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Abstract
In this paper, we give a sufficient condition for a (weakly reducible) Heegaard splitting to be

unstabilized and uncritical. We also give a sufficient condition for a Heegaard splitting to be
critical.

1. Introduction

1. Introduction
All 3-manifolds in this paper are assumed to be compact and orientable. All surfaces in

3-manifolds are assumed to be properly embedded and orientable.
Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression

bodies V and W with S = ∂+W = ∂+V , then we say M has a Heegaard splitting, denoted by
M = V ∪S W; and S is called a Heegaard surface of M. Moreover, if the genus g(S ) of S is
minimal among all Heegaard surfaces of M, then g(S ) is called the genus of M, denoted by
g(M). If there are essential disks B ⊂ V and D ⊂ W such that ∂B = ∂D (resp. ∂B∩ ∂D = ∅),
then V ∪S W is said to be reducible (resp. weakly reducible). Otherwise, it is said to be
irreducible (resp. strongly irreducible). If there are essential disks B ⊂ V and D ⊂ W, such
that |B ∩ D| = 1, then M = V ∪S W is said to be stabilized; otherwise, M = V ∪S W is said
to be unstabilized. If a surface F in a 3-manifold M is incompressible and not parallel to
∂M, then F is said to be essential. If a separating surface F in M is compressible on both
sides of F, then F is said to be bicompressible. If every compressing disk in one side of F
intersects every compressing disk in the other side, then F is said to be strongly irreducible.
If F is incompressible except for [∂F], then F is said to be almost incompressible; if F is
bicompressible except for [∂F], then F is said to be almost bicompressible; if F is strongly
irreducible except for [∂F], then F is said to be almost strongly irreducible, where [∂F] is
the isotopy class of ∂F.

Let M be a 3-manifold, and S be a closed separating compressible surface in M. S is said
to be critical (see [1]), if the compressing disks for S can be partitioned into two sets C0 and
C1, and there is at least one pair of disks Vi, Wi ∈ Ci (i = 0, 1) on opposite sides of S , such
that Vi ∩ Wi = ∅, and if V ∈ Ci and W ∈ C1−i lie on opposite sides of S , then V ∩ W � ∅.
If S is not critical, then S is said to be uncritical. There are some examples, see [2]–[4],
[8]–[10].

Let S be a closed surface with g(S ) ≥ 2. The curve complex of S (see [5]) is the complex
whose vertices are the isotopy classes of essential simple closed curves on S , and k + 1
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vertices determine a k-simplex if they are represented by pairwise disjoint curves. If S is a
torus, the curve complex of S (see [11], [12]) is the complex whose vertices are the isotopy
classes of essential simple closed curves on S , and k + 1 vertices determine a k-simplex if
they can be represented by a collection of curves, any two of which intersect in only one
point. We denote the curve complex of S by (S ). For any two vertices in (S ), one can
define the distance d(S )(x, y) to be the minimal number of 1-simplices in a simplicial path
jointing x to y over all such possible paths.

If S is a surface with ∂S � ∅, then we can define the curve complex (S ) of S and
d(S )(x, y) for any two vertices x and y in (S ) by the same way, where the vertex of (S ) is
the isotopy class of non-∂-parallel essential simple closed curves on S . The distance of the
Heegaard splitting M = V ∪S W with g(S ) ≥ 2 (see [6]) is d(S ) = Min

{
d(S )(α, β) | α bounds

a disk in V and β bounds a disk in W
}
. If S ′ is an almost bicompressible subsurface of S ,

then d(S ′) = Min
{
d(S ′)(α, β) | α bounds a disk in V and β bounds a disk in W

}
is said to be

local Heegaard distance of S ′ respect to d(S ) (see [7], [13]).
In this paper, we give a sufficient condition for a (weakly reducible) Heegaard splitting to

be unstabilized and uncritical. We also give a sufficient condition for a Heegaard splitting to
be critical as follows:

Theorem 1. Let M be a 3-manifold, M = V ∪S W be a Heegaard splitting of M, D be
an essential disk in V such that ∂D cuts S into an almost incompressible surface F and an
almost strongly irreducible surface S ′. If d(S ′) ≥ 5, then M = V ∪S W is unstabilized and
uncritical.

Corollary 2. Let M be a 3-manifold, M = V ∪S W be a Heegaard splitting of M, ψ be
an essential simple closed curve on S which cuts S into an almost incompressible surface F
and an almost strongly irreducible surface S ′. If d(S ′) ≥ 9, then M = V∪S W is unstabilized.

Theorem 3. Let M be an irreducible 3-manifold, M = V ∪S W be a Heegaard splitting
of M, D be an essential disk in V such that ∂D cuts S into an almost incompressible surface
F and an almost strongly irreducible surface S ′.

(1) If S is critical, then d(S ′) ≤ 4.
(2) If there are two essential disks DV ⊂ V and DW ⊂ W, such that DV is not isotopic to

D, DW ∩ D � ∅ and DW ∩ DV = ∅, then S is critical.

2. The proof of Theorem 1

2. The proof of Theorem 1
Firstly, we show that M = V ∪S W is unstabilized. Assume on the contrary that M =

V ∪S W is stabilized. Then, there are two essential disks DV ⊂ V and DW ⊂ W, such that
|DV∩DW | = 1. So, there is an essential simple closed curve γ on S which bounds an essential
disk Dγ

V in V and an essential disk Dγ
W in W such that the 2-sphere S γ = Dγ

V ∪ Dγ
W bounds a

once-punctured standard genus one Heegaard splitting of the 3-sphere (i.e. a 3-ball).

Proposition 4. γ ∩ ∂D � ∅.
Proof. Assume on the contrary that γ ∩ ∂D = ∅. If γ is parallel to ∂D, then F and S ′

lie in opposite sides of S γ. Since F is almost incompressible, S ′ lies in the 3-ball bounded
by S γ. Then, S ′ is a once-punctured torus. Hence, d(S ′) ≤ 1, a contradiction. So, γ is a
non-∂-parallel essential simple closed curve on F or S ′. Since F is almost incompressible,
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γ lies in S ′ and d(S ′) = 0, a contradiction. �

By Proposition 4, we may assume that γ ∩ ∂D � ∅ and |γ ∩ ∂D| is minimal. So, each
component of γ ∩ S ′ (resp. γ ∩ F) is an essential arc on S ′ (resp. F). Recall that γ bounds
an essential disk Dγ

V in V and an essential disk Dγ
W in W. If |γ ∩ S ′| = |γ ∩ F| = n, then Dγ

V
(resp. Dγ

W) is said to be an n-disk in V (resp. W).
Since Dγ

V ∩ D � ∅, we may assume that each component of Dγ
V ∩ D is an arc on both Dγ

V
and D. Let α be a component of Dγ

V ∩D. Then, α cuts a disk Dα from Dγ
V . If intDα ∩D = ∅,

then Dα is said to be an outermost disk of Dγ
V , and α is said to be an outermost arc of

Dγ
V ∩ D on Dγ

V . Since F is almost incompressible, all outermost disks of Dγ
V lie in the

component of cl(V − D) which contains S ′. Let D0 be an outermost disk of Dγ
V . Then,

|∂D0 ∩ S ′| = |∂D0 ∩ D| = 1, and ∂D0 ∩ S ′ is an essential arc on S ′. Let l1 = ∂D0 ∩ S ′ and
l
′
1 = ∂D0 ∩ D. We push l

′
1 into ∂D and denote it by l

′′
1. Let l1 = l1 ∪ l

′′
1. After isotopy, we

may assume that l1 lies in S ′. Since l1 is essential on S ′, l1 is non-∂-parallel essential on S ′

and bounds an essential disk Dl in V . So, d(S ′)(l1, ∂Dl) = 0.
If there is an essential disk Dh in W with ∂Dh ⊂ S ′, such that ∂Dh is non-∂-parallel on S ′

and disjoint from a component h of γ ∩ S ′, then h cuts ∂D into two arcs h1 and h
′
1. Let h1 =

h∪h1. After isotopy, we may assume that h1 lies in S ′ and h1∩∂Dh = ∅. Since h is essential
on S ′, h1 is non-∂-parallel on S ′. So, d(S ′)(h1, ∂Dh) ≤ 1. Since h ∩ l1 = ∅, d(S ′)(h1, l1) ≤
2. So, d(S ′) ≤ d(S ′)(∂Dl, ∂Dh) ≤ d(S ′)(∂Dl, l1) + d(S ′)(l1, h1) + d(S ′)(h1, ∂Dh) ≤ 3, a
contradiction.

By the argument as above, we may assume that for any essential disk DW in W with
∂DW ⊂ S ′ and any component η of γ∩S ′, if ∂DW is non-∂-parallel on S ′, then ∂DW ∩η � ∅.
If Dγ

W (which is bounded by γ) is a 1-disk in W, then |γ ∩ S ′| = 1. Then, |Dγ
V ∩ D| = 1.

Hence, there are two outermost disks of Dγ
V which lie in different components of cl(V − D),

a contradiction. So, we may assume that Dγ
W is an n-disk with n ≥ 2.

Proposition 5 ([2]). There are an essential disk Dk in W with ∂Dk ⊂ S ′ and a component
l2 of γ∩S ′, such that ∂Dk is non-∂-parallel on S ′ and d(S ′)(l2, ∂Dk) ≤ 3, where l2 is obtained
from l2 by attaching a component of cl(∂D−∂l2), after isotopy, l2 is non-∂-parallel essential
on S ′.

Proof. Recall that for any essential disk DW in W with ∂DW ⊂ S ′ and any component α of
∂Dγ

W∩S ′, if ∂DW is non-∂-parallel on S ′, then ∂DW∩α � ∅. We may assume that |DW∩Dγ
W |

is minimal among all essential disks in W, whose boundaries lie in S ′ and are non-∂-parallel.
So, each component of DW ∩Dγ

W is an arc on both DW and Dγ
W . Since |DW ∩Dγ

W | is minimal,
and for each component α of ∂Dγ

W∩S ′, α∩∂DW � ∅, both endpoints of each arc of Dγ
W∩DW

on Dγ
W lie in different components of ∂Dγ

W ∩S ′. For each subdisk D
′
W of Dγ

W which is cut by
DW , if ∂D

′
W contains m components or subcomponents of ∂Dγ

W ∩ S ′, then D
′
W is said to be

a pseudo m-disk. For each component α of ∂Dγ
W ∩ S ′, there are two components α1 and α2

of ∂Dγ
W ∩ F, which are adjacent to α. Let Lα = {l | l is an arc of Dγ

W ∩DW on Dγ
W , such that l

∩ α � ∅}.
Suppose α ∈ ∂Dγ

W ∩ S ′ and lα is a component of Lα. Then, lα cuts Dγ
W into two disks D′

and D′′. We may assume that D′ is a pseudo m1-disk, and D′′ is a pseudo m2-disk. Then,
m2 = n − m1 + 2, see Figure 1. If D′ (resp. D′′) is a pseudo 2-disk, then lα is said to be
∂-parallel to ∂Dγ

W ∩ F in Dγ
W . If all components of Lα are ∂-parallel to ∂Dγ

W ∩ F in Dγ
W , then
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Fig.1. D′ and D′′ cut by lα

Lα is said to be ∂-parallel to ∂Dγ
W ∩ F in Dγ

W .

Lemma 6. There are at least two components α and β of ∂Dγ
W ∩ S ′, such that both Lα

and Lβ are ∂-parallel to ∂Dγ
W ∩ F in Dγ

W.

Proof. If Dγ
W is an n-disk with n = 2, 3, then the Lemma holds, see Figure 2. So, we may

assume that Dγ
W is an n-disk with n ≥ 4. If all components of Dγ

W ∩DW on Dγ
W are ∂-parallel

to ∂Dγ
W ∩ F in Dγ

W , then the Lemma holds. So, we may assume that there is a component k1

of Dγ
W ∩ DW on Dγ

W , such that k1 is not ∂-parallel to ∂Dγ
W ∩ F in Dγ

W . Then, k1 cuts Dγ
W into

two disks D1
k and D1′

k . Suppose D1
k is a pseudo n1-disk and D1′

k is a pseudo n
′
1-disk. Since k1

is not ∂-parallel to ∂Dγ
W ∩ F in Dγ

W , 3 ≤ n1, n
′
1 < n.

Fig.2. n-disk with n = 2, 3

First, we consider D1
k . Note that D1

k∩DW
� Dγ

W∩DW . If D1
k is a pseudo 3-disk, then there

is only one component α of ∂Dγ
W ∩ S ′ on ∂D1

k , such that α ∩ k1 = ∅. Hence, Lα is ∂-parallel
to ∂Dγ

W ∩ F in Dγ
W . So, we may assume that D1

k is a pseudo n1-disk with 4 ≤ n1 < n. If
all components of D1

k ∩ DW on D1
k are ∂-parallel to (∂Dγ

W ∩ F) ∪ k1 in D1
k , then there is a

component α of ∂Dγ
W ∩ S ′, such that α ∩ k1 = ∅ and Lα is ∂-parallel to ∂Dγ

W ∩ F in Dγ
W . So,

we may assume that there is a component k2 of D1
k ∩DW on D1

k , such that k2 is not ∂-parallel
to (∂Dγ

W ∩ F) ∪ k1 in D1
k . Then, k2 cuts a disk D2

k from D1
k , such that ∂D2

k does not contain
k1. Hence, D2

k ∩ DW
� D1

k ∩ DW
� Dγ

W ∩ DW .
Since k2 is not ∂-parallel to (∂Dγ

W ∩ F) ∪ k1 in D1
k , we may assume that D2

k is a pseudo
n2-disk with 3 ≤ n2 < n1 < n. By the same argument as D1

k , either there is a component α of
∂Dγ

W ∩ S ′, which is disjoint from k2, such that Lα is ∂-parallel to ∂Dγ
W ∩ F in Dγ

W , or there
is a component k3 of D2

k ∩ DW on D2
k , such that k3 is not ∂-parallel to (∂Dγ

W ∩ F) ∪ k2 in
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D2
k . Then, k3 cuts a disk D3

k from D2
k , such that ∂D3

k does not contain k2. Then, D3
k ∩ DW

�

D2
k ∩ DW

� D1
k ∩ DW

� Dγ
W ∩ DW . Since k3 is not ∂-parallel to (∂Dγ

W ∩ F) ∪ k2 in D2
k , we

may assume that D3
k is a pseudo n3-disk with 3 ≤ n3 < n2 < n1 < n.

We continue this procedure as above, either there is a component α of ∂Dγ
W ∩ S ′, such

that Lα is ∂-parallel to ∂Dγ
W ∩ F in Dγ

W , or there is a component km of Dm−1
k ∩ DW on Dm−1

k ,
such that km is not ∂-parallel to (∂Dγ

W ∩ F) ∪ km−1 in Dm−1
k (m ≥ 2). Then, km cuts a disk Dm

k
from Dm−1

k , such that ∂Dm
k does not contain km−1. Hence, Dm

k ∩ DW
� Dm−1

k ∩ DW
� ... �

D1
k ∩ DW

� Dγ
W ∩ DW . Since km is not ∂-parallel to (∂Dγ

W ∩ F) ∪ km−1 in Dm−1
k , we may

assume that Dm
k is a pseudo nm-disk with 3 ≤ nm < nm−1 < · · · < n2 < n1 < n. Since n is

finite, either there is a component α of ∂Dγ
W ∩ S ′, such that Lα is ∂-parallel to ∂Dγ

W ∩ F in
Dγ

W , or nm = 3. If Dm
k is a pseudo nm-disk with nm = 3, then there is only one component α

of ∂Dγ
W ∩S ′, which is disjoint from km, such that Lα is ∂-parallel to ∂Dγ

W ∩F in Dγ
W . Finally,

we obtain a component α of ∂Dγ
W ∩ S ′, such that Lα is ∂-parallel to ∂Dγ

W ∩ F in Dγ
W .

Second, we consider D1′
k . By the same argument as D1

k , there is a component β (� α) of
∂Dγ

W ∩ S ′, such that Lβ is ∂-parallel to ∂Dγ
W ∩ F in Dγ

W . So, the Lemma holds. �

By Lemma 6, there is a component l2 of ∂Dγ
W ∩ S ′, such that Ll2 is ∂-parallel to ∂Dγ

W ∩ F
in Dγ

W . Let l
′
2 and l

′′
2 be two components of ∂Dγ

W ∩ F, such that l
′
2 and l

′′
2 are adjacent to l2.

Since |γ ∩ ∂D| is minimal, both l
′
2 and l

′′
2 are essential on F.

Lemma 7. There is a 1-disk D1 in W, such that (∂D1 ∩ S ′) ∩ l2 = ∅, and ∂D1 ∩ F is
parallel to l

′
2 or l

′′
2 .

Proof. Let k be a component of Ll2 . Since Ll2 is ∂-parallel to ∂Dγ
W ∩ F in Dγ

W , k cuts a
pseudo 2-disk Dk from Dγ

W . If intDk∩Ll2 = ∅, then Dk is said to be an outermost disk of Dγ
W ,

and k is said to be an outermost arc of DW ∩ Dγ
W on Dγ

W . Let k1 be a component of Ll2 , such
that k1 is an outermost arc of DW ∩ Dγ

W on Dγ
W . Then, k1 cuts an outermost disk Dk

1 from
Dγ

W , such that intDk
1 ∩ Ll2 = ∅. So, Dk

1 is a pseudo 2-disk. Since Ll2 is ∂-parallel to ∂Dγ
W ∩ F

in Dγ
W , we may assume that k1 is parallel to l

′
2, where l

′
2 is adjacent to l2 on ∂Dγ

W . Note
that k1 also cuts DW into two disks D1′

k and D1′′
k . Let Dk1 = D1′

k ∪ Dk
1 and D

′
k1
= D1′′

k ∪ Dk
1.

Since k1 is parallel to l
′
2 in Dγ

W , after isotopy, both ∂Dk1 ∩ F and ∂D
′
k1
∩ F are parallel to l

′
2.

Since l
′
2 is essential on F and F is almost incompressible, both ∂Dk1 ∩ S ′ and ∂D

′
k1
∩ S ′ are

essential on S ′. Hence, Dk1 and D
′
k1

are 1-disks in W. After isotopy, |Dk1∩Dγ
W | < |DW∩Dγ

W |,
|D′

k1
∩ Dγ

W | < |DW ∩ Dγ
W |, Dk1 ∩ Dγ

W � DW ∩ Dγ
W , and D

′
k1
∩ Dγ

W � DW ∩ Dγ
W .

Suppose |Dk1 ∩ Dγ
W | ≤ |D

′
k1
∩ Dγ

W |, we only consider Dk1 . Let L1
l2
= {k | k is a component

of Dγ
W∩Dk1 on Dγ

W , such that k∩ l2 � ∅}. Then, L1
l2
� Ll2 . Hence, L1

l2
is ∂-parallel to ∂Dγ

W∩F
in Dγ

W . If L1
l2
= ∅, let D1 = Dk1 , then l2∩ (∂D1∩S ′) = ∅ and ∂D1∩F is parallel to l

′
2. Hence,

the Lemma holds. If L1
l2
� ∅, let k2 be a component of L1

l2
, such that k2 is an outermost arc

of Dk1 ∩Dγ
W on Dγ

W . Then, k2 cuts an outermost disk Dk
2 from Dγ

W , such that intDk
2 ∩ L1

l2
= ∅.

So, Dk
2 is a pseudo 2-disk. Since L1

l2
is ∂-parallel to ∂Dγ

W ∩ F in Dγ
W , we may assume that k2

is parallel to l
′
2, where l

′
2 is adjacent to l2 in ∂Dγ

W . Let D2′
k be a subdisk of Dk1 , which is cut

by k2, such that ∂D2′
k does not contain ∂Dk1 ∩ F, and Dk2 = Dk

2 ∪ D2′
k .

By the same argument as Dk1 , Dk2 is a 1-disks in W and ∂Dk2 ∩ F is parallel to l
′
2. After

isotopy, |Dk2 ∩ Dγ
W | < |Dk1 ∩ Dγ

W | < |DW ∩ Dγ
W | and Dk2 ∩ Dγ

W � Dk1 ∩ Dγ
W � DW ∩ Dγ

W . Let
L2

l2
= {k | k is a component of Dγ

W ∩ Dk2 on Dγ
W , such that k ∩ l2 � ∅}. Then, L2

l2
� L1

l2
� Ll2 .
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Hence, L2
l2

is ∂-parallel to ∂Dγ
W ∩ F in Dγ

W . By the same proof as Dk1 , either D1 = Dk2 such
that l2 ∩ (D1 ∩ S ′) = ∅ and D1 ∩ F is parallel to l

′
2, or we obtain a 1-disk Dk3 in W, such

that ∂Dk3 ∩ F is parallel to l
′
2, where l

′
2 is adjacent to l2 in ∂Dγ

W , Dk3 ∩ Dγ
W � Dk2 ∩ Dγ

W �

Dk1 ∩ Dγ
W � DW ∩ Dγ

W , and {k | k is a component of Dγ
W ∩ Dk3 on Dγ

W , such that k ∩ l2 �
∅} = L3

l2
� L2

l2
� L1

l2
� Ll2 . Continue this procedure as above, since |DW ∩ Dγ

W | is finite,
finally, we obtain a 1-disk Dkm (m ≥ 1) in W, such that ∂Dkm ∩ F is parallel to l

′
2, where

l
′
2 is adjacent to l2 in ∂Dγ

W , Dkm ∩ Dγ
W � Dkm−1 ∩ Dγ

W � ... � Dk1 ∩ Dγ
W � DW ∩ Dγ

W , and
∅ = {k | k is a component of Dγ

W ∩ Dkm on Dγ
W , such that k ∩ l2 � ∅} = Lm

l2
� Lm−1

l2
� ... �

L1
l2
� Ll2 . Let D1 = Dkm . Then, l2 ∩ (D1 ∩ S ′) = ∅ and D1 ∩ F is parallel to l

′
2. Hence, the

Lemma holds. �

Lemma 8. If D1 is a 1-disk in W, then there is an essential disk Dk in W with ∂Dk ⊂ S ′,
such that Dk ∩ D1 = ∅.

Proof. Assume on the contrary that for each essential disk Dk in W with ∂Dk ⊂ S ′,
Dk ∩ D1 � ∅. We may assume that |Dk ∩ D1| is minimal among all essential disks in W with
∂Dk ⊂ S ′. If ∂Dk is parallel to ∂S ′, then |Dk ∩ D1| = 1. Let δ = Dk ∩ D1. Then, there is a
subdisk Dδ of D1 which is cut by δ, such that Dδ contains ∂D1 ∩ F. We can push δ into F.
After isotopy, we denote Dδ by D

′
δ. So, D

′
δ is an essential disk in W with ∂D

′
δ ⊂ F and ∂D

′
δ

is not parallel to ∂F. It is a contradiction to the fact that F is almost incompressible.
So, we may assume that ∂Dk is not parallel to ∂S ′. Since |Dk ∩ D1| is minimal, each

component of Dk ∩D1 is an arc on both Dk and D1. Let λ be an outermost arc of D1 ∩Dk on
D1, such that λ cuts a subdisk Dλ from D1 with intDλ ∩ Dk = ∅, and ∂Dλ does not contain
∂D1 ∩ F. Also, λ cuts Dk into D1

k and D2
k . Let D1

λ = Dλ ∪ D1
k and D2

λ = Dλ ∪ D2
k . Since Dk

is essential in W with ∂Dk ⊂ S ′ and ∂Dk is not parallel to ∂S ′, at least one of D1
λ and D2

λ is
essential in W whose boundary lies in S ′ and is not parallel to ∂S ′. We may assume that D1

λ

is essential in W with ∂D1
λ ⊂ S ′ and ∂D1

λ is not parallel to ∂S ′. So, |D1
λ ∩ D1| < |Dk ∩ D1|, a

contradiction. �

By Lemma 7, we may assume that D1 is a 1-disk in W, such that l2 ∩ (∂D1 ∩ S ′) = ∅,
and ∂D1 ∩ F is parallel to l

′
2, where l

′
2 is adjacent to l2 in ∂Dγ

W and l
′
2 is essential on F. For

convenience, let γ1 = ∂D1∩S ′ and γ2 = ∂D1∩F. So, l2∩γ1 = ∅, and γ2 is parallel to l
′
2. By

Lemma 8, there is an essential disk Dk in W with ∂Dk ⊂ S ′, such that ∂Dk∩γ1 = ∅. Let l2 be
a non-∂-parallel essential simple closed curve on S ′, which is obtained from l2 by attaching a
component of cl(∂D−∂l2), γ1 be a non-∂-parallel essential simple closed curve on S ′, which
is obtained from γ1 by attaching a component of cl(∂D−∂γ1). Since l2∩γ1 = ∅, |l2∩γ1| ≤ 1.
So, d(S ′)(l2, γ1) ≤ 2. Since ∂Dk ∩ γ1 = ∅, ∂Dk ∩ γ1 = ∅. Then, d(S ′)(γ1, ∂Dk) ≤ 1. Hence,
d(S ′)(l2, ∂Dk) ≤ d(S ′)(l2, γ1) + d(S ′)(γ1, ∂Dk) ≤ 3. So, the Proposition holds. �

By Proposition 5, there are an essential disk Dk in W with ∂Dk ⊂ S ′ and a component l2
of γ ∩ S ′, such that ∂Dk is non-∂-parallel on S ′ and d(S ′)(l2, ∂Dk) ≤ 3, where l2 is obtained
from l2 by attaching a component of cl(∂D− ∂l2), after isotopy, l2 is non-∂-parallel essential
on S ′. Since both l1 and l2 are components of γ∩ S ′, l1 ∩ l2 = ∅. Then, |l1 ∩ l2| ≤ 1. Since l1

bounds an essential disk Dl in V with ∂Dl ⊂ S ′ and ∂Dl is not ∂-parallel, there is an essential
disk Dl in V with ∂Dl ⊂ S ′, such that ∂Dl is non-∂-parallel on S ′ and d(S ′)(∂Dl, l2) ≤ 1. So,
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d(S ′) ≤ d(S ′)(∂Dl, ∂Dk) ≤ d(S ′)(∂Dl, l2) + d(S ′)(l2, ∂Dk) ≤ 4, a contradiction.
Secondly, we show that the Heegaard surface S is uncritical. Assume on the contrary that

S is critical. Then, all compressing disks for S can be partitioned into two sets C0 and C1,
and there is at least one pair of disks Vi, Wi ∈ Ci (i = 0, 1) on opposite sides of S , such that
Vi ∩Wi = ∅, and if V ∈ Ci and W ∈ C1−i lie on opposite sides of S , then V ∩W � ∅.

We may assume that D lies in C0, DV and DW lie in C1 and DV ∩ DW = ∅. By definition,
D ∩ DW � ∅. Since ∂D cuts S into an almost incompressible surface F and an almost
strongly irreducible surface S ′, by the argument as above, there are essential disks DV ⊂ V ,
DW ⊂ W and a component l2 ⊂ (∂DW ∩ S ′), such that ∂DV is non-∂-parallel on S ′, ∂DW is
non-∂-parallel on S ′, d(S ′)(∂DV , l2) ≤ 1 and d(S ′)(∂DW , l2) ≤ 3, where l2 is obtained from
l2 by attaching a component of cl(∂D − ∂l2), after isotopy, l2 is non-∂-parallel essential on
S ′. So, d(S ′) ≤ d(S ′)(∂DV , ∂DW) ≤ d(S ′)(∂DV , l2) + d(S ′)(l2, ∂DW) ≤ 4, a contradiction.

�

3. The proof of Corollary 2

3. The proof of Corollary 2
Assume on the contrary that M = V∪S W is stabilized. Then, there are two essential disks

DV ⊂ V and DW ⊂ W, such that |DV ∩DW | = 1. So, there is an essential simple closed curve
γ on S which bounds an essential disk Dγ

V in V and an essential disk Dγ
W in W such that the

2-sphere S γ = Dγ
V ∪ Dγ

W bounds a once-punctured standard genus one Heegaard splitting of
the 3-sphere (i.e. a 3-ball). By arguments similar to those for Proposition 4, we may assume
that γ ∩ ψ � ∅ and |γ ∩ ψ| is minimal. So, each component of γ ∩ S ′ (resp. γ ∩ F) is an
essential arc on S ′ (resp. F).

If Dγ
V (resp. Dγ

W) is a 1-disk in V (resp. W), then |γ ∩ S ′| = 1. Let l = γ ∩ S ′. By Lemma
10 in [2], there are essential disks DV ⊂ V and DW ⊂ W, such that ∂DV is non-∂-parallel
on S ′, ∂DW is non-∂-parallel on S ′, d(S ′)(∂DV , l1) ≤ 1 and d(S ′)(∂DW , l1) ≤ 1, where l1

is obtained from l by attaching a component of cl(ψ − ∂l), after isotopy, l1 is non-∂-parallel
essential on S ′. So, d(S ′) ≤ d(S ′)(∂DV , ∂DW) ≤ d(S ′)(∂DV , l1) + d(S ′)(l1, ∂DW) ≤ 2, a
contradiction.

So, we may assume that Dγ
V (resp. Dγ

W) is an n-disk in V (resp. W) with n ≥ 2. By
arguments in the proof of Theorem 1, there are essential disks DV ⊂ V , DW ⊂ W, and
components l1 and l2 of γ∩ S ′, such that ∂DV is non-∂-parallel on S ′, ∂DW is non-∂-parallel
on S ′, d(S ′)(∂DV , l1) ≤ 3 and d(S ′)(∂DW , l2) ≤ 3, where li (i = 1, 2) is obtained from li by
attaching a component of cl(ψ− ∂li), after isotopy, li is non-∂-parallel essential on S ′. Since
both l1 and l2 are components of γ∩ S ′, l1 ∩ l2 = ∅. Then, |l1 ∩ l2| ≤ 1. Hence, d(S ′)(l1, l2) ≤
2. So, d(S ′) ≤ d(S ′)(∂DV , ∂DW) ≤ d(S ′)(∂DV , l1) + d(S ′)(l1, l2) + d(S ′)(l2, ∂DW) ≤ 8, a
contradiction. �

4. The proof of Theorem 3

4. The proof of Theorem 3
(1) By arguments in the proof of Theorem 1, if S is critical, then d(S ′) ≤ 4.
(2) For all compressing disks for S , we partition them into two sets C0 and C1. Let

V∩C0 = {D}, W∩C0 = {DW | DW is an essential disk in W and DW∩D = ∅}, V∩C1 = {DV | DV

is an essential disk in V and DV is not isotopic to D} and W ∩C1 = {DW | DW is an essential
disk in W and DW ∩ D � ∅}. Since S ′ is almost strongly irreducible, V ∩ C1 � ∅ and
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W ∩C0 � ∅. Since there is an essential disk DW ⊂ W with DW ∩ D � ∅, W ∩C1 � ∅.
In C0, for any disk D0

W in W ∩ C0, D0
W ∩ D = ∅. In C1, there are two essential disks

D1
V ⊂ (V ∩ C1) and D1

W ⊂ (W ∩ C1), such that D1
W ∩ D1

V = ∅. For any disk D1
W in W ∩ C1,

D1
W ∩ D � ∅. For any disks D0

W ⊂ (W ∩ C0) and D1
V ⊂ (V ∩ C1), since M is irreducible, F

is almost incompressible and S ′ is almost strongly irreducible, ∂D0
W lies in S ′ and ∂D0

W is
non-∂-parallel on S ′. If D1

V ∩ D = ∅, since S ′ is almost strongly irreducible, D0
W ∩ D1

V � ∅.
If D1

V ∩ D � ∅, we may assume that |D1
V ∩ D| is minimal and each component of D1

V ∩ D
is an arc on both D1

V and D. Assume on the contrary that D0
W ∩ D1

V = ∅. By arguments in
the proof of Theorem 1, all outermost disks of D1

V lies in the component of cl(V −D) which
contains S ′. Let D0 be an outermost disk of D1

V . We can push ∂D0 into S ′. After isotopy, we
still denote it by D0. Since ∂D0 is non-∂-parallel on S ′ and D0

W∩D0 = ∅, it is a contradiction
to the fact that S ′ is almost strongly irreducible. �
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