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0. Introduction. Let G be a special orthogonal group or symplectic
group over a finite field F,, F the Frobenius mapping and G¥ the group of all
F-stable points of G. G. Lusztig [7], [8] has obtained explicit formulas for
the characters of the unipotent representations of G¥ on any regular semisimple
element of G* provided that the order g of the defining field F, is sufficiently
large. Our purpose in this paper is to show that his formulas are valid for
any q.

Let W be the Weyl group of G and m an odd positive integer. For we
W, let R$” be the Deligne-Lusztig virtual representation [2], [6, 3.4] of G¥".
By [2, 7.9], to determine the values of the character of a unipotent representa-
tion p of G on regular semisimple elements, it suffices to determine the inner
product

<R, p>

for any we W. This has been done by G. Lusztig [7], [8] for a sufficiently large
g". Let n be the rank of G and ¥, be the set of symbol classes (cf. [5, § 3])

that parameterizes the unipotent representations (up to equivalence) of G* or
G, i.e.

v — {CIJ,, if G = S0,,,, or Sp,,
" lor  if G= 803

in the notations in [5, §3]. For A€W, let p’ and p{ be the correspond-

ing unipotent representations of GF and GF" respectively. Our main result
(Theorem 4.2, (iii)) is

(*) SR, P = CRD, p>

for any A€W, and w W if m is any sufficiently large positive integer prime
to 2p with p the characteristic of F,. Hence the required character formula
is obtained for any gq.

Our proof goes as follows. Firstly, we write the Frobenius mapping F
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as F=jF, with F; a split Frobenius mapping and j an automorphism of G of
finite order commuting with F,, and let o)=F,|GF" and <,y be the cyclic group
generated by o,. Let X (weW) be the Deligne-Lusztig varieties [2], [6]
of G defined using the Frobenius mapping F”. Then G and F, act naturally
on X{", hence on their /~adic cohomology spaces H i(X{").

Then we prove (Theorem 3.2) the relation

(%) Tr(F)* Z(—1VHAXE) = Tr((yF)*, Z (=) *HAXL))

for any odd integer m and any x€GF", where y=N ™)(x) and N™ is the norm
mapping defined by N. Kawanaka (see our definition preceding Theorem 3.2).

As a next step, we show that any unipotent representation of G¥” is g,
invariant if 7 is odd. Then by applying N. Kawanaka’s result on the lifting
[3], [4], we prove (Theorem 4.2) that

() Tr(xjo, L) = Tr(N™(x)j, p

for any x&GF", any symbol class AEW, and any positive integer prime to 2p,
where p{™ and p{’ are the representations of the semi-direct product groups
GT"{ayy and GF{j> that extend p{™ and p{ respectively in a normalized man-
ner. Combining polynomial equations (in ¢) obtained from (¥*) and (%%x)
with a result on Frobenius eigenvalues given in [1] (resp. [8]), we get the as-
serted relation (*) for G=3Sp,,, SO,,+, (resp. SO%,).

Finally the author is very grateful to Professor N. Kawanaka for his kind
conversations, through which a perspective on the lifting theory was shown

to the author.

1. First we need a generalization‘of Lusztig [6, 3.9]. Let G be a con-
nected reductive group defined over a finite field F, and F the Frobenius map-
ping. Let B be a fixed F-stable Borel subgroup, T a fixed F-stable maximal
torus in B, U the unipotent radical of B and W the Weyl group of G relative
to 7. There exists an automorphism j of G of finite order & defined over F,
such that j stabilizes B, T and induces the same action on W as that of F. For
a positive integer m, we set

c=F|G™, F,=j7F, oy=j".

o and o, generate the cyclic groups {o)> of order m and <o, of order md re-
spectively. We denote by X the variety G/B of all Borel subgroups. For
our purpose we have to borrow almost all the notations in [6, 3.3-3.9] such as

’
Xas Yo wp Lo up (W, 0, 0, EW).

But to specify the Frobenius mapping (either F or F™), we write as follows
(cf. [6, 3.3-3.4]).
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XP = {B'eX; B'—> F(B"},
XM= {B'eX; B'—> F"(B"} ,
Y0, = GF\(X X X )N O,,)

P -1
Zs""f’)”,wl = {(Bl) BZ)EXXX; B ld 'Bl (wg ‘B2 w 'W{Bw'w:l} .

The theorem 3.8 in [6] is generalized to the following.

Theorem 1.1. For w, w'€W, F, acts naturally on the variety GF"\
(X< X)), and

(i) all the eigenvalues of F§ on H(GF "\N(XMx X™)) are integral
powers of gq,

(i) for a positive integer e, the number of Fi-fixed points of the quotient
variety GF"\(X (" x X() is equal to the trace of the linear transformation x—
tFo®)ty -1 of H(W, ).

Proof. The proof of [6, 3.8] shows that it suffices to prove the following
variation of [6, 3.5]:

There exists a natural isomorphism H ﬁ(YS,,"‘,),,,,wl =Hi{Z "%’w,) for any
>0 which commutes with the action of F§.

But this can be proved by almost the same argument as in the proof of
[6, 3.5].

Let p be a unipotent representation of GF". For weW and i>0,
Hi(X{™), denotes the largest subspace of H:(X{) on which G acts by a
multiple of p. We choose w and 7 in such a way that H(X{),=4=0. Fix a de-
composition

H;‘(ngm))p = (61@@6[)@[’
r-times
as a G""-module. 'Then the GF"-module endomorphism algebra of Hi(X{™),
is identified with the matrix algebra M,(Q ) of rank 7. Assume that p is oo~
invariant (up to equivalence). Then p is extended to an irreducible represen-
tation p of the semi-direct product GF"{s,>. There are m-choices for such

p. We fix p to be one of them. We may regard Hi(X{), as a GF"<{aop-
module by the identification

HY{(X), = (D DQ)DPp
N

r-times

Since p is og-invariant, F§ stabilizes H(X (™), and F§ acts on H;(X{"), by
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EQp(av?)
with E€M,(Q).
Theorem 1.2. Let p be a oy-invariant unipotent representation of G and
p be its extension to an irreducible representation of G*"{g,>. Let u be any eigen-
value of the matrix & defined as above for some i and w. Then p is uniquely

determined by p up to a multiplicative factor q° for an integer a and does not
depend on the choice of i and w.

Proof. We proceed quite identically with the proof of [6, 3.9]. Let p
te the dual representation of g. Obviously the representation p restricted to
GF" is the dual representation p of p. Take w'€W, i’>0 such that p is a
subrepresentation of H ;/(X ¢»). Fix an identification

HiX ") = (@ ®Q)®p
r’-times

and write F¥=£'Q®p(s5") on HI(X{); with £'€M,(Q ). First we consider
the orthogonal projection from the space s®p to the G -invariant subspace
(PR =Q ,» Which is defined by

2,Qu, = |GF"| —1x§mp(x)vl®ﬁ(x)’vg
Since Tr(|GF"|} gmﬁ(xa‘,)@ﬁ(xao):l, the following diagram commutes.

proj.

pOP (P®p)"
lp(amﬁ(aﬂ) lid'
_ proj. -
pPRP (PRP)°

The commutativity of this diagram in turn shows the commutativity of the
following.

Hi(X(),QH (X W); LN (H{X)@H (X))
Po®Plo) id.
Hi(X ), @H(XP); 20> (HIXE)QH! (X))
Thus the induced action of F¥ on

(HIXC)W®H! (X)) = (@0 0Q)B(QDDQ)

r-times r’-times
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is identified with £®E&’. Now, the canonical inclusion
(H{X),QHI (X)) o HiY(GF"\(X{x X))

commutes with the action of F§. Therefore, Theorem 1.1 shows that all
the eigenvalues of £QE&’ have the form ¢° for some integer a. Since another
choice of 7 and w yields the same result, the required statement follows.

DeriniTION 1.3, Let , u be as in Theorem 1.2. We define u3 by

I<|ml<q, wp=nq
for some integer a.

Corollary 1.4. For weW, there exists a unique polynomial f, (X) such
that

) Tr(F8)*, D (=1 HAXC)) = fo.l@)nsTr((at) ™, p)
for any x=GT" and positive integer e,

(ii) fou(1)=<p%", RC,
where R denotes the virtual GF"-module 3 (—1)'H {(X ).
>0

Since ji=1, Fy*=F", Let , be the normalized eigenvalue of (F™)*
associated with p, i.e. A, is equal to an eigenvalue of (F™)* (acting on H (X {"),
for some 7 and w) up to a multiplicative factor ¢™* for some integer a, and satisfies

1< nl<g™

By [6, 3.9], A, is uniquely determined by p. Let p, u; be as in Definition 1.3.
Obviously pj®=n,. There are md-extensions p for the fixed oy-invariant p
and there are m&-constants g such that u™=>,. Therefore we have

Lemma 1.5. Let p be a oy-invariant unipotent representation of G¥". Then
the mapping p—> py induces the bijection

{pE(GFm<0'o>) ;PlGFm = p} — {Il'; Mms — 7\.,,}

where (G¥"{ayp)"~ denotes the set of irreducible representations of G <oy (up to
equivalence).

2. Henceforth we assume that the positive integer m is prime to the order
8 of j. Let S be the set of simple reflections of W associated with the Borel
subgroup B. For IS, let P; be the corresponding standard parabolic sub-
group and L, its standard Levi subgroup. Let I, be an F-stable subset of S.
Let p, be a unipotent cuspidal representation of L. Let p be a unipotent
representation of G*". If p appears in the induced representation of G*" from
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the representation p, inflated to P, then we call p a unipotent representation
of G*" in the series of p,, Now, we assume that p, is g,-invariant, and we fix
a representation g, of the semi-direct product Lf (o> that extends p,. Let J
be any F-stable subset of S containing /,, We further assume that any uni-
potent representation p of L7” in the series of p, is o-invariant (for any J).
By [2, 8.2], the eigenvalues of (F§?)* associated with p and p, coincide with
each other (up to a multiplicative factor ¢™“ for some integer a). Therefore
we may fix a representation p of L5"(g,> extending p by the condition

My = Mgy
(cf. Lemma 1.5).

Lemma 2.1. Let the assumptions be as above. Let ] be an F-stable subset
of S such that I,C J <S. Let p be aunipotent representation of L%" in the series
of py. Assume that

Fm
Ind mP = E m;P;
1; 15

with each p; a unipotent representation of G*" in the series of p, and m; a positive
integer. Then
G oo
Ind_,, " p=

m = mp
PE" <oy L=

Proof. There are two methods in extending a unipotent representation
of G" in the series of p, to a representation of G*"<g,> in normalized manners:

One is by using the eigenvalues of the Frobenius mapping F§ (the method
which we have adopted here). The other is simply inducing the action of
o, on the representation .

To prove our lemma it suffices to show that these two methods yield the
same extension for any p; (or p). But this is apparent from the proof of [2, 8.2].

3. Let H be a finite group and « an automorphism of H. For &, h,E
H, we define the equivalence relation & by

h@hy,=hy = h™*h,"h for some heH .

F

For x&G*", write x=a""oa with a€G and put y=""aa"'. Then x—y defines

the bijection
GF"|Fy — GFo|[F~™

which will be denoted by # gmy,. Quite analogously to Lemma 1.2.1 of [1],
we obtain
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Lemma 3.1. For any x&GF" and ws W,

Tr((xFo)*, 23 (—1)H {(XC)
— (1 T%0| ¢%) 4 {h € GFo; h™ puspy(x)F"hE#B} ,

where d=dim(U N@wUw™"), and @ is an Fy-stable representative of w in the
normalizer No(T) of T in G.
Assume m=1 mod 8. Then we may define the mapping

Nm — n;}FoonFm/Fo: G"‘m/F0 — GF/FO

Thus by the relation in the lemma combined with that relation with m=1,
we obtain

Theorem 3.2. Assume m=1mod 8. For any x&GF " and we W,

Tr(sF)%, 3 (— 1V H X))
=TH(N™(F*, 3 (~1YHIXY)).

4. We preserve the notations used until now. Assume G=SO03, Sp,,
or SO,,.;. In some cases, G is also denoted by G, to specify n. If G+S03,
we take j to be identify, and if G=S03,, we take j to be of order 2. Let G
be the semi-direct product G{j>. If m=1mod$, then GF"(>=G "oy
First we need

Lemma 4.1. Assume m=1mod 8. Then all the unipotent representations
of GF" (resp. GF) are oy-invariant.

Proof. For an F-stable closed subgroup H of G, we denote by H™ the
group of all F™-stable points of H. Let I, be a subset of S such that there
exists a unipotent cuspidal representation p, of L{”. To prove the lemma it
suffices to prove that any unipotent representation of G™ in the series of p, is
oo-invariant. We recall a result of Lusztig [5, §5]. Let W=(Ng(L;,)/Ls,)""
where Ng(L,,) is the normalizer of L,, in G. W has a natural structure as a
Coxter group with the canonical set of generators S. For a subset J of S
with I,C JCS, a subset J of S is associated in a natural manner and any
subset of S is obtained in this form. We denote by W7 the subgroup of W
generated by J(=S). Then unipotent representations (up to equivalence) of
G™ (resp. Ly) in the series of p, are parameterized by the set of irreducible
representations W™ (resp. (W7)") of W (resp. W7). And this parameterization
is compatible with the inductions:
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~ {Z-linear combi. of }

X & R(W) —> {unip. char. of L§" ;5p
l in the series of p, l
W ~ [Z-linear combi. of cm
Ind __X&R(W) — (unip. char. of G™ t =1nd P p
w7 in the series of p,

where R(W7) and R(W) denote the group of all virtual characters of W+ and
W respectively, and irreducible characters are mapped to the irreducible char-
acters by the horizontal isomorphisms. Now, (W, S) is isomorphic to a clas-
sical Weyl group. Thus, if rank(W, S)>2, then we have:

For X,, X,&W", if X,| Wy=X,| W+ for any J&S, then X,=X,.
Therefore to prove that any unipotent representation p in the series of p, is
ge-invariant, it suffices to prove the statement only when p is a cuspidal (i.e.
I,=S) or subcuspidal (i.e. |S\I,|=1) representation (see [5]). Assume that
p is cuspidal, i.e. p=p,. Then p is the unique unipotent cuspidal representa-
tion. Therefore p is gy-invariant. Assume that p is subcuspidal. Let p’ be
another unipotent subcuspidal representation (see [5]). Since dim p==dim p’
(cf. [4]) and there is no other unipotent subcuspidal representation, p and p’ are
both gg-invariant.

Henceforth we assume that m is prime to 2p with p the characteristic of
F,. Then by N. Kawanaka [3], [4], the following statement is true:

For any og-invariant irreducible representation p™ of GF", there exists a
go-invariant (or j-invariant) irreducible representation p® of G* such that

T (wja, p) = ¢ THN ™(x)j, p)

for any xG"", where p™ (resp. pV) is an irreducible representation of
GF"{s> (resp. GF") that extends p™ (resp. p), and ¢ is a root of unity. We
now assume that m is sufficiently large so that the main theorem in [7] (resp. [8])
holds for the group G*" if G=S0,,., or Sp,, (resp. G=S03,). Let ®,, O
be the sets of symbol classes defined in [5, §3]. We set

v — { D, if G = S0,,,, or Sp,,
" | ®}(resp. ®;) if G = SO%,(resp. SOz)
By [5], the unipotent representations of G¥" (resp. G¥) are parameterized by

the symbol classes in ¥,. For AEW,, we denote by p{” (resp. p&’) the cor-
responding unipotent representation of G*" (resp. G¥), and by H(m) (resp. A )
A A

the normalized eigenvalue of (F™)* (resp. (F®)*) associated with the unipotent
representation p{" (resp. p{’). By [1], X ) and X o) are 1 or —1 if G=
A A

SOuss1, Span 0t SO, By [8, 341, A y=n =1 for any A€V, if G=S03,.
A A
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Since m is odd, we may choose the extension s & (G (o)~ of p{" by the
condition

Fpm = 7\"0(1{”)

(See Lemma 1.5). And we may choose the extension pQ’(GE{j)>" of p{’
by the condition

Fph = Nps\l),

Here we applied Lemma 1.5 with m=1. Let (W<{j>)™* be the set of irreduci-
ble representations X (up to equivalence) of the semi-direct product W<j>
such that X|W is irreducible. For any X (W{j>)™*, let R{™ be the class
function of GF” defined in [6, (3.17.1)], i.e.

R» = |w|! 2 Tr(wj, X)RS

where R{" is the character of the virtual GF"-module 2( DIHI(XSM).
We are to prove

Theorem 4.2. Let p" and pP (AEW,) be the extensions of p¢™ and p§
chosen as above. Then we have

(i) Tr(xf o, p)=Tr(N™ (x)j, pP) for any xGF",

(i) Ao =N,

(iil) <P, R >=LpW, RP>  for any XE(W{jO) ¥,

(iv) f, pxn),w(X)=f p‘,{’,w(X ) Jor any weW.

Corollary 4.3 The main theorems in G. Lusztig [7], [8] are true for any
finite field.

Lemma 4.4. Let A, A,V,. Assume
(%) Tr(xjo, pL) =c Tr(N™(x)j, p%)

for any xEGF" with some root ¢ of 1. Then
@ » o= =N o
(i) d1m p“)—dlm P
(i) <pR), R>— P8y RO> for amy XE(WD)™,
(iv) fpx,;)’ %) fﬂ(x("z)» (%) for any weW.

To prove the lemma we need some preparations. Let H(WW) be the gen-
eralized Hecke algebra of the Coxeter group (W, S) over the polynomial ring
Q[X] that yields by the specialization (X —¢) the Gfo-module endomorphism
algebra of the induced representation of G*o from the trivial representation of
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BFo. Let {a,; wW} be the canonical basis of H(W). H(W) is a subalgebra
of an algebra H(W<{;j>) defined as follows.

HW<j>) = HW)®a,HW) as linear spaces,

a;a,a7" = a;,;-1 forwe W,

ad=1

We put a,a;=a,; (weW). Let H™(W{5>) (resp. HY(W<j>)) denote the
algebra obtained by specializing X —¢™ (resp. X —¢) in the defining relations
of HW{j>). For weW ), let af’ (resp. a’) denote the specialized element
of a, in HM™(W<j>) (resp. HO(Wj>)). For Xe(W<j>"), let v be the cor-
responding irreducible representation of H(W<{j>)Q@®(X) and »{" (resp.v{’)
its specialized representation of H™(W<j>) (resp. HO(W<j))).

Proof of Lemma 4.4. By Corollary 1.4 and Lemma 3.1 we have

(1) 23 fom DN g Tr((50)7, PRY)

AEY, PN HW

= 33 fo, oy TH(V (), D)

for any we W and x&GF". The relation (1) and the relation (*) in the lemma
together with the orthogonality relations (cf. [1]) imply

(2) fﬂﬂ(”l)- w(‘I)NpX? =L o2, DX g6
for any weW. By [1, 2.4.7] and by [8, 3.5], we have

— -1 . (@) (@
( 3 ) fp‘(A“)’ w(X) - 8 xe(ﬂ%})’\* Tr(awn VX)<RX ’ PA >
for a=1, m and A€¥,. By (2)and (3),

-1 (1) LDV R (m)
(4) {8 xe(u%»/\*Tr(aw” Dy, )<Rx » PA, >} xp(A"',)
= {871 _ 31 Tr(ae) vO)KRY, phDI e
EW{i)IN* Az

Let {a¥; we W} be the dual basis of {a,; wW}. We put af,=a;'al for
weEW. Then for X, X'€(W{D)¥,

3 Tr(@f, %) Tr(all), ) +0
e

if and only if X|W=X'|W, where a}{" is the specialized element of af,.
Thus by (4),

( 5 ) <R§CM): px"l)>7\,p(m) = <R§cl)’ Px;>7\'p(1)c
Ay Az

for any Xe(W{j>)™*. By [6, 3.12],
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(6) dim p{? =81 >V <R, p{7> dim R

AW Ty~
By [4], dim p{? and dim R{™ are expressed as polynomials in ¢”. By Lusztig
[7] and [8], <R§’”), PS> is independent of m, since we have assumed that m
is a sufficiently large odd integer. Thus the relation (6) holds with each term
regarded as polynomials in ¢”. Hence by replacing ¢ with ¢ in (6) we have
) dim p) =87 >3 <R, p{>dim R

XEW GHINK

By (5) and (7),
dim p{) = cx;%m wd™ 3V KRY, pR)>dim R

P, XE(W(J))A*

=\ (,,,)x ay dim p§)

PA; Ph,;
Since ¢ is of absolute value 1, c)f(’,,,)),pm is also of absolute value 1. Con-
OA N2

sidering that dim p}) and dim p{) are positive integers, we see that (i), (ii) of
the lemma are true. (iii) is obtained by (5) and (i). (iv) is obtained by (3),
(4) and (iii).

Lemma 4.5. Let n, be a non-negative integer. We assume that there
exists a symbol class Ay &V, of defect d corresponding to the unipotent cuspidal
representation. Let A\+=A,EY, ., be the symbol classes of defect d correspond-

ing to the subcuspidal representations.
(i) Assume Tr(xjo, p)=Tr(N™X(x)j, pL) for any x&G}". Then

Tr(xa, pL) = Tr(N™(x)j, pY0)
for any x= GfomJrl with (A, A') one of the following conditions (A) and (B):

(4) (A, A) = (Ap M), (Ap A)
(B) (A, A)=(Ay, Ap), (g A

(ii) Let n>ny+1 and assume that the statement (i) with the condition (A)
is true. Then

Tr (%o, p°) = Tr(N™(x)j, pY)
for any x€G;" and any AEY, of defect d.

Proof. By Lemma 2.1, we can apply the arguments employed in [1, 2.2.3].
(See Lemma 4.1)

Proof of Theorem 4.2. By Lemma 4.4, to prove the theorem it suffices
to prove (i) of the theorem for any A=W¥,. And Lemma 4.5 shows that it
suffices to prove (i) of the theorem only when p@ is cuspidal or subcuspidal.
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Let ny, Ay, Ay, A, be as in Lemma 4.5.

Assume n=n, p{ (resp. p{)) is the unique unipotent cuspidal repre-
sentation of GF" (resp GF ) and there is no unipotent subcuspidal representa-
tion of GF” (resp. GF). By the induction, the statements of the theorem are
true if A=A, In particular, the lifting of a non-cuspidal unipotent repre-
sentation is a non-cuspidal unipotent representation, whereas the relation (1)
in the proof of Lemma 4.4 shows that the lifting of p%) is unipotent (or its
restriction to GF” is unipotent if G=S03,), and therefore must be p{?|G” ",

Thus

Tr(xja, pL0) = ¢ Tr(N™(x)j, pY))
for any x€G*" with a constant ¢. Assume G=S03,. Then A (,,,)—x (1)—1
Thus ¢=1 by Lemma 4.4, (i). Assume G50z, (, hence ]—1d) * We are to
prove c=1. By [1, 2.4.6], for any X W",
(1) dim p” = 33 <R, PN o dim X,

(2) dim pi° = 33 <R‘”, p“’>xpg> dim p’,

where p{™ (resp. p{"’) denotes the unipotent representation of G*" (resp. G¥)
in the principal series corresponding with X (cf. [1]). Since <R{”, p¥> is
independent of the odd integer m (m sufficiently large), the relation (1) holds
with each term regarded as a polynomial in ¢”. Thus by replacing ¢" with

gin (1),
(3) dim p? = 53 R, PO g dim

If A%A, we have already <R, p{">=<R{, p®> and xpx,,)zxps\,). Thus,

by comparing the relation (2) and the relation (3), we obtain
<R, PS(?»»,,(»") = {R{, Pﬁslo)>7\'p(1)

for any XeW". Thus by (iii) of Lemma 4.4, we have A o= =X oL (Note

that there exists X& W" such that (R{V, p{)>+0.) Hence by (1) of Lemma 4.4,
we have ¢c=1. Therefore we have proved the theorem for A=A,.

Assume n=mn,+1. p{? (resp. p)) (i=1, 2) are subcuspidal representations
of GF" (resp. GF) and the other unipotent representations of GF" (resp. G)
are neither cuspidal nor subcuspidal. Let i=1 or 2. By Lemma 4.5, there
exists i’=1 or 2 such that '

Tr(xjo, pLY) = Tr(N™(x)j, pY)

for any x&G"™. Then by Lemma 4.4, dim p§)=dim p{). Since dim p{)=
dim p$), we must have 7/=:¢’. This proves the theorem for A= Ay, A,



(1]
[2
[3]
(4]
[5]
(6]
7]
(8]

UNIPOTENT CHARACTERS OF SO.%, Spoy AND SOpy+, 643

References

T. Asai: On the zeta functions of the varieties X(w) of the split classical groups
and the unitary groups, Osaka J. Math. 20 (1983), 21-32.

P. Deligne and G. Lusztig: Representations of finite reductive groups over a finite
fields, Ann. of Math. (2) 103 (1976), 103-161.

N. Kawanaka: Liftings of irreducible characters of finite classical groups 1, J. Fac.
Sci. Univ. Tokyo 28 (1982), 851-861.

N. Kawanaka: Liftings of irreducible characters of finite classical groups 11, pre-
print.

G. Lusztig: Irreducible representations of finite classical groups, Invent. Math,
43 (1977), 125-175.

G. Lusztig: Representations of finite Chevalley groups, C.B.M.S. Regional
conference series in math. 39, AMS, 1978.

G. Lusztig: Unipotent characters of the symplectic and odd orthogonal groups
over a finite field, Invent. Math. 64 (1981), 263-296.

G. Lusztig: Unipotent characters of the even orthogonal groups over a finite field,
preprint.

Department of Mathematics
Nara University of Education
Nara-City, Nara, Japan








