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Abstract
In this paper, we give a sufficient condition for a (weakly reducible) Heegaard splitting to be
unstabilized and uncritical. We also give a sufficient condition for a Heegaard splitting to be
critical.

1. Introduction

All 3-manifolds in this paper are assumed to be compact and orientable. All surfaces in
3-manifolds are assumed to be properly embedded and orientable.

Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression
bodies V and W with § = 0, W = 0.V, then we say M has a Heegaard splitting, denoted by
M =V Ug W;and S is called a Heegaard surface of M. Moreover, if the genus g(S) of S is
minimal among all Heegaard surfaces of M, then g($) is called the genus of M, denoted by
g(M). If there are essential disks B ¢ V and D c W such that 9B = 9D (resp. BN dD = 0),
then V Ug W is said to be reducible (resp. weakly reducible). Otherwise, it is said to be
irreducible (resp. strongly irreducible). If there are essential disks B ¢ V and D c W, such
that |[BN D] = 1, then M = V Ug W is said to be stabilized; otherwise, M = V Ug W is said
to be unstabilized. If a surface F in a 3-manifold M is incompressible and not parallel to
OM, then F is said to be essential. If a separating surface F' in M is compressible on both
sides of F/, then F is said to be bicompressible. If every compressing disk in one side of F
intersects every compressing disk in the other side, then F is said to be strongly irreducible.
If F is incompressible except for [0F], then F is said to be almost incompressible; if F is
bicompressible except for [0F], then F is said to be almost bicompressible; if F is strongly
irreducible except for [0F], then F is said to be almost strongly irreducible, where [0F] is
the isotopy class of dF.

Let M be a 3-manifold, and S be a closed separating compressible surface in M. § is said
to be critical (see [1]), if the compressing disks for S can be partitioned into two sets Cy and
C1, and there is at least one pair of disks V;, W; € C; (i = 0, 1) on opposite sides of S, such
that V,NW; = 0, and if V € C; and W € C,_; lie on opposite sides of S, then VN W = 0.
If S is not critical, then § is said to be uncritical. There are some examples, see [2]-[4],
[8]-[10].

Let S be a closed surface with g(S) > 2. The curve complex of S (see [5]) is the complex
whose vertices are the isotopy classes of essential simple closed curves on S, and k + 1

2010 Mathematics Subject Classification. 57M27, 57TM50, S7TN10.
The work is supported by the National Natural Science Foundation of China (No.11571110).



166 K. Du

vertices determine a k-simplex if they are represented by pairwise disjoint curves. If S is a
torus, the curve complex of S (see [11], [12]) is the complex whose vertices are the isotopy
classes of essential simple closed curves on S, and k + 1 vertices determine a k-simplex if
they can be represented by a collection of curves, any two of which intersect in only one
point. We denote the curve complex of S by C(S). For any two vertices in C(S), one can
define the distance dcs)(x, y) to be the minimal number of 1-simplices in a simplicial path
jointing x to y over all such possible paths.

If S is a surface with dS # 0, then we can define the curve complex C(S) of § and
dc(s)(x, y) for any two vertices x and y in C(§S) by the same way, where the vertex of C(S) is
the isotopy class of non-0-parallel essential simple closed curves on S. The distance of the
Heegaard splitting M = VUg W with g(S) > 2 (see [6]) is d(S) = Min{d¢s)(e,B) | @ bounds
adisk in V and B bounds a disk in W}. If S’ is an almost bicompressible subsurface of S,
then d(S”) = Min{d¢s(a,B) | @ bounds a disk in V and B bounds a disk in W} is said to be
local Heegaard distance of S’ respect to d(S) (see [7], [13]).

In this paper, we give a sufficient condition for a (weakly reducible) Heegaard splitting to
be unstabilized and uncritical. We also give a sufficient condition for a Heegaard splitting to
be critical as follows:

Theorem 1. Let M be a 3-manifold, M = V Ug W be a Heegaard splitting of M, D be
an essential disk in 'V such that 0D cuts S into an almost incompressible surface F and an
almost strongly irreducible surface S'. If d(S") > 5, then M =V Ug W is unstabilized and
uncritical.

Corollary 2. Let M be a 3-manifold, M = V Ug W be a Heegaard splitting of M, ¥ be
an essential simple closed curve on S which cuts S into an almost incompressible surface F
and an almost strongly irreducible surface S’. If d(S”) > 9, then M = VUg W is unstabilized.

Theorem 3. Let M be an irreducible 3-manifold, M = V Ug W be a Heegaard splitting
of M, D be an essential disk in 'V such that D cuts S into an almost incompressible surface
F and an almost strongly irreducible surface S’.

(1) If S is critical, then d(S") < 4.

(2) If there are two essential disks Dy C V and Dy C W, such that Dy is not isotopic to
D, Dy N D # O and Dy N Dy = 0, then S is critical.

2. The proof of Theorem 1

Firstly, we show that M = V Ug W is unstabilized. Assume on the contrary that M =
V Ug W is stabilized. Then, there are two essential disks Dy € V and Dy C W, such that
|DyNDy| = 1. So, there is an essential simple closed curve y on S which bounds an essential
disk D}, in V and an essential disk D}, in W such that the 2-sphere S* = D}, U D}, bounds a
once-punctured standard genus one Heegaard splitting of the 3-sphere (i.e. a 3-ball).

Proposition 4. y N oD # 0.

Proof. Assume on the contrary that y N dD = Q. If y is parallel to dD, then F and S’
lie in opposite sides of S”. Since F is almost incompressible, S’ lies in the 3-ball bounded
by S”. Then, S’ is a once-punctured torus. Hence, d(S’) < 1, a contradiction. So, y is a
non-d-parallel essential simple closed curve on F or S’. Since F is almost incompressible,
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vy liesin S’ and d(S’) = 0, a contradiction. |

By Proposition 4, we may assume that y N dD # 0 and |y N dD| is minimal. So, each
component of y NS’ (resp. y N F) is an essential arc on S’ (resp. F). Recall that y bounds
an essential disk D}, in V and an essential disk Dy, in W. If [y N S’| = |y N F| = n, then D},
(resp. DZV) is said to be an n-disk in V (resp. W).

Since D}, N D # 0, we may assume that each component of D}, N D is an arc on both D},
and D. Let & be a component of D}, N D. Then, « cuts a disk D, from Dy,. If intD, N D = 0,
then D, is said to be an outermost disk of D}, and « is said to be an outermost arc of
D}, n D on D}, Since F is almost incompressible, all outermost disks of Dy, lie in the
component of c¢l(V — D) which contains S’. Let Dy be an outermost disk of D%',. Then,
[0Dg N'S’| = |0Dg N D] = 1, and 0Dy N S’ is an essential arc on S’. Let [y = dDy NS’ and
l'1 = 0Dy N D. We push l'1 into 0D and denote it by l1 Let!! =, U l1 After isotopy, we
may assume that /' lies in S”’. Since /; is essential on S, I' is non-0-parallel essential on S’
and bounds an essential disk D; in V. So, dc(s/)(ll ,0D)) = 0.

If there is an essential disk Dj, in W with dD;, C S’, such that dDj, is non-0-parallel on S’
and disjoint from a component 4 of y N §’, then A cuts dD into two arcs h; and h/l. Leth! =
hUh,. After isotopy, we may assume that 4! lies in S’ and 4! NdD), = (. Since h is essential
on SI, hl is non—@—parallel onS’. SO, dc(s/)(hl,aDh) < 1. Since A N l] = 0, dc(g/)(hl, ll) <
2. So, d(§’) < dc(s,)(é?Dl,BDh) < dc<5/)((')D1,ll) + dc(sr)(ll,hl) + dc(sr)(//ll,aDh) < 3,a
contradiction.

By the argument as above, we may assume that for any essential disk D" in W with
ODY c S’ and any component ny of yNS’, if 3DV is non-d-parallel on S”, then DY Ny # 0.
If D;y,v (which is bounded by ) is a 1-disk in W, then |y N S’| = 1. Then, |D¥, NnD|=1.
Hence, there are two outermost disks of D?, which lie in different components of c/(V — D),
a contradiction. So, we may assume that Dy, is an n-disk with n > 2.

Proposition 5 ([2]). There are an essential disk Dy in W with Dy, C S” and a component
Iy of yNS’, such that Dy, is non-0-parallel on S’ and dc(sf)(lz, ODy) < 3, where I? is obtained
from I, by attaching a component of cl(dD — dl,), after isotopy, I> is non-0-parallel essential
onS’.

Proof. Recall that for any essential disk D" in W with D" < S’ and any component « of
oD}, NS’, if DY is non-9-parallel on S, then dD" N # 0. We may assume that [DV N D], |
is minimal among all essential disks in W, whose boundaries lie in S’ and are non-0-parallel.
So, each component of DY N D}, is an arc on both DV and DJ,,. Since [D" N D}, | is minimal,
and for each component & of dD},NS’, aNdDY # 0, both endpoints of each arc of D}, ND¥
on D}, lie in different components of D}, N S”. For each subdisk Dy, of D}, which is cut by
DV, if ﬁD'W contains m components or subcomponents of Dy, N S, then D/W is said to be
a pseudo m-disk. For each component a of 6D2,’V N S’, there are two components @ and a;
of D}, N F, which are adjacent to a. Let L, = {/ |/ is an arc of D}, n D" on D}, such that [
Na # 0}.

Suppose a € aDa, N S’ and [, is a component of L,. Then, [, cuts D{V into two disks D’
and D”. We may assume that D’ is a pseudo m;-disk, and D" is a pseudo m;-disk. Then,
my = n—my + 2, see Figure 1. If D’ (resp. D) is a pseudo 2-disk, then /, is said to be
d-parallel to D}, N F in D}, If all components of L, are d-parallel to dD}, N F in Dy, then



168 K. Du

X
mEla '@

Pseudo 2-disk Pseudo 3-disk

Fig.1. D’ and D" cut by [,

L, is said to be d-parallel to D}, N F in D,

Lemma 6. There are at least two components a and 3 of 8D¥V N S’, such that both L,
and Lg are d-parallel to (9D%,’V N Fin D‘yy.

Proof. If Dg’,‘, is an n-disk with n = 2, 3, then the Lemma holds, see Figure 2. So, we may
assume that Dy, is an n-disk with n > 4. If all components of D}, " D" on Dy, are 9-parallel
to 8D¥V N Fin D{V, then the Lemma holds. So, we may assume that there is a component k
of D}, " DY on D}, such that k; is not d-parallel to dD}, N F in D},,. Then, k; cuts D}, into
two disks D,lc and D}(r. Suppose D,i is a pseudo n;-disk and DI{ is a pseudo n1 -disk. Since k;
is not d-parallel to D}, N F in D}, 3 < ny, n'1 <n.

a

La(LB)

Fig.2. n-disk withn = 2,3

First, we consider D,](. Note that D}{ NnDY ¢ D%V NDY. If D}c is a pseudo 3-disk, then there
is only one component @ of BD}Q, NS’ on 8D,1, such that @ N k; = 0. Hence, L, is d-parallel
to 8D}, N F in D},. So, we may assume that D, is a pseudo n;-disk with 4 < ny < n. If
all components of D, N DV on D} are d-parallel to (9D}, N F) U k; in Dy, then there is a
component a of dD}, N S”, such that & N k; = 0 and L, is d-parallel to D}, N F in Dy,. So,
we may assume that there is a component k; of D}( NDY on D}C, such that k; is not d-parallel
to (8D¥V N F)Uk;in D}(. Then, k; cuts a disk DI% from D}C, such that aDi does not contain
k. Hence, D; n DY ¢ D, n DY ¢ D}, n DY.

Since k; is not d-parallel to (6D¥V N F) U k; in D!, we may assume that D,% is a pseudo
ny-disk with 3 < n; < n; < n. By the same argument as D!, either there is a component « of
dDy, N S’, which is disjoint from k,, such that L, is d-parallel to D}, N F in Dy, or there
is a component k3 of Di N DY on DI%, such that ks is not d-parallel to ((')D;, N F) Uk in
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Di. Then, k5 cuts a disk Dz from Di, such that 6DI§ does not contain k. Then, Di NnDY ¢
Di NnDY ¢ D}( Nn DY ¢ D}, N DY Since k3 is not d-parallel to (0D}, N F) U ky in D?, we
may assume that D,f is a pseudo n3-disk with 3 < n3 < ny < n; <n.

We continue this procedure as above, either there is a component « of aD{V N S’, such
that L, is d-parallel to D}, N F in D}, or there is a component k,, of D{""' N DV on D",
such that &, is not 0-parallel to ((9D¥V NF)Uk,_ in DZ"1 (m = 2). Then, k,, cuts a disk D
from DZH, such that 8Df does not contain k1. Hence, D} N DY ¢ Dk’"‘l NnNDV c..c
D, n DY ¢ D}, n DY. Since k, is not d-parallel to (8D}, N F) U ky,_; in D{*"', we may
assume that D}’ is a pseudo n,,-disk with 3 < n, < ny-y <--- <ny < n; < n. Since n is
finite, either there is a component « of ﬁD{V N S’, such that L, is d-parallel to 8D¥V N F in
D%,'V, or n, = 3. If D! is a pseudo ny,-disk with n,, = 3, then there is only one component «
of dD}, NS’, which is disjoint from &, such that L, is d-parallel to dD}, N F in D},,. Finally,
we obtain a component & of D}, N S’, such that L, is d-parallel to D}, N F in Dy,

Second, we consider D}('. By the same argument as D,'(, there is a component 5 (# «) of
dDy, N S’, such that Lg is 0-parallel to D}, N F in D},,. So, the Lemma holds. O

By Lemma 6, there is a component /; of 6D‘74, N S’, such that L;, is d-parallel to 6D{V NnF
in D{V. Let l/2 and l; be two components of (9D{V N F, such that 1'2 and lg are adjacent to /5.
Since |y N dD| is minimal, both [, and [, are essential on F.

Lemma 7. There is a 1-disk D' in W, such that (D' N'S’) N1, = 0, and D' N F is
parallel to l'2 or 12

Proof. Let k be a component of L;,. Since L, is 0-parallel to 8DZV N F in D%,, k cuts a
pseudo 2-disk D* from DY, If intD* N L, = 0, then D* is said to be an outermost disk of D},,,
and k is said to be an outermost arc of DV N D)v/v on D‘yd,. Let ki be a component of L;,, such
that k; is an outermost arc of D N Dﬁ, on D{V. Then, k; cuts an outermost disk D’f from
D}, such that intD¥ N L;, = 0. So, DX is a pseudo 2-disk. Since Ly, is d-parallel to 0D}, N F
in Dzv, we may assume that k; is parallel to l’z, where 1'2 is adjacent to [, on (')D;ﬁv. Note
that k; also cuts D" into two disks D} and D}". Let Dy, = D; U D! and D;CI =D, U D
Since k; is parallel to l'2 in D}, after isotopy, both Dy, N F and (9D}(] N F are parallel to 1/2.
Since [, is essential on F and F is almost incompressible, both 8Dy, N S’ and BD}(] NS’ are
essential on S’. Hence, Dy, and D;{] are 1-disks in W. After isotopy, |Dy, N\ Dy, | < ID¥'ND},|,
D, N Dyl <IDY N Dy, Dy, N D}, € DY N Dy, and D, N Dy, < DY N Dy,

Suppose | Dy, N D{VI < |D;{1 N Dm’ we only consider Dy,. Let L}Z = {k | k is a component
of D}, N Dy, on D}, such that kN, # 0}. Then, Lll2 C Ly,. Hence, Ll'2 is d-parallel to D}, N F
in D;,. If Lll2 =0,letD' = Dy, then LN (OD'NS’) = 0and D' NF is parallel to 1'2. Hence,
the Lemma holds. If L}z % 0, let k, be a component of le, such that k, is an outermost arc
of Dy, N D}, on D},. Then, k, cuts an outermost disk D4 from D},,, such that intD N Lll2 =0.
So, D’; is a pseudo 2-disk. Since L}z is 9-parallel to Dy, N F in D}, we may assume that k,
is parallel to 1'2, where l'2 is adjacent to [, in (')D‘a,. Let D,%' be a subdisk of Dy,, which is cut
by ky, such that 8D,%' does not contain Dy, N F, and Dy, = D’; U Di'.

By the same argument as Dy,, Dy, is a 1-disks in W and 0Dy, N F is parallel to l'2. After
isotopy, |Dx, N D},| < |Dy, N D},| < [DY N Dy | and Dy, N D}, € Dy, N Dy, € DY N D}, Let
L122 = {k | k is a component of D}, N Dy, on D}, such that k N I, # 0}. Then, lez C L}z cL.
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Hence, lez is 0-parallel to QD;, N Fin Dzv. By the same proof as Dy, either D' = Dy, such
that [, N (D' N'S") = 0 and D' N F is parallel to 1'2, or we obtain a 1-disk Dy, in W, such
that 8Dy, N F is parallel to [,, where [, is adjacent to I, in dD},, Dy, N D}, € Dy, N D}, &
Dy, N D}, ¢ DY n Dy, and {k | k is a component of D}, N Dy, on D}, such that k N [, #
0} = L132 c LIZ2 c L}z ¢ Lj,. Continue this procedure as above, since [D" N D}, | is finite,
finally, we obtain a 1-disk Dy, (m > 1) in W, such that Dy, N F is parallel to l’z, where
[, is adjacent to I, in D}, Dy, N D}, € Dy, , N DY}, ... € Dy, N DY}, ¢ DY N D}, and
0 = {k | k is a component of D}, N Dy, on D}, such that k NI, # 0} = Ly ¢ L;’;‘l C..C
L} C Ly, Let D' = Dy,. Then, ., N (D' NS’) = 0 and D' N F is parallel to /,. Hence, the
Lemma holds. m|

Lemma 8. If D' is a 1-disk in W, then there is an essential disk Dy in W with 0Dy C S,
such that D N D' = 0.

Proof. Assume on the contrary that for each essential disk Dy in W with dD, C S,
DN D' # (0. We may assume that |[D; N D'| is minimal among all essential disks in W with
0Dy C S’. If 0Dy is parallel to S, then |D; N D'| = 1. Let § = Dy N D'. Then, there is a
subdisk Dy of D' which is cut by 6, such that Ds contains D' N F. We can push § into F.
After isotopy, we denote D; by Dj. So, Dy is an essential disk in W with D C F and 0D
is not parallel to JF. It is a contradiction to the fact that F is almost incompressible.

So, we may assume that 9Dy is not parallel to dS’. Since |[D; N D'| is minimal, each
component of D; N D! is an arc on both D, and D'. Let A be an outermost arc of D' N D on
D!, such that A cuts a subdisk D, from D' with intD, N D; = 0, and 0D, does not contain
dD' N F. Also, A cuts Dy into D} and D7. Let D} = D, U D; and D = D, U D;. Since Dy
is essential in W with dD; C S’ and 0Dy, is not parallel to dS’, at least one of D}l and Dﬁ is
essential in W whose boundary lies in §” and is not parallel to S’. We may assume that D}
is essential in W with 6D; c S’ and 8D; is not parallel to dS’. So, |Djl ND!'| < |DyN D, a
contradiction. ]

By Lemma 7, we may assume that D! is a 1-disk in W, such that [, N (D' N S’) = 0,
and D' N F is parallel to l’z, where l'2 is adjacent to [, in (9D¥V and l/2 is essential on F. For
convenience, lety; = dD' NS’ andy, = D' NF. So, , Ny, = 0, and y, is parallel to /,. By
Lemma 8, there is an essential disk Dy in W with Dy, € S’, such that 0Dy Ny, = 0. Let > be
anon-g-parallel essential simple closed curve on S’, which is obtained from /, by attaching a
component of c/(OD —dl,), y' be a non-d-parallel essential simple closed curve on S, which
is obtained from vy, by attaching a component of c/(0D—dy;). Since [Ny, = 0, |2Ny'| < 1.
So, dC(SI)(lz,’)/l) < 2. Since 0Dy Ny; =0, 0D, N ’}/1 = (). Then, dc(gf)()/l,aDk) < 1. Hence,
dc(sl)(lz, oDy) < dc(s/)(lz, ’yl) + dc(sl)(’yl, 0Dy) < 3. So, the Proposition holds. O

By Proposition 5, there are an essential disk Dy in W with 0D, ¢ S’ and a component /,
of y N S’, such that Dy, is non-d-parallel on S’ and dC(S,)(lz, 0Dy) < 3, where I° is obtained
from [, by attaching a component of c/(OD — dl,), after isotopy, [? is non-0-parallel essential
on §’. Since both /; and , are components of y NS, [; N1, = 0. Then, |/' N %] < 1. Since [
bounds an essential disk D; in V with dD; C S’ and dD; is not d-parallel, there is an essential
disk D' in V with dD' c S’, such that D' is non-d-parallel on S’ and d¢(sH(0D', ) < 1. So,
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d(S") < des (0D, 0Dy) < de(s (0D, I*) + de(s (12, dDy) < 4, a contradiction.
Secondly, we show that the Heegaard surface S is uncritical. Assume on the contrary that
S is critical. Then, all compressing disks for S can be partitioned into two sets Cy and Cj,
and there is at least one pair of disks V;, W; € C; (i = 0, 1) on opposite sides of S, such that
VinW;=0,andif V € C; and W € C;_; lie on opposite sides of S, then VN W # 0.
We may assume that D lies in Cy, Dy and Dy lie in C; and Dy N Dy = 0. By definition,
D N Dy # 0. Since dD cuts S into an almost incompressible surface F* and an almost
strongly irreducible surface S’, by the argument as above, there are essential disks DV c V,
DY c W and a component [, C (dDw N S’), such that 9DV is non-d-parallel on S’, dDY is
non-d-parallel on S’, desH(0DY, ) < 1 and de(s (DY, ?) < 3, where I is obtained from
I, by attaching a component of cl(dD — 0l,), after isotopy, I> is non-d-parallel essential on
S’. So,d(S") < dc(s/)(aDV, BDW) < dc(sf)(aDV, 12) + dc(g/)(lz,aDW) < 4, a contradiction.
O

3. The proof of Corollary 2

Assume on the contrary that M = VUg W is stabilized. Then, there are two essential disks
Dy c Vand Dy C W, such that |Dy N Dy| = 1. So, there is an essential simple closed curve
v on S which bounds an essential disk D?, in V and an essential disk D;, in W such that the
2-sphere §7 = D}y, U DZV bounds a once-punctured standard genus one Heegaard splitting of
the 3-sphere (i.e. a 3-ball). By arguments similar to those for Proposition 4, we may assume
that y Ny # 0 and |y N | is minimal. So, each component of y NS’ (resp. y N F) is an
essential arc on S’ (resp. F).

If D}, (resp. Dy,) is a 1-disk in V (resp. W), then [y N S’| = 1. Let/ =y N S’. By Lemma
10 in [2], there are essential disks DV ¢ V and DV ¢ W, such that 9D is non-0-parallel
on S’, DY is non-d-parallel on S’, des (DY, 1') < 1 and dc(s(ODY,1') < 1, where [!
is obtained from [ by attaching a component of cl(y — dl), after isotopy, /! is non-d-parallel
essential on S”. So, d(S’) < dcs(@DY,0DY) < desH(ODY, 1Y) + desH(I',dDV) < 2, a
contradiction.

So, we may assume that Dj, (resp. Dy)) is an n-disk in V (resp. W) with n > 2. By
arguments in the proof of Theorem 1, there are essential disks DY c VvV, DY c W, and
components /; and [, of y N S”, such that D" is non-d-parallel on S’, DY is non--parallel
on S’, deish(ODY, 1) < 3 and de(s(ODY, 1) < 3, where I (i = 1,2) is obtained from /; by
attaching a component of cl(y — dl;), after isotopy, I is non-0-parallel essential on S’. Since
both /; and I, are components of yNS’, Iy NI, = 0. Then, [I' N | < 1. Hence, de(s(I', ) <
2. So, d(S") < dC(S/)(aDV,aDW) < dc(sf)(aDV,ll) + dc(s/)(ll,lz) =+ dc(s/)(lz,aDW) <38, a
contradiction. m|

4. The proof of Theorem 3

(1) By arguments in the proof of Theorem 1, if § is critical, then d(S”) < 4.

(2) For all compressing disks for S, we partition them into two sets Cy and C;. Let
VNCy = {D}, WNCy = {Dw| Dw is an essential disk in W and DyND = 0}, VNCy = {Dy| Dy
is an essential disk in V and Dy is not isotopic to D} and W N C; = {Dy/| Dy is an essential
disk in W and Dy N D # 0}. Since S’ is almost strongly irreducible, V N C; # @ and
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W N Cy # 0. Since there is an essential disk Dy ¢ W with Dy N D =0, WNC, # 0.

In Cy, for any disk D%, in W n Coy, D%, N D = (. In Cy, there are two essential disks
Dj, C (VN Cy) and D}, € (W N Cy), such that Dy, N D}, = 0. For any disk Dy, in W N Cy,
Dy, N D # 0. For any disks D), C (W N Co) and Dy, € (V N Cy), since M is irreducible, F
is almost incompressible and S’ is almost strongly irreducible, (9D?V lies in S’ and (9D€V is
non-d-parallel on S’. If D}, N D = 0, since S’ is almost strongly irreducible, D(av N D%, # 0.
If D{, N D # 0, we may assume that |D%, N D| is minimal and each component of D%, N D
is an arc on both D{, and D. Assume on the contrary that D(‘)V N D%, = (). By arguments in
the proof of Theorem 1, all outermost disks of D{/ lies in the component of c/(V — D) which
contains S’. Let Dy be an outermost disk of D%,. We can push 0Dy into S’. After isotopy, we
still denote it by Dy. Since dDy is non-d-parallel on S’ and D%, N Dy = 0, it is a contradiction
to the fact that S’ is almost strongly irreducible. |
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