<table>
<thead>
<tr>
<th>Title</th>
<th>Chain Stiffness of Cellulose Tris(phenylcarbamate) in Tricresyl Phosphate (TCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Jiang, XinYue; Sato, Takahiro; Terao, Ken</td>
</tr>
<tr>
<td>Citation</td>
<td>Polymer Bulletin. 75(3) P.1265–P.1273</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2018-03</td>
</tr>
<tr>
<td>Text Version</td>
<td>author</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/71463</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1007/s00289-017-2094-z</td>
</tr>
<tr>
<td>Note</td>
<td>Osaka University Knowledge Archive : OUKA http://ir.library.osaka-u.ac.jp/repo/ouka/all/</td>
</tr>
</tbody>
</table>
Chain stiffness of cellulose tris(phenylcarbamate) in tricresyl phosphate (TCP)

XinYue Jiang,1 Takahiro Sato,1 and Ken Terao1

1 Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.

Corresponding author: Ken Terao
E-mail: ktera@chem.sci.osaka-u.ac.jp
Phone: +81-6-6850-5459
ORCID: 0000-0001-7363-4491

Abstract Small-angle X-ray scattering (SAXS) measurements were carried out for two cellulose tris(phenylcarbamate) (CTPC) samples in tricresyl phosphate (TCP) at 25 °C to determine the particle scattering function $P(q)$ and the z-average mean-square radius of gyration $\langle S_z^2 \rangle$. The obtained data were analyzed in terms of the wormlike chain model to estimate the Kuhn segment length λ^{-1} (the stiffness parameter, equivalent to twice the persistence length) and the helix pitch (or helix rise) per residue h. The resultant λ^{-1} and h were 11.5 ± 0.5 nm and 0.51 nm, respectively. While the latter value (h) is consistent with the previously reported values both for cellulose and cellulose derivatives, appreciably higher chain flexibility was found for CTPC in TCP than that in tetrahydrofuran at 25 °C (19 – 24 nm). The value is fairly close to that in anisol, cyclohexanol, and benzophenone assuming an appropriate temperature coefficient. We may thus conclude that CTPC behaves as a semiflexible chain in TCP.
Introduction

Since cellulose tris(phenylcarbamate) (CTPC) of which chemical structure is illustrated in Fig. 1 is easily synthesized from natural cellulose [1,2] and soluble in many common organic solvents including theta solvents [3], much work has been done for dilute solution properties to elucidate the conformational characteristics of cellulosic chains [1,4-13]. Almost all reports indicate that CTPC behaves as a semiflexible polymer in solution. Although the conformational properties and intermolecular interactions of semiflexible polymers have been widely investigated [14-17], a comprehensive study through rheological and conformational properties is not still enough to elucidate the relationship including cellulose [18,19]. This is likely because suitable solvents for dilute solution properties are different from those for rheological properties, namely, low viscous and volatile organic solvents were favorably used to determine their conformation in solution, whereas highly viscous solvents with low vapor pressure are suitable to characterize polymer dynamics. As a preliminary study of this research, we found that CTPC is well soluble in tricresyl phosphate (TCP, Fig. 1), which is a useful solvent to investigate the rheological properties and indeed the dynamic birefringence and viscoelasticity of polystyrene in this solvent have been investigated in detail [20]. As a step of the comprehensive work of static and dynamic properties of semiflexible polymers in solution, we report the dimensional properties for CTPC in TCP in this paper.

![Chemical structures of cellulose tris(phenylcarbamate) (CTPC) and tricresyl phosphate (TCP)](image)

Fig. 1 Chemical structures of cellulose tris(phenylcarbamate) (CTPC) and tricresyl phosphate (TCP)

Regarding the chain stiffness of CTPC in solution, Dañhelka et al. [10] analyzed their own and older data [4,7,9,8] to determine the chain stiffness parameter λ^{-1} (Kuhn segment length or twice persistence length) of the Kratky-Porod wormlike chain [21] in different solvent conditions. While λ^{-1} for CTPC in tetrahydrofuran (THF), acetone, dioxane, and pyridine at the temperatures T of 20 or 25 $^\circ$C was reported to be in a rather narrow range from 19 to 27 nm, the parameter in benzophenone, cyclohexanol, and anisol was much smaller, that is, 7 – 10 nm at relatively high temperatures (73 – 94 $^\circ$C). Even though we consider the known temperature dependence of CTPC in
four different solvents, that is, $d \ln \lambda^{-1} / dT \sim -6.5 \times 10^{-3}$ K$^{-1}$ [13,22], the chain stiffness in the latter three solvents was found to be smaller than those in the former solvents. The solvent dependent conformation suggests that the intramolecular hydrogen bonding interactions and/or polymer-solvent interactions play an important role to determine the conformation of CTPC in dilute solution as pointed out by Sutter et al. [9]. We also showed that local helical structure stabilized by the intramolecular hydrogen bonds between the carbamate groups on the neighboring repeat units stiffen the main chain of cellulose tris(alkylcarbamate)s [23], curdlan tris(phenylcarbamate) [24], and amylose tris(alkylcarbamate)s [25-28] and furthermore hydrogen bonding solvent molecules significantly extend and stiffen the main chain of amylose tris(phenylcarbamate) and amylose tris(3,5-dimethylphenylcarbamate) [29,30]. The chain conformation of CTPC in arbitrary solvent cannot therefore be predicted without determining it directly in solution.

We thus made small-angle X-ray scattering (SAXS) measurements for two CTPC samples in TCP to determine the chain stiffness parameter because conventional light scattering measurements are not suitable for this purpose because of the difficulty of optical clean and very small contrast factor of visible light. Indeed, the dimensional properties of polystyrene in TCP were investigated by means of neutron scattering [31] and those for polysaccharides in an ionic liquid were studied by SAXS [19] due to the same reason.

Experimental

Samples and test solutions

Two CTPC samples stored in the laboratory originally synthesized and fractionated for the former study [11] were chosen and designated to be CTPC61K and CTPC84K. Their weight-average molar mass M_w and the dispersity index D defined as the ratio of M_w to the number-average molar mass were determined to be $M_w = 6.08 \times 10^4$ g mol$^{-1}$ and $D = 1.1$ for CTPC61K and $M_w = 8.41 \times 10^4$ g mol$^{-1}$ and $D = 1.1$ for CTPC84K from a size-exclusion chromatography equipped with a multi-angle light scattering detector (SEC-MALLS) in THF. The details of the measurement were as reported elsewhere [23] and the literature value [11] of the refractive index increment was used to analyze the light scattering intensity. The validity of the M_w values was confirmed by the intrinsic viscosity $[\eta]$ in THF at 25 °C with the known $[\eta] - M_w$ relationship [11]. The weight-average number of repeat unit N_w was thus evaluated to be 117 and 162 for CTPC61K and CTPC84K, respectively.

TCP was purchased from Kishida and used as a solvent without further purification. Each sample which was dried in vacuum at room temperature overnight was weighed with an electronic balance in a glass bottle and an appropriate amount of solvent was added before at least 48 hours prior to use for the following measurements.

Small angle X-ray scattering (SAXS) measurements

SAXS measurements were carried out at the BL40B2 beamline in SPring-8 (Hyogo, Japan) to determine scattering intensities $I(q)$ as a function of the magnitude q of the scattering vector at 25 °C for pure TCP and four CTPC solutions having different polymer mass concentration c between 1×10^{-2} g cm$^{-3}$ and 5×10^{-2} g cm$^{-3}$. Although the highest concentration is about twice higher than the overlap concentration, good linearity of the Berry square-root plot [32] in the wide concentration range was reported for CTPC in THF [11]. Test solutions or solvent were
measured in the same quartz capillary cell with a diameter of 2 mmΦ. The obtained two-dimensional image data were analyzed in terms of the circular average method to determine \(I(q) \). The wavelength, camera length, and accumulation time were chosen to be 0.10 nm, 4000 mm, and 300 s, respectively. The obtained \(I(q) \) was normalized by the intensity of the direct beam at the lower end of the capillary to calibrate both intensity of the incident light and the transmittance of X-ray through the cell including solution to determine the excess scattering intensity \(\Delta I(q) \) from the solute.

Results and discussion

The Berry square-root plots [32] for the two CTPC samples in TCP at 25 °C are displayed in Fig. 2 to extrapolate the scattering intensity to infinite dilution and to \(q^2 = 0 \). The \(z \)-average mean-square radius of gyration \(\langle S^2 \rangle_z \) and the second virial coefficient \(A_2 \) are determined from the corresponding initial slopes; note that the optical constant was estimated from the doubly extrapolated value \([c/\Delta I(0)]_{c=0}^{1/2}\) with the method reported in ref [33]. The resultant \(\langle S^2 \rangle_z \) and \(A_2 \) data are listed in Table 1 along with the \(M_w \) values from the SEC-MALLS measurements. The quite large positive \(A_2 \) indicates that TCP is a good solvent of CTPC.

Fig. 2 Square root Zimm plots (Berry plots) for CTPC61K (a) and CTPC84K (b) in TCP at 25 °C. Filled circles and squares, extrapolated values to \(c = 0 \) and \(q^2 = 0 \), respectively

Table 1 Molecular characteristics of CTPC samples in TCP at 25 °C

<table>
<thead>
<tr>
<th>Samples</th>
<th>(M_w \left(10^4 \text{ g mol}^{-1} \right))</th>
<th>(\langle S^2 \rangle_z^{1/2}) (nm)</th>
<th>(\langle S^2 \rangle_{calc}^{1/2}) (nm)</th>
<th>(A_2 \left(10^{-4} \text{ mol cm}^3 \text{ g}^{-2} \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTPC61K</td>
<td>6.08</td>
<td>8.8</td>
<td>9.0</td>
<td>1.4</td>
</tr>
<tr>
<td>CTPC84K</td>
<td>8.41</td>
<td>11.5</td>
<td>11.7</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Calculated by eq 3 with the parameters in Table 2
The particle scattering function $P(q)$ defined as $[\Delta I(q) / \Delta I(0)]_{c=0}$ for each sample was also obtained from the $\Delta I(q)$ data with the extrapolated value $c/\Delta I(0)_{c=0}$. Fig. 3 illustrates the reduced Holtzer plots in which the flat plateau is found for each sample at higher q range with an appreciable peak at low q. This is a typical feature of the wormlike chain. A slight decrease of $qP(q)$ at the highest q region in the figure may be due to the chain thickness effect. We thus analyzed the $P(q)$ data in terms of the touched-bead wormlike chain with the bead diameter d is expressed as [34,35]

$$P(q) = 9 \left(\frac{2}{qd}\right)^6 \left(\sin \frac{qd}{2} - \frac{qd}{2} \cos \frac{qd}{2}\right)^2 P_0(q)$$

(1)

Here, $P_0(q)$ is the particle scattering function of the infinitely thin wormlike chain, which is characterized by λ^{-1} and the contour length L. It is related to the characteristic function $I(\lambda^{-1}q; \lambda t)$, that is, the Fourier transform of the distribution function of the end-to-end distance of the wormlike chain of the contour length t and of the Kuhn segment length λ^{-1}

$$P_0(q) = \frac{2}{L^2} \int_0^t (L-t) I(\lambda^{-1}q; \lambda t) dt$$

(2)

In this study we used the approximate expression by Nakamura and Norisuye [36,37] to calculate $I(\lambda^{-1}q; \lambda t)$. The three parameters were unequivocally determined by means of the curve fitting procedure. Theoretical curves in Fig. 3 calculated with the obtained parameters in Table 2 successfully reproduce the experimental data. The radii of gyration $\langle S^2 \rangle_{calc}$ calculated from the following Benoit-Doty equation [38]

$$\langle S^2 \rangle_{calc} = \frac{L}{6\lambda} - \frac{1}{4\lambda^2} + \frac{1}{4\lambda^2 L} - \frac{1}{8\lambda^4 L^2} \left[1 - \exp(-2\lambda L)\right]$$

(3)

with the parameters in Table 2 are listed in the fourth column in Table 1; note that both the chain thickness effect and the excluded volume effect should be negligible on $\langle S^2 \rangle_{calc}$ because of $L > 50d$ [39] and $\lambda L < 8$ [40]. The resultant $\langle S^2 \rangle_{calc}$ values are almost equivalent to the corresponding experimental $\langle S^2 \rangle_\nu$. Furthermore, the helix pitch per residue h defined as L/N_ν was calculated to be 0.51 ± 0.03 nm, which is substantially the same as those for CTPC in other solvents [10,11,41] and for the crystal structure of CTPC-2-butanone complex [42]. We may thus conclude that both $\langle S^2 \rangle_\nu$ and $P(q)$ data for CTPC in TCP are consistently explained by the wormlike chain model.
Fig. 3 Reduced Holtzer plots for CTPC in TCP at 25 °C. Solid and dashed curves indicate the theoretical values for the touched bead wormlike chain and the touched bead rigid rod, respectively.

<table>
<thead>
<tr>
<th>Sample</th>
<th>L (nm)</th>
<th>λ^{-1} (nm)</th>
<th>d (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTPC61K</td>
<td>56 ± 3</td>
<td>11.5 ± 0.5</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>CTPC84K</td>
<td>86 ± 5</td>
<td>11.5 ± 0.5</td>
<td>0.8 ± 0.1</td>
</tr>
</tbody>
</table>

Table 2 Wormlike chain parameters for CTPC samples in TCP at 25 °C

The obtained wormlike chain parameters are summarized in Table 3 with previously reported values in the other solvents. If we assume the above mentioned temperature coefficient $[\frac{d \ln \lambda^{-1}}{dT} \approx -6.5 \times 10^{-3} \text{ K}^{-1}]$ [13,22], the λ^{-1} values in anisol, cyclohexanol, and benzophenone at 25 °C are estimated to be 10 nm, 10 nm, and 14 nm which are quite close to 11.5 nm. It should be noticed that this estimation might have uncertainty since the temperature coefficient for amylose tris(phenylcarbamate) and polystyrene appreciably depend on the solvent [43,44]. In either case, the present λ^{-1} in TCP (11.5 nm) is quite smaller than the other solvents at 25 °C or 20 °C. We may thus conclude that CTPC in TCP has rather high flexibility in the solvents investigated.
Table 3 Kuhn segment length λ^{-1} for CTPC in various solvents

<table>
<thead>
<tr>
<th>solvent</th>
<th>T (°C)</th>
<th>λ^{-1} (nm)</th>
<th>h (nm)</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>anisole</td>
<td>94</td>
<td>6.2</td>
<td>0.52 a</td>
<td>[6,10]</td>
</tr>
<tr>
<td>cyclohexanol</td>
<td>73</td>
<td>7.6</td>
<td>0.52 a</td>
<td>[6,10]</td>
</tr>
<tr>
<td>benzophenone</td>
<td>80</td>
<td>9.6</td>
<td>0.52 a</td>
<td>[8,10]</td>
</tr>
<tr>
<td>tricresyl phosphate (TCP)</td>
<td>25</td>
<td>11.5 ± 0.5</td>
<td>0.51</td>
<td>this work</td>
</tr>
<tr>
<td>1-methyl-2-pyrrolidone (NMP)</td>
<td>25</td>
<td>16</td>
<td>0.49</td>
<td>[41]</td>
</tr>
<tr>
<td>1% LiCl /1,3-dimethyl-2-imidazolidinone (LiCl/DMI)</td>
<td>25</td>
<td>18</td>
<td>0.515 a</td>
<td>[12]</td>
</tr>
<tr>
<td>pyridine</td>
<td>20</td>
<td>20</td>
<td>0.52 a</td>
<td>[4,10]</td>
</tr>
<tr>
<td>tetrahydrofuran (THF)</td>
<td>25</td>
<td>19 – 24</td>
<td>0.50 – 0.57</td>
<td>[10-12]</td>
</tr>
<tr>
<td>1,4-dioxane / methanol 49/51 (v/v)</td>
<td>25</td>
<td>26</td>
<td>0.515a</td>
<td>[1,5]</td>
</tr>
</tbody>
</table>

a Assumed.

Conclusion

The chain stiffness and helix pitch per residue were successfully determined from solution SAXS measurements for CTPC in TCP at 25 °C. The obtained chain stiffness parameter is substantially smaller than those determined around the room temperature and similar to those in some polar solvents when we assume the known temperature coefficient. Significant solvent dependence of the conformational properties indicates that the polymer-solvent interaction is important for the CTPC chain, as also reported for other polysaccharide phenylcarbamate derivatives.

Acknowledgment

The authors thank Dr. Noboru Ohta (SPring-8) and Dr. Rintaro Takahashi (Kitakyushu Univ.) for SAXS measurements. The synchrotron radiation experiments were performed at the BL40B2 in SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2014B1087, 2015A1179, 2015B1100, and 2015B1674). This work was partially supported by JSPS KAKENHI Grant No. 25410130.

References