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1. Introduction

In this paper, we are concerned with the large deviation problem for two
typical current-valued processes among those that are induced by random
curves: one is induced by Brownian motion, the other is by geodesic flow. For
both processes, the law of large numbers, the central limit theoremes have been
studied and there are some studies discussed relations between asymptotic be-
haviours of Brownian motion and geodesic flow (see e.g., Ledrappier [4]). These
results suggest that the deviation funccions for two current-valued processes may
coincide or at least have some connections, but since at present this remains
unclear, we content ourselves to determine the deviation functions for those two
currect-valued processes. Let M be a compact Riemannian manifold. We
denote by A'(M) and A'(M)’ be the smooth 1-forms on M and the currents,
respectively. We denote by (9),), the completion of A'(M)/Ker||-||, with
respect to the norm || ||, (see, e.g., [5])., The dual spece of (9),), is denoted by
(D,);. For a AY(M)'-valued process Y=(Y,),er, where T=[0, ) or R, we
define the following quantities: Given a family of probability measures {m.} .,

(1.1a) A(T") = lim sup % log sup m, [—i— Y()er],
t-poo rEM
(1.1b) MT') = lim inf % log inf m, [%Y(t) ery,
t->o 2E
for any Borel set I" in (4),); and
—Lm L T K (1), 8)
(1.2) Ala] = 1,22 ’ log sup E" e ].
We call a function & an upper [resp. a lower] deviation function if
(1.3a) MT) = —inf {&(); £ (D)}
(1.3b) [resp. X(T")< —inf {k(§); E€(T)}].

In particular, we call simply % a deviation function if it is lower semi-continuous
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and is both an upper and a lower deviation function. The objective of this
paper is to determine the deviation function for the above-mentioned current-

valued processes.
First let X=(X,, P,, x€M) be the Brownian motion on M, i.e., the diffu-
sion generated by $A. We consider the following stochastic line integral:

(L1) <Y (t),@> = V)= |

for smooth 1-form @ on M. The random process {Y,} can be regarded as a
current-valued process (Ochi[5]). In this case, m,=P,, x€M. Our result is
the following.

x[o,21

Theorem 1.1. There exists a deviation function I for which

(1.5) I[E] = sup &, a>—Ala]}
aE.‘Dl
holds. The deviation function I can be written explicitely as
_ inf L [ <E ) 2 J
(1.6) 111 = gup inf 5[ <827 + 11 dow |,
where we set

C = {feC M); f>0, sz dvy — 1}
and

(17) oo, f) = inf | BIF Fx) do(s)

~a
(B~a means that B—ct is homologous to zero).

Avellaneda [1] treated the large deviation problem for the random process
(Y(ab), -, Y(a*)), where &', :--, a*(k=dim H'(M)) is a basis of H(M). Our
result can be considered as a generalization of the result of [1]. Although, in
our formulation, the state space of the process {Y,} is infinite dimensional, the
method used in [1] is also applicable to our situation with some adaptations.

For the second one, we consider the process induced by geodesic flow G=
{G"} over a compact Riemannian manifold M. Let SM be the bundle of unit
tangent vectors. We denote the normalized measure on SM by dm=c.dM(x)
do.(v), where dM denotes the Riemannian volume of M, do(v) is the uniform
measure on the unit sphere and ¢ is the normalizing constant. This measure
is an invariant measure of the geodesic flow. We take m,—=m,xM. In this
case, the integral corresponding to (1.1) becomes an ordinary line integral:

(1.8) Y (1), &> = Yi(@) = S a.

clo,t]
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The following theorem concerns with the case of geodesic flow.

Theorem 1.2. There exists a deviation function I for which (1.7) holds.
The deviation function I(E) is given by

I1(¢) = inf g(u),

o=¢

where @ is the mapping defined by (4.1). In the above, q is the deviation function
of geodesic flow and can be written explicitely as

9(p) = l—X*(p) ,
where X*(u) is the positive Lyapunov exponent.

As is seen above, the large deviation of the first level for the current-valued
process induced by geodesic flow reduces to that of the second level for the
geodesic flow. The latter has been studied by Takahashi [8], [9] for much
wider class of dynamical systems.

2. Lemmas

First we introduce a notation. For a smooth vector field & on M, we set
L*=%A,+b. We denote by {@%},cy the diffusion measure generated by the
operator L®. For any Borel set I in (9),);, we set

@.1) P(t,T) = inf P, [% Y(t)eT].

Lemma 2.1. There exist positive constants C and K such that for any p>0
and s>0,

sup Q¢ [-L 1 ¥(5)lly>p] < K emrvtics
IEM t p s

Proof. It is sufficient to prove the case 5=0. We may assume that da"=
0,n=1, 2, -+, since the drift term does not cause any difficulties. First note that

Y,(t) (= Yi(e") is a martingale with %<Y,>(t)—>(a", o), as t—co. Using

the representation theorem for continuous martingales, there exists a 1-dimen-
sional Brownian motion B such that Y,(#)=B(K{Y,> (t)). Thus we have

P.(| V(9| > ) = P(IBKY.> ()| >F)

tp p: e
P, B(o)|> Py< 2exp[— Pt
<P/ sup |B(g)] b,,) exp[ 2B s

0<o<|a"| 25

]
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Now choosing a sequence b, as b;'=C"'n’ ||a"||2 with C=33r., n° ||@”||%(< 00),
we have

R IYO=ASPL £ V0SSP0

o 2
SZE exp [?be)_leT

<K—1— exp [__p tz

1= éep[—f’ ']

which proves the lemma.
Lemma 2.2. We set pl(t,T)= Q,(~— Y(t) €T). There exists a positive
constant A, such that for any §>0, I‘EQ((QI)p), t>2, (x,y)EMXM,
pd(t, T)< A, pf(t, T+ A, 872 0%
where T*= {E €(9,);; dist (£, T')<8}.

Proof. In the proof, we omit the superscript b of @°.
,U'g(t» I=Q. (“}' Y(t)er)

1

< QU (YO~ Y(W)ET A+ IV ()I5>812).

By Lemma 2.1, we have
Q- IV (D282 < K8 8%
The first term can be estimated as follows.
QL (Y- Y(1)ET*) = E4Q,[L (V) Y (1)) eT*21]

= E%[Quol, Y(—1)ET*)F]
<CyE%[Qxq [% Y(t—1)eT*]
= GES[Q,[ (Y()—Y ()T
= GO (Y()-Y(1)eT*]
— G Q,[% (Y()— Y (1)) e, % Y (1)l1<8/2]

+C Q- (Y- Y(m)er s Liyi=sp)
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<C; Qy[‘i— Y(1) EI‘3]+03 Q’[% Y (1)l1>8/2]
<CQILy(er+c Kot et

which proves the lemma.

Next we show that the law of large numbers for the current-valued process
Y. Let a; be the unique element of (9),), such 1hat &, ad>=(ag, a). for

any a €(9,),. We introduce the vector field 5[£] by b=b' — 6 , =gt ag,. We
write Q:=@Q%¢1, Then we have 0x'

Proposition 2.1. For any £ (D))}, we have
Qi(lim % Y(t)—g) =1.
Proof. We write a;=>10; a’. We set
Yi(a) = Ma)+Na), Ma)= S: ar)dBi, Nya)= S: a(b[E]) (X.) ds .
By the definition of 5[£], we have a(b[E]) (x)—<a, a>. Thus,

sup |- ¥(@)—<E, ad| < Sup I—Mf(a)|+ Sup. I—Nt(a) —<E | .

ll@wlp=1" ¢

For the second term, we write a=a; o', <¢, a’>=§'. Then,
L M@~ @l = 1S aiL [ <, ap(xds—g?
<(Sah) B+ | <ot ap (X ds—p17.
We thus have

sup |- Nie)—<g, > 'S Bl [ <o () do—p17.
Noting that

1% S o, as> (X,) ds—E*<Cler]|?
and

I% S:) lat, ag (Xy) ds—E|*— l_i— SM<ai’ ag dmy—§'|*=0,

we have
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Sup | 1L Nya)—<E,a>|—0,t —> oo

For the first term, note that M*(t)=supj,i,-:| M(@)| is a submartingale and
M*(t)P <3 M(a")?. We have

E? [M*(t)z]SS: E? [’;i-l‘lla"lz(X,)] ds
<{' S laae< (5 ety .

By Doob’s inequality, we have

1
P’(AS;QEB _t— ZAZ

which implies
Q.(lim % M5 =0)—=1.

The following lemma plays an important role in the proof of our theorem.

Lemma 2.3. (i) For any (€(9D,);, and r>0, there exists a To=
Ty(&, 7)>0 such that for any t>T,.

inf P, [1- Y(O) B, (0)]> 5 exp [—tr—t(2llllyf] .

(i) There exist positive constants K and C such that for any R>0,

sup P, [—IIY(t)||,,>R]< _exp [_R_é

Proof. Since the second part is a special case of Lemma 2.1, i.e., s=¢ and
p=R, we need only to show (i). Fix an orthonormal basis & of (9),), and write
ay=>710;a and ¥=<&, a’>. Then we have &=, 0,(c’, @’)2. If we
choose p sufficiently large, we have 33, 0; £'=(a¢, a);2.  Recall that Q5 is the
diffusion measure generated by the operator $A,+b[E]. By the Cameron-
Martin formula,

1 S ___Y —_— 4 2
P.[—-Y(t)eB = () —3)| |aelAX.)ds gt |
e [ ” (t)EB,(8)] {%Y“)EB’(E)}e So dQ

Noting that
t
[} 1aelx,) do<liaslt o

| Yi(ate)| <tr-+ llagllzz on the set {% Y(t)EB,(E)}
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and Lemma 2.2, we have
. 1
> o—t[r+2laslh] [Qio(—i— Y (£)EB,p(E))— 4y 17 ePr4]
Now by virtue of Proposition 2.1, the proof of (i) is completed if we choose

To=TyE,7)>0 such that for any ¢> T,, A, r 2 e t*"/¢C <% and Qi(%Y(t)E
B, (E))>~f—i—, which proves the lemma.

The following lemma is easily shown from the definitions of <.
Lemma 2.4. (i) For any £€(9D,);, r>0, we have
P(ti+t,, B(E) =L (1, B,E)) L(tz, BAE)) -
(i) For any £, £, (D)}, >0, ,>0, and AE(0, 1),
P (2, AB,,(£:)+(1—N) B,,(£2)) =L (M, B, (£1) L((1—2) 8, B,(E2)) -

3. Proof of Theorem 1.1

First we show that the existence of the deviation function. Set

(52) I(E,7) =, sup [~ log £t BN,
and
(3.3) I[e] = sup (£, ) = lim I(£, 7).

Since by virtue of Lemma 2.3 and Lemma 2.4, the function S(¢)=
St(t)<°°, we have

ﬂ@.:lim&,
t

t-poo t

—log P(t, B,(£)) is subadditive and satisfies sup;s,

sup
t>0

that is,
lim - log (t, B(§)) = —I(£.7).

By Lemma 2.4, I[£] is then convex and lower semicontinuous. Now we
show that [ is in fact the deviation function. We first show the lower bound
(1.32). For any Borel set T" and gel, there exists a positive constant 7, such

that for any r&(0, 7,), B,(§)CI". We then have
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lim L log inf P, [% Y(t)eT]

typoo

>lim inf L log inf P, [% Y(t)EB,E)] = —I(E, r)=—I[E] .

tpoo b4

To show the upper bound (1.3b), we divide two cases. Assume that I" is com-
pact. Since I[£] is lower semicontinuous, for any &, and £E(9),);, there exists
a positive constant r=r(£) such that

(34) I[EI<I(E, r)+e.

By the compactness of T, we can choose &, -+, £y such that T U¥, B,z )r(&:)-
Using this and Lemma 2.2, we have

P, [% Y(#)er]<p,[ QIBv(S;)/Z(E:‘)]SAZ Pt 'Ll__ler(E,-)IZ(Ei))"i‘Az 82 gm0
for some 8>0. Thus, we have
lim sup % log sup P,[—i— Y(@)er]
<lim sup - log[4; P(t, U Braepnl(E)+4, 37 4]

<max[—I(&, ry), =+, —I(En, 7x)]< —min I(E;, 7;)
< —inf I[E]+€.
¢T

Next let T be not compact. By Lemma 2.3 it holds
4
UE1E < rpgy <2l

Together with the fact that I is lower semicontinuous, it follows that
inf I[E]= inf I[£]
teT $€TNBL0
Thus we have
fim sup % log P, [% Y(t)eT]
<lim sup % log {P,[% Y(t)ef‘nBR(O)]—I—P,[% Y @)ll3>R]}
. 1,1 o RE
< 1 — P, [— Y@)eT'N Bx(0)], —=——
max{utl_:wsuptP[t (t)ET' N BR(0)] ZC}
<max{— inf I7g], — X}
<max{— , —
in [£] 20

EETNBLO

= —in.f: I [E] ’
teT
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where we used the result of case 1.
To prove (1.5), we use the result described in Stroock [7]. Let E=(9),);,
E*=(9),),. For ac=E*, set

42, 4) = P, [<% Y(), aded], A BRY,
1*(4) = lim % log inAg wi(t, A), A is convex, open in R',
t-»o0 zE

and
I*(0) = —inf {I{*(A4)| A4 is convex, open and dE 4} ,
— —lim 1*(By(0), <R .

Then by Lemma 3.18 in Stroock [7], we have
I[E] == up IU(<E: a>) ) EE(QI);’ .

R)
acs(9),

If we set
A%(6) = lim - log sup E*[e4¥), a (D)),
then we have
A*(0) = A[fa], 0ER, aEA; .
By a result of Avellaneda [1], it holds that
I*(r) = sup [6r—A%6)], TER".

R

We thus obtain

I[E] = sup I*(<E, @)= sup sup {<E, fad>—A[fal}

as(Dy), as(D,), o=k

= sup [<§, ad>—Ala]],
€(Dy)y

[+4

which completes the proof of (1.5). For the proof of (1.6), we first quote here
the following Proposition due to Avellaneda [1, Lemma 3.5].

Lemma 3.1. For acAY(M), set
A¥(r) = sup [T0—A*(6)] .
ocR!

Then it holds

1

2
inf 1, 6
FECAM),[f2dvy=1,f>0 2

[t 1P dou()].

#(0) =
A:0) @ J)
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Now the proof of (1.6) proceeds as follows:

I[E] = sup [<&, ad>—Ala]]
€(D1)»

= sup sup [0 <&, a>—A[0a]]

allp=1 0

= sup sup [0 <E, a>—A%(0)].
llally=1 80

Since A*(0)=A[0ca], we have A*(—@)=A[—0a]=A"%0). Noting the fact
A®(0)=0, we thus have
sup sup [0 <&, ap—A%(0)]

llwll,=1 6R

= sup AF(E, ap)

Hellp=1

. : i <E, a>2 2
=22 Ly L P et

which completes the proof of (1.6).

4. Proof of Theorem 1.2

In this section, we consider the current-valued process induced by geo-
desic flow. Let G={G'} be the geodesic flow on SM. For acA(M) and
w €M, the integral (1.8) is of the form:

Y(a) = Yia, o) = S a= s: fle] (G'w) ds .

We fix the following notation. M= H(SM) is the space of probability meas-
ures on SM. M(G)= M(SM, G) denotes the set of the elements of H(SM)

which are invariant under G. Let us consider the following mapping.

D: M — Al(M)

G(lo,1],0)

which is defined by

(+.1) @lpl > = fla] () du(o) = <u flal> .

Proposition 4.1. @ is a continuous mapping in the weak topology for M
and the topology defined by the metric ||-||; for Ai(M).

Proof. Assume that y, converges weakly to u. Take an orthonormal base
{a"} in (9),),. Then we have

D[]~ @[l = sup |<B[1,], @>—<®[u], |

< 32 ({ flam) dp,—{ fla" du)y.
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For any €>0, there exists an m, such that if m>m, then 337, |la*||,<€. We
thus have

lim sup [/ [1z,] — @ [p]ll}<lim sup 3} (S fla"] d.wn—Sf[a"'] du)*+-2C¢
= 2C¢,
which completes the proof.

Following Takahashi [8], [9], we define the quantities @(G), ¢(r) as follows.
(42) Q(G) = lim sup % log m(@EM;€,.€G), for GEB(H),

where &, ,E M is defined by

(e o
(4.3) Eul) =1 So Sgral+) ds
and
(4.4) ¢(p) = inf {Q (G); nEG, G: open in M} .

Corresponding to these quantities, we define the following:
(422) @¥(G*) = lim sup % log [m(0€SM| ®[6,]EG*)], G*EBA(M)),
and
(4.42) I(Y) = inf {@*(G*); YEG*, G* open in A{(M)} .
By the very definition of €, , and @, we see
(4.5) Ble,] = Y(t,0).

To characterize the deviation function, we define Z*: LY(m)—L'(m) by

S v(x) L u(x) m(dx) = S o(G* ) u(x) m(dx)

for usLY(m), veC(SM). Let A be an infinitesimal generator of {L'} with
domain D(A). Next we define the relative entropy. Let a be a finite partition
of SM. We denote a,(t)=\/7=6 G™"a. We set

H(ulm; @) = — 3 u(E) log Z((g

For u is {G'}-invariant, we set

s m; ) = lim L H (u | m; a,(0)
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and

h(p|m) = h(u|m, SM, {G'}) = sup t™ k(| m; @)

The following theorem is due to Takahashi and actually holds for more general
flows.

Theorem 4.1. (Takahashi [9, Theorem 2, Theorem 3])
1)
a(w) = L in {] 1og (%) du; uec*(SM))
u
_ inf{g AU 4 ueD(A)NCHSM}
u

where CH(SM)={ucsC(SM); u(x)>0, Vx&SM}. Furthermore, q(p)=— o if
w 1s not {G*}-invariant.

@) qw)=hulm).

() a(u)=q(u), where g(u) is defined by

Q(G) = lim inf% log m{x&SM; &, =G}
q(n) = inf {Q(G); G open, p€ M} .

ReEMARK. The assertion (3) in the above theorem implies ¢(z) is in fact the
deviation function (see Orey [6, Proposition 1.1. (vii)]).

Proof of Theorem 1.2. The first assertion is a consequence of contraction
principle. To show the second assertion, it is sufficient to show that A(u|m)=
hu—X*(p) in view of the above theorem. Although it may be known this equa-
lity for the geodesic flow, we present the proof for the completeness. The
inequality g(u)>hu—X*(u) can be shown by a modification of the proof of
Takahashi [9]. We show ¢(u)<hu—X*(u). Take the function ¢ for which

Scﬁd,u:—x*(p) (See e.g., Bowen-Ruelle [2]). By a result of E. Franco [3,

Prop. (2.11)],
m(B)< C, exp [S,; ¢(z)—P(P) nt], 2EB,
where P denotes the pressure and we set S, ¢(z)=st ¢(G* x)ds. Note that the
0
pressure P(¢)=0. Taking the logarithm of both sides, multiplying u(B) for
both sides and adding —S S, P(v) du(y), we have
B

4(B) log m(B)—nt S ddy
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< u(B) log m(B)—SB S $(¥) dp(y)
<(B)log Cyt i(B) S, $(3)— | S.4 9(3) du()

<u(B) log Cyt-u(B) S, $()— | {K—S,. ()} du(3)
— u(B) [log C,+K].

Therefore

w(E) log m(E)<nt S ¢du+log Co+-K .

Eea.”(t)

Thus we have

s ms @) <thu-t | g,

this implies

(]
(2
B3]
(4]
(5]
(6]

7]
(8]

[9]

h(ﬂ«lm)éhﬁ-g ddu .
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