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Abstract
In this note, for a Brauer tree algebra A and a star-shaped Brauer tree algebra B which is
derived equivalent to A, we give operations on the two-sided tilting complex Dy of A ® B°P-
modules constructed in [3] which is isomorphic to the Rickard tree-to-star complex 7' con-
structed in [5] in D?(A), and we show that the operations on D7 correspond to operations called
foldings on the Rickard tree-to-star complex 7 given in [7].

1. Introduction

Throughout this paper, we denote by A a Brauer tree algebra with e edges numbered as
0,1,---,e—1 and by B a star-shaped Brauer tree algebra with the same number of edges as
A and with the same multiplicity as A.

Brauer tree algebras with the same number of edges and the same multiplicity are derived
equivalent. This fact is shown by Rickard in [5, Theorem4.2] by constructing a one-sided
tilting complex of A-modules with endomorphism ring B. We denote the one-sided tilting
complex constructed by Rickard by 7', and call T a Rickard tree-to-star complex. Also
in [7, Section 3] Rickard and Schaps constructed various one-sided tilting complexes of
A-modules with endomorphism ring B by using pointings on the Brauer tree (see Section
2.4). We call each of the one-sided tilting complexes a Rickard-Schaps tree-to-star com-
plex. In particular the Rickard tree-to-star complex is one of the Rickard-Schaps tree-to-star
complexes. For any Rickard-Schaps tree-to-star complex 7", by applying operations, called
foldings, several times to the Rickard tree-to-star complex 7" we can get it (the definition of
the folding can be seen in Remark 2.19).

folding folding folding ,
T T, T, te T,-1 T,=T

On the other hand, in [6] and [2] it is shown that for a one-sided tilting complex over an
algebra I there exists a two-sided tilting complex isomorphic to the one-sided tilting com-
plex in the bounded derived category of I'-modules in theory. The existence of the two-sided
tilting complexes are abstract, but in [3], by using concrete bimodules we constructed a two-
sided tilting complex of A-B-bimodules isomorphic to the Rickard tree-to-star complex 7 in
the bounded derived category of A-modules for any Brauer tree algebra A. We denote this
two-sided tilting complex by D7. This two-sided tilting complex D7 has an indecomposable

2010 Mathematics Subject Classification. Primary 16G10; Secondary 16E35.



134 Y. KozAkAl

A-B-bimodule M in degree 0 inducing a stable equivalence of Morita type induced by 7', and
each non-zero terms except for degree 0 is of the form @ P(S;) ® P(V;)" for some simple
A-modules §; and some simple B-modules V; (see Section 2.2). Hence all of the terms of
the two-sided tilting complex Dy are projective on both sides, so we have an equivalence
Dr ®% — = Dy ®5 — between D’(A) and D”(B) with the reverse equivalence D, ®4 —.

Since any Rickard-Schaps tree-to-star complex 7" is obtained by applying foldings sev-
eral times to the Rickard tree-to-star complex 7', there should be operations corresponding
to foldings which enable us to construct a two-sided tilting complex D7 with Dy = T’ in
DP(A). We call these operations on two-sided tilting complexes two-sided folings, and we
get the following commutative diagram, where vertical arrows mean the restrictions to A
from A ®; B°P and where Dy, = T; in DP(A) foreach 1 <i < n.

two-sided folding two-sided folding two-sided folding

Dr Dr, Dr, e Dy, Dy,
l folding l folding l l folding l/
T Tl T2 e Tn—l Tn

The aim of this paper is giving such operations on the two-sided tilting complexes.
The first result of this paper is the following.

Theorem 1. Let Dy be a two-sided tilting complex of A ®; B°’-modules isomorphic to
the Rickard tree-to-star complex T of A-modules. Let C be a complex of A ®; B°’-modules
obtained by applying the following operations several times to Dry:

(i) Deleting the direct summand of the form P(U) @ X from the leftmost non-zero term
and the one of the form P(U) ®; X’ from the second leftmost term for a simple module
U not adjacent to the exceptional vertex.

(i1) Deleting the direct summand of the form EB?ZI P(U;) ®X; from the leftmost non-zero
term and the one of the form EB:I:I P(U;) & X! from the second leftmost term for the
all simple modules Uy, - - - , U, adjacent to the exceptional vertex.

Then the resulting complex C is a two-sided tilting complex of A & B°P-modules.

We remark that we can apply the operations in Theorem 1 to D7 any number of times by
using an isomorphism

C:(..._)0_>Pn_)..._)Pl_)M)
2( 0 Py oo P S PQIM) 5 PQIM) > - — PQIM) > QM)

where ¢ is the composition P; — M < I(M) = P(Q~'M) and by the fact that P(Q™" M) is
of the form @:& P(S;) & P(V;j_, )" for each n’ by [8, Lemma 2].

The second result of this paper is that operations in Theorem 1 are two-sided foldings.
Hence for any Rickard-Schaps tree-to-star complex 7’ we can construct a two-sided tilting
complex corresponding to 7’ by using concrete bimodules.

Theorem 2. Let Dy be a two-sided tilting complex of A®y B°P-modules isomorphic to the
Rickard tree-to-star complex T in D*(A) and T’ be a Rickard-Schaps tree-to-star complex.
Then we can construct a two-sided tilting complex Dy corresponding to T’ by applying the
operations in Theorem 1 to Dy several times.
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Since the resulting two-sided tilting complexes are projective on both sides, the derived
equivalences induced by them are given by taking the ordinary tensor, which are easy to un-
derstand in comparison with the ones induced by the one-sided tilting complexes. Hence we
can understand how the equivalence induced by the Rickard tree-to-star complex is different
from the one by each Rickard-Schaps tree-to-star complex obtained by applying foldings to
T several times. We give the detailed construction of the two-sided tilting complex D7~ in
Section 4.

Throughout this paper, let k be an algebraically closed field. Algebras mean finite di-
mensional symmetric k-algebras, and modules mean finitely generated left modules unless
otherwise stated. We denote the k-dual Homy(—, k) by (-)* and denote ®; by ® to simplify
these. For k-algebras I and A, we denote the opposite algebra of I' by [’ and we identify
I'-A-bimodules with I'® A°?-modules. For a I'-module U, we denote its projective cover by
P(U), and denote U/rad U by topU.

Our ‘complexes’ are chain complexes, so the differentials will have degree —1. If

¥ dX X dX
d+2 i+1 i i1
X oo 22 X 5 X X

is a complex, then X[1] will be a complex with i-th term X[1]; = X;_; and with i-th differen-
tial ¢ = (=1)d¥ |, in the other words, X[1] will be the following complex
_d()1(+1 _d:X el _di)i2
X[l] e —)Xi —)Xi—l —)Xi—Z —_—

where X;_; is in degree i. Moreover we define X[m] := X[m — 1][1] inductively, and define
X[—m] as a complex satisfying that X[-m][m] = X.

For an algebra I', K(T") means the homotopy category consisting of bounded complexes
of I'-modules and D”(I") means the derived category consisting of bounded complexes of
I'-modules. For a morphism f of complexes, C(f) means the mapping cone of f.

2. Preliminaries

2.1. Rickard’s result. In [5, Theorem 4.2], Rickard showed that two Brauer tree algebras
with the same number of edges and with the same multiplicity are derived equivalent. The
proof of this statement is done by constructing a tree-to-star complex of A-modules with
endomorphism ring B. The construction is as follows:

For each edge i of the Brauer tree of A, there is a unique path in the Brauer tree from
the exceptional vertex to the farther vertex of the two adjacent to the edge i. This path
defines a sequence iy, i1, -+ ,i, = i of the edges. For this sequence, we define a complex
corresponding to i as follows:

T(@): - — 0= Plig) = P(i1) = - — P(i)) = 0 = ---

where P(ip) is in the degree 0, and where all the maps are non-zero. Finally, put 77 =
@le;ol T(i). Then T" is a tree-to-star complex. In this paper, we put 7 = T’[m — 1], where
m is the maximal distance of the all edges of A from the exceptional vertex, so that the
rightmost non-zero term of 7’ is in the degree 0. We call this tilting complex T a Rickard
tree-to-star complex.



136 Y. KozAkArl

ExampLE 2.1. Let A be a Brauer tree algebra associated to the following Brauer tree.

S S S S
o—L o2 =3 > 0

Sy

Then T is as follows,
P(S3) — P(S2) — P(Sy)

&b
P(S3) — P(S2)

&®
P(S3)

57
P(S4)

&b
P(Ss)

where P(S 1) is in the degree 0.

2.2. Two-sided tilting complexes corresponding to 7. We fix some notation on the
Brauer tree algebra A. Let M be an indecomposable A ® B°’-module inducing a stable
equivalence of Morita type induced by the Rickard tree-to-star complex 7. For a simple
A-module S; we define its distance to be the number of edges between the exceptional ver-
tex and the farther vertex on the edge S;, and denote it by d(S;) and the maximal distance
of all simple A-modules by m. We fix a simple A-module with distance m, and denote it by
S. Then M*®,4 S is a simple B-module (see [3, Proposition 3.8]), and we denote this simple
module by V.

In [3], we constructed a two-sided tilting complex of A® B°’-modules which is isomorphic
to 7 in D?(A). The construction is as follows:

As will be explained in Remark 2.6 below, since B is the Brauer star algebra, {Q*V|0 <
i < e — 1} is the set of all simple B-modules. By standard properties of the functor €2, since
M is projective on both sides, so is Q"M for each n. By [8, Lemma 2], we have

e—1 e—1
P(Q"M) = @ P(Q"M ®5 Q*V) ® P(Q¥V)* = EB PQ"2S) ® P(QY V)",
i=0 i=0

We then get a minimal projective resolution
s PQTIM) = - > P(M) > M — 0

of M as an A ® B°’-module, where M is in the degree 0 and P(Q""'M) is in the degree n.
Then from this projective resolution we define Dy = (D,, d,,) as follows:

M n=0,

D, = P P P@V)Y 1<n<m-1,
! d(top Q"= 1+2S)<m—n
0 otherwise,

and d, : D,, — D,_; is the restriction of the differential of the projective resolution to each
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left term for each n. Then this complex Dy is a two-sided tilting complex and isomorphic to
T in D’(A).

ExampLE 2.2. We consider the case where A is the Brauer tree algebra in Example 2.1.
Let M be the indecomposable A ® B°”-module inducing a stable equivalence of Morita type
between A and B induced by 7', and let V; be the simple B-module such that top (M ®p V;) =
S, for 1 <i < 5. We then have a minimal projective resolution of M as an A ® B°’-module
as follows.

P(S2) ® P(V1)* P(S1)®P(Vy)*
D D

P(S1)® P(Vp)* P(S2) ® P(V2)*
&b &b

- P(S4) ® P(V3)" - P(S3)® P(V3)" - aMp

7] 7]

P(S5)® P(V4)* P(S4) ® P(Vy)*
@ @

P(S3)® P(Vs)* P(S5)® P(Vs)*

By deleting some summands from each term, we have a two-sided tilting complex D7 of
A ® B°P-modules isomorphic to the Rickard tree-to-star complex described in Example 2.1
in D?(A) as follows.

P(S2) ® P(V2)*
D
P(S4) ® P(V3)* - PS3)®P(V3) - AMp
® &b
P(S5)® P(Vy)* P(S4) ® P(Vy)*
7] 7]
P(S3)® P(Vs)* P(S5)® P(Vs)*

2.3. Pointed Brauer tree. In this section we explain the pointed Brauer tree.

DeriNiTion 2.3. Let 7 be a Brauer tree. A pointing on 7 is a choice of a sector from an
edge adjacent to v to the previous one in the cyclic ordering for each non-exceptional vertex
v, and we indicate each sector by placing a point there. We denote a sector from an edge i
to the previous edge j in the cyclic ordering by (i, j), where if there is only one edge i at the
vertex v we denote the pointing by (i,i). A Brauer tree 7 with this additional structure is
called a pointed Brauer tree.

We define some notation on pointed Brauer trees.

Nortartion 2.4. Given a pointed Brauer tree 7, we define a Brauer tree algebra I" associated
to 7 as usual. For each edge of 7, we associate the edge to the farther point of the two on
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vertices adjacent to the edge. Hence we have one-to-one correspondences among all the
points, all the edges and all the non-exceptional vertices. For a point r = (i, j) of a pointed
Brauer tree, let U(r) = U(i, j) be a uniserial module whose composition factors are given by
Si,--+, 8 in the cyclic ordering around the vertex v adjacent to the edges i and j if i # j.
Ifi = j, then U(r) = S;. Any pointed Brauer tree does not have a point on the exceptional
vertex, but, for convenience, we define a uniserial module corresponding to a point on the
exceptional vertex to be a uniserial module given by the turning around the exceptional
vertex from the point u times, where p is a multiplicity.

ExawmpLE 2.5. We consider the following pointed Brauer tree.

We assign each point r; to the number of the closest edge from the exceptional vertex adja-
cent to the vertex on which the point is. Then each point ; can be denoted by as follows:
ro= (81,81, =(S2,82),r3 = (83,53), 74 = (§4,52),15 = (S4,55),76 = (56, 56), 17 =
(S7,S7). Then each uniserial module U(r;) has the following structure.

U(ry) | U(r) | U@rz) | Urs) | Urs) | Ure) | U(r7)
Sa
S S

S, S, | S; S? [5‘5‘] Se | S,
So

REmARK 2.6. It can easily be seen that for the simple A-module S, Q"S can be written
as U(r) for some point r on the Brauer tree. Letting ° be the point corresponding to the
terminal vertex on the edge S and letting 7°,r!,--- 7", --- be the sequence of points in
unpointed Brauer tree encountered by moving along a Green’s walk [1] from S, we then

have Q'S = U(").
By this remark, we have that {Q?V|0 < i < e— 1} is the set of all simple B-modules.

RemaRrk 2.7. For an integer n and a uniserial module Q"S, if top Q'S and soc Q'S are
adjacent to the exceptional vertex, then the vertex corresponding to Q"S is the exceptional
vertex.

On these uniserial modules, we easily see the following result.

Lemma 2.8. Let A be a Brauer tree algebra associated to a Brauer tree T. For points
(i, j) adjacent to the vertex v and (i, j') adjacent to the vertex v of a Brauer tree T,
Homyu(U(, ), U, j')) # 0 if and only ifv = v ori = j'. Moreover if v = v and it is
a non-exceptional vertex or if i = j' and v # V', then dimHoms(U(, j), U@, j')) = 1 and
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if v =V and it is the exceptional vertex, then dim Homu(U(i, ), U(i, j')) is equal to the
exceptional multiplicity.

We associate the two-sided tilting complex Dy to a pointed Brauer tree. We now first
bring the following lemma.

Lemma 2.9. [3] Let Dy be the two-sided tilting complex defined in [3] isomorphic to
the Rickard tree-to-star complex T in DP(A). This two-sided tilting complex Dy has the
following properties.

(1) For the above simple A-module S and for any simple B-module Q*V there exists an
integer l; such that Dy ®p Q*V = Q**liS[I;] in DP(A).

(2) Q¥*iS is a uniserial module with multiplicity of each composition factor one and a
pair of simple modules (soc Q*™*iS top Q**iS) are in the cyclic ordering at the vertex
adjacent to both of soc Q**iS and top Q**'iS. Thus (top Q**iS, soc Q**iS) is a point
of the Brauer tree and Q**i§ = U(top Q**iS, soc Q> §).

(3) For the uniserial module Q**S, the edge corresponding to soc Q**iS is closer to the
exceptional vertex than the edge corresponding to any composition factor of
QZi+l,-S/SOC in+liS.

Since Dr is a two-sided tilting complex of A ® B°’-modules, for non-isomorphic simple
B-modules Q*V and Q% V it holds that Homps4)(Dr ®5 Q*V, Dy ® Q%' V[-n]) = 0 for all
n > 0. Combining this fact for n = |l; — [;| with Lemma 2.9 gives

Hom,(Q**1S,Q%*i§) =0 or Hom,(Q¥*S, Qi) = 0.
Hence by Lemma 2.8 we have the following result.
Proposition 2.10. There is a one-to-one correspondence between all of the non-

exceptional vertices of T and {Q**iS |0 <i<e—1}.

Nomarion 2.11. By this proposition and Lemma 2.9 (2), by giving a point (top Q**%S,
soc Q%*iS) on each vertex of 7 we have a pointed Brauer tree. We denote this pointed
Brauer tree by 7p,. By Lemma 2.9 (3), Tp, is a pointed Brauer tree with each point in the
sector which the Green’s walk from the exceptional vertex meets first.

ExampLE 2.12. We consider the two-sided tilting complex D7 in Example 2.2. We can
rewrite this two-sided tilting complex as follows, where V = V;:

P(S,) ® P(Q3V)*
&®
PSH®PQYV)Y  —  PS)PQYV)Y - My
@ @
P(S5)® P(Q'V)* P(S4) ® P(Q*V)*
@ ®
P(S3) ® P(QSV)* P(S5)® P(QSV)*

For the projective resolution P,(M) of the A® B°’-module M, P,(M)®p Q%V is a projective
resolution P,(M ®g Q%V) of an A-module M ®5 Q*V = Q¥ (M ®5z V) = Q*S. Also,
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P(Q*V)'®pQ%V = Hom(P(Q*V), Q% V) = §;;k for 0 < i < 4. Hence we have Dr®pQ*V =
o-zliP.(QZiS 1) for some /; where o»;, means stupid truncation (see [9, Remark 3.5.21]), and
we have o5, Po(Q%S 1) = Q**i§ [I;] in D’(A). Hence we have the following results (we
refer the reader to [3, Proposition 5.3] for the details).

i 0 1 2 3 4
Dy @5 QFV || S | Q225 ,[2] | Q*2S[2] | Q28 ,[2] | Q3*1S,[1]

Since we have

Q'S =84, Q%) =85, Q% E[ gz ]and Q’s, = [ ‘. ]
3

by easy calculations, we have the following pointed Brauer tree 7p, .

.0516526S3 S5

Qe
A

2.4. Rickard-Schaps tree-to-star complexes. In [5] for any Brauer tree algebra A,
Rickard constructed a one-sided tilting complex of A-modules with endomorphism ring B.
By the complex, we get that Brauer tree algebras with the same number of edges and the
same multiplicity are derived equivalent. In that sense, one-sided tilting complexes over
Brauer tree algebras with endomorphism rings star-shaped Brauer tree algebras play impor-
tant roles.

For a Brauer tree algebra such a complex is not uniquely determined in general. Rickard
constructed one particular tree-to-star complex for each Brauer tree algebra in [5]. In [7]
Rickard and Schaps constructed some tree-to-star complexes by using pointings. In partic-
ular for a Brauer tree algebra A, the Rickard tree-to-star complex in [5] is obtained from a
pointing on the Brauer tree of A (see Remark 2.14). Moreover for any pointing, a Rickard-
Schaps tree-to-star complex of A-modules associated to the pointing is obtained by applying
the operation called folding to the Rickard tree-to-star complex several times.

For a pointing on a Brauer tree, the tree-to-star complex is obtained by the following
process.

ALGoriTaM 2.13. [7, Section 3]

(1) Pick an arbitrary edge at the exceptional vertex as a starting point, and let the exceptional
vertex be numbered as 0.

(2) Number all non-exceptional vertices by taking the Green’s walk around the tree, assign-
ing a number to each vertex whenever the corresponding point is reached.

(3) Give each edge the same number as the vertex farthest from the exceptional vertex.

(4) We build the complex 7" = @ T by recursion on the distance of s from the excep-
tional vertex. For any s, we let P, be the projective module corresponding to the edge
numbered by s in (2) and let d be the distance of s from the exceptional vertex.

(a) If the edge numbered s is adjacent to the exceptional vertex, then 7' is the stalk
complex with P in degree 0.
(b) If n(1),--- ,n(d) = s are the numbers assigned to the edges in a minimal path from
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the exceptional vertex to the edge s, assuming we know by recursion that 7,1

contains one copy of P,-1), then we distinguish two cases:

(b.1) n(d — 1) > n(d): Let j;_; be the integer such that P,y is on the j,;_;-th
degree of T,;-1). Then we can take a non-zero morphism

Js  Pslja-1] = Tpa-1

uniquely up to scalar multiplication, and we define 7y = C(f;). We then have
Ja = Ja-1 + 1, since taking the cone of f; will shift the degree of P, by 1.

(b.2) n(d = 1) < n(d): Let j;_; be the integer such that P,y is on the j,;_;-th
degree of T,-1). Then we can take a non-zero morphism

gs : Tna-1y = Pl ja-1]

uniquely up to scalar multiplication, and we define 7, = C(g,)[—1]. We then
have j; = js-1 — 1, since taking the cone of g, will not shift the degree of P;.

RemMark 2.14. It can easily be seen that the Rickard tree-to-star complex 7 in [5] is ob-
tained from the pointing such that the sequence in (b) satisfies the condition that n(j) <
n(j+1)forany 1 < j <d -1 and any d, that is, 7p, in Notation 2.11 (see Example 2.16).

RemMark 2.15. We define the Rickard-Schaps tree-to-star complexes in the opposite di-
rection from the original ones in [7], because the cyclic ordering of Brauer tree is defined
moving by clockwise in [7], but we define it to be counter-clockwise.

ExampLE 2.16. We consider a Brauer tree algebra associated to the following pointed
Brauer tree.

S

°
O O

Sa S3 Ss

°
O Qe

Sy

[
By taking the Green’s walk around the tree, we number each edge 1 to 5.

.045362 100

5

k3

From this numbering, we have the following tree-to-star complex. (Note that each projective
module now has two names, either P(S;) accoding to the numbering of the unpointed Brauer
tree, or P according to its numbering in the pointed Brauer tree.)
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P(S3) — P(S2) — P(Sy)

]
P(S3) — P(S»)

&®
P(S3)

(&)
P(S4)

@
P(Ss)

This complex coincides with the Rickard tree-to-star complex.

ExampLE 2.17. We consider a Brauer tree algebra associated to the following pointed
Brauer tree.

Sa S3 Ss

o215 O Oe

Sy

Similarly as Example 2.16, we have the following numbering and tree-to-star complex.

3

°
O O

2 4 1

Qe

L]®)

5

K3

P(S2) — P(S1)®P(S3)

@
P(S2) — P(S3)
D
P(S3)
D
P(S4)
@
P(Ss)

ExampLE 2.18. We consider a Brauer tree algebra associated to the following pointed
Brauer tree.

Sl Sz S3 SS

[ d
e, Q O Qe

S4

Similarly as Example 2.16, we have the following numbering and tree-to-star complex.
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3 4 2 1

5
P(S)®P(S3) — P(S2)

@

P(S3) — P(Sy)

@

P(S3)

@

P(S4)

@

P(Ss)

Qe

o Qe

L]®)

Remark 2.19. We consider how Rickard-Schaps tree-to-star complexes change when
given points are moved. We consider two pointed Brauer trees 7; and 7.

(i) Suppose 75 is given by moving two points on an edge U not adjacent to the exceptional
vertex of 77 along the reverse Green’s walk as follows.

Ti 7
[ d

- 0 [ ]

Then a Rickard-Schaps tree-to-star complex associated to 73 is given by a —2 shift of
P(U) in a Rickard-Schaps tree-to-star complex associated to 7;.

(ii) Suppose that 77 is such that for all non-exceptional vertices on the edges adjacent to
the exceptional vertex, the points on the vertices are in the first sector in a Green’s walk

from the exceptional vertex. Moreover suppose 75 is given by moving all the points on
the edges adjacent to the exceptional vertex of 77 along the reverse Green’s walk twice

via the exceptional vertex as follows.
Ti T

Then a Rickard-Schaps tree-to-star complex associated to 73 is given by a —2 shift of
EB:.’: , P(U) in a Rickard-Schaps tree-to-star complex associated to Ti, where Uy, - - -,
U, are all edges adjacent to the exceptional vertex.

We call these two operations to the Rickard-Schaps tree-to-star complexes foldings.

ExampLE 2.20. The pointing in Example 2.17 is obtained from the one in Example 2.16
by moving all the points on the edges adjacent to the exceptional vertex along the reverse
Green’s walk.
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S o S, o §3 Ss S o 8 S3 Ss
O O O Qe O O Q Qe
T S4 _— S4
.l [ ]

In this case we can regard the tree-to-star complex in Example 2.17 as a complex obtained
by folding all the projective modules associated to the simple modules adjacent to the ex-
ceptional vertex in the one in Example 2.16. Moreover the pointing in Example 2.18 is
obtained from the one in Example 2.17 by moving the points on the edges S, along the
reverse Green’s walk.

S 2 S 3 S 5 S 1 S 2 @ S 3 S 5

[
O O Q Qe O Q O Qe

In this case we can regard the tree-to-star complex in Example 2.18 as a complex obtained
by folding the projective modules associated to the simple modules S ; in the one in Example
2.17.

Remark 2.21. Let 7 be a Brauer tree, and 7; a pointed Brauer tree of 7 for i = 1,2.
Then we can get 7, by applying the “moving points operations” in Remark 2.19 to 7; sev-
eral times. In particular, we have any Rickard-Schaps tree-to-star complex is obtained by
applying the foldings several times to the Rickard tree-to-star complex 7.

This remark can be explained as follows:

If 7 has 2 edges, then the statement is clear. Suppose the statement holds for pointed
Brauer trees of any Brauer tree with e — 1 edges for e > 3. Let 7 be a Brauer tree with
e edges and let an edge numbered by e be on an end of 7 and the terminal vertex of the
edge e is not the exceptional vertex and let 77 and 7, be pointed Brauer trees of 7. For the
Brauer tree 7, let 7’ be a Brauer tree obtained by removing the edge ¢ from 7', and denote
the vertex which 7’ and the edge e have in common by v and the cyclic ordering of v in T
by---,e—1,e,e —2,---(if there are only two edges around v, let e — 1 be equal to e — 2).
Moreover let 7" be a pointed Brauer tree of 7’ obtained by removing the edge e from the
pointed Brauer tree 7; for i = 1,2. Then by the assumption, we can get 7, from 7," by
applying the operations for points in Remark 2.19 (i) and (ii) several times:

7= A e 77
where a’; is any of the following for each j: operation in Remark 2.19 (i), operation in
Remark 2.19 (ii), not move.

First suppose that v is not the exceptional vertex and the other vertex on the edge e — 2
is not the exceptional vertex. If @] is not the operation in Remark 2.19 (i) with respect to
e —2, then we can consider a; as an operation to T1, and put a; = a). If a} is the operation in
Remark 2.19 (i) with respect to e — 2 and if there exists no point the sector from e — 1 to e in
71, then we can consider a as an operation to 7; too, and put a; = a. If a] is the operation

in Remark 2.19 (i) with respect to e — 2 and if there exists a point in the sector from e — 1 to
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ein 71, we can consider @) as an operation to 7 after applying the operation in Remark 2.19
(i) with respect to e to 7, and denote this by ;. Similarly we determine a, - - - , a,, and if
necessary, applying the operation in Remark 2.19 (i) with respect to e after a,, we have 75:

Ti=TOL . L 76—

Next suppose that v is not the exceptional vertex and the other vertex on the edge e — 2
is the exceptional vertex. In this case, we can demonstrate the statement by replacing “the
operation in Remark 2.19 (i) with respect to e — 2” in the above demonstration with “the
operation in Remark 2.19 (ii)”.

Finally suppose that the vertex v is the exceptional vertex. In this case, we set a; by
the operation in Remark 2.19 (ii) to 7V if a;. the operation in Remark 2.19 (ii) to 7"V,
Otherwise we consider a;. as an operation to 7, and put a; = a}. Then we have T5:

Ti=TOL . 76—

3. Examples and Proof of Theorem 1

In this section we first give examples of Theorem 1 and then give its proof. The statement
of Theorem 1 was given in the introduction.

ExampLE 3.1. We consider the case where A is a Brauer tree algebra in Example 2.1, that
is, A is associated to the following Brauer tree.

S S S S
o—L o2 =3 > 0

Sy

By Example 2.2, we have the two-sided tilting complex Dy isomorphic to the Rickard tree-
to-star complex 7 in D?(A).

P(S2) ® P(Vy)*
®
Dy : P(S4) ® P(V3)* - P(S3)® P(V3)" - AMp
® @
P(S5)® P(Vy)* P(S4) ® P(Vy)*
@ @
P(S3)® P(Vs)* P(S5)® P(Vs)*

Applying the operation in Theorem 1 (ii) to this two-sided tilting complex Dr, we have the
following two-sided tilting complex of A ® B°?-modules.

Ci: P(S2)®P(Vy) - AMp

This two-sided tilting complex coincides with the one constructed by Rouquier in [8]. This
complex is isomorphic to the following complex in D”(A ® B°P), where the middle term is
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the injective hull of M.

P(S1)® P(Vy)*
@D
P(S2)® P(Vy)* P(S3)® P(Vy)*
@D
- P(Sy)eP(V3)" - AQ 7 Mp
@
P(S4)® P(Vy)*
@D
P(S5)® P(Vs)*
Applying the operation in Theorem 1 (i) to this two-sided tilting complex, we have the
following two-sided tilting complex of A ® B°’-modules.
P(S1) @ P(V1)*
5]
C: P(S3)® P(V,)* - AQ7 My
@
P(S4) ® P(Vy)*
@
P(S5)® P(Vs)"

To prove Theorem 1, we prepare the following lemma.

Lemma 3.2. Let M be an A ® B°P-module inducing a stable equivalence of Morita type
between A and B. If a complex obtained in Theorem 1

C:(...—)O—)Rl_lﬁ...ﬁRlﬁM—)Oﬁ...)

of A ® B°’-modules satisfies the following conditions for 0 < i,j<e—1andn > 0, then C
is a two-sided tilting complex inducing equivalences between D”(A) and D”(B) and between
K*(A) and K*(B):

k i=jandn =0,

HOl'l'th(A)(C B QZ]V, C ®pB QZiV[_n]) = .
0 otherwise.

Proof. Any simple B-module can be denoted by Q*V for 0 < i < e — 1, and Q*V #
Q%V for0 < i # j < e— 1. Hence, to show that C is a two-sided tilting complex of
A ® B°?-modules, it suffices to show the complex C satisfies the following three conditions
of Proposition 4.4 in [3] for0 <i,j<e—1:

(1) Foreach 1 <i <[1-1, R; is a projective A ® B°’-modules, and M is projective on
both sides,

(2) Hompy(pgpn(C* ®4 C, Q¥V ® Q¥V*) = §;k, where §;; is the Kronecker delta,

(3) Hompypgper (C* ®4 C, Q?V @ Q*V*[-n]) = 0 for any positive integer n.
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Condition 1 is clear. Also, since there is an isomorphism
Homps(ggper)(C* ®4 C, Q*V ® Q¥ V*[-n]) = Hompss)(C ®p Q¥ V*,C @ Q*V[-n])

for any positive integer n > 0, we have that C satisfies Condition 2 and Condition 3 by the
assumptions. Therefore C is a two-sided tilting complex. |

Remark 3.3. If M is an A ® B°’-module inducing a stable equivalence of Morita type
between A and B, then Q"M induces a stable equivalence of Morita type between A and
B too by [4, Proposition 2.9]. Hence even if the rightmost non-zero term of C is Q™M for
some n, we can use Lemma 3.2 to show that C is a two-sided tilting complex.

We will demonstrate first Theorem 1 (i) and then Theorem 1 (ii). Let D be a complex
of A ® B°’-modules given by applying the operations in Theorem 1 to Dy several times,
and suppose D is a two-sided tilting complex. First we will show that a complex C given
by applying the operation in Theorem 1 (i) to D once is a two-sided tilting complex in
Proposition 3.4. Next we will show that a complex C given by applying the operation in
Theorem 1 (ii) to D once is a two-sided tilting complex in Proposition 3.6.

Proposition 3.4. Let D be a complex of AQ B°P-modules given by applying the operations
in Theorem 1 to Dy several times, and suppose D is a two-sided tilting complex. Then a
complex C given by applying the operation in Theorem 1 (i) to D once is a two-sided tilting
complex

Proof. Let D be a complex obtained by applying the operations in Theorem 1 several
times to Dy, and suppose D is a two-sided tilting complex. Let C be a complex obtained by
applying the operation in Theorem 1 (i) to D once, and we show that C is a two-sided tilting
complex.

By Lemma 3.2 we shall show that for 0 < i, j < e —1 and n > 0 the complex C satisfies
the following conditions:

k ifi=jandn =0,

Homp4)(C @ Q*V,C @ Q¥ V[-n]) = _
0 otherwise.

By the construction of C, for each 0 < i < e — 1 we have C ®p Q2 = Q¥iS (1] in D*(A)
for some integer /;. Using this notation, we have the following isomorphisms:
Homps(4)(C ®5 Q*V, C ®p Q*V[-n]) = Hompss)(Q* S [1,], Q¥*S[1; — n])
= Hom () (Q*S, Q¥*iS [1; — I; — n]).
Hence we show
, , k ifi=jandn=0,
Hom sy (Q2*1S, QXIS [1; — I; - n]) = !
0 otherwise.

We divide into 3 cases: [; — [; — n is positive, negative and zero.

Cask 1. lj—ll-—n<0.
If i = j, then we have n # 0 by the assumption. Hence it suffices to show
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Hom s (Q**1S, Q¥HiS[1; — I, - n]) = 0.
However since /; — [; —n < 0, we have

Hom ) (Q21S, QS [1; — I — n]) = Ext"™"(Q¥*hs, Q2*is) = 0.
CasE 2. lj—ll‘—l’l:O.
Under the assumption /; — [; —n = 0, we have

Homyp ) (Q*iS, QS [1; — I; — n]) = Homa(Q**'S, QS
We shall show under the assumption /; — [; —n =0,

k ifi=jandn =0,

HomA(QZi+l,-S’ sz+l,-S) — '
0 otherwise.

Now we remark that if C®zQ*V 2 DRz Q% V, then we have D@ Q%' V = Q**i+1§[[;+1] or
D®pQ*V = Q?*i*25[], + 2] by the construction of C. If D®z Q*V = Q**i*1§[[; + 1], then
there is another integer 0 < i’ < e—1 different from i such that DR Q> V = Q' *lr+1§[[, +1]
uniquely. If D ®p Q*V = Q**i*2§[]; + 2], then for any 0 < j < e — 1 different from i we
have D ®3 Q%V = C ®3 QYV.

Suppose D ®p Q¥V = Q¥*i*2§[[; + 2]. Then by [3, Proposition 5.3] we know that
D ®z Q%V is of the form

>0 PU) > PU) > - > Q" 50— -+,

where the leftmost nonzero term P(U) is in the degree /; + 2, that is, D®3 Q' V is isomorphic
to the stupidly truncated complex 0s;,412Po(Q?S) of P,(Q*S) at [; + 2. Moreover we know
that D ®5 Q*V =C @5 Q*V for any j € {0,1,---,e — 1} — {i}. Since top Q**i*1§ = U =
soc Q?*i*1S and U is not adjacent to the exceptional vertex, the vertex corresponding to
Q?*i*15 is on an end of the Brauer tree. Hence the vertex corresponding to Q**%S coincides
with the one to Q**i*2§ by Remark 2.6. Since P(U) is a projective cover of Q%*iS  we
have top Q**iS = U. Now suppose Homy (Q**iS Q%*/*iS) # 0 for some j # i. By the
construction of C, we have soc Q**iS % U = top Q**iS because injective hulls of U in
the degree [; + 2 and in /; + 1 are the deleted terms and D ®p Q¥V = C @z Q¥V. Hence by
Lemma 2.8 the vertex corresponding to Q**%S coincides with the one to Q%/*'iS . Therefore
we have the vertex corresponding to Q2ixlir2g isomorphic to D ®p Q?'V[-1; — 2], coincides
with the one to Q?/*§, isomorphic to D ®p QV[-1 i1, which implies that

Homp4)(D ®5 Q*V, D @5 Q¥V[-n'1) # 0 or Hompe(a)(D ® Q¥V, D @5 Q*V[-n']) # 0

forn” = |l; - [; - 2|. Since i # j, this contradicts to the fact that D is a two-sided tilting com-
plex. Therefore we have Homy(Q**iS, Q%+i§)=0. Moreover we have
Homy (Q¥*S, Q%) = 0 similarly. Also since the vertex corresponding to Q**iS co-
incides with the one to Q**/*2S which is non-exceptional vertex, by Lemma 2.6 we have
Hom, (Q**iS, Q%S = k.

Next we assume that if C®5 Q*V # D®p Q%V then D ®p Q*'V = Q21§ []; + 1]. Then
there is another j # i such that if C®Q*V 2 DRQ*V then D@ Q¥ V = Q¥Hi+IS[];+1].
We divide into 4 cases:
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Case2.1. C® Q*V = D Q%V and C ®5 Q>V = D @5 Q¥ V.
In this case, since D is a tilting complex, it is clear that the complex C has the required
properties.

Case2.2. C® Q*V # D Q%V and C ®5 Q*V % D @5 Q¥V.

We remark that the assumption implies that D ® Q*V = Q**i*1S[[; + 1], D ® Q¥V =
Q%*L*1S[1; + 1] and that soc Q¥*i*1S = U = soc Q¥/**1S.

First, suppose i = j. To show Hom,(Q**iS,Q%*i§) = k, we only need to show that
a point corresponding to the uniserial module Q**4S is not on the exceptional vertex by
Lemma 2.8. By the assumption the socle of the uniserial module Q***1S isomorphic to U
is not adjacent to the exceptional vertex. Since there is an isomorphism

socC QZH-I,'-FIS ~ tOp Q2I+I[S,

the top of the uniserial module Q**%S is not adjacent to the exceptional vertex. In particular
the point corresponding to the uniserial module Q%*S is not on the exceptional vertex.

Next suppose i # j. By the construction of C, we have [; = [; — 1 or [; = [; — 1, but by the
assumption that /; —[; —n = 0 and that n > 0, the case it may occur is only the case [; = [; -1
and n = 1. Now by the construction of C, we have

top Q?hiS = soc Q¥iHS = U = soc QP S = top QFFS.

Hence we can denote the points corresponding to Q%*S and Q**iS by (U, U;) and (U, U))
respectively. If the vertices on which these points are coincide, then these points coincide.
Hence the vertex corresponding to Q?*i*1S and the one corresponding to Q?/*'i*1S coincide
too, which implies that

Hom s 4)(D ®p Q*V, D ® Q*V[-n]) = Hom,(Q* 1S, Q¥*i*lsy £ 0

for i # j. Since D is a two-sided tilting complex, this is a contradiction. Hence we only
need to show that U # U, to show that Hom4(Q**1S,Q%*iS) = 0 by Lemma 2.8. If
U = Uj, then Q¥*iS = U is a simple module. Also the injective hull of Q**iS is on the
degree [; = I; + 1 of Res}®#”C. Since by the simplicity of Q%**iS we have I(Q¥*iS) =
P(Q¥*S) = P(U), we have P(U) is on the degree /; of Res4®*"C. This is a contradiction
since we construct a complex C by deleting P(U) ® X’ in degree /; + 1 = [; and deleting
P(U) ® X in degree [; + 1 from D.

Case2.3. C® Q*V = Dz Q%V and C ®5 Q*V % D @5 Q¥V.

We remark that the assumption implies that D ®5 Q*V = Q**iS[[;], D ®p Q¥V =
Q%**1S[1; + 1] and that soc Q¥*i*1S = U. Also, we remark that the assumption implies
that i # j. Hence we show that Hom, (Q**%S, Q%**1iS) = 0. Since D is a tilting complex and
since [; —[; —n =0, fori # j we have
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Hom, (sz,- s, Q2+l S) = Ext}, (in+1,- s, Qi+li+l S)
~ Home(A)(in+liS, Qi+l [1])
= Homp(4)(Q* S, QIS [1; — [ = n + 1])
= Hom (s (Q*iS [1,], QYIS [ — n + 1))
= Homp(4)(D ®p Q*V, D ® Q¥ V[-n])
= 0.

Hence, if Homy(Q%*iS, Q%*liS) # 0, then there is a non-zero homomorphism in
Homy (Q**iS, P(top Q¥*iS)) = Hom, (Q*S, P(soc Q%/*it18)).

In particular, the uniserial module Q**S includes soc Q**l*1S = U as a composition fac-
tor. Hence the vertex corresponding to Q%*%S is adjacent to U. Moreover by the construc-
tion of C, there exists an integer ¢ different from i and j satisfying that D@zQ>V = Q>+t §[I!]
with soc Q¥*iS = U = soc Q¥*i*1S for some integer /;. Hence the uniserial modules
Qg QLS and QS which are isomorphic to D ®p Q¥ V[-1;], D®p Q¥ V[-1; - 1]
and D ®p Q*V[-[/], correspond to the vertices adjacent to U respectively. Since the num-
ber of the vertices adjacent to U is just two, at least two of these uniserial modules Q**4S,
Q2*i+ls and Q%S have a common corresponding vertex, which implies that there is a
non-zero homomorphism between these two modules. Hence we have

Hom 4 (D ®p Q*'V, D ®p Q*2V[-n']) # 0

for some xi, x, € {i, j,t} with x; # x, and some n’ > 0, but this contradicts to the fact that D
is a two-sided tilting complex.

Case2.4. C®p Q¥V 2 D@ Q¥V and C 85 Q¥V = D @5 Q¥V.

We remark that the assumption implies that D ®p Q*V = Q?*i*1S[[; + 1], D®z Q¥V =
Q2lig|1 ;i1 and that soc Qi+l ~ 7. Assume Homy (Q**4S, Q%/*S) # 0. Then Q**lS
has top Q%S = soc Q**i*1§ = U as a composition factor. Also, by the construction of
C, there exists an integer ¢ different from i and j satisfying that D @z Q*V = Q**iS[l/]
with soc Q%*'S = U for some integer /.. Since all of the three uniserial modules Q**i*1§,
Q2*iS and Q**!S , isomorphic to D ® Q*V[-1; — 1], D ®z Q*V[-1;] and D @ Q*V[-1;]
respectively, have U as composition factors, all the vertices corresponding to these uniserial
modules are adjacent to the edge U. In particular, at least two of these uniserial modules
must have a common corresponding vertex. Hence we have

Hompu)(D ®p Q*'V, D ®p Q*2V[-n']) # 0

for some xi, x, € {i, j, t} with x| # x, and some n’ > 0, but this contradicts to the fact that D
is a two-sided tilting complex.

Case3.l;-1li—n>0.
In this case, we have
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Hom ) (QhS, Q27 [1; — I — n]) = Ext]""(@2*hs, Q¥*is)
= Hom, Qg QR+l gy
= Hom, (S, Q*V"7*"S).
Hence we show that
k ifi=jandn =0,

Hom (S, Q00 = .
0 otherwise.

If C ®3 Q¥V 2 D ®p Q*V, then we have D @ Q*V = Q**i*1S[]; + 1] or D ®p Q*V =
Q?*l*251; + 2], but we only show the statement under the first situation, the other being
similar as in Case 2.

Case 3.1. C® Q¥V = D Q*V and C @5 Q¥V = D@5 Q¥V.
In this case, since D is a two-sided tilting complex, it is clear that the complex C has the
required properties.

Case 3.2. C®5 Q¥V 2 D Q¥V and C ®5 Q%V 2 Dy Q¥V.
By the assumption, we have

D®p Q¥V = Q* 1S [l + 1]and D @ Q¥V = QYIS + 1].
Hence we have
HomA(S, QZ(j—i)+nS) ~ HomA (Q2i+l,-+IS’ Q2j+lj+1—(lj—l;—n)S)

~ Ethj_li_n(Q2i+li+lS sz+lj+1S)
=~ Ext] ,
= Hom 4, (Q* S, Q¥H* S [1; — 1, — n))
= Homp(4)( QS [ + 11, QYIS 1 + 1 - n))
= Homp(a)(D ®5 Q*V, D @ Q¥ V[-n])

~ {k if i = jandn =0,

0 otherwise.

Casi 3.3. C®p Q¥V = D Q¥V and C @5 Q¥V 2 D @y QV.
We have i # j and

D&y 'V = Qi [l;]and D ®p Q¥V = QIS + 1].
Hence since D is a two-sided tilting complex we have
Hom, (S, QUG = Iﬂ)_mA(QZi+lfS, Q2 1=Ui=l=n+ D g )
~ Exti(_l[_n+1(£22i+liS, Q27+ S)
= Homp4)(Q*S, QIS 1, — [ = n + 1])
= Homp4) QS [1,], Q%S [ + 1 = n])
= Homp(4)(D ®p Q*V, D ®p Q¥ V[-n])
=0.
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Case3.4. C®5 Q*V 2 Dz Q%V and C ®5 Q*V = D@y Q¥V.
We have i # j and
D ®p Q*V = QIS + 1]and D @5 Q¥V = Q**S[1;].

First, suppose [; — [; —n > 1. Then since D is a two-sided tilting complex and since /; — [; —
n—1> 0, we have

HOII]A(S’ Qz(j—i)+nS) ~ HomA(QZi+l,’+1 S, sz+lj_(lj_li_n_])S)

~ lj—l;—n—l
= Ext,

(Q2i+l,-+lS QZj+ljS)
= Homp4)(Q* S, Q¥*iS 1, — [ = n = 1])
= Homp(4)( QS [1; + 11, QYIS [1; — n)
= Hom (4, (D ®p Q*'V, D @ Q¥ V[-n])
=0.
Next, suppose [; — [; —n = 1. Then we have
Hom, Q1S Q¥*S) = Hompp () (Q* 1S, Q¥ VS [1; — [ = n — 1)
= Hom (s (Q* S [1; + 11, QYIS [1; - n)
= Hompp(4)(D ®5 Q*'V, D @5 Q' V[-n])
=0.
Hence we have
Hom, (S, Q*V79*"§) = Hom, (S, Q*V=7*7i-1g)
~ HomA(Q2i+li+lS, QZj+ljS)
=0.

We prepare the following lemma before we demonstrate Proposition 3.6.

Lemma 3.5. Let D be a complex obtained by applying the operations in Theorem
(i) and Theorem 1 (ii) several times and let I; be the integer satisfying that D ®p Q2y
Q2iFlg (/] and let Uy, Us, - - - , U, be all simple modules adjacent to the exceptional vertex.
If soc Q**iS e {Uy,U,,---,U,} and D is a two-sided tilting complex, then we get the
following.

R —

(1) The vertex corresponding to Q**i~1S s the exceptional vertex. In particular,
soc Q1S € (U, Us, -+, Uy b

(2) The vertex corresponding to Q**i=2S is a non-exceptional vertex.

(3) Suppose i # j and soc Q¥*iS, soc Q¥iS € (Uy,Us,---,U,). If soc QXS
soc Q¥ | then soc Q¥ +i-1S % soc QYIS

Proof. (1) Suppose soc Q**iS is adjacent to the exceptional vertex. Then we have
top Q**i~1S is adjacent to the exceptional vertex too since I(Q**iS) = P(Q**i~15). Also
we have
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End,(Q**S) = Endpes)(Q* S [1]])
= Endpua)(D @5 Q*V)
= Endp5(Q*V)
=~ Endg(Q*V)

since D is a two-sided tilting complex. By simplicity of Q*V, we have dim Endg(Q*V) = 1.
If soc Q**i~1S is not adjacent to the exceptional vertex, then the vertex corresponding to
the uniserial module Q%*iS is the exceptional vertex since top Q**i~1§ =soc Q**S is
adjacent to the exceptional vertex. This contradicts the fact that D is a two-sided tilting
complex. Hence soc Q**i~1S is adjacent to the exceptional vertex. Since Q**%~1S has the
adjacent top and socle to the exceptional vertex, the vertex corresponding to the uniserial
module Q**i1§ is the exceptional vertex.

(2) Since the point corresponding to Q**i~1S is the exceptional vertex by (1), we have
the vertex corresponding to Q%*~2§ is a non-exceptional vertex by Remark 2.7.

(3) Suppose soc Q**i~1§ = soc QY*i71S | Since soc QXS is adjacent to the exceptional
vertex, by (1), soc Q**i~1§ = soc Q¥*i71g is adjacent to the exceptional vertex. Also, since
top Q¥*i~1§ = soc Q2+ S and top QYIS = soc QFS, top Q2+i-1S and top QFTS
are adjacent to the exceptional vertex. Hence the vertex corresponding to Q**i~1S and the
one corresponding to Q% *i71S are the exceptional vertex by Remark 2.7, which implies that
Q2+li=1g = OY*LS since soc Q2Hi-1S = soc Q¥*7'S . Therefore we have

soc QXS = top Q¥*i71S = top QYIS = soc QYIS

O

Proposition 3.6. Let D be a complex of AQ B°P-modules given by applying the operations
in Theorem 1 to Dy several times, and suppose D is a two-sided tilting complex. Then a
complex C given by applying the operation in Theorem 1 (ii) to D once is a two-sided tilting
complex.

Proof. Let D be a complex obtained by applying the operations in Theorem 1 several
times to Dy, and suppose D is a two-sided tilting complex. Let C be a complex obtained by
applying the operation in Theorem 1 (ii) to D once, and we show that C is a two-sided tilting
complex. In the same way as the proof of Theorem 1 (i), we have C ®p Qv = Q**hiS (1]
for some integer /; for each 0 < i < e — 1 and we show

' ; k ifi=jandn =0,
Home(A)(QZHI"S, Q2]+ljS [l] _ ll‘ _ I’l]) _ 11 J n
0 otherwise.

We divide into 3 cases: [; — [; — n is positive, negative and zero.

Casel. l;-1;—n<0.
We can show Hom ps4(Q%*S, Q%/*liS [1; — I; — n]) has required properties as is the case
with the proof of Theorem 1 (i).

Case2.l;-1li—n=0.
We shall show under the assumption /; — [; —n =0,
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HomA(Q2i+liS’QZj+ljS) — koifi= ].andn = O,
0 otherwise.
Case2.1. C®p Q¥V = D@y Q*V and C 85 Q¥V = D @5 Q¥V.
In this case, since D is a two-sided tilting complex, it is clear that the complex C has the
required properties.

Case2.2. C®p Q¥V 2 D®p Q¥V and C @5 Q¥V 2 D @ Q¥V.

We remark that the assumption implies that D ®p Q*V = Q?*i*2§[[; + 2] and that
D Qg Q¥V = Q%*i*281 i+ 2]. Also since I (Q%*i*28) and I(Q*/*1*2S) are deleted terms,
by the definition of C, soc Q**i*2§ and soc Q?/*li*2S are adjacent to the exceptional vertex,
and are not isomorphic to each other.

First, suppose i = j. To show Homy(Q**1S, Q**iS) = k, we only need to show that
the point corresponding to the uniserial module Q**%S is not on the exceptional vertex by
Lemma 2.8. Since soc Q%**2§ is adjacent to the exceptional vertex, we have the vertex
corresponding to Q**S is a non-exceptional vertex by Lemma 3.5 (2).

Next suppose i # j, and we show Hom4(Q**iS, Q%/*li§) = 0. Since soc Q***2§ and
soc Q%/*i*25 are not isomorphic to each other and are adjacent to the exceptional vertex,
by Lemma 3.5, we have soc Q**i*1§ 2 soc Q%/*i*1S and these two simple modules are
adjacent to the exceptional vertex. Also, by the isomorphisms top Q**i§ = soc Q**itlg
and top Q%*lS =soc Q¥*i*1S we have top Q%*iS and top Q%S are adjacent to the ex-
ceptional vertex and are not isomorphic to each other. In particular, since two uniserial
modules Q**S and Q**S have mutually non-isomorphic top which are adjacent to the
exceptional vertex and the corresponding vertices are not exceptional vertex, the two ver-
tices corresponding to these two uniserial modules do not coincide. Hence we only need
to show that top Q**iS % soc Q%/*'iS to show Hom,(Q**iS, Q**iS) = 0 by Lemma 2.8.
But if soc Q**i*1S is not an end of the Brauer tree or equivalently I(soc Q%*/i*18) is not
uniserial, then soc Q**%iS is not adjacent to the exceptional vertex because the vertex corre-
sponding to Q**i*1S is the exceptional vertex by Lemma 3.5. Also, since soc Q**/*1§ is
adjacent to the exceptional vertex, top Q**iS§ = soc Q**i*1§ is adjacent to the exceptional
vertex. Hence top Q%*%S which is adjacent to the exceptional vertex can not be isomorphic
to soc Q¥*LS . Also if soc Q%*1*1S is an end of the Brauer tree then Q**iS is a simple
module since I(soc Q**/*18) is a uniserial module. Hence we have

soc QS = top QTS = soc QLS % s0c QYIS = top QTS

Case2.3. C® Q¥V = D@y Q%V and C @5 Q¥V 2 D @5 Q¥V.

We remark that the assumption implies that D ®p QYy = Q¥hS[1],D ®p Q¥YV =
Q%/*1i*28[1;+2] and that soc Q%/*/i*2§ is adjacent to the exceptional vertex. Also, we remark
that the assumption implies that i # j. Hence we show that Hom,(Q%*iS, Q**iS) = 0.
Since D is a two-sided tilting complex,
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Hom s 4)(D ®5 Q*V, D @5 Q*V[-n]) = 0
& Hompsy)(Q**1S, QY28 1, — I, —n+2]) = 0
& Ex(Q¥hs, Q2*#28) =
& Hom , (Q¥*5, Q2*is) = 0,
here the second equivalence comes from /; — [; — n = 0. By the last equation, if there exists
a non-zero homomorphism ¢ : Q**i§ — Q2?/*li§  then it factors through P(Q%/*iS).

¢

Q2i+lig Q2tlig

o~

P(QZj+ljS)

By this decomposition, we have that Q>*iS has soc P(Q**iS)=top P(Q*/*iS)=
top Q**/iS as a composition factor, which is adjacent to the exceptional vertex by the def-
inition of C. Also by the construction of C again, since top P(Q**/iS) is adjacent to the
exceptional vertex, there exists an integer 0 < ¢ < e — 1 satisfying

D Q¥V = Q¥i§[I'] and soc Q'S = top Q¥*liS,

here the vertex corresponding to Q**%S is not the exceptional vertex. Since soc Q%*i§
is not adjacent to the exceptional vertex, we have i # ¢ and the vertex corresponding to
Q%S is not the exceptional vertex. Since these two vertices must be adjacent to the edge
corresponding to top Q**%i§ and since they are not exceptional, they must coincide. Hence
it holds

Hom s (D ®5 Q*V, D @5 Q*V[-1']) # 0 or Hompp (D ®p Q*V, D @ Q*V[-n']) # 0

for some n’ > 0 since D@z Q¥ V = Q**i§[I'] and since D®Q*V = Q**i§[1;]. This contra-
dicts to the fact that D is a two-sided tilting complex. Therefore we have
Homy, (Q¥*+iS, Q*iS) = 0.

Case2.4. C®p Q¥V 2 DR Q*V and C @5 Q¥V = D @ Q¥ V.

We remark that the assumption implies that DRpQ>V = Q?*i*28[[;42], that D@z Q*V =
Qs |l ;1 and that top Q?*i§ is adjacent to the exceptional vertex. Also, we remark that
the assumption implies that i # j. Hence we show that Hom4(Q**S, Q%/*iS) = 0. Suppose
Hom, (Q**iS, Q%*1iS) # 0. Then Q%*i§ has top Q**iS as a composition factor. In partic-
ular the vertex corresponding to Q%*/i§ is adjacent to the edge corresponding to top Q>+ .
Now for top Q%*iS there exists an integer 0 < ¢ < e—1 such that D®Q>V = Q**1S[I'] and
that soc Q¥+ S = top Q**/iS . For this integer ¢, we have t # j since D®z Q*S % C @5 Q*S
and D®g Q%S = CezQ¥S. By Lemma 3.5 (1), soc Q2+i-1g g adjacent to the exceptional
vertex. Hence for Q**S | we have top Q**S is not adjacent to the exceptional vertex and
not simple, or have Q**1S is simple. In any case, we have the vertex corresponding to
Q%S is on an end of the edge top Q**/S and it is not exceptional vertex. Also the vertex
corresponding to Q%*!i§ is on the edge top Q**iS and is not exceptional vertex because
soc Q%% S is not adjacent to the exceptional vertex. Hence the vertex corresponding to
Q%S coincides with the one corresponding to Q%*'iS (not necessarily the points coin-
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cide). Hence we have
Hom(Q**s, Q%*i§) # 0 and Hom(Q**1i§, Q**"1§) # 0.
Therefore it holds
Hom(D ®5 Q*V, D ®5 Q*S[-n']) # 0 or Hom(D ®5 Q*V, D ®5 Q*S[-n']) # 0
for some n” > 0 but this contradicts to the fact that D is a two-sided tilting complex.

Case3.l;-1li—n>0.
In this case, we have

Hom 4 (Q2hS, QS [1; - I; — n]) = Ext Q2+, Qs
~ I{C)_mA(in+lfS, QUi g
= Hom, (S, Q*V70""§).
Hence we show that
k ifi=jandn =0,

Hom, (S, Q*V79*8) = )
0 otherwise.

Case3.1. C® Q¥V = D Q*V and C ®5 Q¥V = D @5 Q¥V.
In this case, since D is a two-sided tilting complex, it is clear that the complex C has the
required properties.

Case 3.2. C Q5 Q¥V 2 D Q¥V and C @5 Q¥V 2 Dy QV.
We have

D ®p Q¥V = Q25 (1, + 2] and D ®p Q¥V = Q2§ + 2]
as in the Case 2.2. Hence we have
HomA(S, QZ(j*i)JrnS) ~ HomA(in+li+2S, QZj+lj+27(ljfl,-fn)S)
~ Extlj—l,-—n (QZi+l,~+ZS 92j+lj+28)
= Ext, ,
= HomDh(A)(Q2i+li+2S, QZj+lj+2S [lj - li - n])
= Hom 4, (Q* 28 [1; + 2], QY28 [1; + 2 — n])
= Homp(4)(D ®p Q*V, D ®p Q¥ V[-n])
_ {k ifi=jandn =0,

0 otherwise.
Case 3.3. C Q5 Q¥V 2 D Q¥V and C ®5 Q¥V = D @y QV.
We have
D®p Q*V = Q25 (1 + 2], D ®p Q¥V = QYIS [l] and i # j

as in the Case 2.3.
First, suppose /; — [; —n > 3. Then since [; — [; —n —2 > 1 and since D is a two-sided
tilting complex, we have the following isomorphisms:
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HomA(S, Q2(j—i)+nS ) ~ HomA(in+li+2S’ sz+lj—(l/—li—n_2)S)
lj—li—n-2 i+l i+l

A/ (QZ +l,+2S’92]+ljS)

= Hompp4) Q28 Q¥ S [1; — I, - n - 2])
= Homp(4) Q28 [1; + 21, Q¥*US[1; — nl)
= Hompo(s)(D ® Q*V, D @5 Q*V[-n])

=0.

= Ext

Next, suppose /; — [; —n = 2. Then since D is a two-sided tilting complex, we have
Homy, (Q**1%25, Q¥*i§) = Homp ) (Q*2S [1; + 21, QYIS [1; — n])
= Homp 1) (D ®p Q*V, D ® Q*V[-n])
=0.
Therefore we have
Hom, (S, Q*"7*"S) = Hom (S, Q% >*7i2g)

— HomA(QZi+li+25’ Q2j+l_,-S)
=0.

Finally, suppose /; — [; —n = 1. Since the vertex corresponding to the uniserial module
Q?*li*1g is the exceptional vertex by Lemma 3.5, any composition factor of Q**/*1S is ad-
jacent to the exceptional vertex. Hence if Hom, (Q**i+1S Q%/*iS) # 0, then soc Q%/*S is
adjacent to the exceptional vertex.  However since Q¥*iS[/;] is isomorphic to
C ®p Q¥V = D ®5 Q¥V this is a contradiction to the construction of C. Hence we have
Hom, (Q**i*1S Q2/*i§) = 0. In particular, we have

Hom, (S, Q*"7*"S) = Hom (S, Q*/""*7i"1g)
~ HomA(Q2i+l,~+1S, Q2j+ljS)
=0.

Casie 3.4. C R Q¥V = D Q¥V and C ®5 Q¥V 2 Dy QV.
We have

D®p Q¥V = Q*™iS[1], D ®p Q¥ V = Q¥**2S[1; + 2] and i # j

as in the Case 2.4. Hence since D is a two-sided tilting complex we have
Hom, (S, QUG = H()_mA(Qz”h S, Q22U limn+2) gy

Z—lf—nﬂ (szi s, Q2i++2 S)
= Homp4)(Q*S, Q28 [1; — [ — n + 2])
= Hom 4, (Q*5S [1,], Q¥ *2S [1; + 2 — n])
= Homp4)(D ®p Q*V, D ®p Q¥ V[-n])
=0.

= Ext
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4. Example and Proof of Theorem 2

In this section, we will show that the two-sided tilting complexes given in Section 3 are
isomorphic to some Rickard-Schaps tree-to-star complexes in D”(A). Moreover, we state
how the corresponding pointings on the Brauer tree change when we apply the operations in
Theorem 1 to the two-sided tilting complexes.

We fix the following notation.

Nortation 4.1. We associate two-sided tilting complexes obtained in Theorem 1 to pointed
Brauer trees. Let Dy be a two-sided tilting complex isomorphic to the Rickard tree-to-star
complex 7T in D’(A). First we associate Dy to the pointed Brauer tree which corresponds to
the Rickard tree-to-star complex, that is, 7p, in Notation 2.11. Second suppose we have a
two-sided tilting complex D obtained by applying operations in Theorem 1 (i) and Theorem
1 (ii) to Dy several times and the pointed Brauer tree associated to 7p. If a two-sided
tilting complex C is obtained by applying an operation in Theorem 1 (i) to D, and let U
be the simple module with respect to the deleted terms, we define a pointed Brauer tree 7¢
associated to C to be a pointed Brauer tree given by moving the points on both end of the
edge U along the reverse Green’s walk.

Tp Tc

If a two-sided tilting complex C is obtained by applying an operation in Theorem 1 (ii) to
D, we define a pointed Brauer tree 7¢ associated to C to be a pointed Brauer tree given by
moving the all points on the non-exceptional vertices of edges adjacent to the exceptional
vertex along the reverse Green’s walk twice.

RemARrk 4.2. By Remark 2.21 for any pointed Brauer tree of the Brauer tree 7 we can get
it by applying “the moving points operations” of Notation 4.1 to 7p,. Therefore if we find
operations on two-sided sided tilting complexes corresponding to foldings, starting with the
two-sided tilting complex Dy, we can construct a two-sided tilting complex corresponding
to any Rickard-Schaps tree-to-star complex.

By using Notation 4.1, we rewrite Theorem 2 as follows.

Theorem 4.3. Let C be a two-sided tilting complex of A ® B°P-modules, let T¢c be a
pointed Brauer tree in Notation 4.1, and let T¢ be the Rickard-Schaps tree-to-star complex
associated to the pointed Brauer tree T¢. Then we have C = T¢ in D’(A).
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ExampLE 4.4. We know that the two-sided tilting complex Dy described in Example 3.1
is isomorphic to the Rickard-Schaps tree-to-star complex in Example 2.16. By Theorem
4.3 the two-sided tilting complex C; described in Example 3.1 is isomorphic to the Rickard-
Schaps tree-to-star complex in Example 2.17 and the two-sided tilting complex C, described
in Example 3.1 is isomorphic to the Rickard-Schaps tree-to-star complex in Example 2.18.

By using this notation, we give a correspondence between two-sided tilting complexes
obtained in Theorem 4.3 and Rickard-Schaps tree-to-star complexes.
To prove Theorem 4.3, we fix the following notation.

Noration 4.5. Let T¢ be a pointed Brauer tree associated to a two-sided tilting complex C
of A ® B°?-modules, and let T¢(S;) be an indecomposable summand of the Rickard-Schaps
tree-to-star complex associated to 7¢ corresponding to an edge S; including the projective
module P(S;). For a point r; of T¢ corresponding to the edge S, that is, the farther point
on the edge S; from the exceptional vertex, we denote by Uc(S;) or by Uc(r;) a uniserial
module of Notation 2.4 associated to the point, that is, the uniserial module with its structure
given by turning around the vertex adjacent to the point in the cyclic ordering from the point,
and we denote by [c(S;) or by [¢(r;) the degree in which P(S;) is for T¢(S ;).

RemMark 4.6. We remark the following.

(i) Let Tp be a pointed Brauer tree and suppose we get a pointed Brauer tree 7¢ by moving
two points r; and r, of 7p on the both ends of an edge not adjacent to the exceptional
vertex along the reverse Green’s walk. Then Q! Ur,(r)) = Uy (r;) fori=1,2.

(ii) Let Tp be a pointed Brauer tree and suppose we get a pointed Brauer tree 7¢ by moving
all points r; of Tp on the edges adjacent to the exceptional vertex twice along the reverse
Green’s walk. Then Q~2U7, (r;) = Uz.(r;) for all i.

We prepare the following two lemmas before we prove Theorem 4.3.

Lemma4.7. Let I be a basic symmetric algebra, and let P, be a one-sided tilting complex
of T'-modules with endomorphism ring a basic algebra A. For any simple A-module U, if a
two-sided tilting complex C of I' ® A°P-modules satisfies the following conditions, then C is
isomorphic to P, in D*(T):

k n=0,

Hompy (P, C ®p Ulnl) =
oo A 0 otherwise.

Proof. Let F : D’(I') — D’(A) be an equivalence induced by the one-sided tilting
complex P,. By the assumption, we have F(C ®, U) is a one-dimensional A-module. In
particular, it is a simple A-module. Also let G : D’(A) — D’(T') be the equivalence induced
by the two-sided tilting complex C. Then since any simple A-module U is sent to C ®, U
by G, U is sent to a simple A-module by F' o G. Hence the restriction of F' o G to A-mod
induces a Morita equivalence A-mod — A-mod. In particular (F o G)(A) = A. Therefore
we have

F(C®\A)=(FoG)A)=A=F(P,).

Since F is an equivalence we conclude C ®, A = P, in D’(I). |
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Lemma 4.8. Let So,S1, - ,S._1 be all simple A-modules. Under the Notation 4.5, we
have

i=Jl=1c(Sy),

k
Homgs4)(Tc(S ), Uc(S DI = ,
0 otherwise.

Proof. Fix an edge § ;.

First we assume i = jand [ = [¢(S ), and we show that Homgs4)(Tc(S ), Uc(S DIIc(S )
= k. Since the simple module § ; appears only once as a composition factor of Uc(S ), we
have Homu(P;, Uc(S j)) = k, where we put P; = P(S ;). Also, for a pointed Brauer tree
Tc, we defined the vertex corresponding to the edge S ; by the farther vertex of the edge
S ; from the exceptional vertex. Hence Uc(S ;) does not have any simple module S, with
d(S;) < d(S ;) as a composition factor (see the following figure), which implies that for any
such simple module S; we have Homy (P, Uc(S,)) = 0 and have Homy (P;, Uc(S §)) = 0.

Also for such simple module S, by the construction of 7¢(S;), it includes the only projective
modules associated to simple modules of distance smaller than the one of S ;, and does not
include P;. Therefore we have

Homgs4y(Tc(S j), Uc(S plic(S 1) = Homy (P, Uc(S ) =k,

and have for any simple module S, with d(S,) < d(S;) and [ € Z, or for §; = §; and
[ # 1c(S j) we have

Homgs4)(Tc(S 1), Uc(S pIID = 0.

Also for any / € Z and for an edge S; on the different interval from the one on which §; is,
we have similarly

Homgs4)(Tc(S}), Uc(S HII) = 0.

We have shown that Homgs4)(Tc(S ), Uc(S j)[1]) has the required properties in case d(S ;)
< d(S ;) and in case S is on the different interval from the one on which § ; is. Hence fixing
S j, we show that Homgs4)(Tc(S ), Uc(S )II) = 0 for §; on the same interval as S ; with
d(S;) > d(S;) and for all [ € Z. If d(S;) > d(S ;) + 1, then Homy(P;, Uc(S j)) = O by the
earlier argument. Hence it suffices to show Homgs4)(Tc(S;), Uc(S j)[I]) = O for any simple
module S; on the same interval as S ; with d(S;) = d(S ;) + 1 since a summand T¢(S;) of T¢
is obtained by adding projective module P;. We denote a numbering of S ; and §; given by
the pointed Brauer tree 7¢ by nc(S ;) and nc(S;)(see Algorithm 2.13).
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Cask 1. I/lc(S,') > nc(Sj)
We remark that by the assumption nc(S;) > nc(S ), a point corresponding to S ; must be
in a sector from S ; to S ;.

First we assume [ = Ic(S ):

Pj——P

|

Uc(Sj) ——0.

Since Uc(S ;) is a uniserial module whose all composition factors are different and has the
structure as above, for any non-zero homomorphism ¢ : P; — Uc(S ;) there exists a homo-
morphism ¢ : P; — Uc(S ;) such that it makes the following diagram commutative.

Pj—>Pi

| A

Uc(S )

Therefore we have Homges4)(Tc(S ), Uc(S )Ilc(S ) = 0.

Next for [ # Ic(S ;) we show Homgs4)(Tc(S ), Uc(S )II]) = 0. However all composition
factors of Uc(S ;) are adjacent to S ; and can not be a simple module of distance d(S ;) — 1,
hence it suffices to show that Homgs4)(Tc(S ), Uc(S pllc(S ;) — 1]) = 0.

P P;
0——=Uc(S))

By the structure of Uc(S ;) the composition of a non-zero homomorphism P; to P; and a non-
zero homomorphism P; and Uc(S ;) is non-zero. To make above diagram commutative, the
vertical map must be zero map. Therefore we have Homgos4)(T¢(S ), Uc(S )lIc(S ) — 11) =
0.

CAsE 2. I’lc(S,') < nc(Sj)
By the assumption nc(S;) < nc(S ), a point corresponding to S ; must be in a sector from
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Sj Si
Hence the uniserial module Uc(S ;) has composition series as below

SitOSj.

S

Si

By the similar argument of Case 1, we have it suffices to show that Homgs4)(Tc(S)),
Uc(S Nllc(S HI) = 0 and Homgwa)(Tc(S ), Uc(S HIlc(S j) + 11) = 0. But the dual proof of
Case 1 shows that Homgsua)(Tc(S:), Uc(S HIc(SHD =0 and Homgs(Tc(S)),
Uc(S Dllc(S ) + 11) = 0. o

Lemma 4.9. Let Dy be a two-sided tilting complex of A ® B°P-modules isomorphic to the
Rickard tree-to-star complex in D*(A) and let C be a two-sided tilting complex of A ® B°P-
modules obtained by applying operations in Theorem 1 (i) and Theorem 1 (ii) to Dy several
times. For each point r in T¢ let Uc(r) be a uniserial module in Notation 4.5. Then, for each
uniserial module Q**iS satisfying that C @ Q¥V = Q**LS[1;] for some 1;, Q¥*iS =
Uc(rj) and lj = Ic(r;) for some point r ;.

Proof. If C = Dy, then it is clear by [3, Proposition 5.3], [3, Lemma 5.5] and [3, Corollary
5.6]. Let D be a two-sided tilting complex of A ® B°’-modules obtained by applying oper-
ations in Theorem 1 (i) and Theorem 1 (ii) to Dy several times, and satisfying the required
properties. Then it suffices to show that a two-sided tilting complex C obtained by apply-
ing the operation in Theorem 1 (i) or Theorem 1 (ii) to D just once satisfies the required
properties.

First, suppose C is obtained by applying the operation in Theorem 1 (i) to D just once,
and denote the simple module which the deleted term is associated to by U. Moreover we
denote deleted terms by P(U) ® P(Q*V)* and P(U) ® P(Q*V)* where P(U) ® P(Q*V)*
is a direct summand of the leftmost non-zero term, and where P(U) ® P(Q*V)* is a direct
summand of the second leftmost non-zero term. Then we have isomorphisms

C®p 'V = Q*™ig[1] and C ®p Q¥V = Q¥*is[1}]

for some /; and /;. We consider the case i # j. Then we have [; = [; — 1. Also for the pointed
Brauer tree 7p, we denote the points on the both ends of U by r; and r, where r| is the
farther point from the exceptional vertex. By the assumption, we have

QXS =~ Upn(r), I+ 1 = Ip(ry)
and

QYIS = Up(r), 1 + 1 = Ip(r).
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Now for moved points r; and r;, in T¢ from those in 7 along the reverse Green’s walk, we
have Uc(ry) = Q'Up(r)) and Uc(ry) = Q'Up(r;) by Remark 4.6. Hence we have the
following isomorphisms:

Qs = Q7 Up(ry) = Uc(ry) and QY58 = Q7' Up(ry) = Uc(ry).

A movement along the reverse Green’s walk of the points on the both ends of U implies that
folding of P(U) in the one-sided tilting complex corresponding to the pointed Brauer tree 7p,
that is, —2 shift of P(U). Hence we have l¢c(r;) = [c(U) = Ip(U)-2 = Ip(r))-2 =;+1-2 =
li—1 = I; since the point in 7 corresponding to the edge U is ry, and the one in 7¢ is r». Also
the point 7, in 7p and r; in 7¢ do not correspond to U, we have lc(r1) = Ip(rn) = [j+ 1 = ;.
Also if i = j then the point r| is on an end of the Brauer tree 7p and Q2Up(ry) = Uc(ry).
Also we have C @5 Q¥V = Q**liS[l;] and D ®5 Q*V = Q**i*25[[; + 2] in this case. The
similar argument shows that the uniserial module Q**/S and the integer /; have the required
properties.

Next, suppose C is obtained by applying the operation to D in Theorem 1 (ii) just once,
and denote all projective modules associated to simple modules adjacent to the excep-
tional vertex by P(U,), P(U,),--- , P(U;_1) and P(U,). By the construction of C, we have
C ®p QYV = QY*iS[l;] and D ®p Q¥V = Q*i*28[1; + 2] for 1 < j < t. Moreover,
by the assumption, we have Q***2S = Up(r;) and [; + 2 = Ip(rj) for 1 < j < t. Since
a pointed Brauer tree 7¢ is obtained by moving all the points of 7 on the edges adjacent
to the exceptional vertex, that is, moving them along the reverse Green’s walk twice, we
have Uc(rj) = Q2 Up(rj) by Remark 4.6. Therefore we have Qs = Q72 Up(rj) =
Uc(r;j). Also, the one-sided tilting complex corresponding to 7¢ is obtained by —2 shifts of
P(Uy), P(U3),- - ,P(Us,—1) and P(U,) in the one-sided tilting complex corresponding to 7p.
Therefore we have Ic(rj) = Ip(rj) =2 =1[;for1 < j <t ]

Proof of Theorem 4.3. By Lemma 4.7 it suffices to show that

, k n=0,
Hompo4)( @ Tc(S ), C ® Q¥V[n]) = {0 otherwise.

0<i<e-1
By Lemma 4.9
Homgo4( EB Tc(S 1), C ® QY Vn]) = Hom g 4( @ Tc(S), Uc(rpllc(rj) +n])
0<i<e-1 0<i<e-1

for some point r; in 7¢. Since by Lemma 4.8

k r;corresponds to S; and n = 0,
Homgsa)(Tc(S ), Uc(rpllc(r)) +n]) = .
0 otherwise,

we have the statement. ]
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