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In this paper, we exhibit a Galois theory for graded rings in which the
zero degree term is commutative and the automorphisms are homogeneous of
zero degree.

If RC S are rings, we will always suppose that R and S have the same unit.
Futhermore all modules are unitary and ring homomorphisms carry the unit
into the unit. In general, G(S/R) will denote the group of all R-automorphisms
of S but if S is a graded ring and R is an homogeneous subring, then G(S/R) will
be the group of all homogeneous R-automorphisms of zero degree of S. With
Z(S) we indicate the center of S.

Let A= A; be a graded ring, in which I is a monoid that verifies a certain

ier

condition, 4,C Z(A) and let B a subring of 4. If 4 is weakly Galois over B in the
sense of [7], that is, A is separable over B and finitely generated and projec-
tive as a right B-module and there is a finite group F C G(A|B) such that A" =
B, then we show here that the theory of 4 over B can be reduced to the theory
of A, over B,, We obtain:

(a) 4, is weakly Galois over B, and 4=4,Qp, B.

(b) G(A/B)=G(A/B).

(c)  For each finite subgroup H of G(4/B), A?=A{Q p, B.

(d) The fundamental theorems of Galois theory that we know in the
commutative case are valid here ([1], [6], and [7]).

(e) If Cis a subring of 4 containing B and separable over B, then C'is
an homogeneous subring and C=C,® p, B, where B,cC,C 4, and C, is B,
separable.

(f) If o is a B-automorphism of 4, then o is homogeneous of zero degree.

The author wishes to thank Prof. O. Villamayor, for his important sugges-
tions and also Prof. M. Harada and Prof. A. Micali. This parper was wirtten
while the author was under a fellowship granted by Consejo Nacional de In-
vestigaciones Cientificas y Técnicas.

1. On graded rings and graded modules

The definition of separable extension for non commutative rings is the
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same as in [3]. Here (/,+) is an additive monoid, A=@4; is a graded ring
=1
over I and M= @ M, is a graded module over A4.

i€l
We say that I verifies (I,) if:
For all i and j in I, i+j=0 = i=j=0.

If I is a totally ordered monoid we say that I verifies (I,) (resp. (I3)) if:

(1,): O zs the first element of I.
(1,): I is cancellative, i.e., i+j=i+k = j=k, for i, j, k in I.

If I is a totally ordered monoid that verifies (I,) and (I,), it shall be called
admisible.

The conditions (I,) and (I,) are independent. If I verifies (I,) then
verifies (I,) (the converse is not true). Therefore, if I is admisible then I
verifies (1,). It is clear that if I is an admisible monoid and i, I(p=1,--,n),
we have 3" i, >1, for all g and ?: iy=ig>i,=0 for all p=q.

p=1
The next proposition is clear:
Proposition 1.1. Let M= @ M, be a graded right module over the graded
€T
ring A= P A;, and B= P B; an homogeneous subring of A, where I verifies (I,).
ier i€l
Then:
(a) M is finitely generated over A = M, is finitely generated over A,.
(b) M is A-projective = M, is A-projective.
(c) A is B-separable = A, is By-separable.

In [2] we developed a Galois theory of non commutative rings that verify
the condition (H) (see section 2 in [2]). In graded rings this condition has
the following setting:

Lemma 1.2. Let A=@ A; be a graded ring over an admisible monoid I

=1
and let us suppose that A,.CZ(A). If veARQ, A° and u(v)=u(v’) then p(v)
=p,= A, is an idempotent, where u: AQ zA'—A is the multiplication map.

Proof. Let o= 2,] x;Qy;€AR®z A° be and let us suppose that x ;=3 aj,
j=1

€1
yr=2) b and pu(v)=>) p,= 4, are the decompositions in the homogeneous
kET rer
components, since,
2 b4 )4 »
w(@’) = ;l X ; E xhyh) y;,= ,Z; xj,u,(v)y]., we have,

h=1

Se=3(3 @b 0.
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As I is admisible and 4,C Z(A4), from (*) we have p0=p0ﬁ a§ bi=p?.

If the finite set I'={r: r&1, r=+0 and p,=+0} contains a first element m,
from the (%) we obtain:

pm=é > ajp, §+_ﬁa3pm 5=2p,p.. Multiplying by p,, we have p,p,,

=0 and then p,,=0. Therefore, I’ is empty and p,=0 for all 7.
The proof of the following lemma is obtained by using the same method
as the proof of the theorem 2.2 in [F].

Lemma 1.3. Let RCTCS be rings such that T is R-separable and let
2%, Qy:ET Qg T be the element that satisfies the separability conditions. If f:

T—S is an R-ring homomorphism, then,
(a) « 2 x; f(yi)zzi] x; f(v:) f(x), for all x in T.
(b) 2 x; f(y)=1=f=1r (i.e., f is the inclusion of T in S).
(©) Ife/=21%:R(f(y:))’ESDs S', then p(e)=p(e).
Corollary 1.4. Let BC A an homogeneous subring, graded over an admisible

monoid where A,CZ(A) and BCC a subring of A which is B-separable. If
2% R, ECQp C is the element that satisfies the separability conditions and

f: C— A is a B-ring homomorphism then 3 x; f(x;)=p,E A, is an idempotent.

Proof. From the lemma 1.2 it follows trivially.

Proposition 1.5. Let BC CC A be homogeneous subrings of A, graded over
an admisible monoid where A,C Z(A) and C is B-separable. If f: C—A is a B-ring
homomorphism homogeneous of zero degree, then f|C =1 if and only if f=1.

Proof. Let >} x,®y,EC Q gC be the element that satisfies the separablilty
conditions. From the former corollary, >3 x; f(y;)=p,€4,. We denote with

x7 and y§ the homogeneous components of zero degree of x; and y; respectively
and we have: p,=21 x7 f()%), by equating of zero degrees in the last relation.

If f/|C,=1c,, since that y;€C, if follows that p,=>7 x? y?=1. Therefore,
23 %; f(:)=1 and from the lemma 1.3, f=1c.

We have proved the following theorem, that plays a fundamental role, as
a straight forward consequence of the preceding proposition, with G(4/B) we
denote the group of all B-automorphisms homogeneous of zero degree of A.

Theorem 1.6. Let BC A be an homogeneous subring such that A is B-sepa-
rable, graded over an admisible monoid where A,C Z(A). If o is a B-automor-
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phism homogeneous of degree zero of A, then o|A,=1,4, if and only if o=1,.
Therefore, G(A|B)C G(4,/B,) via the mapping o—o|A,.

2. Some remarks

From here on, with the exception of the cases speciallly appointed, we

assume that 4= @ A, is a graded ring over an admisible monoid I, where
ier

A,cZ(A) and B is a subring of 4, automorphism means automorphism homo-
geneous of zero degree and group of automorphisms means group of auto-
morphisms homogeneous of zero degree. Finally, the group of all automor-
phisms means the group of all automorphisms homogeneous of zero degree.
If B=AC° GcG(A/B), then B is a homogeneous subring of A. It is clear that
if G is a finite group of automorphisms of 4 and B=A4°, A is strong Galois
over B if and only if 4, is strong Galois over B,. If 4 is weakly Galois over B
with all group G, then A4, is strong Galois over B, with all group G(4,/B,)DG,.

On the other hand, there is ¢,& 4, such that tr(c,)=1 if and only if there
is ¢, A4, such that tr(c,)=1.

If 4 is strong Galois over B and 4 has no idempotents except 0 and 1, G
(4/B)=G(A4,/B,) and furthermore is equal to the group of all B-automorphisms
(homogeneous and non homogeneous) of 4, since we can to apply the theorem
5.3. in [2] (4 verifies (H)). In this case, strong Galois is equivalent to weakly
Galois and in the following we say 4 is Galois over B means A is weakly Galois
over B.

We use frequently same property over the boolean spectrum of a ring
R, developed in [7] for the commutative case. This property are valid here
in an obvious way, since the idempotents are central idempotents. If 4 is Gal-
ois over B and x< Spect B(B), then 4, is Galois over B, in the graded sense.

3. Rings without non trivials idempotents

Proposition 3.1. If A has no idempotents except 0 and 1 and A is Galois
over B with group G, the usual correspondence in the Galois theory is a one-to-one
correspondence between the subgroups of G and the subrings C of A such that BCC
and C is B-separable. If H is a subgroup of G and C is a B-separable subring of
A, the following conditions are equivalent:

(a) C=A4~.

(b) C,=Af (i.e., C, correspond to H in the [1] theory).

Furthermore, all separable B-subring of A is an homogeneous subring.

Proof. Since A4 verifies (H) and tr(4)=2B, from the theorem 3.3 in [2] we
have the correspondence between subgroups and subrings. As every subring
C which is B-separable is equal to A# for some subgroup H of G, C is homoge-
neous. It is clear that (a) implies (b). Conversely, if H is the subgroup such
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that C,=A¥ (given by the theroy in [1]) and H’ is the subgroup such that
C = A% (given by the theorem 3.3 in [2]), then H'C H. If o= H then ¢/C,
=1¢,. From proposition 1.5., ¢/C=1; and follows that ¢ & H’, which
completes the proof.

Proposition 3.2. Let A be strong Galois over B with group G. Then,

(a) For every subgroup H of G, A =Af Qp, B. In particular, A
=4, @p, B.

Furthermore, if A has no idempotents except 0 and 1,

(b) The condition (a) and (b) in the proposition 5.1. are equivalents to
C=A% @3, B.

(c) A subring C= ;EEBI C; of A, is separable over B if and only if C=C,Q g,

B, where C, is B,-separable.

Proof. From the theorem 5.1 in [4], follows trivially (a) and (). If C,
is By-separable and C=C, @ p, B, then C is B-separable. Conversely, if C is
B-separable, C=Af ®p, B for some subgroup H of G with A§¥=C,, which
completes the proof.

Proposition 3.3. Let A, and B, be commutative rings, such that A, is strong
Galois over B, with group G and let B=B, @ (P B;) be any graded ring over an
i€

admisible monoid where B,C Z(B),. Then A=A Q p, B is a graded ring which is
strong Galois over B with homogeneous group G and A,C Z(A).

Proof. As A4, and B are B,-algebras and B, is a direct summand of B
as B,-modules, 4 is graded and 4,CZ(A4). 'To complete the proof it is enough
to apply the theorem 5.2. In [4].

4. Rings with finitely many idempotents

Let G be the group of all B-automorphisms of A. Let us suppose that 4
has finitely many idempotents and that 4 is Galois over B with all group G. If
B has no idempotents, these are in B, and then are central idempotents.
Therefore, these induce a corresponding decomposition of B and 4 as a direct
sum of rings, for which holds the same remark preceding to the proposition
1.2 in [6], Therefore, we can suppose that B has no idempotents except 0
and 1. We assume that B has this property.

Let G’ be the group of all By-automorphisms of 4,. Then, 4, is Galois over
B, with all group G’. Since B, has no idempotents except 0 and 1, from the

proposition 1.3 in [6], A,= é A,.e;, where {e,} is the finite set of the minimal
i=1

idempotents of 4, (and of A); each 4,.e; is Galois over B,; G’ is fiinte and is
equal to the semidirect product of the symmetric group of order #» and the pro-
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duct of the automorphism groups of the summands.

We emphasize, in this section, with the exception of the cases specially
appoined, we suppose that 4 is Galois over B with all group G and B has no
idempotents except 0 and 1 and we indicate with G’ the group of all By -auto-
morphisms of 4, and with {e;} the set of minimal idempotents of 4,.

Proposition 4.1. A4 is direct sum of the homogeneous subrings A.e; (i=1,--,
n). Each A.e; has no idempotents except 0 and 1 and is strong Galois over B.
Finally G= G’ is semidirect product of the symmetric group of order n and the
product of the automorphism groups of the summands A.e; over B.

Proof. Since every idempotent in A4 is central, the same method as in the
proof of the proposition 1.3. in [6], shows the first part and the decomposition
of G in semidirect product. We also obtain that for every ¢, j, 4-e;~A-e; and
G;=G,, where G;=G(A-¢;/B). Since A-e; verifies (H) and it is B-separable, if
(A4-e,)°i=B, the second part follows. In fact, we denote with B; the image of
B by the canonical map %;: B—A-e;. If ac(A4-¢;)%, choosing isomorphisms

a;: Ae—~A-e (j=1,+,n) with a;=id ,.,,, we have that c:jZl]l aja)cA°=B

and A,(c)=a. Therefore, ac B, and this proof that (4-¢;)®=B,;.

Then A-e; is strong Galois over B; with group G;. Then, B;is a direct
summand of 4-e; as right B;-module (i.e. as right B-module) and therefore, B;
is B-projective. 'Then the following succession splits, 0—>Ker(h,)—>B—{l;Bi—>0.

We have, Ker(h;)=e.B, where e is an idempotent in B. Since e=0, &; is
injective and B;~B.

Finally, if G’ is the group of all By-automorphisms of 4,-e;, from the former
remark in section 2, G;=GY, for every 7 and then G=G".

Using the same technique in [6] (see 4, section 3) we have:

Proposition 4.2. For any subgroup H of G, A is B-separable.

Proof. We define an equivalence relation in {1, 2,---, n} by i~j if there is
o€ H such that o(e;)=e;. If Jis an equivalence class and e;=3] e;, then ¢; is
€T

a minimal idempotent of A and all minimal idempotents of A are of
this form. Therefore, A¥=@A"-e; and it is enough to prove that A" .¢; is
T

B-separable for every J.

Let i,€ J be and for each i€ J we choose o, H such that a;=g,/4-e, is
an isomorphism of A-e; onto A-e¢;, We define §: A-e; —A4 for 6’(x)=§ o y(x).
Then 6 is a B-isomorphism onto a subring of A (except that § maps the identity
element in A-e; to e;, which is the identity element in Im(6) but not in 4), such
that A% .e,cC Im(6).

If H;_ is the subgroup of G; that we obtain for restriction to 4-e; of the
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elements o€ H such that o(e; )=e; , from the proposition 3.1., (4.e; )i, is B-
separable. But the image of (4-¢; )"" for § is exactly 4”-e;. Therefore, A”-e,
is B-separable.

Proposition 4.3. B is a direct summand of A as right B-module and the
projection w: A— B is homogeneous of zero degree (this result is true if B has a
finitely many idempotents). For each subgroup H of G, A¥=AFRQpB. In
particular, A—=A, X g, B.

Proof. From the proposition 4.1 and from the proposition 3.2. follows that
A~ éA-e,«:(E"B Ao-e,->®30 B=A4,Q p, B, and this shows the first part.
i=1

Since A,DB, are commutative rings and A, is B,-projective, B, is a direct
summand of 4, as By-module. If »': 4,— B, is the projection, 7=7"®1:
AR p, B—B,® g, B=B is an homogeneous of zero degree projection of 4 onto
B. If B has a finitely many idempotents, this result follows by decomposition
of B in a direct sum.

Let H be a subgroup of G and ¢: A§Q p,B—A¥, such that p(a,® b)=a,.b.
Since A¥ is B-separable and A is finitely generated and projective as right
B-module, 4 is A”-separable and finitely generated and projective as right 4%-

module.
Then 4 is Galois over A¥ and follows that A¥ is a direct summand of 4

as right A¥-module with an homogeneous projection of degree zero =,: A—>A#
and A¥ is a direct summand of A, as A¥-module. The last conclusion shows
that A¥ Q@ p, B is a direct summand of A=A,®p, B as right B-module and
follows that @ is injective, since it is the restriction of the last isomorphism to
the direct summand. If aeAHCAgA(,@BO B, then a:Z ab. b;, where af= A4,

and b;€B. Therefore, a=mn,(a)=>] n,(a5).b;=p(>] 7,(a5)Rb,)=Im(p), which
7 7
completes the proof.

5. General case

Proposition 5.1. If A is Galois over B with all group G, for every finite
subgroup F of G, AF=AFQ g, y In particular, A=A,Q 5, B.

Proof. Let ¢: Af®p, B—»AF, the map defined by ¢ (¢,®b)=a,.b. For
every x € Spect B(B,) = Spect B(B) (see section 2 in [7]), the theory in the
former section applies to A, over B,. Then (4, )"*® g, B,~=(4,)"* and since

F is finite follows that (4§),® Bo, B,=(AF), and therefore (A§® p,B),~=(4F).,.
Since this isomorphism is @,, for every x< Spect B(B), @ is an isomorphism.
Proposition 5.2. If A is Galois over B with all group G, then G=G(A4,/B,).
Proof. From the theorem 1.6, the map G—G(4,/B,) a such that c—o/4,
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is injective. Next if 7€ G(4,/B,) then 7®1 is a B-automorphism of A4 such that
T®1/A,=7. Therefore, the map G(A4,/B,)—G, such that 7—>7@1 is the inverse
of the former map.

Proposition 5.3. If A is Galois over B with all group G, every subring
B-separable C is an homogeneous subring and there is a finite subgroup H of G(A|B)
such that A¥=C.

Proof. Let @: A—>A4,Q 5, B be the isomorphism of the proposition 5.1.
Then AQ p A=(A4:Q 5, B)R (AR g, B)=(A4,R 5, A)R p, B= AR p, A, where
A,® p, A is a graded ring in which, the elements homogeneous of degree 7 are
given by the submodule 4,® 5, A;. We denote with yr: AQ 5 A—>A,Q 5, A, the
former isomorphism and then it is easy to check that if aQa’'€ AR 5 4, Y(a®a’)
=Y(a®1)(1Qa’) and if a,Qac 4,Q 5, 4, then VY (a,Qa)=a,Qac AR 5 A.
Let C be a B-separable subring of 4, x;, y,(i=1,---,m), the elements in C such

that e=ﬁ x%;Qy;€CQ pC satisfies the separability conditions and 7: C—4 the
inclusion. Then for every x& C, x(iQ7)(e)=(i®17)(e)x. Therefore, > x;x,Q y;y;
¥
=21%,Q0¥,(2 %;3:)=>1x;Qy; in AQpA. In this relation we applied the
7 7 7

isomorphism . Then, using the lemma 1.2. and applying ', we obtain
(1) Zx,Q0y,=2 ui@vi€ AR 5 A, where u} and o] are in A4,.
j i

Since A is finitely generated and projective as right B-module and
A=A, p, B, we choose ajc 4,, p,eHomp(A4', B')(A" is the structure of A4 as
right B-module), =1, -+, n, such that a=3a} @, (a), for every ac A4, where

@, is homogeneous of zero degree for all ». Since C is separable over B, 4 is
finitely generated and projective as right C-module and it is easy to see that the
projective coordinate system is a7, Y, € Hom,(4', C*), where +,(a)=
>p,(a-x;)-y,, for every a in A and for all . From (1) follows that ()

=2 @,(a-uj)-v} and then +, is homogeneous of zero degree. Therefore, if

C,=Cn4, for every a,=A4, we have, a,=72)a ¥, (a,), where ¥, A4,
€Homg,(4,, C,). ’

Then A4, is Cy-projective and finitely generatgd and follows that 4,=C, @D,
as Cj-module. Let ¢=>)c¢;eC be. If c,=cb+d, where c;=C, and d,= D, we

have, {r,(1)-dy=,(1)- (':o-—’lll’,(l)' ¢y = zero degree(yr,(1)c)—+r,(co)=zero degree
(Y ())— A (c))=r,(c,—c5)= CoN D,. Therefore, d(,:'Z}a‘,’ v, (1):dy=0. From

this follows that z: C—C, defined by »(3] ¢;)=¢,, for every > ¢;=C, is a ring
€I i€l

homomorphism onto C, and from the proposition 2.4 in [3], C, is separable
over z(B)=B,.
Then there is a finite subgroup F of G such that 4{=C,. If c€F, from
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the corollary 1.4., 37 x;0(y;)=p.€4,. Since y;C,, by equating zero degree,
Po=2x30(y7)=247y7=1 and from the lemma 1.3, ¢/C=1.. Therefore

CcAF=AF @ p, B=C,Q p, BCC and follows that C=AF is an homogeneous
subring.

Proposition 5.4. If A is Galois over B with homogeneous group G, all
B-automorphism of A (homogeneous and non homogeneous) is homogeneous of zero
degree and is in G. :

Proof. If B has no idempotents except 0 and 1 and G’ is the group of all
B-automorphisms (homogeneous and non homogeneous) of A, with the same
method in the proposition 4.1. and using the same notation we prove that G’
is a semidirect product of the symmetric group of order z» and the product of
the automorphism (homogeneous and non homogeneous) groups of every A-e;
over B. From the remark in section 2, the automorphism groups of every A-e¢;
over B is equal to the group of automorphisms homogeneous of zero degree of
A-e; over B. Then, G'=G.

In the general case, if o is a B-automorphism of 4, o, is a B,-~automorphism
of A,, for every x& Spect B(B). From the first part o, is homogeneous of zero
degree and then, it is easy to see that o is homogeneous of zero degree.

In [6] and [7] the correspondence of Galois theory is developed,
between separable subrings of A and some subgroups of G. The concepts of
fat subgroups and subgroups that verify (3.8a) and (3.8.b) in [6] and [7]
respectively, are similar here since G(4/B)=G(4,/B,) are the same as a subgroup
of A or A,, We say that these subgroups are special subgroups.

Theorem 5.5. If A is Galois over B with group G, the usual correspondence
in the Galois theory is a one-to-one correspondence between subrings of A containing
B and are B-separables and special subgroups of G. If H is a special subgroup of
G and C is a B-subring separable of A, the following conditions are equivalent:

1°) C=4".

2°). C=A% (i.e., C, correspond to H in the Villamayor and Zelinsky
theory).

3°) C=A¥®p, B.

In particular, a subring C=;P; C; of A containing B is B-separable if and
only if C=C,Q p, B, where C, is By-separable.

Proof. If H is a special subgroup of G, there is a finite subgroup F of G
such that A¥ =AF. Then A¥=A{ Rz B= A§f X, B and since Af is B,-
separable, A% is B-separable. If C is a B-separable subring of 4, from the
proposition 5.4. C=A*, for some special subgroup H of G. The correspon-
dence is one-to-one since A¥=A"" where H and H’ are special subgroups of
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A, then AF=A{" and follows that H=H'. The last part follows trivially from
the {o: &G and ¢/C=1}={c: c=G and ¢/C,=1}, as follows from the
proposition 1.5.

6. Some final results

Proposition 6.1. If B has no idempotents except 0 and 1, A is separable
over B and projective as right module over B and A°=DB, where G is the group of
the all B-automorphisms of A if and only if there is a subgroup H of G such that
A is strong Galois over B with group H.

Proof. If A is separable over B and projective as right B-module and
AC=B, then 4, is weakly Galois over B, with group G(A,/B,) and A= 4,-¢;,

where {e;} is the set of the minimal idempotents in 4, and 4,-¢; is strong Galois
over B,. Then, it is easy to prove that A-e; is Galois over B with group
G;=G(A-e;/B). Therefore A-e; is finitely generated as B-module, and follows
that A is finitely generated as B-module. Now, as in the first part of the
proof of (3.15) in [7], we have a subgroup H of G such that A¥=B and
o(H)=n-0(G;). Then, as in the theorem 2 in [5] we can obtain that 4 is strong
Galois over B with group H. The converse is trivial.

Corollary 6.2. If B has no idempotents except 0 and 1, A is weakly Galois
over B with all group G if and only if there is a subgroup H of G such that A is
strong Galois over B with group H.

The former proposition shows that we can omit the assumption 4 s finitely
generated over B, as in [6]. If B has idempotents, this results follows by
localization in each x& Spect B(B). Besides, if B has no idempotents except
0 and 1 and 4 is Galois over B, 4 is strong Galois over B with group H and
follows that try: A—B, defined by trH(a)zc}e]Ho-(a), is surjective. Then 4 is

faithfully projective as right B-module. In general, we have:

Proposition 6.3. If A is Galois over B with group G, then A is faithfully
projective as right B-module.

Proof. If f: M— N is a left B-homomorphism such that /,® f: AQ ;M
—A® p N is injective, since A=~A,Q 5, B we have, [, ® f: A,Q p, M—> A, g, N
is injective. Since A4, is faithfully projective over B,, it follows that f is injective.

Theorem 6.4. Let A, and B, be commutative rings such that A, is Galois
over B, with group G and B=B,P(D B,) any graded ring over an admisible monoid
40

where B,C Z(B). Then A=A,Q p, B is a graded ring which is Galots over B with
homogeneous group G and A,C Z(A).



GaLois THEORY FOR GRADED RINGS 463

Proof. If B, has no idempotents except 0 and 1, there is a subgroup H of
G such that A4, is strong Galois over B, with group H. Then, from the proposi-
tion 3.3. A=A,Qp,B is strong Galois over B with homogeneous group G
and therefore follows our result. In general, A=A,® p B is B-separable and
finitely generated and projective as right B-module. If H is a finite subgroup of
G such that A¥=B,, for each x& Spect B(B,), (4,,)¥*=B,,. From the first part
A, ®s,, B, is weakly Galois over B, and then (4%),=(4,)"*=(4,,85,,B.)""
=(4,,)"*Qs,, B,=B,. Therefore A¥=B, which completes the proof.
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