

Title	A characterization of some partial geometric spaces
Author(s)	Kimura, Hiroshi; Ohmori, Hiroyuki
Citation	Osaka Journal of Mathematics. 1985, 22(3), p. 401-410
Version Type	VoR
URL	https://doi.org/10.18910/7131
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

A CHARACTERIZATION OF SOME PARTIAL GEOMETRIC SPACES

Dedicated to Professor Hirosi Nagao on his 60th birthday

HIROSHI KIMURA AND HIROYUKI OHMORI

(Received April 17, 1984)

1. Introduction

A partial geometric space S of dimension $m \ge 2$ defined in [2, 6] consists of the sets $\{A_i\}_{i=-1}^m$ and the set T such that the following eight axioms are satisfied:

- (1) $A_i \cap A_j = \phi$ whenever $i \neq j$ and $-1 \leq i, j \leq m$.
- $(2) |A_{-1}| = |A_m| = 1.$
- (3) $T \subset \prod_{i=-1}^{m} A_{i}$.

The elements of A_i , $-1 \le i \le m$, are called *i* elements of *S*. The elements of *T* are called flags of *S*. There is a property called incidence which is a relation between the elements of *S* based on the flags.

- (4) For each i element x_i there is a flag $(t_{-1}, \dots, t_m) \in T$ such that $x_i = t_i$, where $-1 \le i \le m$.
- (5) Whenever $(y_{-1}, \dots, y_m) \in T$ and $(z_{-1}, \dots, z_m) \in T$ and $y_k = z_k$ for some $k, -1 \le k \le m$, then there exists a flag $(t_{-1}, \dots, t_m) \in T$, where $t_i = y_i$ for $-1 \le i \le k$, and $t_i = z_i$ for $k \le j \le m$.
- (6) If $x_i \in A_i$ and $x_j \in A_j$, then x_i and x_j have an l intersection $x_l \in A_l$ and an s join $x_s \in A_s$. Here x_i and x_j are said to have an l intersection x_l (s join x_s), where $-1 \le l \le \min\{i, j\}$ ($\max\{i, j\} \le s \le m$) if and only if x_l (x_s) is incident with x_i and x_j such that whenever x_n is an n element of S for $-1 \le n \le \min\{i, j\}$ ($\max\{i, j\} \le n \le m$) which is incident with x_i and x_j , then x_n is incident with x_l (x_s) and $-1 \le n \le l$ ($s \le n \le m$). By the definition, x_i and x_j have unique intersection and unique join.
- (7) If $x_{i-1} \in A_{i-1}$ and $x_{i+1} \in A_{i+1}$ are incident, then there are k(i) i elements which are incident with x_{i-1} and x_{i+1} , where $2 \le k(i) < \infty$, for $0 \le i \le m-1$. The number k(i) is independent of the choice of x_{i-1} and x_{i+1} , and depends only on i. k(0), k(1), \cdots , k(m-1) are called the configuration parameters of S.
- (8) Let $m \ge 2$. If $x_i \in A_i$ and $x_{i+1} \in A_{i+1}$ have an (i-1) intersection x_{i-1} and an s join x_s , where $0 \le i \le m-2$ and $i+2 \le s \le m$, then there are t(i, s, k) i

elements y_i , which are incident with x_{i-1} and x_{i+1} such that y_i and x_i have an (i+k) join for $1 \le k \le s-i-1$. Also $\sum_{k=1}^{s-i-1} t(i, s, k) \ge 1$ for $0 \le i \le m-2$ and $i+2 \le s \le m$. The numbers t(i, s, k) are called the geometric parameters of S.

The concept of a partial geometric space of dimension m is an extension of the concept of a partial geometry introduced by R.C. Bose [1]. A partial geometry of dimension three introduced by R. Lasker and J. Dunbar [5] is called an L.D. partial geometric space of dimension three in [6].

We have two examples of partial geometric spaces of dimension m.

EXAMPLE 1 [6]. Let A be a set consisting (m+1) distinct symbols, where $m \ge 2$. Let $A_{-1} = \{\phi\}$. For $0 \le j \le m$, $A_j = \{B \subset A \mid |B| = j+1\}$. Note that $A_m = \{A\}$. Let $T = \{(t_{-1}, \dots, t_m) \in \prod_{i=-1}^m A_i \mid t_i \subset t_{i+1} \text{ for } -1 \le i \le m-1\}$. Then $S_1 = (\{A_i\}_{i=-1}^m, T)$ is a partial geometric space of dimension m. The configuration parameters are k(i) = 2 for $0 \le i \le m-1$. The geometric parameters are t(i, i+2, 1) = 2 for $0 \le i \le m-2$ and the rest geometric parameters need not be defined.

EXAMPLE 2. Let PG(m, q) be the finite projective geometry of dimension m and of order q, where $m \ge 2$ and q is a prime power. Let $A_{-1} = \{\phi\}$. For $0 \le j \le m$, $A_j = \{B \mid B \text{ is a } j \text{ dimensional subspace of } PG(m, q)\}$. Let $T = \{(t_{-1}, \dots, t_m) \in \prod_{i=-1}^m A_i \mid t_i \subset t_{i+1} \text{ for } 0 \le i \le m-1\}$. Then $S_2 = (\{A_i\}_{i=-1}^m, T)$ is a partial geometric space of dimension m. The configuration parameters are k(i) = q+1 for $0 \le i \le m-1$. The geometric parameters are t(i, i+2, 1) = q+1 for $0 \le i \le m-2$ and the rest geometric parameters need not be defined.

Two partial geometric spaces S_1 and S_2 of dimension m have common property:

$$(\sharp) \begin{cases} \text{(i)} & k(i) \text{ is constant for } 0 \leq i \leq m-1 \\ \text{(ii)} & t(i, s, k) = k(i) \text{ for } 0 \leq i \leq m-2, \text{ where } s=i+2 \text{ and } k=1, \\ & \text{and the rest geometric parameters need not be defined.} \end{cases}$$

From (ii) of the property, we note that for any i element and i+1 element which have an (i-1) intersection and are not incident, they have an (i+2) join. In section 2, we shall prove the following theorem.

Theorem. Let $S=(\{A_i\}_{i=-1}^m, T)$ be a partial geometric space of dimension $m \ge 2$ satisfying property (\sharp) . Then $S=S_1$ if k(i)=2, and $S=S_2$ if $k(i)=\alpha+1>2$ and $m \ge 3$.

In section 3, we shall give an another example of partial geometric space of dimension $m \ge 3$.

2. Proof of Theorem

Let $S = (\{A_i\}_{i=-1}^m, T)$ be a partial geometric space of dimension $m \ge 2$. Let $x_i \in A_i$ and $x_j \in A_j$, where $-1 \le i$, $j \le m$. x_i is said to be incident with x_j if and only if there exists a flag $(t_{-1}, \dots, t_m) \in T$ such that $x_i = t_i$ and $x_j = t_j$. Let $x_j \in A_j$ and $x_k \in A_k$ such that x_j and x_k are incident, where $-1 \le j < k \le m$. $\phi(i, x_j, x_k)$ is the number of i elements of S which are incident with x_j and x_k , where $-1 \le i \le m$. The number $\phi(i, x_j, x_k)$ is a finite positive integer which is independent of the choice of the j element x_j and the k element x_k [2]. Therefore put $\phi(i, j, k) = \phi(i, x_j, x_k)$.

From now on in this section, we assume that S satisfies the property (#).

Lemma 1. Let x_i and y_i be two distinct i elements such that they have an (i-1) intersection x_{i-1} for $0 \le i \le m-1$. Then x_i and y_i have an (i+1) join.

Proof. Let x_{i+l} be a join of x_i and y_i , where l > 1. Then there exists an (i+1) element y_{i+1} which is incident with x_{i-1} and x_{i+l} and is not incident with x_i . From the property (\sharp) , we have l=2 and there are k(i) i elements z_i , which are incident with x_{i-1} and y_{i+1} , such that z_i and x_i have an (i+1) join. Those k(i) i elements are distinct from y_i . Consequently, there are (k(i)+1) i elements which are incident with x_{i-1} and y_{i+1} . This is a contradiction. Therefore l=1, i.e. x_i and y_i have an (i+1) join.

Lemma 2.
$$\phi(i, x_{i-1}, x_k) = \phi(i, i-1, k) = k(i)(k(i)-1)^{k-i-1} + (k(i)-1)^{k-i-2} + \cdots + (k(i)-1)+1$$
, where $0 \le i < k \le m$, and $x_{i-1} \in A_{i-1}$ and $x_k \in A_k$.

Proof. It shall be proved by induction on k-i+1, say t. When t=2, from the definition, $\phi(i, x_{i-1}, x_{i+1}) = \phi(i, i-1, i+1) = k(i)$. Therefore the lemma holds when t=2. Suppose that t>2 and assume that the lemma holds whenever k-i+1 < t, where $0 \le i < k \le m$, and $2 < t \le m+1$. Let x_{i-1} be an (i-1) element and x_k be a k element such that x_{i-1} and x_k are incident in S, where $0 \le i \le m-2$, $i+2 \le k \le m$ and k-i+1=t. Count triples (x_i, x_{i+1}, x_{i+2}) , where x_l $(i \le l \le i+2)$ is an l element such that $x_{l'}$ and $x_{l'+1}$ $(i-1 \le l' \le i+1)$, and x_{i+2} and x_k are incident in S.

Given a fixed i element x_i which is incident with x_{i-1} and x_k , there are $(k(i) - 1)^{k-i-2} + (k(i)-1)^{k-i-3} + \cdots + (k(i)-1)+1)$ (i+1) elements x_{i+1} , which are incident with x_i and x_k , by the induction hypothesis.

Similarly, given a fixed pair (x_i, x_{i+1}) , where x_{i-1} and x_i , x_i and x_{i+1} , and x_{i+1} and x_k are incident in S, there are $(k(i)(k(i)-1)^{k-i-3}+(k(i)-1)^{k-i-4}+\cdots+(k(i)-1)+1)$ (i+2) elements, which are incident with both x_{i+1} and x_k . Therefore the number of triples is

$$(k(i)(k(i)-1)^{k-i-2}+(k(i)-1)^{k-i-3}+\cdots+(k(i)-1)+1)\times (k(i)(k(i)-1)^{k-i-3}+(k(i)-1)^{k-i-4}+\cdots+(k(i)-1)+1)\phi(i,x_{i-1},x_k).$$

On the other hand, count pairs (x_i, x_{i+1}) , where x_i $(i \le l \le i+1)$ is an l element such that $x_{l'}$ and $x_{l'+1}$ $(i-1 \le l' \le i)$ are incident in S. Let x_i and y_i be distinct two i elements which are incident with x_{i-1} and x_k , then x_i and y_i have an (i+1) join, say y_{i+1} . For y_{i+1} , there are $\binom{k(i)}{2}$ pairs $\binom{x_i'}{2}$, $\binom{x_i'}{2}$ such that an i elements x_i' and y_i' have an (i+1) join y_{i+1} and an intersection x_{i-1} , by the definition of k(i). Consequently there are $\binom{\phi(i, x_{i-1}, x_k)}{2} k(i) / \binom{k(i)}{2}$ pairs $\binom{x_i}{2}$ pairs $\binom{x_i}{2}$ such that x_{i-1} and x_i , x_i and x_{i+1} , and x_{i+1} and x_k are incident in S. The contribution to triples of such a pair $\binom{x_i}{2}$, $\binom{x_{i-1}}{2}$ is $\binom{k(i)(k(i)-1)^{k-i-3}+k(i)-1}{k-i-4}+\cdots+\binom{k(i)-1}{2}+1$ by the induction hypothesis. Therefore we get

$$\begin{aligned} &(k(i)(k(i)-1)^{k-i-2} + (k(i)-1)^{k-i-3} + \cdots + (k(i)-1)+1) \times \\ &(k(i)(k(i)-1)^{k-i-3} + (k(i)-1)^{k-i-4} + \cdots + (k(i)-1)+1)\phi(i, x_{i-1}, x_k) \\ &= (k(i)(k(i)-1)^{k-i-3} + (k(i)-1)^{k-i-4} + \cdots + (k(i)-1)+1) \times \\ & \left(\phi(i, x_{i-1}, x_k)\right) k(i) / \binom{k(i)}{2}. \end{aligned}$$

Consequently we have the lemma.

REMARK. This lemma can be obtained from Theorem 7.1 in [6].

Lemma 3. If
$$k(i) = 2$$
, $\phi(i, i-1, k) = k-i+1$, and if $k(i) = \alpha+1>2$, $\phi(i, i-1, k) = (\alpha^{k-i+1}-1)/(\alpha-1)$, for $0 \le i < k \le m$.

Proof. It is obvious from Lemma 2.

Lemma 4. If
$$k(i)=2$$
, $\phi(i,j,k)=\binom{k-j}{i-j}$ for $-1 \le j < i < k \le m$.

Proof. Let x_j be a j element and x_k be a k element such that x_j and x_k be incident in S. Count (k-j+1)-tuples $(x_j, \dots, x_i, \dots, x_k)$, where x_l $(j \le l \le k-1)$ is an l element such that x_l and x_{l+1} are incident. By Lemma 2, there are (k-j) (j+1) elements x_{j+1} which are incident with x_j and x_k . For such x_{j+1} , there are (k-j-1) (j+2) elements which are incident with x_{j+1} and x_k , and so on. Consequently there are (k-j)! (k-j+1)-tuples. On the other hand, given a fixed i element x_i which is incident with x_j and x_k , there are (i-j)! (i-j+1)-tuples (x_j, \dots, x_i) where an l element x_l and an (l+1) element x_{l+1} are incident $(j \le l \le i-1)$, and there are (k-i)! (k-i+1)-tuples (x_i, \dots, x_k) where an l' element $x_{l'}$ and an (l'+1) element $x_{l'+1}$ are incident in S, for $i \le l' \le k-1$. Therefore we get $\phi(i, x_j, x_k)(k-i)!$ (i-j)! = (k-j)!. Thus the proof is complete.

Lemma 5. If
$$k(i) = \alpha + 1 > 2$$
, $\phi(i, j, k) = \prod_{l=1}^{i-j} (\alpha^{k-j+l} - 1)/(\alpha^l - 1)$ for $-1 \le j < i < k \le m$.

Proof. It is similar to the proof of Lemma 4. So, we shall omit a proof.

We note that $\phi(i, j, k) = \phi(i, -1, j)$ when i < j, and $\phi(i, j, k) = \phi(i, k, m)$ when k < i. So, $\phi(i, j, k)$ is defined for i, j and k such that $-1 \le j < k \le m, -1 \le i \le m$ and $i \ne j, k$.

By the incidence structure in S, an i element x_i can be corresponded to a subset $b(x_i)$ of A_0 consisting of 0 elements which are incident with x_i , where $0 \le i \le m$.

Lemma 6. The above correspondence of A_i to a family consisting of subsets of A_0 is injective.

Proof. Assume that $b(x_i)=b(y_i)$ for an i element y_i ($\neq x_i$). Let x_l be an l intersection of x_i and y_i . Then l < i and $b(x_l) \supseteq b(x_i)$. On the other hand, $|b(x_j)| = \phi(0, -1, j)$ for every j element x_j . This contradicts $\phi(0, -1, l) < \phi(0, -1, i)$.

REMARK. Similarly we can prove that $b(x_i) \neq b(x_j)$ for $x_i \in A_i$ and $x_j \in A_j$, where $i \neq j$.

Lemma 7. If k(i)=2, then $S=S_1$.

Proof. $|A_0| = \phi(0, -1, m) = m+1$. Since $\phi(0, -1, i) = i+1$, every element of A_i is a subset of A_0 consisting of i+1 elements. By Lemma 4 and Lemma 6, A_i is a family of all subsets of A_0 containing i+1 elements. By the definition, for i < j, $x_i \in A_i$ and $x_j \in A_j$ are incident if and only if $b(x_i) \subset b(x_j)$. Thus the proof is complete.

Next we assume that $k(i)=\alpha+1\geq 3$ for $0\leq i\leq m-1$. By Lemma 6, an i element x_i is identified with a subset of A_0 .

Lemma 8. A incidence structure $D=(A_0, A_{m-1})$ is a symmetric $2-(v, k, \lambda)$ design, where $v=(\alpha^{m+1}-1)/(\alpha-1)$, $k=(\alpha^m-1)/(\alpha-1)$ and $\lambda=(\alpha^{m-1}-1)/(\alpha-1)$.

Proof. By the definition, $v=\phi(0,-1,m)$ and $k=\phi(0,-1,m-1)$. Let x_0 and y_0 be two elements of A_0 . Then there exists a 1 element x_1 by Lemma 1 which is a join of x_0 and y_0 . But every element of A_{m-1} containing x_0 and y_0 has to contain x_1 . Thus we have $\lambda=\phi(m-1,1,m)$. By Lemma 5, we have the lemma.

Elements of A_0 and elements of A_{m-1} are called points and blocks in D, respectively. For $x_i \in A_i$ and $y_j \in A_j$, where $0 \le i \le j \le m-1$, we define $\langle x_i, y_j \rangle$

be an intersection of all blocks of D containing x_i and y_j . Especially $\langle x_0, y_0 \rangle$ is called a line spanned by x_0 and y_0 , where $x_0 \in A_0$ and $y_0 \in A_0$.

Lemma 9. Let x_1 and y_1 be two elements of A_1 . Then there is an element of A_{m-1} which is incident with x_1 and not incident with y_1 .

Proof. Let x_l be an l join of x_1 and y_1 . Then l>1. By the property of x_l , the number of elements of A_{m-1} which are incident with x_1 and y_1 equals to the number of elements of A_{m-1} which are incident with x_l . This number is $\phi(m-1, l, m)$ which is smaller than $\phi(m-1, l, m)$ by Lemma 5. This proves the lemma.

Lemma 10. D is a design such that its points and blocks are points and hyperplanes of a finite projective geometry P of dimension m, respectively.

Proof. Let x_1 be a 1 join of x_0 and y_0 , where x_0 , $y_0 \in A_0$. By Lemma 1, x_1 is contained in every block of D which is incident with x_0 and y_0 . Therefore $\langle x_0, y_0 \rangle \supseteq x_1$. If $\langle x_0, y_0 \rangle \Rightarrow x_1$, then there is an element z_0 of $\langle x_0, y_0 \rangle$ which is not incident with x_1 . Let x_1 be an l join of z_0 and x_1 , where l > 1. Let z_1 be an element of A_1 which is incident with x_1 and z_0 . Then $z_1 \neq x_1$ and z_1 is contained in all blocks which contain x_0 and y_0 . But by Lemma 9, there exists a block of D which is incident with x_1 and not incident with z_1 , and hence z_1 is not contained in $\langle x_0, y_0 \rangle$. Hence $\langle x_0, y_0 \rangle = x_1$. Therefore $(v - \lambda)/(k - \lambda) = \alpha + 1 = |x_1|$. By using a result in [4], we have the lemma.

Lemma 11. An i element x_i is a subspace of P of dimension i for $1 \le i \le m$.

Proof. We shall prove the lemma by the induction on i. By Lemma 10, the case of i=1 is true. Let $i\geq 2$. Then there exist elements x_{i-1} and y_{i-1} of A_{i-1} , and an element x_{i-2} of A_{i-2} such that they are incident with x_i , and that x_{i-2} is incident with x_{i-1} and y_{i-1} . By Lemma 6, there exists an element y_0 of y_{i-1} which is not contained in x_{i-1} . By the induction hypothesis, $y_{i-2} = \langle x_{i-2}, y_0 \rangle$ which is a subspace of P spanned by y_0 and all elements of x_{i-2} . Therefore we have $\langle x_{i-1}, y_0 \rangle = \langle x_{i-1}, y_{i-1} \rangle$. Since A_m is a projective space and x_{i-1} is an i-1 dimensional subspace, $\langle x_{i-1}, y_0 \rangle$ is an i dimensional subspace, and hence $|\langle x_{i-1}, y_0 \rangle| = (\alpha^{i+1} - 1)/(\alpha - 1)$. On the other hand, we have $\langle x_{i-1}, y_{i-1} \rangle \supset x_i$, because x_i is contained in every elements of A_{m-1} containing x_{i-1} and y_{i-1} . By Lemma 3, $|x_i| = |\langle x_{i-1}, y_0 \rangle|$. Therefore we have $x_i = \langle x_{i-1}, y_0 \rangle$. Thus the proof is complete.

By Lemma 7 and Lemma 11, a proof of Theorem completes.

3. Another example

Example 3. Let V be an m dimensional vector space over GF(2) $(m \ge 3)$,

and H the set consisting of all m-1 dimensional subspaces of V. Put $A_{-1} = \{\phi\}$, $A_m = \{V-\{0\}\}$ and $A_i = \{M_i^c \cap \cdots \cap M_{m-i}^c | M_1 \supseteq M_1 \cap M_2 \supseteq \cdots \supseteq \bigcap_{u=1}^{m-i} M_u$, $M_u \in H\}$ for $0 \le i \le m-1$, where $M_u^c = V - M_u$. We say that $x_i \in A_i$ is incident with $x_j \in A_j$ if and only if $x_i \subset x_j$ ($i \le j$). We shall show that $S_3 = (\{A_i\}_{i=-1}^m, T)$ is a partial geometric space of dimension m, where $T = \{(x_{-1}, \dots, x_i, \dots, x_j, \dots, x_m) \in \prod_{i=1}^m A_i | x_i \text{ is incident with } x_j (-1 \le i < j \le m)\}$.

Lemma 12. For $x_i \in A_i$, $|x_i| = 2^i$ $(i \ge 0)$.

Proof. Let $x_i = \bigcap_{u=1}^{m-i} M_u^c$, then $\bigcap_{u=1}^{m-i} M_u$ is a subspace of dimension *i*. Therefore we have that by the principle of inclusion and exclusion $|x_i| = 2^m + \sum_{u=1}^{m-i} {m-i \choose u} (-1)^u 2^{m-u} = 2^i (2-1)^{m-i} = 2^i$.

REMARK A. Let $x_0 \in A_0$ and $M \in H$ ($x_0 \notin M$). Since $V - \{0\}$ is a projective space, M^c is an affine space. Thus $M^c - \{x_0\}$ is a projective space over GF(2).

At first, we define the intersection and the join. For $z_l \in A_l$ $(0 \le l \le m-1)$, put $K(z_l) = \{M \in H \mid M^c \supset z_l\}$, and $K(z_{-1}) = H$ and $K(z_m) = \phi$, where $z_{-1} \in A_{-1}$ and $z_m \in A_m$. Let x_i and y_j $(-1 \le i, j \le m)$ be elements of A_i and A_j , respectively. Then a set $\bigcap_{u=1}^{m-l} L_u^c$ is defined to be an l intersection of x_i and x_j where elements L_u $(1 \le u \le m-l)$ of $K(x_i) \cup K(y_j)$ satisfy $L_1 \supseteq L_1 \cap L_2 \supseteq \cdots \supseteq \bigcap_{u=1}^{m-l} L_u$ and $\bigcap_{u=1}^{m-l} L_u \subset L$ for any element L of $K(x_i) \cup K(y_j)$. We denote $\bigcap_{u=1}^{m-l} L_u^c$ by $x_i \wedge y_j$. We note that if there exists an element L_{m-l+1} of $K(x_i) \cup K(y_j)$ such that $\bigcap_{u=1}^{m-l} L_u = \bigcap_{u=1}^{m-l+1} L_u$ and $\bigcap_{u=1}^{m-l} L_u^c = \bigcap_{u=1}^{m-l+1} L_u^c$, then x_i and y_j have a -1 intersection. Because let $V = V/L_1 \cap \cdots \cap L_{m-l}$ and $L_u = L_u/L_1 \cap \cdots \cap L_{m-l}$ $(1 \le u \le m-l)$. By Lemma 12, $|L_1^c \cap \cdots \cap L_{m-l}^c| = 1$, and hence $L_1^c \cap \cdots \cap L_{m-l+1}^c = \phi$. This implies $x_i \wedge y_j = \phi$.

Next, a set $\bigcap_{w=1}^{m-s} J_w^c$ is defined to be an s join of x_i and y_j where element J_w ($1 \le w \le m-s$) of $K(x_i) \cap K(y_j)$ ($\pm \phi$) are satisfy $J_1 \supseteq J_1 \cap J_2 \supseteq \cdots \supseteq \bigcap_{w=1}^{m-s} J_w$ and $\bigcap_{w=1}^{m-s} J_w \cap J_w$ or $J_w \cap J_w \cap J_w$ according to $J_w \cap J_w \cap J_w$. We denote $J_w \cap J_w \cap J_w \cap J_w$ according to $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ or $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ according to $J_w \cap J_w \cap J_w$ by $J_w \cap J_w \cap J_w$ according to $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ and $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w \cap J_w$ are satisfy $J_w \cap J_w$ are satisfy J

By the above paragraph, we have the following lemma.

Lemma 13. Let K be a subset of H. Then $\bigcap_{N \in K} N^c$ is an element of A_l for some l.

Lemma 14. Let $x_i = \bigcap_{w=1}^{m-i} M_w^c$ and $x_j = \bigcap_{u=1}^{m-j} N_u^c$ be elements of A_i and A_j , respectively. If $x_i \subset x_j$, then $\bigcap_{w=1}^{m-i} M_w \subset \bigcap_{u=1}^{m-j} N_u$.

Proof. Suppose that there exists N_z $(1 \le z \le m-j)$ such that $\bigcap_{w=1}^{m-i} M_w \subset N_z$. Then $\bigcap_{w=1}^{m-i} M_w \supseteq \bigcap_{w=1}^{m-i} M_w \cap N_z$, so $x_{i-1} = \bigcap_{w=1}^{m-i} M_w^c \cap N_z^c$ is an element of A_{i-1} . Hence $\bigcup_{w=1}^{m-i} M_w \cup N_z \supseteq \bigcup_{w=1}^{m-i} M_w$ by Lemma 12. On the other hand, by the hypothesis $x_i \subset x_j$, $\bigcup_{w=1}^{m-i} M_w \supset \bigcup_{w=1}^{m-i} N_u$. Hence $\bigcup_{w=1}^{m-i} M_w \supset N_z$. This is a contradiction.

Lemma 15. Let W be an i dimensional subspace of V. Then $|\{x_i \in A_i| x_i = \bigcap_{w=1}^{m-i} M_w^c, where \bigcap_{w=1}^{m-i} M_w = W\}| = 2^{m-i} - 1.$

Proof. Put $\overline{V} = V/W$. By Lemma 12, $|\overline{M}_1^c \cap \cdots \cap \overline{M}_{m-i}^c| = 1$. Since GL(m-i, 2) acts transitively on $\overline{V} = \{\overline{0}\}$, we have the lemma.

By Lemmas 14 and 15, we have the following:

Lemma 16. $|A_0| = 2^m - 1$ and $|A_i| = \left(\prod_{u=1}^i \frac{2^{m+1-u}-1}{2^u-1}\right) (2^{m-i}-1)$ for m > i > 0.

Lemma 17. Let $x_i = \bigcap_{u=1}^{m-i} M_u^c$ be an element of A_i $(0 \le i \le m-1)$, then $|K(x_i)| = 2^{m-i-1}$.

Proof. Without loss of generality, we may assume i=0. By Lemma 12, put $M_1^c \cap \cdots \cap M_m^c = \{a\}$, that is every elements of H contained in $\bigcup_{u=1}^m M_u$ does not contain $\{a\}$. Since the number of hyperplanes of $V/\langle a \rangle$ equals $2^{m-1}-1$, the number in the lemma equals $(2^m-1)-(2^{m-1}-1)=2^{m-1}$.

Lemma 18.
$$k(0)=k(m-1)=2$$
 and $k(i)=3$ for $0 < i < m-1$.

Proof. Let x_i be an element of A_i . Since $|A_0| = 2^m - 1$ by Lemma 16 and $|x_1| = 2$ by Lemma 12, we have k(0) = 2. For k(m-1), consider a factor space. Then we have similarly that k(m-1) = 2. For 0 < i < m-1, the lemma follows from Remark A and Example 2.

Lemma 19. Let a and x_i be elements of $V - \{0\}$ and A_i , respectively. Assume that there exist elements M and N of $K(x_i)$ such that $a \in M$ and $a \notin N$, where $i \geq 0$. Then $|\{L \in K(x_i) | a \in L\}| = |\{L \in K(x_i) | a \notin L\}|$.

Proof. Without loss of generality, we may assume $\bigcap_{L \in K(x_i)} L = \{0\}$, that is, i = 0. Put $X = \{L \in K(x_0) | a \in L\}$ and $Y = K(x_0) - X$. Let $y_j = \bigcap_{L \in X} L^c$ and $z_l = \bigcap_{L \in Y} L^c$. Since $\bigcap_{L \in X} L \ni a$, j > 0. Since $z_l \ni a$, $z_l \ne x_0$, and hence l > 0. Since $|K(x_0)| > |$

 $K(y_j)|=2^{m-j-1} \ge |X|$ and $|K(x_0)|>|K(z_l)|=2^{m-l-1} \ge |Y|$, we have that $2^{m-1} = |X|+|Y| \le 2^{m-j-1}+2^{m-l-1}$. Hence j=l=1. This proves the lemma.

Lemma 20. The geometric parameters are the following:

- (1) t(i, i+2, 1)=3 for 2 < i+2 < m,
- (2) t(i, m, m-1)=1 and t(i, m, 1)=2 for $0 < i \le m-2$,
- (3) $t(0, 2, 1)=if \langle x_0, x_1 \rangle$ is a subspace of dimension 3 and t(0, m, 1)=2 if $x_0 \subset \langle x_1 \rangle$, where x_u (u=0, 1) are elements of A_u such that x_0 is not incident with x_1 . The rest geometric parameters need not be defined.

Proof. (1) follows from Example 2 and Remark A. Let x_i and x_{i+1} be elements of A_i and A_{i+1} , respectively, such that they have an (i-1) intersection x_{i-1} and an m join x_m . Considering a factor space, we may assume i=1. Put $x_0 = \{a\}, x_1 = \{a, b\}$ and $x_2 = \{a, c, d, e\}$ by Lemma 12, where a, b, c, d and e are distinct elements of $V - \{0\}$. Since $x_m = x_1 \lor x_2$, there exist elements M and N of $K(x_1)$ and $K(x_2)$, respectively, such that M does not contain a and b, and that N contains b and does not contain a, c, d and e. Let $Y=K(x_0)-K(x_1)$. Then $|Y|=2^{m-2}$ by Lemma 17 and $N \in H$ is contained in Y if and only if N contains b and does not contain a. Put $y_1 = \bigcap_{v \in V} N^c$, then $x_0 \subset y_1 \subset x_2$ since $\bigcap_{v \in V} N$ $\ni b$. Thus y_1 is an element of A_1 and $K(y_1) \cap K(x_1) = \phi$, since $Y = K(y_1)$. Therefore $y_1 \vee x_1$ is contained in A_m and $t(1, m, m-1) \ge 1$. Let $z_1 = \{a, c\}$ and $w_1 = \{a, d\}$. Since $K(y_1) \cap K(x_1) = \phi$ and $|K(x_i)| = |K(y_1)| = |K(x_0)|/2$, $K(z_1) \cap K(x_1) \neq \phi$ and $K(w_1) \cap K(x_1) \neq \phi$. This implies that there are elements M and N of $K(x_1)$ such that $c \in M$ and $c \notin N$. By Lemma 19, $|K(x_1) \cap K(z_1)|$ $|=|K(x_1)|/2$, and hence $x_1 \lor z_1 \in A_2$. Similarly $x_1 \lor w_1 \in A_2$. Therefore $t(1, m, x_1) \in A_2$. 1) ≥ 2 . By the definition, $\sum_{u=1}^{m-1} t(1, m, u) = k(1) = 3$. This implies (2). Next assume that i=0. Put $x_0=\{a\}$, $x_1=\{b, c\}$ and let $x_s=x_0\vee x_1$. Since $|A_1|=\binom{2^m-1}{2}$ by Lemma 16, $\{a, b\}$ and $\{a, c\}$ are contained in A_1 . Thus t(0, s, 1)=2. If $\langle a, b \rangle \ni c$, then $|H|-3|\{M \in H \mid a \in M\} \mid +2|\{M \in H \mid M \supset \langle a, b \rangle\}| =$ $(2^{m}-1)-3(2^{m-1}-1)+2(2^{m-2}-1)=0$. Therefore $K(x_0)\cap K(x_1)=\phi$, so s=m. If $\langle a, b \rangle \ni c$, then

$$|H|-3|$$
 { $M \in H | a \in M \text{ and } b, c \in M$ } $|+3|$ { $M \in H | a, b \in M$ and $c \in M$ } $|-|$ { $M \in H | a, b, c \in M$ } $|-|$ = $(2^{m-1}-1)-3(2^{m-1}-1)+3(2^{m-2}-1)-(2^{m-3}-1)=2^{m-3}$.

Therefore $|\{M \in H \mid a, b, c \in M\}| = |K(x_0 \lor x_1)| = 2^{m-3}$ and hence $x_0 \lor x_1$ is an element of A_2 . This completes a proof of the lemma.

References

- [1] R.C. Bose: Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math. 13 (1963), 389-419.
- [2] R.C. Bose and R. Miskimins: Partial geometric spaces of m dimensions, Algebraic methods in graph theory Vol. I, II (Szeged, 1978), 37-45, Colloq. Math. Soc. Janos Bolyai, 25, North-Holland, Amsterdam, 1981.
- [3] P. Dembowski: Finite geometries, Springer-Verlag, Berlin-New York, 1968.
- [4] P. Dembowski and A. Wagner: Some characterization of finite projective spaces, Arch. Math. 11 (1960), 465-469.
- [5] L. Lasker and J. Dunbar: Partial geometry of dimension three, J. Combin. Theory 24 (1978), 187-201.
- [6] R. Miskimins: Partial geometries of dimension m, Ph. D. Thesis (Colorado State University: Summer, 1978).

Department of Mathematics Ehime University Matsuyama 790, Japan