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1. Introduction and main result

The Euler-Poisson-Darboux (EPD) equation is the second order hyperbolic
equation

which appears in various areas of mathematics and physics such as theory of
surfaces [2], propagation of sounds [1] and collidings of gravitational waves [3],
etc. By the conjugate transform of the differential operator £(/?,/?') with (x— y)~β,
we have the operator

x—y x—y

In this note we consider a q-difference analogue of the operator

E(β, β') = (x-y)£(β,β') = (x -y)dxdy - β'dx + βdy (1)

and demonstrate that q-deformation of E(β,β') is the q-difference operator (see
section 2)

The EPD equation has very interesting properties, for example, Miller's
symmetry, Laplace sequence and the relation to Toda molecule equation, etc. (see
[2] and [6]). First we consider a q-deformation of Miller's symmetry explained
below. Let V(β,β') be the space of solutions of the differential equation
E(β,β')u=Q. Then V(β,β') is invariant under the action of 5L(2,C) defined by

lrrhis work was partially supported by Grant-in-Aid for Scientific Research, the Ministry of
Education, Science and Culture.
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d

and hence infinitesimal generators of this symmetry are

E=-x2dx-y2dy-βx-β'y9

We call this Miller's symmetry. Indeed, this Lie algebra is isomorphic to Lie
algebra sl(2,C). It shall be shown that its q-deformation is quantum group
Uq(sl(2,Q) with generators

If the parameter q tends to unit, obviously we get Miller's symmetry.

Theorem 1.1. The difference operators e, f and qh are symmetries of the
q difference EPD equation and are generators of the quantum group Uq(sl(29C)).

REMARK 1.1. This kind of representation of quuantum group can be seen in
[4] and [5].

The second aim of our research is to find a q-deformation of the so-called
Laplace sequence. We give a brief explanation of the Laplace sequence for the
EPD equation. Let us consider a family of differential operators parametrized by
an integer n

En(β,β') = (x-y)dxdy-(β' + n)dx + (β-n)dy. (3)

This is a typical example of Laplace sequence for the second order hyperbolic
equation with two independent variables (also see [2], [6]). Define two operators
Hn and Bn by

Then we have

for any integer n. These equations mean that if un is a solution of the equation
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En(β,β')u = Q, then un+ί=Hnun or un_l=Bnun is a solution of the equation E W + 1 M = 0
or ^Π_1M=0, respectively. Therefore we may think that Hn and Bn are a kind of
increasing or decreasing operators. We shall show that q-analogues of Hn and Bn are

These q-difference operators are found by quantizing some solution of the EPD
equation. The EPD equation has a formal solution

l /i]

where [α;w]==Γ(α+ n)/Γ(α) and Γ(α) is the gamma function. We may think that
its q-deformation is

where [α;«]ί = Γg(α + «)/Γ4(α) and Γ9(α) is the basic gamma function (see section
2). We use the notations φq and φq >λ to denote contiguous functions of φ€, such
as φ* = φq(λ+l,μ:,β9β';x,y) and φqtλ = φq(λ-\,μ\β,β' \x,y\ etc. To describe the
action of e, /, #±h, //g>n and Bqn in a simple form, it is convenient to introduce
the function

By using this function we can get the next expression of the action of Uq(sl(2,C)) and
Laplace sequence

Finally we give the explanation of the organization of this paper. In the
next section, we introduce and fix our notations appeared in the q-analogue
calcules. In section 3, we define a q-difference analogue of the EPD equation
and give a proof of theorem 1.1 and we shall find its q-Laplace sequence Hqn

and Bqιtl in section 4. The classical results about the EPD equation are stated
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in Appendix A. A part of the proof of Theorem 1.1 is given in Appendix
B. Finally we express the Casimir operator of Uq(sl(2, C)) by means of the operator
Eq 0 in Appendix C.

2. q-difference calculus

In this section, a few elementary results involving basic differentiation are
obtained. For any number A, we define basic number \_A]q by the relation

A-~A

q-q

where q may be real or complex. Then we can easily verify the formula

= q . q + q q

and

\A + \\[B+\\-[A\{B\t = [A+B+ϊ\r (5)

In the following sections, we need q-difference operator (q-differentiation or basic
differentiation). First we introduce q-shift operator T by

then q-difference operator \d]q is defined by

f(gχ)-f(q-l>

x\q-q A

Further we need q-difference Euler operator [θ~]q

τ_τ-ι

def
Because of this definiton, we may identify T and q , namely, qθ=T. One of the

important properties of the operator [ff]q is that it behaves just as the ordinary
Euler differential, i.e.

= [*]«*•
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We shall often use the following relations

where these all relations are considered as operators. Finally we define basic

gamma function by

For this basic gamma function we have fundamental difference relation

3. q-difference analogue of the EPD equation

Let us prove that the q-deformed function φq satisfies Eq.(2). From the
difference relation of the basic gamma function and the expression of the q-deformed

function φq

wez - q q

we can get the following contiguous relations of φq.

Proposition 3.1. The function φq has the following contiguous relations:

L x- l[θx\φq = [λ]X,Λ, y~ ' [0,],?, = [μ]f̂ .

2. [β.+ffl^^CA+fflX, [β,+0v,=l>ι+/rιχ'.

By using these contiguous relations, we have

and further we can easily verify

Mf[A +

by direct calculation. Hence we have proved

which we call the q-difference EPD equation.

Now we will prove that the algebra generated by three q-defference operators
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qh= 2θx+2θy

is a q-deformation of Miller's symmetry. First we show the next proposition.

Proposition 3.2. Let Eq(β,βf) be the q-difference EPD operator defined by
Eq.(2\ then operators e, f and qh satisfy the following relations:

1. Eq(β,β')e = -

2.

3.

From this proposition we immediately have the next corollary.

Corollary 3.1. The q-difference operators e, f and q±h are symmetries of the
q-difference EPD equation.

Proof of Proposition 3.2. Let us prove the first relation. From the difinition
of the difference operator e, we have

^
^

By using the following relation

x^q-o^q-O'-^x-1, χ-*q** = q°*^χ-\ x~ '[0J,* = [<?,+ 1],,

we see

Eq(β,β')e

Further by applying the addition foumula Eq. (4)

in the second and third terms of the above equation, we get
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Eq(β,β')e

Therefore we have

The second relation is proved just above by using the relation

and the addition formula

Finally we prove the third relation. By the definition of qh and the formula

we get

q.e.d

Thus we have proved the first statement of Theorem 1. A proof of the second

statement, that three operators e,/and q±h are generators of Uq(sl(2,C)\ namely,

~h

q-q

is given in appendix B.
In the following we give a kind of representation of Uq(sl(2,C)) on the space

of contiguous functions of φq.

Proposition 3.3. The q-difference operators e, f and q±h act on the space of

contiguous functions of φq as follows:
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Proof. By the definition of φq9 we get

4[λ+l ;«],[/*-«+ /?>],

= /l+/2,

where we put t = x/y. Hence by replacing n by n + 1 in the first term Iί9 we have

1

On the other hand,

v+ 1

; « 4 μ - n )3';n]g

Therefore we get

i

where we use the addition formula Eq. (4). Similarly as above, we have
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t

The last statement is easily proved by direct calculation. q.e.d

By using the funciton Φg, we get a simple expression of the action of operators
e, / and qh.

Corollary 3.2. The action of operators e, f and cf1 on the function Φ4 is

qhφ =

4. q-Laplace sequence

Here we consider a family of the difference operators

dιaf neZ (6)

which may be thought as a q-difference analogue of the operator Ett defined by
Eq. (2). Our purpose is to find a kind of increasing or decreasing operators.
Let us denote two types of q-difference operators Hq „ and Bq „ by

Then the next theorem can be proved by direct calculation.

Theorem 4.1.
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Proof. By replacing β and β' by β+n or β'—n, it is enough to prove when

«=0. From the difiniton, we see

By using the relations

at the first and the second terms, we have

Thus the first statement is proved. We will show the second statement.

Bq,-lEq,0

Substituting

into the second and third terms, we have

Bq.-lEq,0
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-1*^^

^^

= q~1Eqt-iBq,0. q.e.d

REMARK 4.1. The above theorem implies that if un is a solution of the equation

Eq,nun = 0, then un+l = Hq>nun orun.^ B^nun is a solution ofE^n + vu = 0 or Eq,n _ ̂  = 0,

respectively.

We have more infomation about the action of Hqn and Bqn.

Proposition 4.1. The action of operators Hq0 and Bq >0 on the space of contiguous

functions of φq is

Proof. By the definition of φ€, we get

χ [A+^-^ ^Jμ-n + l n],̂

Here we used the addition formula

The second statement is proved just above by using addition formula
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as follows:

q.,dq'β

Remark 4.2. The action of Hq0 and BqtQ on Φq is
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A. The Euler-Poisson-Darboux Equation

Let us consider some analytic properties of the equation

E(β,β')u = {(x -y)dxdy-β'dx + βdy}u = 0 (8)

We would like to find a solution of the form

where λ and μ are complex parameters. By substituting this expression into Eq.

(8) we have

t2(\-t)φ"(t) + t{(μ-λ-l-β)t-(μ-λ-l+β')}φ'(t)

Especially in the case of A = 0 this equation is reduced to Gauss's hypergeometric

euqation

t(\ - t)φ"(t) + t{(μ - 1 - β)t - (μ - 1 + β')}φ'(t) + βμφ(t) = 0
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Hence Eq. (8) have special solutions related to hypergeometric series. For
example, we have a solution

where

is Gauss's hypergeometric series. Hence by using the action of S£(2,C), we obtain
AppelΓs formula

^

B. A proof of Theorem 1

Here we will prove that three operators e, f and qh are generators of the
quantum group Uq(sl(2,C)). Namely, let us prove Serre's relations

q-q

which characterize l/4(s/(2, C)). From the definition, we see

By using the relations xq~2βx=q~2β*+2x and yq~2θy=q~2βy+2y, we obtain

and just as the same above we can show qkfq~h=q~2f

Now we prove the relation

From the definition of e and /, we have
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= — Cj — C2 — C3 — C4.

Now we calculate each term Cf /=1,2,3,4. We have

where we use Eq. (5). The second term is

= 0.

Similary just above, we obtain C3=0. Finally

where we use the addition formula Eq. (5). Hence we have

C. Casimir operator

Here we express Casimir operator by means of the operator Eq>0. It is well
known that the Casimir element C of Uq(sl(29C)) is
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'-+•/.
In our case, by the direct calculation, we have

β+β'-ιΎ

-1-J.
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