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Abstract
In 1999 Andersson and Driver proved a piecewise geodesic appatgn for-
mula for path integrals on compact Riemannian manifolds.eHeeodesics are
those of the Levi-Civita connection. In this paper we will gettiee their result for
H'-type metric to the case of general metric connections.

1. Introduction and main result

Let M be a compact Riemannian manifold amd M ( ) be the continymath
space overM . For any partitioR the spaceHr»(M) of piecewise geodesics is defined
and equipped with two inner products, namet-type and L?-type metrics. With
these metricsHp(M) becomes a finite dimensional Riemannian manifait: (M) is
equipped with probability measures which have “Gaussiai-ldensities with respect
to the Riemannian volume measures. In [1] Andersson andebroonsidered the
Levi-Civita connection and proved thadip(M) with these probability measures con-
verges in an appropriate sense (i) @it-case) toW ¢ ) with the Wiener measure and
(i) (in L2-case) toW M ) with a probability measure whose density witpeet to
the Wiener measure is written in terms of the scalar cureatdrM .

In this paper we generalize Andersson and Driver's appration theorem for
H!-metric to the case of a general metric connecfion . Metrimections other than
the Levi-Civita connection naturally appear in stochasti@alysis on Lie groups and
homogeneous spaces. (For example, see Example 8.1 in D#)erOur method is
based on Andersson and Driver [1].

Before we state our main theorem we introduce notationseHee only give a
brief explanation. The precise definitions will be given atelr sections. LetM,o0 ) be
a compact Riemannian manifold with fixed initial pointe M . Wenswer a met-
ric connectionV onTM . Let® M ,u, ) be the orthonormal frame bundi¢hvini-
tial point u, € O (M). We choose:, in the fiber af . The path spageM ( ) is the
space of continuous maps from,[0 1] 8  which starbat . We deff(@(M)) in
a similar way. For a partitior® of [0, 1], |P| denotes the mesh of the partition and
Hp(M) denotes the space of piecewise geodesica/in which changgtiohs only
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792 Y. INAHAMA

at P and start ato . Foo € Hp(M), we define the energy of a path o ( ) in the
usual way.Hp(M) is a finite dimensional manifold. O&»(M) we consider a natural
“ H'-type” Riemannian metric (see Definition 4.3 for the predidinition). We equip
Hp(M) with the probability measure

v71, = (normalizing const.x exé_Ez(G)> VoIG%),

where Vo[g% is the Riemannian volume measure fip(M). We denote by the dif-

fusion measure oV M ) which corresponds to the generatoe(Wa)y2 = Ay /2+Z.

Here, Ay, is the Laplace-Beltrami operator add is a vector fiékdrgby (4.8).
Now we state our main theorem. This is a natural generadzati Theorem 4.17

in Andersson and Driver [1].

Theorem 1.1. Let the notations be as abavé G is a bounded continuous func-
tion on W(M) then

; 1 -
lim /Hp(M) G(o)vp(do) = /W(M) G(o)v(do).

|P|—0

In the final section we give a simple remark for the case of cmmpact complete
manifolds.

2. Preliminaries from differential geometry

In this section we introduce notations and assumptions avel greliminary re-
sults from differential geometry, which will be in later udeet M be a compact con-
nected Riemannian manifold of dimensidn anddet be an arflitrchosen fixed
point in M. The Riemannian metric tensor is denotedgby . As luaigaoften write
(X,Y) for g(X,Y), whereX andY are tangent vectors. The tangent bundl&/ ot i
denoted byT’'M and the set of all the sections7a¥/ is denoted" fyM ().

Let V be a metric connection oiM  (i.eV,g = 0). Its torsion tenswi aurva-
ture tensor are defined as follows;

(2.1) T(X,Y)=VxY — Vy X — [X, Y],
(22) R(X, Y)Z:VXVyZ—VyVXZ—V[X’Y]Z

Here, X, Y,Z € T T M ). Note that, in some other literatures, the defingiof 7 and
R may be different by constant multiplication. Our definisoare the same as the ones
in Driver [2].

Now we introduce the orthonormal bundle over . koe M, set

O.(M)={u:R! > T, M | linear isometry and O M )3 _J O, M .)

xeM
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O(M) is called the orthonormal bundle ovéf  and becomes a ahdiber bun-
dle over M with its structure group) d( ). The natural projecticn denoted by
w: O(M) — M. We arbitrarily chooset, € O, M ) as the initial frame and fix it
throughout this paper. Fare O M ), ket( 7,0 M( - T)M) is called the verti-
cal subspace of,0 M ) and is denoted By

To a metric connectior’ oM  corresponds a connection 1-fermeY =w is
an so(d)-valued 1-form onO ¥ ) with some appropriate propertieeg$extbooks of
differential geometry for basic facts of connection forms @ (M).) Foru € O M),
ker: T,0M) — so(d)) is called the horizontal subspace 8fO M( ) and is de-
noted by H, . Note thatV, & H, =T,0 M ). There exists a unique isomorphism
Hu: Tr@yM — H, such thatr, o H, = Idz,,», Which is called the horizontal lift.
Let {e,-},‘.’:1 be the canonical orthonormal basis Rf. Vector fieldsA; € I' {0 M ))
(1 < i =< d) defined byA; 4 ) =H,ue; are called the canonical horizontal vec-
tor fields. Leté be arR¢-valued 1-form onO # ) defined by X( ) = m.(X) for
X € T,0(M). Then,

(@,0): T,0O(M) =V, ® H, = so(d) ® R

is a linear isomorphism. In other words, given a connectio®,(M) can be trivialized.
Hence,O {1 ) can be considered as a Riemannian manifold.

Let w be as above. The curvature forfa  @f is su(d)-valued 2-form on
O(M) defined by

QX,Y)=do(X?,Y"), X,Y eT,0M), uc O(M),

where X denotes the horizontal componentJf . The torsion f@rnof » is an
R<-valued 2-form onO # ) defined by

OX,Y)=do(x", v"), X,Y eT,0M), ueO(M).

For alu € OM) anda,b € R?, setQ, ¢,b) = Q H,ua, H,ub) € so(d) and
0.(a, b) = O(H,ua, H,ub) € R?.

The following is a well-known lemma. So we omit a proof. Thestfiand the sec-
ond equations are called structure equations. The thirdt@edourth equations state
that Q, and®, defined as above are, in fact, the scalarization® ofid Tg respec-
tively.

Lemma 2.1. Let the notations be as abav@&hen the following propositions
hold.

®=do +w A0 (first structure equatioy
Q=dw+wAw (second structure equatipn
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Qu(a,b) =u*R(ua,ub)u for all u e O(M) anda,b € R?,
Oula, b) =u T (ua,ub) for all u e O(M) anda, b € R%.

Proof. See pp.280-281 in Driver [2] or Section Ill in Kobayaand Nomizu [4],
\Vol. I. U

For an absolutely continuous path [0 3 M , its energy is ddfibg E (o) =
fol lo’(s)]?ds. We set

W(M) ={o: [0, 1] = M | continuous andr (0) 8}
and

H(M) ={oc € W(M) | absolutely continuous anl ¢ ( < co}.

We definew R?) and H R?) in a similar way witho replaced by @ R?. The inner
product of H R?) is defined by &, k ):fol(h’(s), k'(s)) ds.

Foro € H (M), its horizontal lifts — u § ) is defined byd(/ds u)s( ) #o()0'(s)
with u(0) = u,. Let //,): T, M) — T,(M) denote the parallel transport alog
with respect tov . It is well-known that/, o( ) & s ). Since we regard, M )R?
by fixing the initial frameu, , we will simply writex { ) 5/, € ) in thedilowing.

Let X be an absolutely continuous vector field alonge H M ( ) with 0.
Then, its covariant derivative along can be written as fedip

\Y d
S X(6) = /1,0) = (/)X ().

For suchX andr , the inner produGt(X, Y) is defined by

GY(X.Y) = / <VdXs(s)’ VY(S)>

For o € H(M), the tangent spacE, H M( ) &f M( ) is defined by

T,H(M) = {X | absolutely continuous vector field
alongo € H (M) such thatt (0) =0 anG*(X, X) < oo}.
We define the development map and the anti-development ntegp.d&évelopment
map ¢ : H RY) — H(M) is defined, forb € H R?), by ¢(b) =0 € H(M) whereo is
the solution of the following differential equation:

o'(s) = //,(0)b'(s) with o(0) =o.
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There is another way to obtaip b ( ). Consider the solution efftillowing differential
equation (foru ):

(2.3) u'(s) =Huu(s)b'(s)  with u(0) = u,.

Then,7 ¢ ) =¢ ¢ ). By using the canonical horizontal vector fields}, we can rewrite
the equation (2.3) in the following form:

d
(2.4) u'(s) =Z Ai(u(s))bi(s) with u(0) =u,,

i=1

whereb §) =), b; § ¥; . It is well-known that (2.3) and (2.4) are eqléve.
The anti-development map—: H(M) — H(R?) is defined, forc € H M ), by
b=¢"Yo) € H(R?), where

b'(s) = //,(e) *o’(s) with b(0) = 0.

It is known that¢ is a diffeomorphism of two Hilbert manifold& (R?) and H (M ).
However, ¢, is not an isometry in general as we will see in TheoBl. See Palais
[6] for definitions of Hilbert manifolds such a# M ) and theiadic properties such
as the inverse function theorem. In Section 13 in [6] theedéftial structure o M )
is defined by embedding/ into a Euclidean space. Hence, wherdigseiss the
smoothness problems we may considér as a submanifold of Ed&ar space if
necessary.
For eachh € C* H M ) H R?)), we defineX" & e T,H U ) by

X"0) = //,(0)hs(0), s €0, 1],

whereh, ¢ ) =h ¢ )§ ). The mappings( h# » X" o ) is an isometry of two vector
bundles,H ¢ )x H RY) andTH (M ).

We recall the definition of the volume form on an oriented Rdeman manifold
for later use. For an oriented Riemannian manifaM ¢ ) witmdf =k, its volume
form is thek -form defined by the following;

Vol(vs, ..., vi) = det({g @i vy ) 1) °

9

where {vy, ..., vt} iS an oriented basis of the tangent space. Abusing the antate
write Vol again for the measure induced by the linear fund@lof e C°(N) —

[y f Vol
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3. Differentials of development map for metric connections

In this section we compute differentials of development rfapthe case of metric
connections. First we fix notations. Fere O M( ) angdw € T,,)M, let

R,(v, w) = Q(H,v, H,w).

Then, it follows from the definitions ofQ and2, and from Lemma 2Hat
R,(v,w)=u"'R(v, w)u and 2, @, b) =R, @a,ub) fora,b € R?.
Forc e HM),u(s)=//,0) andX € T,H M ), set

Ay(X) = / Rys)(0'(r), X(r))dr,
0
3.1 qs(X) = Ay(X) + Oue) (-, u(s) X (s))-

Note thatA; K ) isso(d)-valued functions defined on [0 1] and thgt X ( ) = O for all
r €[0,s]if X(r)=0 for all r €0, s].

In the following theorem (Theorems 3.1) we abuse some motsitiFor example,
(//tw)(X) should be written [(/*«™ )X )X ), wherev ™ is th&l sd(d))-valued 1-form on
H(O(M)), which is naturally defined byo . However, this is lengtapd we write
(//tw)(X) for simplicity. Foru € O (M) andA € so(d), u - A € V, denotes the ver-
tical vector tangent to the path— ue’4 at = 0. Note that a theorenilaino
Theorem 3.1 below was proven for the case of smooth path spdteorem 2.2 in
Driver [2]).

Theorem 3.1. Leto € H(M) and X € T,H(M). We writeu = //(o) and b =
¢ (o) as above Then we have the following

(3.2) (//50)(X) = Ay(X),

(3-3) (//36)(X) = u(s) "X (s),

(34) (//*X)(S) = M(S) : AV(X) + HLI(X)X(S)a

(3.5) (p*X)(s) = u(s)le(s) - /; q-(X)b'(r) dr,

where¢*X = ¢, 1X.

Proof. By using (ii) in Lemma 3.2 below we can prove equatid@), (3.3)
and (3.4) in the same as in Theorem 3.3 in [1]. Here we proveatemu (3.5), in
which the torsion term appears.

Let t — o, be a smooth curve itH M ) such thay = 0 andop = X. In this
proof we write o; § ) for @/dt y, § ) ando, { ) for d/ds ¢; { ). Letu, s( ) =//; & )
and b, 6) =¢p~(o,)(s). We seti(s) = ig(s). Then, it follows immediately thak(s) =
(//.X)(s) and b(s) = (6 X)(s)-
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Noting that
bi(s) = / () ol () dr = / 0 () dr.
0 0
we obtain that

d 4., ._d d _d
(3.6) 250 X6 = 0br(S)— =

ds dr

0(u(s))-
0

Here we changed the order of derivatives (for a proof, seenh&r8.2 below). For any
1-form « and vector fieldsx andf , the following Cartan identityids;

(3.7) da(X,Y)=Xa ()= Yo (X)—a (X, Y]).

Applying this with X =9/9r,Y =0/ds andae =u*6 (for a more rigorous proof, see
Lemma 3.2 below), we see that the right hand side of (3.6) imletp

%e(ua(s» +d6(ito(s), ug(s))

- %(u—%s)x(s» — (@ A 0)(itols), u(s)) + Olio(s), upls))

- %(»rl(s)x(s» = w(io(s)) (uo(s)) + O (uo(s). uo(s))
(3.8) = %(ufl(s)x(s» — A(X)D'(s) + O((// X)(s), ' (s))-

Here, we used (1) the first structure equation (Lemma 2.1jHerfirst equality, (2) the
fact thatw ¢, § )) = O for the second equality, (3) (3.2) and thet thato ¢’ §)) =b ¢ )
for the last equality. Noting that/A. X 9() #.)X(s) from (3.4) and that

®((//*X)(S)v M/(S)) = ®(HM(S)X(S)7 Hu(.v)u(s)b/(s)) = ®u(s)(u(s)71X(s)’ b’(s)),
we can easily deduce (3.5) from the right hand side of (3.8). ]

Lemma 3.2. (i) Let: — f, be a smooth curve i (RY). We write f(¢)(s) =
f(t,s) for (¢t,5) €e R x [0, 1]. Let df/dt denote the derivative af—~ £(z) in H(R?).
Note that(df /dr)(t)(s) = (8 f/3t)(r, s) for all (¢,s) sinceh € H(R?) — h(s) € RY is
a continuous linear mappindrhen it holds that

d df _d df

EE(IO’ s) = o s (to, s) for a.a.s € [0, 1].
Here, (d/dt)(df /ds) in the left hand side denotes the derivativer atry of the smooth
path t — (df /ds)(t, -) in L?([0, 1]: R9).
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(i) Let N be a Riemannian manifold and lat € T(T*N) and X,Y € T'(TN) be
smooth vector fields. Let — f; be a smooth curveHiM). We write f(¢)(s) =
f(t,s) for (¢t,5) € R x [0, 1]. Then for each fixeds, it holds that

J d d d d d
( CY) (f*E, f*%) - dt (f* ) . - %(x (f*a)

Proof. First we show (i). Note that the mapping defined by

for a.a.s € [0, 1].

1=ty

= (6o € HRY o> T € 120, 11: RY)

is continuous linear. Hence, the curve> df;/ds is a smooth curve?o, 1]: RY)
and thus we have shown (i).

Next we show (ii). As we stated before we may regdd  as a suifoihof an
Eucleadian space of high dimension. Hence we can apply @)e that in (i) the time
interval [0, 1] is not essential and can easily be replaceth waity subintervalsf, s2].

Let us take a local chartet, ..., x") around f fo, so). Then, the existz|, r] and
[s1, s2] such that {y, sq) € (71, 2) x (s1, s2) and [y, r2] X[ s1, s2] IS contained in the local
chart. The local functions’ and’ can be extended as a globatifundefined on
the Eucleadian space. Then, the function
= tna) (5 %) 4

= a;(f)

5
0.1 2
selodl- “(f*at> or oxi )|,

1=ty 1=ty

is an well-defined element ii# R). (Here, the time interval in the definition df R}
should be appropriately replaced). Hence,

d dfi
ds dt

i dfl@

= ai(f)—- Bxl(f) T 4

3.9 se[0,1] —~ ioz(f* >

1=ty t=tg t=to

is an element inL?([sq, s2]: R). Similarly,

reRma (1) = @ ')(”’ ) (L

is a smooth curve in.?([s1, s7]: R). Its derivative att = in L?([s1, s2]: R) is

d d

From (3.9), (3.10) and (i) of this lemma we obtain (ii). ]

dort df? df/
Bx! () ds dt

d df
- t(f)Ed

1=ty 1=ty =1y
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4. Piecewise geodesic approximations

In this section we first construct, for a given partitidh C [0, 1], finite dimen-
sional submanifoldH»(M) C H(M), which consists of piecewise geodesics. Then, we
show that, in an appropriate sense, the probability meag},meonverges to the diffu-
sion measure oW M ) whose generatorrig)_; A?) = trace{?) as the mesh of
tends to zero.

We set some notations. Lét =,[0 1] a={0 =590 < 51 < --+ < 5, = 1}.
|P| = max |s; — s;_1| is called the mesh of the partitioR. We setJ; =§;_1,s;] and
s for s € J;. For a functionk , letA;k =k  » k {—1) and A;s =s; — s;_1. For a
piecewise continuous function aoh =][0 1], we writes ( +) = Jig@ k(s + ).

DeriniTion 4.1, For a partitionP, set
Hp={be HRY)NC*(I\P)|b'(s)=0forsel\P}

and
Hp(M) = {a c H(M)OCZ(I \ P) ‘ <%> o'(s)=0fors el \P}.

Hp (resp. Hp(M)) is the set of piecewise linear curves R? (resp. piecewise
geodesics inM ), which change directions only at the point®in

Note that¢ Hp) = Hp(M) since, for¢ 6 ) =o ,

—0'(5) =~ (/W) = /1, () =0

ds
Since Hp is a subspace off RY) and ¢ is a diffeomorphism of Hilbert manifolds,
Hp(M) is an orientable submanifold af M ). Clearly, its dimemsis nd = (#P) x
dimM.
For o € Hp(M), the tangent spac&, Hp(M) is a subspace of,H M ). In the
next proposition, we give a necessary and sufficient caditor X € 7, H (M) to be
in T, Hp(M).

Proposition 4.2. Leto € Hp(M) and X e T, H(M). We writeb = ¢~%(c’) and

u = //(o) as above
(i) Then X € T,Hp(M) if and only if

2
SX() = 5 (T(/(6), X () + R'(6), X(:)o'()
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w ol ())

+(VT)(o'(s);0'(s), X(5)) + R(0'(s), X(s))o'(s) onI\P.

Note thatV,yX(s) = (V/ds)X(s), etc
(i) Equivalently for » € H(R?), X"(c) € T, Hp(M) if and only if

42) h"(s) = @u(5)(D'(s), A (s))
+ 0, (B'(5); D/ (5), h(s)) + Qus) (D' (s), h(s))b'(s) on I\ P.

Proof. By the definition of the Jacobi fields, we have the figtadity (the Ja-
cobi equation) in (4.1). The second equality can be easityahby the Leibniz rule
for V. For the Jacobi fields and equations of affine connectisee Section VIII in
Kobayashi and Nomizu [4], Vol. II.

We can easily obtain (4.2), by scalarizing (4.1). Note that)b'(s) = o’(s),
u($)h(s) = X(s), u(s)h'(s) = (V/ds)X (s) andu § )" § ) = ¥?/dsD)X(s). O

Now we define the Riemannian structure & (M).

Derinimion 4.3.  Let Hp and Hp(M) be as above. Fok, k € Hp, set

n

1
(h, k) by =/0 (h'(s), k'(s)) ds = Z(h,(si—l"')’ k'(si—1t)) Ass.

i=1

This is the restriction of the inner product di R4). For o € Hp(M) and X, Y €
T, Hp(M), set

n
\Y \Y
GL(X,v) = — X(si_1+), —Y(si_1+)) A;s.
b 1) = 30 (G ¥t a9, v a9 4
By the same reason as in the Levi-Citita case (see Remarkn4H)i it follows from
Proposition 4.2 thaG%D is non-degenerate and hence defines a Riemannian structure
on Hp(M).

Derinimion 4.4, For a partitior” we set Vop and Vol;. be the volume form on
Hp and Hp(M), respectively. We also set

E()
2

i (6) = @ry 2 exp( - 25 ) Vol ()

and

E(o)

vk (o) = (2 )2 exp(—T) Vol ().
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Here E ¢ ) andE ¢ ) denote the energy of the paths and , respsctivel

We introduce some notations. For a partititr= {0 =sg < 51 < --- < s, =1} and
s € (si—1, 5i], we set

E]}(X) = Qs,-fl(X) and éA(X) = Qs(X) - QS,'A(X)-
Clearly, g =q +¢g. From (3.5) in Theorem 3.1,
(4.3) @ X"Y6) =R )= (X" (s) — Go(X")'(s)

for h e H(RY).
The following is the key theorem in this section. It stateatth* preserves the
volume forms.

Theorem 4.5. Let the notations be as abav@hen qb*(VoIG%,) = Volp and
¢*(vp) = up.

Proof. This proof is based on Theorem 4.8 in [1]. The secomsgréien immedi-
ately follows from the first one, sinc€ b( )Eo( )b b( )&

We show the first assertion. Let € Hp(M), b = ¢Y(o) € Hp and {h;} is an
orthonormal basis offp. It is sufficient to show that

(4.4) det({G%,(qs*hk, ¢*hj)}k’j) =1

We setH; §) =u"1(s)(¢.)(s) and (H;, Hj)73 = Y (H(si-17), Hi(si-1%))Ais. Re-
stricted onHp, (-, -)p coincides with(-, -)x,. Then, X7 =¢.n;, and

det({Gh(@.he, d.h 1)), ;) = det({(Hi, Hy)y ), ).
By (4.3) we haven, =¢* X )) =H] — g(X")b' — (X" )b’ and, hence,
(4.5) by, +q(X™) = H] — (X" )b’

Note thath, ,g and b’ are constant ons;(4,s;) and thatg, ,(X"*) = 0. Hence, the
both sides of (4.5) are constant and equalHps; _1¢). Therefore,

1
(Hy, H}), = /0 () + 3, (XD (), () + 3, (XD (1) dir.

Set

s

(Th)(s) = /0 ()b (1) ds.
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Note thatT € EndHp) sinceq,(¢.h) andb’ ¢ ) are piecewise constant functions. Since
we have just obtained

det((Ghoun. o), ) = det( (0 47w ¢ +T ), |, ) = (et +7)F
it is sufficient to show that def( # )=1.
Let {e,}?_; be the canonical orthonormal basis Rf and set

1 )
h[,a = (\/A_,S,/(; 1(-?,'71“?,'](”) dr) €a

fora =1,...,d andi = 1...,n. It is easy to see théh; ,} is an orthonormal
basis of Hp. Note thath;, £ ) = 0 on [0s;_1] and @.h;,)s) = 0 on [0s;_1], be-
cause¢ is obtained by solving the ordinary differential ¢igma(2.3) or (2.4). Hence,
as(¢+hia) = 0 on [Qs 1] from (3.1) andgi(puhia) = 0 = (Thia)(s) on [As;).
Thus, if j < i, (Thia hjs)p = 0 for anya,b, sinceh’j.b § +)=0i1ifl /=j— 1

and Th;,J6+) = 0ifl =1 2...,i — 1. Hencel s represented by an upper-
triangular matrix with vanishing diagonals. In particylatl the eigenvalues of" are
0 and det{ + )=1. L]

For a partition? Let 7p: W(R?Y) — (RY)" be given byw — @ £1), ..., w(sy)).
Note thatmp|m, is a linear isomorphism of vector spaces. We wiife = m;|;,71>.
Then, we have the following (Lemma 4.11 in [1]);

ip(up) = (1_[ pais(vi-1, )G)) [

i=1 i=1

where yo = 0 by convention,[]i-, dy; is the standard volume form orR{)" and
ps(x, y) = (2rs) Y2 exp(x — y|?/(2s)) is the heat kernel oR?. In particular,i’ ()
corresponds to the measure. (1), whereu is the Wiener measure o R%).

For a standard! -dimensional Brownian motifB s }¢<)<1 Starting at 0, we set
Bp = ip o wp(B), or explicitly,

Bp(s) = Blsi 0+ 6 — 5 Do i 5 € (s 1,51,
A,‘S
where A;B =B §; )— B §;_1).

Now, before stating Corollary 4.6, we give a simple fact. Mgt N, be two ori-
ented manifolds of the same dimensién apd N;: — N, be a diffeomorphism
which preserves orientation. For e F(/\" T*N,) and y*y € (A T*N1), we de-
note byy  andy*y the (signed) measures 8y and N1, which correspond tg« and
Y*y, respectively. Then, the law o,tr’:'y induced by the diffeomosphiy isy .
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Thus, we have obtained the following corollary.

Corollary 4.6. Let 1 be the Wiener measure d#(R?) and B be the Brownian
motion defined as abov&@hen the law of Bp and the law of¢(Bp) is u3 and v},
respectively

We introduce some probabilistic notions. For the existesiceuch notions and ba-
sic properties of them, see Section 3 in Driver [2], for exlanpet {B (s )}o<s<1 be the
d-dimensional Brownian motion as above. Uet s }{<}<1 be the solution of the fol-
lowing stochastic differential equation:

(4.6) du(s) =Huu(s) odB(s) with u(0) =u,,

or equivalently:

d
4.7) du() =Y Ai(u(s)) o dB'(s) with u(0) =u,,
i=1

where A; ( = 1...,d) is the canonical horizontal vector field onM ( ) abd =
(BY, ..., BY). By the existence and pathwise uniqueness of the solutdn@.7), u
defines a measurable mapping fromi R?), 1) to W (0 (M)) (which is denoted by: |,
again). The mapping = 7 ou: (W(R9), u) — W(M) is called stochastic development
map. The law ofp is denoted by . It is well-known that is a diffusion measure on
W(M) with its generator trac&(?)/2 = Ay /2 +Z, whereA,, is the Laplace-Beltrami
operator onM and

1 . .
(4.8) 2" =5 (U = Tt)
in a local coordinatex?, ..., x4). Here,I" andT , are the Cristoffel symbols of the

Levi-Civita connection andv , respectively. (See equati¢h81) and (4.33) in Sec-
tion 4, Chapter V, Ikeda and Watanabe [5].)Mf is torsion sk&wnmetric, thenZ
vanishes i.e.p is the Wiener measure &n (see Section 8 inH2}vever,Z does
not vanish in general.

On the probability space( M ,) ), two measurable mappings afmetl.// ¢ )
denotes the stochastic horizontal lift ef {/7»Y o {ods<1 is an O (M )-valued process
and its law is the same as the one inducedby(s) = [; 7/ o) odo(r) is called the
stochastic anti-development map. It is known théfs)} is a standard/ -dimensional
Brownian motion defined onW M ,p ).

Now we prove our main theorem (Theorem 1.1) in a similar wayAtwlersson
and Driver [1].

Proof of Theorem 1.1. We can prove this in the same way as ire/son and
Driver [1]. So we only give a sketch of proof.
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Since we have shown Corollary 4.6, it is sufficient to showt tha
(4.9) |7,|i|TOE[G(¢(Bv>))] = E[G(4(B))].

For a bounded continuous functiadh o O (M ( )), se ( F=// & () af@) =
F(/N/(a)). As we mentioned above, it holds that

/ F(o)v(do) = E[F()]
w(M)
and

/ f(o)wh(do) = ELF(up)].
Hp (M)

Here, E denotes the integration with respect to  amgd is defined fromBp by
(2.3) or (2.4). Note that we used the fact that the lawugf is equal to the law of
// under v71). In order to verify E[ F(up)] converges toE[F(u)], we embedO { ) in
a Euclidean space of high dimension using Nash’s embeddiegrém and apply the
approximation theorem of Wong-Zakai type for SDE (4.7) andBE>(2.4) with b re-
placed withBp. (See Theorem 4.14 in [1].) More precisely, the convergescia ithe
following sense; for any > 1,

lim E [ sup |lup(s) — u(s)|”] =0.

|'P|~>0 05551

Here,upr andu are regarded as the Euclidean space valued processngy Nash's
embedding (see p.450 in [1]). Thus, we have showndjoy E[F(up)] = E[F(«)]. By
setting F =G o 7 , we obtain (4.9). ]

5. A remark for non-compact case

In the previous sections we assumed the compactneds$ of nimliity. In this
section we give a simple remark for non-compact case. Wenasghe Riemannian
manifold M is complete. Note that the solutions of ordinarffedential equation (2.3)
or (2.4) does not explode in finite time.

In the previous sections compactness is used only to prase(ththe solutions
of stochastic differential equation (4.6) or (4.7) does explode in finite time and (ii)
the approximation (4.9) holds.

Hence, on a complete Riemmanian manifattl with a metric cotore V such
that the above conditions (i) and (ii) hold, Theorem 1.1 cenektended in a natural
way.

Now we give an example, which is essentially taken from Drifd. In this ex-



ANDERSSON-DRIVER'SAPPROXIMATION FOR METRIC CONNECTIONS 805

ample, the manifold is a (non-compact) matrix Lie group wiftle left invariant struc-
ture. (The right invariant case can be done in the same way.)

ExavpLe 5.1. Let G be a matrix Lie group in Gk(R) for somen € N. For
X,Y € gl(n,R), we set(X,Y) = trace(*Y ). We consider the left invariant structure
as follows. A tangent vector at the identity element is idfesdt with a left invariant
vector field overG as usual. We consider the restriction ofitireer product( -, -)
to g = T.(G). Here,e denotes the unit element 6f . By using the leftdiation we
can define a Riemannian structure 6h . We consider a leftianaconnectionVv
that is, VxY € g for all X,Y € g. We assume metric compatibility & , which is
equivalent to the property thavyY, Z) =(Y,VxZ) for aM,Y,Z € g. Hence,Vy
can be regarded as an elementsirg).

Now we consider horizontal vector fields an G ( ). By using th& teanslation
we may identify TG andO ¢ ) withG x g and G x O @), respectively. With this
identification the horizontal subspace can be written ekplias follows:

{(X,—Vx) e gxso(g) | X € g}.

Fix an orthonormal basi$X,, ..., X,} of g, whered = dimG . This is equivalent to
fixing an initial frame overe € G . Now we may identify with R?. In this case the
canonical horizontal vector fields are given py;(—Vy, }L).

Let {u(s)} = {(g(s), r(s))} be the solution of the stochastic differehtiequa-
tion (4.7). Note thatg and ar€& -valued amld ( )-valued procgssspectively.
Then, the equation (4.7) can be written in matrix form asofo:

d
dg(s) = g(s) o (Z x,-dB"(s)) ,

i=1

d
dr(s) = —=r(s) o <Z VXl.dB"(s)) .

i=1

Here, {B’ § )}, is the standard -dimensional Brownian motion. Note k) = g in
this case. (Similarly, ordinary differential equation4Pcan be written in matrix form
and its first component i b( ).)

Driver showed in Appendix A, [3] that condition (ii) aboveh& convergence
in (4.9)) holds in this case. Hence, Theorem 1.1 holds in ¢hse, too.
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