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Abstract
We show that n-dimensional perfect fluid spacetimes with divergence-free conformal curva-

ture tensor and constant scalar curvature are generalized Robertson Walker (GRW) spacetimes;
as a consequence a perfect fluid Yang pure space is a GRW spacetime. We also prove that per-
fect fluid spacetimes with harmonic generalized curvature tensor are, under certain conditions,
GRW spacetimes. As particular cases, perfect fluids with divergence-free projective, concircu-
lar, conharmonic or quasi-conformal curvature tensor are GRW spacetimes. Finally, we explore
some physical consequences of such results.

1. Introduction

1. Introduction
Generalized Robertson-Walker spacetimes were introduced in 1995 by Alı́as, Romero and

Sánchez (see [1, 2]). A Lorentzian manifold M of dimension n ≥ 3 is named generalized
Robertson-Walker (GRW) spacetime if it is the warped product

M = I ×q2 M∗

with base (I,−dt2), warping function q and fiber (M∗, g∗), where M∗ is an (n − 1)-dimensio-
nal Riemannian manifold [1, 2, 34, 35].
If M∗ is a 3-dimensional Riemannian manifold of constant curvature, the spacetime is called
Robertson-Walker spacetime. Therefore, GRW spacetimes are a wide generalization of
Robertson-Walker spacetimes on which standard cosmology is modelled. They include the
Einstein-de Sitter spacetime, the Friedman cosmological models, the static Einstein space-
time, the de Sitter spacetime, and have applications as inhomogeneous spacetimes admitting
an isotropic radiation (see [34]). We refer to the works by Romero et al. [32, 33], Sánchez
[34], Gutiérrez and Olea [17], and the review [27] for an exhaustive presentation of geomet-
ric and physical properties.

The following deep result was recently proved by B-Y Chen (for similar results see the
works by Yano [40, 41] and the recent paper [8]):

Theorem 1.1 (Chen, [3]). Let (M, g) be an n-dimensional Lorentzian manifold, n ≥ 3.
The spacetime is a GRW spacetime if and only if it admits a timelike vector such that ∇kX j =

ρgk j.
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According to Yano, a vector field is named torse-forming if ∇kv j = ωkv j + fgk j, being
f a scalar function and ωk a non vanishing one-form, [40, 41]. Its properties in pseudo-
Riemannian manifolds were studied by Mikeš and Rachůnek, [28, 31]. The vector is named
concircular if ωk is a gradient.

Lorentzian manifolds with Ricci tensor of the form

Rkl = αgkl + βukul

where α, β are scalar fields and uk is a unit timelike vector (that is u ju j = −1), are called
perfect fluid spacetimes and are of interest in general relativity; in the language of pure dif-
ferential geometry they are named quasi-Einstein.
Riemannian quasi-Einstein spaces were investigated by Defever and Deszcz [9] and by
Chaki et al. [5] (see also [11]); pseudo-Riemannian quasi-Einstein spaces arose in the study
of exact solutions of Einstein’s equations and in the investigation of quasi-umbilical hy-
persurfaces of pseudo-Euclidean spaces [12, 13]. Robertson-Walker spacetimes are quasi
Einstein (see [4, 38] and references therein for details on these spacetimes; for further recent
results see [6]).
In paper [10] (Lemma 4.1, Theorem 4.1 and Corollary 4.1) R. Deszcz proved that a quasi-
Einstein Riemannian manifold with harmonic Weyl tensor is, under certain conditions, the
warped product I ×q2 M∗, where M∗ is a (n − 1)-dimensional Riemannian manifold of con-
stant curvature.
The Weyl tensor is the traceless part of the Riemann tensor [30]:

C jklm = Rjklm +
g jmRkl − gkmRjl + Rjmgkl − Rkmg jl

n − 2
− R
g jmgkl − gkmg jl

(n − 1)(n − 2)
,

where Rjl = Rjml
m and R = Rj

j. The number of algebraically independent components of the
Ricci and the Weyl tensors equals that of the Riemann tensor. Since in general relativity only
the Ricci tensor is coupled to matter by the Einstein equations, the Weyl tensor describes the
pure gravity degrees of freedom.

Perfect fluid spacetimes in four dimensions with divergence-free Weyl tensor (i.e.
∇mC jkl

m = 0) were firstly investigated by Shepley and Taub [37], and successively by
Sharma [36] and Coley [7]. Recently in [23] Mantica, Molinari and De extended some
results to n-dimensional perfect fluids and proved the following

Theorem 1.2 ([23], Theorem 2.1). Let (M, g) be a perfect fluid spacetime. If ∇ku j = ∇ juk

and ∇mC jkl
m = 0 then:

i) u j is a concircular vector field and it is rescalable to a timelike vector Xj such that

(1.1) ∇kX j = ρgk j and ∇kρ =
α − β
1 − n

Xk;

ii) (M, g) is a GRW spacetime whose fiber is Einstein, that is, R∗αβ =
R∗

n−1g
∗
αβ;

iii) the vector ui annihilates the Weyl tensor, that is,

(1.2) C jklmum = 0.

In [26] Mantica, De and Suh proved that a Ricci simple spacetime (that is, a Lorentzian
manifold for which the Ricci tensor takes the form Ri j = −Ruiu j) with vanishing divergence
of the Weyl tensor admits a proper concircular vector field and it is necessarily a GRW
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spacetime. Further it was shown that stiff matter perfect fluid spacetimes or massless scalar
fields with timelike gradient, with divergence-free Weyl tensor, are GRW spacetimes.

In the framework of Yang’s gravitational theory, Guilfoyle and Nolan [16] introduced the
notion of Yang pure space, i.e. an n-dimensional Lorentzian manifold with the properties
∇mC jkl

m = 0 and ∇kR = 0. They proved that a 4-dimensional perfect fluid spacetime with
p + μ � 0 is a Yang pure space if and only if it is a Robertson-Walker spacetime with state
equation p = μ3 + c, being c a constant.

The present paper is organized as follows. In section 2 we prove that for an n-dimensional
perfect fluid spacetime satisfying ∇mC jkl

m = 0 with constant scalar curvature, the condition
∇ku j = ∇ juk is implied and thus the space is a GRW spacetime. Therefore, the condition
∇kR = 0 is more stringent than the closedness of the covector u j. Next, we prove that
an n-dimensional perfect fluid spacetime with divergence-free generalized curvature tensor,
under certain conditions satisfies ∇mC jkl

m = 0 and ∇kR = 0, and thus is a GRW spacetime.
Generalized curvature tensors were introduced by Kobayashi and Nomizu [19]; they share
the algebraic properties of the Riemann and the Weyl tensors: Ki jkl = −Kjikl = −Ki jlk and
Ki jkl + Kjkil + Kki jl = 0.
As particular cases, perfect fluids with divergence-free projective, concircular, conharmonic
or quasi-conformal curvature tensor are GRW spacetimes. In section 3, we give a look to
some physical consequences of the above mentioned results.

2. Perfect fluid with harmonic generalized curvature tensor

2. Perfect fluid with harmonic generalized curvature tensor
We outline the main results of this section. We prove that an n-dimensional perfect fluid

spacetime with ∇mC jkl
m = 0 and ∇kR = 0 is a GRW spacetime. As a consequence, a

Yang pure space is a GRW spacetime. Next we consider perfect fluid spacetimes with a
generalized curvature tensor Kjkl

m with the property

∇m Kjkl
m = A∇mRjkl

m + B (gkl∇ jR − g jl∇kR).

We prove that if ∇mKjkl
m = 0 and either (i) A � 2B(n − 1) or (ii) A = 2B(n − 1) and

∇ku j = ∇ juk, then M is a GRW spacetime with Einstein fiber and with constant scalar
curvature in the case (i). As particular cases, we consider perfect fluids with vanishing
divergence of the projective, concircular or conharmonic curvature tensor.

Lemma 2.1. Let (M, g) be an n-dimensional manifold (n > 3) whose Ricci tensor is
Rkl = αgkl + βukul, where uk is a unit timelike vector, and β � 0. If the Weyl tensor is
divergence-free, ∇mC jkl

m = 0, and if ∇kR = 0, then u j is irrotational (i.e. ∇ku j = ∇ juk).

Proof. The divergence of the conformal curvature tensor is [21, 24]:

(2.1) ∇mC jkl
m =

n − 3
n − 2

[
∇kR jl − ∇ jRkl +

1
2(n − 1)

(gkl∇ jR − g jl∇kR)
]
.

The conditions ∇mC jkl
m = 0 and ∇kR = 0, give ∇kR jl − ∇lR jk = 0. Now we write the

covariant derivative of the Ricci tensor, and use the fact that R = nα−β, so that n∇kα = ∇kβ.
We obtain

∇ j(βukul) − ∇k(βu jul) = −1
n

(gkl∇ jβ − g jl∇kβ).(2.2)
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Transvecting it with ul and using ul∇kul = 0, we get

(2.3) β(∇ juk − ∇ku j) = −n − 1
n

(uk∇ jβ − u j∇kβ).

We show that the right hand side of (2.3) is zero. Transvecting (2.2) with g jl we obtain

ul∇l(βuk) + βuk∇lul = −1
n
∇kβ.

Further transvecting with uk gives −β∇lul = n−1
n ul∇lβ. The previous equation becomes:

(2.4) βul∇luk = −1
n

(∇kβ + ukul∇lβ).

On the other hand transvecting (2.2) with u jul we obtain

(2.5) −βul∇luk =
n − 1

n
(∇kβ + ukul∇lβ).

If β � 0, the equations (2.5) and (2.4) imply ul∇luk = 0 and

(2.6) ∇kβ + ukul∇lβ = 0.

Multiply this equation by u j and take the antisymmetric part to obtain: u j∇kβ − uk∇ jβ = 0.
Therefore, by eq.(2.3) we conclude that uk is irrotational. �
As a consequence we can state the following:

Theorem 2.1. Let (M, g) be a perfect fluid spacetime. If ∇mC jkl
m = 0 and ∇kR = 0,

then (M, g) is a GRW spacetime whose fiber is Einstein and the conditions ∇kX j = ρgk j,

∇kρ =
α−β
1−n Xk and umC jklm = 0 hold.

Proof. We give here an alternative proof with respect to [23]. The properties obtained in
Lemma 2.1, uk∇ jβ = u j∇kβ and ∇ku j = ∇ juk, simplify eq. (2.2):

(2.7) β(uk∇ jul − u j∇kul) =
1
n

(g jl∇kβ − gkl∇ jβ).

Transvecting this with u j, using the closedness condition obtained in Lemma 2.1 (that gives
u j∇ jul = u j∇lu j = 0) and (2.6) we obtain:

(2.8) ∇kul = −u j∇ jβ

nβ
(gkl + uluk).

Thus u j is a torse-forming vector.

Let ωk = −uk
u j∇ jβ

nβ . Since uku j∇ jβ = −∇kβ, it is: ωk =
∇kβ
nβ . A covariant derivative shows

that ∇ jωk = ∇kω j. Then ω j is locally the gradient of a scalar function: ω j = ∇ jσ. As in
[23], setting Xl = ule−σ we have:

(2.9) ∇kX j = ρgk j,

being ρ = − uk∇kβ
nβ e−σ a scalar function and XjX j = −e−2σ < 0 a timelike vector. From Chen’s

Theorem we infer that M is a GRW spacetime.
The condition∇mC jkl

m = 0 assures that the fiber is Einstein by Gȩbarowski’s lemma [14, 15],
that is, R∗αβ =

R∗
n−1g

∗
αβ.

The integrability conditions of (2.9) are Rjkl
mXm = gkl∇ jρ−g jl∇kρ; transvecting this with



Perfect Fluid with Harmonic Curvature Tensor 177

Xl gives Xk∇ jρ = Xj∇kρ and consequently ∇kρ = εXk for some scalar ε [3]. On the other
hand, multiplying the integrability condition by gkl gives Rj

mXm = (1 − n)∇ jρ = ε(1 − n)Xj

and Xj is an eigenvector of the Ricci tensor. However for perfect fluids it is Rj
mXm =

(α − β)Xj, then

(2.10) ∇kρ =
α − β
1 − n

Xk.

Moreover we have

(2.11) Rjkl
mXm =

α − β
1 − n

(Xjgkl − Xkg jl).

Now we insert the previous expression in the local form of the Weyl tensor and, after some
algebra, we infer C jklmXm = 0, so that C jklmum = 0. �
From C jklmum = 0 it follows that the Weyl tensor is purely electric [18]. In dimension n = 4
the condition is equivalent to uiC jklm + u jCkilm + ukCi jlm = 0 (see for example Lovelock
and Rund [20] page 128). Multiplying this by ui gives C jklm = 0; in this way M∗ is a 3-
dimensional Einstein Riemannian manifold and thus it is a manifold of constant curvature:
the spacetime is an ordinary Robertson-Walker spacetime.

Remark 1. It is worth noting that for an n-dimensional Lorentzian manifold (without per-
fect fluid hypothesis) equipped with a timelike vector such that ∇kX j = ρgk j the integrability
conditions are Rjkl

mXm = ε(gklX j−g jlXk). Then Xm is an eigenvector of the Ricci tensor, and
it is easy to show that XiXmC jklm + XjXmCkilm + XkXmCi jlm = 0; the spacetime is thus purely
electric [18]. The decomposition of the Weyl tensor in electric and magnetic parts in n=4 is
suggested by the decomposition of the Faraday 2-form describing the electromagnetic field
(eqs. 3.62 and 5.7 in [38]).
By Proposition 4.10 in [18] the algebraic types of the Weyl tensor can be only G, Ii, D(d)
or O. As a matter of fact, in [18] it was shown that a spacetime with line element ds2 =

−V2(xγ, t)dt2 + f 2(xγ, t)g∗αβ(xγ)dxαdxβ, of which the GRW metric is a particular case, is
purely electric.

Since an n-dimensional spacetime with ∇mC jkl
m = 0 and ∇kR = 0 is a Yang pure space

[16], the previous result is read as follows:

Proposition 2.1. Any n(≥ 3)-dimensional perfect fluid Yang pure space with β � 0 is a
GRW spacetime whose fiber is Einstein. Moreover, conditions (1.1) and (1.2) hold.

Now we consider generalized curvature tensors. The following Lemma is an extension
of a result concerning harmonic generalized curvature tensors, that is, generalized curvature
tensors with the property ∇mKjkl

m = 0 (see [22] Prop. 4.6, [24] Theorem 2.2, [25] Theorem
3.7).

Lemma 2.2. Let (M, g) be an n-dimensional pseudo-Riemannian manifold having a gen-
eralized curvature tensor which satisfies

(2.12) ∇mKjkl
m = A∇mRjkl

m + B (gkl∇ jR − g jl∇kR),

where A and B are functions and A � 0 at any point of M. If ∇mKjkl
m = 0, then ∇mC jkl

m = 0.
Moreover, if A � 2B(n − 1), then ∇ jR = 0.
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Proof. If ∇mKjkl
m = 0, transvecting (2.12) by gkl and using 2∇mRj

m = ∇ jR, we obtain
[2B(n−1)−A]∇ jR = 0. If A � 2B(n−1) we have ∇ jR = 0 and by eq.(2.12) it is ∇mRjkl

m = 0
provided that A � 0. Finally, eq. (2.1) gives ∇mC jkl

m = 0. If A = 2B(n − 1) eq.(2.1) gives
∇mKjkl

m = A n−2
n−3∇mC jkl

m from which ∇mC jkl
m = 0, provided A � 0. �

In view of Theorems 1.2 and 2.1, and Lemma 2.2 we can assert:

Theorem 2.2. Let (M, g) be a perfect fluid spacetime, and let Kjkl
m be a generalized

curvature tensor with the property (2.12). If ∇mKjkl
m = 0 then (M, g) is a GRW spacetime

whose fiber is Einstein, and conditions (1.1) and (1.2) hold. Moreover, if A � 2B(n − 1),
then ∇ jR = 0.

There are some important generalized curvature tensors that display property (2.13). We
consider some examples of them:

1) The projective curvature tensor (see [21, 22] and references therein):

(2.13) Pjkl
m = Rjkl

m +
1

n − 1
(δmj Rkl − δmk Rjl).

Its divergence results to be:

(2.14) ∇mPjkl
m =

n − 2
n − 1

∇mRjkl
m.

Thus we are in the case A = n−2
n−1 , B = 0 of (2.12).

2) The concircular curvature tensor (see [21, 24] and references therein):

(2.15) C̃ jkl
m = Rjkl

m +
R

n(n − 1)
(δmj gkl − δmk g jl).

Its divergence results to be:

(2.16) ∇mC̃ jkl
m = ∇mRjkl

m +
1

n(n − 1)
(gkl∇ jR − g jl∇kR).

Thus we are in the case A = 1, B = 1
n(n−1) of (2.12).

3) The conharmonic curvature tensor (see [21, 24] and references therein):

(2.17) Njkl
m = Rjkl

m +
1

n − 2
(δmj Rkl − δmk Rjl + Rm

j gkl − Rm
k g jl).

Its divergence results to be:

(2.18) ∇mNjkl
m =

n − 3
n − 2

∇mRjkl
m +

1
2(n − 2)

(gkl∇ jR − g jl∇kR).

Thus we are in the case A = n−3
n−2 , B = 1

2(n−2) .
4) The quasi-conformal curvature tensor (Yano and Sawaki, 1968, [42]):

(2.19) Wjkl
m = −(n − 2)b C jkl

m + [a + (n − 2)b]C̃ jkl
m,

a, b are constants. Its divergence results to be:

(2.20) ∇mWjkl
m = (a + b)∇mRjkl

m +
2a − b(n − 1)(n − 4)

2n(n − 1)
(gkl∇ jR − g jl∇kR).

Thus we are in the case (2.12) with A = a + b, B = 2a−b(n−1)(n−4)
2n(n−1) .
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Note that the cases 1, 2, 3 satisfy the conditions A � 0 and A � 2B(n − 1) of (2.12). Case
4 satisfies the conditions if a + b � 0 and a + b(n − 2) � 0.
For such cases, Theorem 2.2 can be rephrased as follows:

Proposition 2.2. Let (M, g) be a perfect fluid spacetime, and let K jklm be the 1) projec-
tive, 2) the concircular, 3) the conharmonic or 4) the quasi-conformal curvature tensor. If
∇mKjkl

m = 0, A � 0, then (M, g) is a GRW spacetime whose fiber is Einstein and condi-
tions (1.1) and (1.2) hold. Moreover, in cases 1, 2, 3: ∇kR = 0. In case 4: ∇kR = 0 if
a + b(n − 2) � 0.

3. Physical consequences

3. Physical consequences
In this section we outline some physical consequences of the above mentioned results.

On a physical viewpoint, it is described the global structure of a perfect fluid spacetime, in
several relevant cases.
Let (M, g) be an n-dimensional Lorentzian manifold where Einstein’s field equations without
cosmological term hold:

(3.1) Ri j − R
2
gi j = κTi j,

κ = 8πG is Einstein’s gravitational constant (in units c = 1) and Ti j is the energy-momentum
tensor (see for example [39]) describing the matter content of the spacetime. For a perfect
fluid Ti j = (μ + p)uiu j + pgi j, where p is the isotropic pressure, μ is the energy density and
u j is the fluid flow velocity. The Ricci tensor gains the form

(3.2) Ri j = κ(μ + p)uiu j +
κ

2 − n
(p − μ)gi j.

The form Rkl = αgkl+βukul is recovered with β = κ(μ+ p) and α = κ
2−n (p−μ). It is worth

noting that ∇kR = 0 if and only if the state equation p = μ
n−1 + c holds, being c a constant.

Proposition 2.1 can be rephrased as follows:

Proposition 3.1. Let (M, g) be an n-dimensional perfect fluid Yang Pure space with μ +
p � 0. Then (M, g) is a GRW spacetime with state equation p = μ

n−1 + c being c a constant;
the fiber is Einstein and conditions (1.1) and (1.2) hold.

Gȩbarowski’s lemma (see [14, 15]) states that the condition ∇mC jkl
m = 0 for the GRW

metric is equivalent to having Einstein fibers, that is, R∗αβ =
R∗

(n−1)g
∗
αβ. Moreover Corollary

2.3 in [35] ensures that the fiber of a GRW spacetime is Einstein if and only if the spacetime
is a perfect fluid. As a consequence we have

Proposition 3.2. An n-dimensional GRW spacetime satisfies the condition ∇mC jkl
m = 0

if and only if the spacetime is a perfect fluid.

We have thus

Proposition 3.3. Any n-dimensional Yang pure space GRW spacetime is a perfect fluid
spacetime, with state equation p = μ

n−1 + c, being c a constant.
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In view of Lemma 2.2 and equations (2.14), (2.16) and (2.18) we infer that n-dimensional
spacetimes with vanishing divergence of the projective, concircular or conharmonic curva-
ture tensors are Yang pure spaces. Proposition 2.2 can be rephrased as follows.

Proposition 3.4. Let (M, g) be an n-dimensional perfect fluid space time with μ + p � 0
and let Kjkl

m be the projective, the concircular or the conharmonic curvature tensor. If
∇mKjkl

m = 0 then (M, g) is a GRW spacetime with state equation p = μ
n−1 + c, being c a

constant, the fiber is Einstein and conditions (1.1) and (1.2) hold.

Conversely Proposition 3.2 becomes

Proposition 3.5. Let (M, g) be an n-dimensional GRW spacetime and let Kjkl
m be the

projective, the concircular or the conharmonic curvature tensor. If ∇mKjkl
m = 0 then (M, g)

is a perfect fluid with state equation p = μ
n−1 + c, being c a constant.

In [23], Proposition 3.1, the authors proved that if there exists an equation of state of
the form p = p(μ) for a perfect fluid, then the covector u j is closed, that is, ∇ku j = ∇ juk.
Theorem 2.2 can be rephrased as follows.

Theorem 3.1. Let (M, g) be an n-dimensional perfect fluid spacetime with μ + p � 0 and
let Kjkl

m be a generalized curvature tensor with the property (2.12), A � 0 and ∇mKjkl
m = 0.

Then (M, g) is a GRW spacetime with Einstein fiber, and conditions (1.1), (1.2) hold. If
A � 2B(n − 1), then the state equation is p = μ

n−1 + c, being c a constant.
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faces, Annu. Univ. Sci. Budapest Eötvös Sect. Math. 41 (1998), 151–164.



Perfect Fluid with Harmonic Curvature Tensor 181
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