 3)
⊕

P(S 4)
⊕

P(S 5)
This complex coincides with the Rickard tree-to-star complex.

Example 2.17. We consider a Brauer tree algebra associated to the following pointed
Brauer tree.

S 1 S 2 S 3 S 5

S 4

Similarly as Example 2.16, we have the following numbering and tree-to-star complex.

3 2 4 1

5

P(S 2) → P(S 1) ⊕ P(S 3)
⊕

P(S 2) → P(S 3)
⊕

P(S 3)
⊕

P(S 4)
⊕

P(S 5)

Example 2.18. We consider a Brauer tree algebra associated to the following pointed
Brauer tree.

S 1 S 2 S 3 S 5

S 4

Similarly as Example 2.16, we have the following numbering and tree-to-star complex.
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3 4 2 1

5

P(S 1) ⊕ P(S 3) → P(S 2)
⊕

P(S 3) → P(S 2)
⊕

P(S 3)
⊕

P(S 4)
⊕

P(S 5)

Remark 2.19. We consider how Rickard-Schaps tree-to-star complexes change when
given points are moved. We consider two pointed Brauer trees 1 and 2.

(i) Suppose 2 is given by moving two points on an edge U not adjacent to the exceptional
vertex of 1 along the reverse Green’s walk as follows.

1 2

Then a Rickard-Schaps tree-to-star complex associated to 2 is given by a −2 shift of
P(U) in a Rickard-Schaps tree-to-star complex associated to 1.

(ii) Suppose that 1 is such that for all non-exceptional vertices on the edges adjacent to
the exceptional vertex, the points on the vertices are in the first sector in a Green’s walk
from the exceptional vertex. Moreover suppose 2 is given by moving all the points on
the edges adjacent to the exceptional vertex of 1 along the reverse Green’s walk twice
via the exceptional vertex as follows.

1 2

Then a Rickard-Schaps tree-to-star complex associated to 2 is given by a −2 shift of⊕n
i=1 P(Ui) in a Rickard-Schaps tree-to-star complex associated to 1, where U1, · · · ,

Un are all edges adjacent to the exceptional vertex.
We call these two operations to the Rickard-Schaps tree-to-star complexes foldings.

Example 2.20. The pointing in Example 2.17 is obtained from the one in Example 2.16
by moving all the points on the edges adjacent to the exceptional vertex along the reverse
Green’s walk.
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S 1 S 2 S 3 S 5

S 4

S 1 S 2 S 3 S 5

S 4

In this case we can regard the tree-to-star complex in Example 2.17 as a complex obtained
by folding all the projective modules associated to the simple modules adjacent to the ex-
ceptional vertex in the one in Example 2.16. Moreover the pointing in Example 2.18 is
obtained from the one in Example 2.17 by moving the points on the edges S 2 along the
reverse Green’s walk.

S 1 S 2 S 3 S 5

S 4

S 1 S 2 S 3 S 5

S 4

In this case we can regard the tree-to-star complex in Example 2.18 as a complex obtained
by folding the projective modules associated to the simple modules S 2 in the one in Example
2.17.

Remark 2.21. Let  be a Brauer tree, and i a pointed Brauer tree of  for i = 1, 2.
Then we can get 2 by applying the “moving points operations” in Remark 2.19 to 1 sev-
eral times. In particular, we have any Rickard-Schaps tree-to-star complex is obtained by
applying the foldings several times to the Rickard tree-to-star complex T .

This remark can be explained as follows:
If  has 2 edges, then the statement is clear. Suppose the statement holds for pointed

Brauer trees of any Brauer tree with e − 1 edges for e ≥ 3. Let  be a Brauer tree with
e edges and let an edge numbered by e be on an end of  and the terminal vertex of the
edge e is not the exceptional vertex and let 1 and 2 be pointed Brauer trees of  . For the
Brauer tree  , let  ′ be a Brauer tree obtained by removing the edge e from  , and denote
the vertex which 

′ and the edge e have in common by v and the cyclic ordering of v in 

by · · · , e − 1, e, e − 2, · · · (if there are only two edges around v, let e − 1 be equal to e − 2).
Moreover let  ′i be a pointed Brauer tree of  ′ obtained by removing the edge e from the
pointed Brauer tree i for i = 1, 2. Then by the assumption, we can get  ′2 from 

′
1 by

applying the operations for points in Remark 2.19 (i) and (ii) several times:


′

1 = 
′(1) a′1−→ · · · a′s−→ 

′(s+1) = 
′

2

where a′j is any of the following for each j: operation in Remark 2.19 (i), operation in
Remark 2.19 (ii), not move.

First suppose that v is not the exceptional vertex and the other vertex on the edge e − 2
is not the exceptional vertex. If a′1 is not the operation in Remark 2.19 (i) with respect to
e−2, then we can consider a′1 as an operation to 1, and put a1 = a′1. If a′1 is the operation in
Remark 2.19 (i) with respect to e− 2 and if there exists no point the sector from e− 1 to e in
1, then we can consider a′1 as an operation to 1 too, and put a1 = a′1. If a′1 is the operation
in Remark 2.19 (i) with respect to e − 2 and if there exists a point in the sector from e − 1 to
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e in 1, we can consider a′1 as an operation to  after applying the operation in Remark 2.19
(i) with respect to e to  , and denote this by a1. Similarly we determine a2, · · · , as, and if
necessary, applying the operation in Remark 2.19 (i) with respect to e after as, we have 2:

1 = 
(1) a1−→ · · · as−→ 

(s+1) = 2.

Next suppose that v is not the exceptional vertex and the other vertex on the edge e − 2
is the exceptional vertex. In this case, we can demonstrate the statement by replacing “the
operation in Remark 2.19 (i) with respect to e − 2” in the above demonstration with “the
operation in Remark 2.19 (ii)”.

Finally suppose that the vertex v is the exceptional vertex. In this case, we set a j by
the operation in Remark 2.19 (ii) to 

( j) if a′j the operation in Remark 2.19 (ii) to 
′( j).

Otherwise we consider a′j as an operation to 
( j), and put a j = a′j. Then we have 2:

1 = 
(1) a1−→ · · · as−→ 

(s+1) = 2.

3. Examples and Proof of Theorem 1

3. Examples and Proof of Theorem 1
In this section we first give examples of Theorem 1 and then give its proof. The statement

of Theorem 1 was given in the introduction.

Example 3.1. We consider the case where A is a Brauer tree algebra in Example 2.1, that
is, A is associated to the following Brauer tree.

S 1 S 2 S 3 S 5

S 4

By Example 2.2, we have the two-sided tilting complex DT isomorphic to the Rickard tree-
to-star complex T in Db(A).

P(S 2) ⊗ P(V2)∗

⊕
DT : P(S 4) ⊗ P(V3)∗ → P(S 3) ⊗ P(V3)∗ → AMB

⊕ ⊕
P(S 5) ⊗ P(V4)∗ P(S 4) ⊗ P(V4)∗

⊕ ⊕
P(S 3) ⊗ P(V5)∗ P(S 5) ⊗ P(V5)∗

Applying the operation in Theorem 1 (ii) to this two-sided tilting complex DT , we have the
following two-sided tilting complex of A ⊗ Bop-modules.

C1 : P(S 2) ⊗ P(V2)∗ → AMB

This two-sided tilting complex coincides with the one constructed by Rouquier in [8]. This
complex is isomorphic to the following complex in Db(A ⊗ Bop), where the middle term is
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the injective hull of M.

P(S 1) ⊗ P(V1)∗

⊕
P(S 2) ⊗ P(V2)∗ P(S 3) ⊗ P(V2)∗

⊕
→ P(S 2) ⊗ P(V3)∗ → AΩ

−1MB

⊕
P(S 4) ⊗ P(V4)∗

⊕
P(S 5) ⊗ P(V5)∗

Applying the operation in Theorem 1 (i) to this two-sided tilting complex, we have the
following two-sided tilting complex of A ⊗ Bop-modules.

P(S 1) ⊗ P(V1)∗

⊕
C2 : P(S 3) ⊗ P(V2)∗ → AΩ

−1MB

⊕
P(S 4) ⊗ P(V4)∗

⊕
P(S 5) ⊗ P(V5)∗

To prove Theorem 1, we prepare the following lemma.

Lemma 3.2. Let M be an A ⊗ Bop-module inducing a stable equivalence of Morita type
between A and B. If a complex obtained in Theorem 1

C = (· · · → 0→ Rl−1 → · · · → R1 → M → 0→ · · · )
of A ⊗ Bop-modules satisfies the following conditions for 0 ≤ i, j ≤ e − 1 and n ≥ 0, then C
is a two-sided tilting complex inducing equivalences between Db(A) and Db(B) and between
Kb(A) and Kb(B):

HomDb(A)(C ⊗B Ω
2 jV,C ⊗B Ω

2iV[−n]) �

⎧⎪⎪⎨⎪⎪⎩
k i = j and n = 0,

0 otherwise.

Proof. Any simple B-module can be denoted by Ω2iV for 0 ≤ i ≤ e − 1, and Ω2iV �
Ω2 jV for 0 ≤ i � j ≤ e − 1. Hence, to show that C is a two-sided tilting complex of
A ⊗ Bop-modules, it suffices to show the complex C satisfies the following three conditions
of Proposition 4.4 in [3] for 0 ≤ i, j ≤ e − 1:

(1) For each 1 ≤ i ≤ l − 1, Ri is a projective A ⊗ Bop-modules, and M is projective on
both sides,

(2) HomDb(B⊗Bop)(C∗ ⊗A C,Ω2iV ⊗Ω2 jV∗) � δi jk, where δi j is the Kronecker delta,
(3) HomDb(B⊗Bop)(C∗ ⊗A C,Ω2iV ⊗Ω2 jV∗[−n]) = 0 for any positive integer n.
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Condition 1 is clear. Also, since there is an isomorphism

HomDb(B⊗Bop)(C∗ ⊗A C,Ω2iV ⊗Ω2 jV∗[−n]) � HomDb(A)(C ⊗B Ω
2 jV∗,C ⊗B Ω

2iV[−n])

for any positive integer n ≥ 0, we have that C satisfies Condition 2 and Condition 3 by the
assumptions. Therefore C is a two-sided tilting complex. �

Remark 3.3. If M is an A ⊗ Bop-module inducing a stable equivalence of Morita type
between A and B, then Ω−nM induces a stable equivalence of Morita type between A and
B too by [4, Proposition 2.9]. Hence even if the rightmost non-zero term of C is Ω−nM for
some n, we can use Lemma 3.2 to show that C is a two-sided tilting complex.

We will demonstrate first Theorem 1 (i) and then Theorem 1 (ii). Let D be a complex
of A ⊗ Bop-modules given by applying the operations in Theorem 1 to DT several times,
and suppose D is a two-sided tilting complex. First we will show that a complex C given
by applying the operation in Theorem 1 (i) to D once is a two-sided tilting complex in
Proposition 3.4. Next we will show that a complex C given by applying the operation in
Theorem 1 (ii) to D once is a two-sided tilting complex in Proposition 3.6.

Proposition 3.4. Let D be a complex of A⊗Bop-modules given by applying the operations
in Theorem 1 to DT several times, and suppose D is a two-sided tilting complex. Then a
complex C given by applying the operation in Theorem 1 (i) to D once is a two-sided tilting
complex

Proof. Let D be a complex obtained by applying the operations in Theorem 1 several
times to DT , and suppose D is a two-sided tilting complex. Let C be a complex obtained by
applying the operation in Theorem 1 (i) to D once, and we show that C is a two-sided tilting
complex.

By Lemma 3.2 we shall show that for 0 ≤ i, j ≤ e − 1 and n ≥ 0 the complex C satisfies
the following conditions:

HomDb(A)(C ⊗B Ω
2iV,C ⊗B Ω

2 jV[−n]) =

⎧⎪⎪⎨⎪⎪⎩
k if i = j and n = 0,

0 otherwise.

By the construction of C, for each 0 ≤ i ≤ e − 1 we have C ⊗B Ω
2iV � Ω2i+liS [li] in Db(A)

for some integer li. Using this notation, we have the following isomorphisms:

HomDb(A)(C ⊗B Ω
2iV,C ⊗B Ω

2 jV[−n]) � HomDb(A)(Ω2i+liS [li],Ω2 j+l jS [l j − n])

� HomDb(A)(Ω2i+liS ,Ω2 j+l jS [l j − li − n]).

Hence we show

HomDb(A)(Ω2i+liS ,Ω2 j+l jS [l j − li − n]) =

⎧⎪⎪⎨⎪⎪⎩
k if i = j and n = 0,

0 otherwise.

We divide into 3 cases: l j − li − n is positive, negative and zero.

Case 1. l j − li − n < 0.
If i = j, then we have n � 0 by the assumption. Hence it suffices to show
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HomDb(A)(Ω2i+liS ,Ω2 j+l jS [l j − li − n]) = 0.

However since l j − li − n < 0, we have

HomDb(A)(Ω2i+liS ,Ω2 j+l jS [l j − li − n]) � Extl j−li−n
A (Ω2i+liS ,Ω2 j+l jS ) = 0.

Case 2. l j − li − n = 0.
Under the assumption l j − li − n = 0, we have

HomDb(A)(Ω2i+liS ,Ω2 j+l jS [l j − li − n]) � HomA(Ω2i+liS ,Ω2 j+l jS ).

We shall show under the assumption l j − li − n = 0,

HomA(Ω2i+liS ,Ω2 j+l jS ) =

⎧⎪⎪⎨⎪⎪⎩
k if i = j and n = 0,

0 otherwise.

Now we remark that if C⊗BΩ
2iV � D⊗BΩ

2iV , then we have D⊗BΩ
2iV � Ω2i+li+1S [li+1] or

D⊗BΩ
2iV � Ω2i+li+2S [li+2] by the construction of C. If D⊗BΩ

2iV � Ω2i+li+1S [li+1], then
there is another integer 0 ≤ i′ ≤ e−1 different from i such that D⊗BΩ

2i′V � Ω2i′+li′+1S [li′+1]
uniquely. If D ⊗B Ω

2iV � Ω2i+li+2S [li + 2], then for any 0 ≤ j ≤ e − 1 different from i we
have D ⊗B Ω

2 jV � C ⊗B Ω
2 jV .

Suppose D ⊗B Ω
2iV � Ω2i+li+2S [li + 2]. Then by [3, Proposition 5.3] we know that

D ⊗B Ω
2iV is of the form

· · · → 0→ P(U)→ P(U)→ · · · → Ω2iS → 0→ · · · ,
where the leftmost nonzero term P(U) is in the degree li+2, that is, D⊗BΩ

2iV is isomorphic
to the stupidly truncated complex σ≥li+2P•(Ω2iS ) of P•(Ω2iS ) at li + 2. Moreover we know
that D ⊗B Ω

2 jV �C ⊗B Ω
2 jV for any j ∈ {0, 1, · · · , e − 1} − {i}. Since topΩ2i+li+1S � U �

socΩ2i+li+1S and U is not adjacent to the exceptional vertex, the vertex corresponding to
Ω2i+li+1S is on an end of the Brauer tree. Hence the vertex corresponding toΩ2i+liS coincides
with the one to Ω2i+li+2S by Remark 2.6. Since P(U) is a projective cover of Ω2i+liS , we
have topΩ2i+liS � U. Now suppose HomA(Ω2i+liS ,Ω2 j+l jS ) � 0 for some j � i. By the
construction of C, we have socΩ2 j+l jS � U � topΩ2i+liS because injective hulls of U in
the degree li + 2 and in li + 1 are the deleted terms and D ⊗B Ω

2 jV � C ⊗B Ω
2 jV . Hence by

Lemma 2.8 the vertex corresponding to Ω2i+liS coincides with the one to Ω2 j+l jS . Therefore
we have the vertex corresponding to Ω2i+li+2S , isomorphic to D ⊗B Ω

2iV[−li − 2], coincides
with the one to Ω2 j+l jS , isomorphic to D ⊗B Ω

2 jV[−l j], which implies that

HomDb(A)(D ⊗B Ω
2iV,D ⊗B Ω

2 jV[−n′]) � 0 or HomDb(A)(D ⊗B Ω
2 jV,D ⊗B Ω

2iV[−n′]) � 0

for n′ = |l j − li − 2|. Since i � j, this contradicts to the fact that D is a two-sided tilting com-
plex. Therefore we have HomA(Ω2i+liS ,Ω2 j+l jS )= 0. Moreover we have
HomA(Ω2 j+l jS ,Ω2i+liS ) = 0 similarly. Also since the vertex corresponding to Ω2i+liS co-
incides with the one to Ω2i+li+2S which is non-exceptional vertex, by Lemma 2.6 we have
HomA(Ω2i+liS ,Ω2i+liS ) = k.

Next we assume that if C ⊗BΩ
2iV � D⊗BΩ

2iV then D⊗BΩ
2iV � Ω2i+li+1S [li + 1]. Then

there is another j � i such that if C⊗BΩ
2 jV � D⊗BΩ

2 jV then D⊗BΩ
2 jV � Ω2 j+l j+1S [l j+1].

We divide into 4 cases:
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Case 2.1. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
In this case, since D is a tilting complex, it is clear that the complex C has the required

properties.

Case 2.2. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
We remark that the assumption implies that D ⊗B Ω

2iV � Ω2i+li+1S [li + 1], D ⊗B Ω
2 jV �

Ω2 j+l j+1S [l j + 1] and that socΩ2i+li+1S � U � socΩ2 j+l j+1S .
First, suppose i = j. To show HomA(Ω2i+liS ,Ω2i+liS ) = k, we only need to show that

a point corresponding to the uniserial module Ω2i+liS is not on the exceptional vertex by
Lemma 2.8. By the assumption the socle of the uniserial module Ω2i+li+1S isomorphic to U
is not adjacent to the exceptional vertex. Since there is an isomorphism

socΩ2i+li+1S � topΩ2i+liS ,

the top of the uniserial module Ω2i+liS is not adjacent to the exceptional vertex. In particular
the point corresponding to the uniserial module Ω2i+liS is not on the exceptional vertex.

Next suppose i � j. By the construction of C, we have li = l j − 1 or l j = li − 1, but by the
assumption that l j− li−n = 0 and that n ≥ 0, the case it may occur is only the case li = l j−1
and n = 1. Now by the construction of C, we have

topΩ2i+liS � socΩ2i+li+1S � U � socΩ2 j+l j+1S � topΩ2 j+l jS .

Hence we can denote the points corresponding to Ω2i+liS and Ω2 j+l jS by (U,Ui) and (U,U j)
respectively. If the vertices on which these points are coincide, then these points coincide.
Hence the vertex corresponding toΩ2i+li+1S and the one corresponding toΩ2 j+l j+1S coincide
too, which implies that

HomDb(A)(D ⊗B Ω
2iV,D ⊗B Ω

2 jV[−n]) � HomA(Ω2i+li+1S ,Ω2 j+l j+1S ) � 0

for i � j. Since D is a two-sided tilting complex, this is a contradiction. Hence we only
need to show that U � U j to show that HomA(Ω2i+liS ,Ω2 j+l jS ) = 0 by Lemma 2.8. If
U = U j, then Ω2 j+l jS = U is a simple module. Also the injective hull of Ω2 j+l jS is on the
degree l j = li + 1 of ResA⊗Bop

A C. Since by the simplicity of Ω2 j+l jS we have I(Ω2 j+l jS ) �
P(Ω2 j+l jS ) � P(U), we have P(U) is on the degree l j of ResA⊗Bop

A C. This is a contradiction
since we construct a complex C by deleting P(U) ⊗ X′ in degree li + 1 = l j and deleting
P(U) ⊗ X in degree l j + 1 from D.

Case 2.3. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
We remark that the assumption implies that D ⊗B Ω

2iV � Ω2i+liS [li], D ⊗B Ω
2 jV �

Ω2 j+l j+1S [l j + 1] and that socΩ2 j+l j+1S � U. Also, we remark that the assumption implies
that i � j. Hence we show that HomA(Ω2i+liS ,Ω2 j+l jS ) = 0. Since D is a tilting complex and
since l j − li − n = 0, for i � j we have
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HomA(Ω2i+liS ,Ω2 j+l jS ) � Ext1A(Ω2i+liS ,Ω2 j+l j+1S )

� HomDb(A)(Ω2i+liS ,Ω2 j+l j+1S [1])

� HomDb(A)(Ω2i+liS ,Ω2 j+l j+1S [l j − li − n + 1])

� HomDb(A)(Ω2i+liS [li],Ω2 j+l j+1S [l j − n + 1])

� HomDb(A)(D ⊗B Ω
2iV,D ⊗B Ω

2 jV[−n])

= 0.

Hence, if HomA(Ω2i+liS ,Ω2 j+l jS ) � 0, then there is a non-zero homomorphism in

HomA(Ω2i+liS , P(topΩ2 j+l jS )) � HomA(Ω2i+liS , P(socΩ2 j+l j+1S )).

In particular, the uniserial module Ω2i+liS includes socΩ2 j+l j+1S � U as a composition fac-
tor. Hence the vertex corresponding to Ω2i+liS is adjacent to U. Moreover by the construc-
tion of C, there exists an integer t different from i and j satisfying that D⊗BΩ

2tV � Ω2t+l′t S [l′t]
with socΩ2t+l′t S � U � socΩ2 j+l j+1S for some integer l′t . Hence the uniserial modules
Ω2i+liS , Ω2 j+l j+1S and Ω2t+l′t S , which are isomorphic to D⊗BΩ

2iV[−li], D⊗BΩ
2 jV[−l j − 1]

and D ⊗B Ω
2tV[−l′t], correspond to the vertices adjacent to U respectively. Since the num-

ber of the vertices adjacent to U is just two, at least two of these uniserial modules Ω2i+liS ,
Ω2 j+l j+1S and Ω2t+l′t S have a common corresponding vertex, which implies that there is a
non-zero homomorphism between these two modules. Hence we have

HomDb(A)(D ⊗B Ω
2x1V,D ⊗B Ω

2x2V[−n′]) � 0

for some x1, x2 ∈ {i, j, t} with x1 � x2 and some n′ ≥ 0, but this contradicts to the fact that D
is a two-sided tilting complex.

Case 2.4. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
We remark that the assumption implies that D ⊗B Ω

2iV � Ω2i+li+1S [li + 1], D ⊗B Ω
2 jV �

Ω2 j+l jS [l j] and that socΩ2i+li+1S � U. Assume HomA(Ω2i+liS ,Ω2 j+l jS ) � 0. Then Ω2 j+l jS
has topΩ2i+liS � socΩ2i+li+1S � U as a composition factor. Also, by the construction of
C, there exists an integer t different from i and j satisfying that D ⊗B Ω

2tV � Ω2t+l′t S [l′t]
with socΩ2t+l′t S � U for some integer l′t . Since all of the three uniserial modules Ω2i+li+1S ,
Ω2 j+l jS and Ω2t+l′t S , isomorphic to D ⊗B Ω

2iV[−li − 1], D ⊗B Ω
2 jV[−l j] and D ⊗B Ω

2tV[−l′t]
respectively, have U as composition factors, all the vertices corresponding to these uniserial
modules are adjacent to the edge U. In particular, at least two of these uniserial modules
must have a common corresponding vertex. Hence we have

HomDb(A)(D ⊗B Ω
2x1V,D ⊗B Ω

2x2V[−n′]) � 0

for some x1, x2 ∈ {i, j, t} with x1 � x2 and some n′ ≥ 0, but this contradicts to the fact that D
is a two-sided tilting complex.

Case 3. l j − li − n > 0.
In this case, we have
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HomDb(A)(Ω2i+liS ,Ω2 j+l jS [l j − li − n]) � Extl j−li−n
A (Ω2i+liS ,Ω2 j+l jS )

� HomA(Ω2i+liS ,Ω2 j+l j−(l j−li−n)S )

� HomA(S ,Ω2( j−i)+nS ).

Hence we show that

HomA(S ,Ω2( j−i)+nS ) =

⎧⎪⎪⎨⎪⎪⎩
k if i = j and n = 0,

0 otherwise.

If C ⊗B Ω
2iV � D ⊗B Ω

2iV , then we have D ⊗B Ω
2iV � Ω2i+li+1S [li + 1] or D ⊗B Ω

2iV �
Ω2i+li+2S [li + 2], but we only show the statement under the first situation, the other being
similar as in Case 2.

Case 3.1. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
In this case, since D is a two-sided tilting complex, it is clear that the complex C has the

required properties.

Case 3.2. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
By the assumption, we have

D ⊗B Ω
2iV � Ω2i+li+1S [li + 1] and D ⊗B Ω

2 jV � Ω2 j+l j+1S [l j + 1].

Hence we have

HomA(S ,Ω2( j−i)+nS ) � HomA(Ω2i+li+1S ,Ω2 j+l j+1−(l j−li−n)S )

� Extl j−li−n
A (Ω2i+li+1S ,Ω2 j+l j+1S )

� HomDb(A)(Ω2i+li+1S ,Ω2 j+l j+1S [l j − li − n])

� HomDb(A)(Ω2i+li+1S [li + 1],Ω2 j+l j+1S [l j + 1 − n])

� HomDb(A)(D ⊗B Ω
2iV,D ⊗B Ω

2 jV[−n])

=

⎧⎪⎪⎨⎪⎪⎩
k if i = j and n = 0,

0 otherwise.

Case 3.3. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
We have i � j and

D ⊗B Ω
2iV � Ω2i+liS [li] and D ⊗B Ω

2 jV � Ω2 j+l j+1S [l j + 1].

Hence since D is a two-sided tilting complex we have

HomA(S ,Ω2( j−i)+nS ) � HomA(Ω2i+liS ,Ω2 j+l j+1−(l j−li−n+1)S )

� Extl j−li−n+1
A (Ω2i+liS ,Ω2 j+l j+1S )

� HomDb(A)(Ω2i+liS ,Ω2 j+l j+1S [l j − li − n + 1])

� HomDb(A)(Ω2i+liS [li],Ω2 j+l j+1S [l j + 1 − n])

� HomDb(A)(D ⊗B Ω
2iV,D ⊗B Ω

2 jV[−n])

= 0.
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Case 3.4. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
We have i � j and

D ⊗B Ω
2iV � Ω2i+li+1S [li + 1] and D ⊗B Ω

2 jV � Ω2 j+l jS [l j].

First, suppose l j − li − n > 1. Then since D is a two-sided tilting complex and since l j − li −
n − 1 > 0, we have

HomA(S ,Ω2( j−i)+nS ) � HomA(Ω2i+li+1S ,Ω2 j+l j−(l j−li−n−1)S )

� Extl j−li−n−1
A (Ω2i+li+1S ,Ω2 j+l jS )

� HomDb(A)(Ω2i+li+1S ,Ω2 j+l jS [l j − li − n − 1])

� HomDb(A)(Ω2i+li+1S [li + 1],Ω2 j+l jS [l j − n])

� HomDb(A)(D ⊗B Ω
2iV,D ⊗B Ω

2 jV[−n])

= 0.

Next, suppose l j − li − n = 1. Then we have

HomA(Ω2i+li+1S ,Ω2 j+l jS ) = HomDb(A)(Ω2i+li+1S ,Ω2 j+l jS [l j − li − n − 1])

� HomDb(A)(Ω2i+li+1S [li + 1],Ω2 j+l jS [l j − n])

� HomDb(A)(D ⊗B Ω
2iV,D ⊗B Ω

2 jV[−n])

= 0.

Hence we have

HomA(S ,Ω2( j−i)+nS ) = HomA(S ,Ω2( j−i)+l j−li−1S )

� HomA(Ω2i+li+1S ,Ω2 j+l jS )

= 0.

�
We prepare the following lemma before we demonstrate Proposition 3.6.

Lemma 3.5. Let D be a complex obtained by applying the operations in Theorem 1
(i) and Theorem 1 (ii) several times and let l′i be the integer satisfying that D ⊗B Ω

2iV �
Ω2i+l′i S [l′i] and let U1,U2, · · · ,Un be all simple modules adjacent to the exceptional vertex.
If socΩ2i+l′i S ∈ {U1,U2, · · · ,Un} and D is a two-sided tilting complex, then we get the
following.

(1) The vertex corresponding to Ω2i+l′i−1S is the exceptional vertex. In particular,
socΩ2i+l′i−1S ∈ {U1,U2, · · · ,Un}.

(2) The vertex corresponding to Ω2i+l′i−2S is a non-exceptional vertex.
(3) Suppose i � j and socΩ2i+l′i S , socΩ2 j+l′jS ∈ {U1,U2, · · · ,Un}. If socΩ2i+l′i S �

socΩ2 j+l′jS , then socΩ2i+l′i−1S � socΩ2 j+l′j−1S .

Proof. (1) Suppose socΩ2i+l′i S is adjacent to the exceptional vertex. Then we have
topΩ2i+l′i−1S is adjacent to the exceptional vertex too since I(Ω2i+l′i S ) � P(Ω2i+l′i−1S ). Also
we have
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EndA(Ω2i+l′i S ) � EndDb(A)(Ω2i+l′i S [l′i])

� EndDb(A)(D ⊗B Ω
2iV)

� EndDb(B)(Ω2iV)

� EndB(Ω2iV)

since D is a two-sided tilting complex. By simplicity ofΩ2iV , we have dim EndB(Ω2iV) = 1.
If socΩ2i+l′i−1S is not adjacent to the exceptional vertex, then the vertex corresponding to
the uniserial module Ω2i+l′i S is the exceptional vertex since topΩ2i+l′i−1S � socΩ2i+l′i S is
adjacent to the exceptional vertex. This contradicts the fact that D is a two-sided tilting
complex. Hence socΩ2i+l′i−1S is adjacent to the exceptional vertex. Since Ω2i+l′i−1S has the
adjacent top and socle to the exceptional vertex, the vertex corresponding to the uniserial
module Ω2i+l′i−1S is the exceptional vertex.

(2) Since the point corresponding to Ω2i+l′i−1S is the exceptional vertex by (1), we have
the vertex corresponding to Ω2i+l′i−2S is a non-exceptional vertex by Remark 2.7.

(3) Suppose socΩ2i+l′i−1S � socΩ2 j+l′j−1S . Since socΩ2i+l′i S is adjacent to the exceptional
vertex, by (1), socΩ2i+l′i−1S � socΩ2 j+l′j−1S is adjacent to the exceptional vertex. Also, since
topΩ2i+l′i−1S � socΩ2i+l′i S and topΩ2 j+l′j−1S � socΩ2 j+l′jS , topΩ2i+l′i−1S and topΩ2 j+l′j−1S
are adjacent to the exceptional vertex. Hence the vertex corresponding to Ω2i+l′i−1S and the
one corresponding toΩ2 j+l′j−1S are the exceptional vertex by Remark 2.7, which implies that
Ω2i+l′i−1S � Ω2 j+l′j−1S since socΩ2i+l′i−1S � socΩ2 j+l′j−1S . Therefore we have

socΩ2i+l′i S � topΩ2i+l′i−1S � topΩ2 j+l′j−1S � socΩ2 j+l′jS .

�

Proposition 3.6. Let D be a complex of A⊗Bop-modules given by applying the operations
in Theorem 1 to DT several times, and suppose D is a two-sided tilting complex. Then a
complex C given by applying the operation in Theorem 1 (ii) to D once is a two-sided tilting
complex.

Proof. Let D be a complex obtained by applying the operations in Theorem 1 several
times to DT , and suppose D is a two-sided tilting complex. Let C be a complex obtained by
applying the operation in Theorem 1 (ii) to D once, and we show that C is a two-sided tilting
complex. In the same way as the proof of Theorem 1 (i), we have C ⊗B Ω

2iV � Ω2i+liS [li]
for some integer li for each 0 ≤ i ≤ e − 1 and we show

HomDb(A)(Ω2i+liS ,Ω2 j+l jS [l j − li − n]) =

⎧⎪⎪⎨⎪⎪⎩
k if i = j and n = 0,

0 otherwise.

We divide into 3 cases: l j − li − n is positive, negative and zero.

Case 1. l j − li − n < 0.
We can show HomDb(A)(Ω2i+liS ,Ω2 j+l jS [l j − li − n]) has required properties as is the case

with the proof of Theorem 1 (i).

Case 2. l j − li − n = 0.
We shall show under the assumption l j − li − n = 0,
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HomA(Ω2i+liS ,Ω2 j+l jS ) =

⎧⎪⎪⎨⎪⎪⎩
k if i = j and n = 0,

0 otherwise.

Case 2.1. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
In this case, since D is a two-sided tilting complex, it is clear that the complex C has the

required properties.

Case 2.2. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
We remark that the assumption implies that D ⊗B Ω

2iV � Ω2i+li+2S [li + 2] and that
D ⊗B Ω

2 jV � Ω2 j+l j+2S [l j + 2]. Also since I(Ω2i+li+2S ) and I(Ω2 j+l j+2S ) are deleted terms,
by the definition of C, socΩ2i+li+2S and socΩ2 j+l j+2S are adjacent to the exceptional vertex,
and are not isomorphic to each other.

First, suppose i = j. To show HomA(Ω2i+liS ,Ω2i+liS ) = k, we only need to show that
the point corresponding to the uniserial module Ω2i+liS is not on the exceptional vertex by
Lemma 2.8. Since socΩ2i+li+2S is adjacent to the exceptional vertex, we have the vertex
corresponding to Ω2i+liS is a non-exceptional vertex by Lemma 3.5 (2).

Next suppose i � j, and we show HomA(Ω2i+liS ,Ω2 j+l jS ) = 0. Since socΩ2i+li+2S and
socΩ2 j+l j+2S are not isomorphic to each other and are adjacent to the exceptional vertex,
by Lemma 3.5, we have socΩ2i+li+1S � socΩ2 j+l j+1S and these two simple modules are
adjacent to the exceptional vertex. Also, by the isomorphisms topΩ2i+liS � socΩ2i+li+1S
and topΩ2 j+l jS � socΩ2 j+l j+1S we have topΩ2i+liS and topΩ2 j+l jS are adjacent to the ex-
ceptional vertex and are not isomorphic to each other. In particular, since two uniserial
modules Ω2i+liS and Ω2 j+l jS have mutually non-isomorphic top which are adjacent to the
exceptional vertex and the corresponding vertices are not exceptional vertex, the two ver-
tices corresponding to these two uniserial modules do not coincide. Hence we only need
to show that topΩ2i+liS � socΩ2 j+l jS to show HomA(Ω2i+liS ,Ω2 j+l jS ) = 0 by Lemma 2.8.
But if socΩ2 j+l j+1S is not an end of the Brauer tree or equivalently I(socΩ2 j+l j+1S ) is not
uniserial, then socΩ2 j+l jS is not adjacent to the exceptional vertex because the vertex corre-
sponding to Ω2 j+l j+1S is the exceptional vertex by Lemma 3.5. Also, since socΩ2i+li+1S is
adjacent to the exceptional vertex, topΩ2i+liS � socΩ2i+li+1S is adjacent to the exceptional
vertex. Hence topΩ2i+liS which is adjacent to the exceptional vertex can not be isomorphic
to socΩ2 j+l jS . Also if socΩ2 j+l j+1S is an end of the Brauer tree then Ω2 j+l jS is a simple
module since I(socΩ2 j+l j+1S ) is a uniserial module. Hence we have

socΩ2 j+l jS � topΩ2 j+l jS � socΩ2 j+l j+1S � socΩ2i+li+1S � topΩ2i+liS .

Case 2.3. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
We remark that the assumption implies that D ⊗B Ω

2iV � Ω2i+liS [li],D ⊗B Ω
2 jV �

Ω2 j+l j+2S [l j+2] and that socΩ2 j+l j+2S is adjacent to the exceptional vertex. Also, we remark
that the assumption implies that i � j. Hence we show that HomA(Ω2i+liS ,Ω2 j+l jS ) = 0.
Since D is a two-sided tilting complex,
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HomDb(A)(D ⊗B Ω
2iV,D ⊗B Ω

2 jV[−n]) = 0

⇔ HomDb(A)(Ω2i+liS ,Ω2 j+l j+2S [l j − li − n + 2]) = 0

⇔ Ext2A(Ω2i+liS ,Ω2 j+l j+2S ) = 0

⇔ HomA(Ω2i+liS ,Ω2 j+l jS ) = 0,

here the second equivalence comes from l j − li − n = 0. By the last equation, if there exists
a non-zero homomorphism ϕ : Ω2i+liS → Ω2 j+l jS , then it factors through P(Ω2 j+l jS ).

Ω2i+liS

������������
ϕ �� Ω2 j+l jS

P(Ω2 j+l jS )

������������

By this decomposition, we have that Ω2i+liS has soc P(Ω2 j+l jS )� top P(Ω2 j+l jS )�
topΩ2 j+l jS as a composition factor, which is adjacent to the exceptional vertex by the def-
inition of C. Also by the construction of C again, since top P(Ω2 j+l jS ) is adjacent to the
exceptional vertex, there exists an integer 0 ≤ t ≤ e − 1 satisfying

D ⊗B Ω
2tV � Ω2t+l′t S [l′t] and socΩ2t+l′t S � topΩ2 j+l jS ,

here the vertex corresponding to Ω2t+l′t S is not the exceptional vertex. Since socΩ2i+liS
is not adjacent to the exceptional vertex, we have i � t and the vertex corresponding to
Ω2i+liS is not the exceptional vertex. Since these two vertices must be adjacent to the edge
corresponding to topΩ2 j+l jS and since they are not exceptional, they must coincide. Hence
it holds

HomDb(A)(D ⊗B Ω
2tV,D ⊗B Ω

2iV[−n′]) � 0 or HomDb(A)(D ⊗B Ω
2iV,D ⊗B Ω

2tV[−n′]) � 0

for some n′ ≥ 0 since D⊗BΩ
2tV � Ω2t+l′t S [l′t] and since D⊗BΩ

2iV � Ω2i+liS [li]. This contra-
dicts to the fact that D is a two-sided tilting complex. Therefore we have
HomA(Ω2i+liS ,Ω2 j+l jS ) = 0.

Case 2.4. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
We remark that the assumption implies that D⊗BΩ

2iV � Ω2i+li+2S [li+2], that D⊗BΩ
2 jV �

Ω2 j+l jS [l j] and that topΩ2i+liS is adjacent to the exceptional vertex. Also, we remark that
the assumption implies that i � j. Hence we show that HomA(Ω2i+liS ,Ω2 j+l jS ) = 0. Suppose
HomA(Ω2i+liS ,Ω2 j+l jS ) � 0. Then Ω2 j+l jS has topΩ2i+liS as a composition factor. In partic-
ular the vertex corresponding to Ω2 j+l jS is adjacent to the edge corresponding to topΩ2i+liS .
Now for topΩ2i+liS there exists an integer 0 ≤ t ≤ e−1 such that D⊗BΩ

2tV � Ω2t+l′t S [l′t] and
that socΩ2t+l′t S � topΩ2i+liS . For this integer t, we have t � j since D⊗BΩ

2tS � C ⊗BΩ
2tS

and D⊗BΩ
2 jS � C⊗BΩ

2 jS . By Lemma 3.5 (1), socΩ2t+l′t−1S is adjacent to the exceptional
vertex. Hence for Ω2t+l′t S , we have topΩ2t+l′t S is not adjacent to the exceptional vertex and
not simple, or have Ω2t+l′t S is simple. In any case, we have the vertex corresponding to
Ω2t+l′t S is on an end of the edge topΩ2i+liS and it is not exceptional vertex. Also the vertex
corresponding to Ω2 j+l jS is on the edge topΩ2i+liS and is not exceptional vertex because
socΩ2 j+l jS is not adjacent to the exceptional vertex. Hence the vertex corresponding to
Ω2t+l′t S coincides with the one corresponding to Ω2 j+l jS (not necessarily the points coin-
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cide). Hence we have

Hom(Ω2t+l′t S ,Ω2 j+l jS ) � 0 and Hom(Ω2 j+l jS ,Ω2t+l′t S ) � 0.

Therefore it holds

Hom(D ⊗B Ω
2tV,D ⊗B Ω

2 jS [−n′]) � 0 or Hom(D ⊗B Ω
2 jV,D ⊗B Ω

2tS [−n′]) � 0

for some n′ ≥ 0 but this contradicts to the fact that D is a two-sided tilting complex.

Case 3. l j − li − n > 0.
In this case, we have

HomDb(A)(Ω2i+liS ,Ω2 j+l jS [l j − li − n]) � Extl j−li−n
A (Ω2i+liS ,Ω2 j+l jS )

� HomA(Ω2i+liS ,Ω2 j+l j−(l j−li−n)S )

� HomA(S ,Ω2( j−i)+nS ).

Hence we show that

HomA(S ,Ω2( j−i)+nS ) =

⎧⎪⎪⎨⎪⎪⎩
k if i = j and n = 0,

0 otherwise.

Case 3.1. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
In this case, since D is a two-sided tilting complex, it is clear that the complex C has the

required properties.

Case 3.2. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
We have

D ⊗B Ω
2iV � Ω2i+li+2S [li + 2] and D ⊗B Ω

2 jV � Ω2 j+l j+2S [l j + 2]

as in the Case 2.2. Hence we have

HomA(S ,Ω2( j−i)+nS ) � HomA(Ω2i+li+2S ,Ω2 j+l j+2−(l j−li−n)S )

� Extl j−li−n
A (Ω2i+li+2S ,Ω2 j+l j+2S )

� HomDb(A)(Ω2i+li+2S ,Ω2 j+l j+2S [l j − li − n])

� HomDb(A)(Ω2i+li+2S [li + 2],Ω2 j+l j+2S [l j + 2 − n])

� HomDb(A)(D ⊗B Ω
2iV,D ⊗B Ω

2 jV[−n])

=

⎧⎪⎪⎨⎪⎪⎩
k if i = j and n = 0,

0 otherwise.

Case 3.3. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
We have

D ⊗B Ω
2iV � Ω2i+li+2S [li + 2],D ⊗B Ω

2 jV � Ω2 j+l jS [l j] and i � j

as in the Case 2.3.
First, suppose l j − li − n ≥ 3. Then since l j − li − n − 2 ≥ 1 and since D is a two-sided

tilting complex, we have the following isomorphisms:
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HomA(S ,Ω2( j−i)+nS ) � HomA(Ω2i+li+2S ,Ω2 j+l j−(l j−li−n−2)S )

� Extl j−li−n−2
A (Ω2i+li+2S ,Ω2 j+l jS )

� HomDb(A)(Ω2i+li+2S ,Ω2 j+l jS [l j − li − n − 2])

� HomDb(A)(Ω2i+li+2S [li + 2],Ω2 j+l jS [l j − n])

� HomDb(A)(D ⊗B Ω
2iV,D ⊗B Ω

2 jV[−n])

= 0.

Next, suppose l j − li − n = 2. Then since D is a two-sided tilting complex, we have

HomA(Ω2i+li+2S ,Ω2 j+l jS ) = HomDb(A)(Ω2i+li+2S [li + 2],Ω2 j+l jS [l j − n])

= HomDb(A)(D ⊗B Ω
2iV,D ⊗B Ω

2 jV[−n])

= 0.

Therefore we have

HomA(S ,Ω2( j−i)+nS ) = HomA(S ,Ω2 j−2i+l j−li−2S )

= HomA(Ω2i+li+2S ,Ω2 j+l jS )

= 0.

Finally, suppose l j − li − n = 1. Since the vertex corresponding to the uniserial module
Ω2i+li+1S is the exceptional vertex by Lemma 3.5, any composition factor of Ω2i+li+1S is ad-
jacent to the exceptional vertex. Hence if HomA(Ω2i+li+1S ,Ω2 j+l jS ) � 0, then socΩ2 j+l jS is
adjacent to the exceptional vertex. However since Ω2 j+l jS [l j] is isomorphic to
C ⊗B Ω

2 jV � D ⊗B Ω
2 jV this is a contradiction to the construction of C. Hence we have

HomA(Ω2i+li+1S ,Ω2 j+l jS ) = 0. In particular, we have

HomA(S ,Ω2( j−i)+nS ) � HomA(S ,Ω2( j−i)+l j−li−1S )

� HomA(Ω2i+li+1S ,Ω2 j+l jS )

= 0.

Case 3.4. C ⊗B Ω
2iV � D ⊗B Ω

2iV and C ⊗B Ω
2 jV � D ⊗B Ω

2 jV.
We have

D ⊗B Ω
2iV � Ω2i+liS [li],D ⊗B Ω

2 jV � Ω2 j+l j+2S [l j + 2] and i � j

as in the Case 2.4. Hence since D is a two-sided tilting complex we have

HomA(S ,Ω2( j−i)+nS ) � HomA(Ω2i+liS ,Ω2 j+l j+2−(l j−li−n+2)S )

� Extl j−li−n+2
A (Ω2i+liS ,Ω2 j+l j+2S )

� HomDb(A)(Ω2i+liS ,Ω2 j+l j+2S [l j − li − n + 2])

� HomDb(A)(Ω2i+liS [li],Ω2 j+l j+2S [l j + 2 − n])

� HomDb(A)(D ⊗B Ω
2iV,D ⊗B Ω

2 jV[−n])

= 0.

�
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4. Example and Proof of Theorem 2

4. Example and Proof of Theorem 2
In this section, we will show that the two-sided tilting complexes given in Section 3 are

isomorphic to some Rickard-Schaps tree-to-star complexes in Db(A). Moreover, we state
how the corresponding pointings on the Brauer tree change when we apply the operations in
Theorem 1 to the two-sided tilting complexes.

We fix the following notation.

Notation 4.1. We associate two-sided tilting complexes obtained in Theorem 1 to pointed
Brauer trees. Let DT be a two-sided tilting complex isomorphic to the Rickard tree-to-star
complex T in Db(A). First we associate DT to the pointed Brauer tree which corresponds to
the Rickard tree-to-star complex, that is, DT in Notation 2.11. Second suppose we have a
two-sided tilting complex D obtained by applying operations in Theorem 1 (i) and Theorem
1 (ii) to DT several times and the pointed Brauer tree associated to D. If a two-sided
tilting complex C is obtained by applying an operation in Theorem 1 (i) to D, and let U
be the simple module with respect to the deleted terms, we define a pointed Brauer tree C

associated to C to be a pointed Brauer tree given by moving the points on both end of the
edge U along the reverse Green’s walk.

D C

If a two-sided tilting complex C is obtained by applying an operation in Theorem 1 (ii) to
D, we define a pointed Brauer tree C associated to C to be a pointed Brauer tree given by
moving the all points on the non-exceptional vertices of edges adjacent to the exceptional
vertex along the reverse Green’s walk twice.

D C

Remark 4.2. By Remark 2.21 for any pointed Brauer tree of the Brauer tree  we can get
it by applying “the moving points operations” of Notation 4.1 to DT . Therefore if we find
operations on two-sided sided tilting complexes corresponding to foldings, starting with the
two-sided tilting complex DT , we can construct a two-sided tilting complex corresponding
to any Rickard-Schaps tree-to-star complex.

By using Notation 4.1, we rewrite Theorem 2 as follows.

Theorem 4.3. Let C be a two-sided tilting complex of A ⊗ Bop-modules, let C be a
pointed Brauer tree in Notation 4.1, and let TC be the Rickard-Schaps tree-to-star complex
associated to the pointed Brauer tree C. Then we have C � TC in Db(A).
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Example 4.4. We know that the two-sided tilting complex DT described in Example 3.1
is isomorphic to the Rickard-Schaps tree-to-star complex in Example 2.16. By Theorem
4.3 the two-sided tilting complex C1 described in Example 3.1 is isomorphic to the Rickard-
Schaps tree-to-star complex in Example 2.17 and the two-sided tilting complex C2 described
in Example 3.1 is isomorphic to the Rickard-Schaps tree-to-star complex in Example 2.18.

By using this notation, we give a correspondence between two-sided tilting complexes
obtained in Theorem 4.3 and Rickard-Schaps tree-to-star complexes.

To prove Theorem 4.3, we fix the following notation.

Notation 4.5. Let C be a pointed Brauer tree associated to a two-sided tilting complex C
of A ⊗ Bop-modules, and let TC(S i) be an indecomposable summand of the Rickard-Schaps
tree-to-star complex associated to C corresponding to an edge S i including the projective
module P(S i). For a point ri of C corresponding to the edge S i, that is, the farther point
on the edge S i from the exceptional vertex, we denote by UC(S i) or by UC(ri) a uniserial
module of Notation 2.4 associated to the point, that is, the uniserial module with its structure
given by turning around the vertex adjacent to the point in the cyclic ordering from the point,
and we denote by lC(S i) or by lC(ri) the degree in which P(S i) is for TC(S i).

Remark 4.6. We remark the following.
(i) Let D be a pointed Brauer tree and suppose we get a pointed Brauer tree C by moving

two points r1 and r2 of D on the both ends of an edge not adjacent to the exceptional
vertex along the reverse Green’s walk. Then Ω−1UD(ri) � UC (ri) for i = 1, 2.

(ii) Let D be a pointed Brauer tree and suppose we get a pointed Brauer tree C by moving
all points ri of D on the edges adjacent to the exceptional vertex twice along the reverse
Green’s walk. Then Ω−2UD(ri) � UC (ri) for all i.

We prepare the following two lemmas before we prove Theorem 4.3.

Lemma 4.7. Let Γ be a basic symmetric algebra, and let P• be a one-sided tilting complex
of Γ-modules with endomorphism ring a basic algebra Λ. For any simple Λ-module U, if a
two-sided tilting complex C of Γ ⊗Λop-modules satisfies the following conditions, then C is
isomorphic to P• in Db(Γ):

HomDb(Γ)(P•,C ⊗Λ U[n]) �

⎧⎪⎪⎨⎪⎪⎩
k n = 0,

0 otherwise.

Proof. Let F : Db(Γ) → Db(Λ) be an equivalence induced by the one-sided tilting
complex P•. By the assumption, we have F(C ⊗Λ U) is a one-dimensional Λ-module. In
particular, it is a simple Λ-module. Also let G : Db(Λ)→ Db(Γ) be the equivalence induced
by the two-sided tilting complex C. Then since any simple Λ-module U is sent to C ⊗Λ U
by G, U is sent to a simple Λ-module by F ◦ G. Hence the restriction of F ◦ G to Λ-mod
induces a Morita equivalence Λ-mod → Λ-mod. In particular (F ◦ G)(Λ) = Λ. Therefore
we have

F(C ⊗Λ Λ) = (F ◦G)(Λ) = Λ = F(P•).

Since F is an equivalence we conclude C ⊗Λ Λ = P• in Db(Γ). �
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Lemma 4.8. Let S 0, S 1, · · · , S e−1 be all simple A-modules. Under the Notation 4.5, we
have

HomKb(A)(TC(S i),UC(S j)[l]) =

⎧⎪⎪⎨⎪⎪⎩
k i = j, l = lC(S i),

0 otherwise.

Proof. Fix an edge S j.
First we assume i = j and l = lC(S j), and we show that HomKb(A)(TC(S j),UC(S j)[lC(S j)])

� k. Since the simple module S j appears only once as a composition factor of UC(S j), we
have HomA(Pj,UC(S j)) � k, where we put Pj = P(S j). Also, for a pointed Brauer tree
C , we defined the vertex corresponding to the edge S j by the farther vertex of the edge
S j from the exceptional vertex. Hence UC(S j) does not have any simple module S t with
d(S t) < d(S j) as a composition factor (see the following figure), which implies that for any
such simple module S t we have HomA(Pj,UC(S t)) = 0 and have HomA(Pt,UC(S j)) = 0.

S j

Also for such simple module S t, by the construction of TC(S t), it includes the only projective
modules associated to simple modules of distance smaller than the one of S j, and does not
include Pj. Therefore we have

HomKb(A)(TC(S j),UC(S j)[lC(S j)]) � HomA(Pj,UC(S j)) � k,

and have for any simple module S t with d(S t) < d(S j) and l ∈ Z, or for S t = S j and
l � lC(S j) we have

HomKb(A)(TC(S t),UC(S j)[l]) = 0.

Also for any l ∈ Z and for an edge S ′t on the different interval from the one on which S j is,
we have similarly

HomKb(A)(TC(S ′t ),UC(S j)[l]) = 0.

We have shown that HomKb(A)(TC(S i),UC(S j)[l]) has the required properties in case d(S i)
≤ d(S j) and in case S i is on the different interval from the one on which S j is. Hence fixing
S j, we show that HomKb(A)(TC(S i),UC(S j)[l]) = 0 for S i on the same interval as S j with
d(S i) > d(S j) and for all l ∈ Z. If d(S i) > d(S j) + 1, then HomA(Pi,UC(S j)) = 0 by the
earlier argument. Hence it suffices to show HomKb(A)(TC(S i),UC(S j)[l]) = 0 for any simple
module S i on the same interval as S j with d(S i) = d(S j) + 1 since a summand TC(S i) of TC

is obtained by adding projective module Pi. We denote a numbering of S j and S i given by
the pointed Brauer tree C by nC(S j) and nC(S i)(see Algorithm 2.13).
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Case 1. nC(S i) > nC(S j)
We remark that by the assumption nC(S i) > nC(S j), a point corresponding to S j must be

in a sector from S j to S i.

S j S i

Hence the uniserial module UC(S j) has composition series as below
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

S i
...

S j
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

First we assume l = lC(S j):

Pj

��

�� Pi

��
UC(S j) �� 0 .

Since UC(S j) is a uniserial module whose all composition factors are different and has the
structure as above, for any non-zero homomorphism ψ : Pj → UC(S j) there exists a homo-
morphism ϕ : Pi → UC(S j) such that it makes the following diagram commutative.

Pj

ψ

��

�� Pi

ϕ����
��

��
��

�

UC(S j)

Therefore we have HomKb(A)(TC(S i),UC(S j)[lC(S j)]) = 0.
Next for l � lC(S j) we show HomKb(A)(TC(S i),UC(S j)[l]) = 0. However all composition

factors of UC(S j) are adjacent to S j and can not be a simple module of distance d(S j) − 1,
hence it suffices to show that HomKb(A)(TC(S i),UC(S j)[lC(S j) − 1]) = 0.

Pj

��

�� Pi

��
0 �� UC(S j)

By the structure of UC(S j) the composition of a non-zero homomorphism Pj to Pi and a non-
zero homomorphism Pi and UC(S j) is non-zero. To make above diagram commutative, the
vertical map must be zero map. Therefore we have HomKb(A)(TC(S i),UC(S j)[lC(S j) − 1]) =
0.

Case 2. nC(S i) < nC(S j)
By the assumption nC(S i) < nC(S j), a point corresponding to S j must be in a sector from
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S i to S j.

S j S i

Hence the uniserial module UC(S j) has composition series as below
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

S j
...

S i
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By the similar argument of Case 1, we have it suffices to show that HomKb(A)(TC(S i),
UC(S j)[lC(S j)]) = 0 and HomKb(A)(TC(S i),UC(S j)[lC(S j) + 1]) = 0. But the dual proof of
Case 1 shows that HomKb(A)(TC(S i),UC(S j)[lC(S j)])= 0 and HomKb(A)(TC(S i),
UC(S j)[lC(S j) + 1]) = 0. �

Lemma 4.9. Let DT be a two-sided tilting complex of A⊗Bop-modules isomorphic to the
Rickard tree-to-star complex in Db(A) and let C be a two-sided tilting complex of A ⊗ Bop-
modules obtained by applying operations in Theorem 1 (i) and Theorem 1 (ii) to DT several
times. For each point r in C let UC(r) be a uniserial module in Notation 4.5. Then, for each
uniserial module Ω2 j+l jS satisfying that C ⊗B Ω

2 jV � Ω2 j+l jS [l j] for some l j, Ω2 j+l jS �
UC(r j) and l j = lC(r j) for some point r j.

Proof. If C = DT , then it is clear by [3, Proposition 5.3], [3, Lemma 5.5] and [3, Corollary
5.6]. Let D be a two-sided tilting complex of A ⊗ Bop-modules obtained by applying oper-
ations in Theorem 1 (i) and Theorem 1 (ii) to DT several times, and satisfying the required
properties. Then it suffices to show that a two-sided tilting complex C obtained by apply-
ing the operation in Theorem 1 (i) or Theorem 1 (ii) to D just once satisfies the required
properties.

First, suppose C is obtained by applying the operation in Theorem 1 (i) to D just once,
and denote the simple module which the deleted term is associated to by U. Moreover we
denote deleted terms by P(U) ⊗ P(Ω2iV)∗ and P(U) ⊗ P(Ω2 jV)∗ where P(U) ⊗ P(Ω2iV)∗

is a direct summand of the leftmost non-zero term, and where P(U) ⊗ P(Ω2iV)∗ is a direct
summand of the second leftmost non-zero term. Then we have isomorphisms

C ⊗B Ω
2iV � Ω2i+liS [li] and C ⊗B Ω

2 jV � Ω2 j+l jS [l j]

for some li and l j. We consider the case i � j. Then we have l j = li − 1. Also for the pointed
Brauer tree D, we denote the points on the both ends of U by r1 and r2 where r1 is the
farther point from the exceptional vertex. By the assumption, we have

Ω2i+li+1S � UD(r1), li + 1 = lD(r1)

and

Ω2 j+l j+1S � UD(r2), l j + 1 = lD(r2).



Two-Sided Tilting Complexes and Foldings 163

Now for moved points r1 and r2 in C from those in D along the reverse Green’s walk, we
have UC(r1) � Ω−1UD(r1) and UC(r2) � Ω−1UD(r2) by Remark 4.6. Hence we have the
following isomorphisms:

Ω2i+liS � Ω−1UD(r1) � UC(r1) andΩ2 j+l jS � Ω−1UD(r2) � UC(r2).

A movement along the reverse Green’s walk of the points on the both ends of U implies that
folding of P(U) in the one-sided tilting complex corresponding to the pointed Brauer tree D,
that is, −2 shift of P(U). Hence we have lC(r2) = lC(U) = lD(U)−2 = lD(r1)−2 = li+1−2 =
li−1 = l j since the point in D corresponding to the edge U is r1, and the one in C is r2. Also
the point r2 in D and r1 in C do not correspond to U, we have lC(r1) = lD(r2) = l j + 1 = li.
Also if i = j then the point r1 is on an end of the Brauer tree D and Ω−2UD(r2) � UC(r1).
Also we have C ⊗B Ω

2iV � Ω2i+liS [li] and D ⊗B Ω
2iV � Ω2i+li+2S [li + 2] in this case. The

similar argument shows that the uniserial module Ω2i+liS and the integer li have the required
properties.

Next, suppose C is obtained by applying the operation to D in Theorem 1 (ii) just once,
and denote all projective modules associated to simple modules adjacent to the excep-
tional vertex by P(U1), P(U2), · · · , P(Ut−1) and P(Ut). By the construction of C, we have
C ⊗B Ω

2 jV � Ω2 j+l jS [l j] and D ⊗B Ω
2 jV � Ω2 j+l j+2S [l j + 2] for 1 ≤ j ≤ t. Moreover,

by the assumption, we have Ω2 j+l j+2S � UD(r j) and l j + 2 = lD(r j) for 1 ≤ j ≤ t. Since
a pointed Brauer tree C is obtained by moving all the points of D on the edges adjacent
to the exceptional vertex, that is, moving them along the reverse Green’s walk twice, we
have UC(r j) � Ω−2UD(r j) by Remark 4.6. Therefore we have Ω2 j+l jS � Ω−2UD(r j) �
UC(r j). Also, the one-sided tilting complex corresponding to C is obtained by −2 shifts of
P(U1), P(U2), · · · , P(Ut−1) and P(Ut) in the one-sided tilting complex corresponding to D.
Therefore we have lC(r j) = lD(r j) − 2 = l j for 1 ≤ j ≤ t. �

Proof of Theorem 4.3. By Lemma 4.7 it suffices to show that

HomKb(A)(
⊕

0≤i≤e−1

TC(S i),C ⊗B Ω
2 jV[n]) =

⎧⎪⎪⎨⎪⎪⎩
k n = 0,

0 otherwise.

By Lemma 4.9

HomKb(A)(
⊕

0≤i≤e−1

TC(S i),C ⊗B Ω
2 jV[n]) � HomKb(A)(

⊕
0≤i≤e−1

TC(S i),UC(r j)[lC(r j) + n])

for some point r j in C . Since by Lemma 4.8

HomKb(A)(TC(S i),UC(r j)[lC(r j) + n]) �

⎧⎪⎪⎨⎪⎪⎩
k ri corresponds to S i and n = 0,

0 otherwise,

we have the statement. �
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