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Let M be a C~-manifold and let L(M) be the Lie algebra of all C*-vector
fields on M. For a Lie subalgebra L of L(M), Matsuda [3] gave a sufficient
condition for its integrability. Precisely speaking, for a Lie subalgebra L which
satisfies the convergence condition (C) stated below, Matsuda proved that
through every point of M there passes a maximal integral manifold of L.

For two elements u and v of L(M), defining (ad v)*« inductively as
[v, (ad v)*"u], we put

g, 9) =3 (—1)7 ¥ (ad w)u.
=0 7!
Let ¢(u, v; x) be the radius of convergence of g,(u, v) at x of M.

(C) For any pair of u and v in L and any compact set K in M, there exists a
positive number c(u, v; K) such that

(1) we have c(u, v; x)=>c(u, v; K) at every x K, and

(i1) g/(u, v) is continuously differentiable with respect to (t, x) term by term
at every (t, x) which satisfies |t|<c(u, v; K) and x K*, the interior of K.

In this paper we say a Lie subalgebra L satisfies the condition (C), if
‘continously differentiable’ in (ii) of Matsuda’s condition (C) can be replaced by
‘(k+1)-th continuously differentiable’. Here k is a non-negative integer.

For any Lie subalgebra L of L(M) and a point x of M, we shall define gj(x),
the (I, k)-isotropy algebra of L at x, as follows: Let L% denote the subalgebra
of L consisting of vector fields whose coefficients vanish at x with all their
derivatives through order % (in one and hence all coordinate systems). Then
L} is an ideal in L} for k >1>=0. We shall denote the factor algebra L./Lk
by gi(x) for k=/=0. In particular gj(x) is the linear isotropy algebra of L
at x.

Theorem 1. Let M be a connected, paracompact manifold and let L be a Lie
subalgebra satisfying the condition (C) with k>0. Then the (¢, s)-isotropy algebras
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gi(x) and gi(y) of L are isomorphic for k=s>t=0, if x and y lie on the same
orbit under L. In particular the linear isotropy algebra of L is isomorphic each
other on every orbit under L.

Here an orbit under L is the set of all points of M that can be joined each
other by finite number of integral curves of L.

Every finite dimensional Lie subalgebra L satisfies the condition (C,) for
all k (see [3]). Also if we are in the real analytic category, then every Lie
subalgebra L of L(M) satisfies the condition (C,) for all k(see [3]).

A subalgebra L is called transitive if L(x) equals the tangent space T,(M) at
every x of M where L(x) is the subspace of T,(M) defined by L(x)={u(x); u L}.

Theorem 2. Under the same assumptions as Theorem 1, if moreover L is
transitive, then there exists a G-structure of order | with 1=<I=<Fk such that the
Lie algebra of G is isomorphic to gi(x) for every x M.

A G-structure of order / is by definition a reduction of the bundle F*(M) of
I frames of M to the group G (see [4]).

The conclusion of Theorem 2 was obtained by Singer and Sternberg ([6],
p- 39) under the assumption that L (Lie algebra sheaf in their case) is invariant
by a local one parameter transformation group generated by any element of
L. Theorem 2 will be proved through the proof of Theorem 1.

The author would like to thank Dr. M. Matsuda and Professor H. Ozeki
for their encouragement and kind guidance during the preparation of this paper.

Proof of Theorem 1. For simplicity, we shall prove the case =0 and s=1.
The proof for the general case proceeds similarly, if we replace M by F(M)
and F(M) by F*~*(F'(M)) respectively in the following argument. Let N(x) be
the orbit under L through x& M. By the result of Matsuda, N(x) is a maximal
connected integral manifold of L through x. We shall denote by F(M) the
bundle of linear frames of M with 7z as projection. Since N(x) is a submanifold
of M, »7'(N(x)) is a submanifold of F(M). Each vector field # on M induces
a vector field F(u) on F(M) as follows: Let ¢,(u) be a local one parameter trans-
formation group of M generated by u and let F(¢,(u)) be a local one parameter
transformation group of F(M) defined by

F(piu))ew = pftt) s, w weEF(M) and z= =(w).

We shall denote its infinitesimal generator by F(u). The mapping F: u—F(u)
of L(M) into L(F(M)) is a Lie algebra homomorphism and has following proper-
ties:

(1) meF(u)=wu

(ii) R, «F(u)=F(u) for any ac GL(m, R), where R, is the right translation
of F(M) by an element a and m is dim M. We put F(L)={F(x): u< L}, which
is a Lie algebra. For u&L a vector field F(u) on F(M) is, as is clear from the
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definition, tangent to the submanifold ~~'(/N(x)) at all points and so defines a
vector field on 7#7'(N(x)). The set of vector fields on z~'(IN(x)) so obtained is
a Lie algebra which we shall denote by F(L). If L satisfies the condition (C,)
on M, F(L) satisfies the condition (C,) on F(M) and so F(L) satisfies the con-
dition (C,) on z7'(N(x)). Let p be a point of F(M) with z(p)=x. We denote
the orbit under F(L) through p by W(p). Then again by the result of Matsuda,
W(p) is a maximal integral manifold of F(L). We have clearly =(W(p))=N(x).
Put n=dim N(x) and r=dim W(p)—n.

(1) The intersection W(p)N=~'(x) is a r-dimensional submanifold of
three manifolds z~'(IV(x)), =~*(x) and W(p). It has at most countably many
connected components.

We shall prove this statement (1). For wez'(N(x)) the differential
7w at w of 7 maps F(L)(w) onto the tangent space T, (IV(x)) at (), where
F(L) (w)={n(w): ac F(L)}, since z4F(u)=u and L(z)=T,(N(x)). Hence we
obtain T,(z"'(N(x))=T,(W(p))+T.(x '(x)) for any weW(p)N="'(x), ie.,
two submanifolds W(p) and »~*(x) of z'(N(x)) are transverse at their intersection.
From this fact the first statement follows (see [5], p. 30). To prove the second
part of (1), we first show that F(L) defines an involutive distribution in the
sense of Chevalley [1] on z7'(N(x)). For this, it suffices to show that the
dimension of F(L)(w) is constant on z~(N(x)). 'The orbit W(p) is an integral
manifold of F(L) and so dim F(L)(w) is constant on W(p). Since =(W(p))=
N(x), and since each vector field of F(L) is invariant by the action of GL(m, R),
we have dim F(L)(w)=constant on z~'(N(x)). Hence each point weEz(x) has
a neighbourhood U in z~'(IN(x)) with coordinates (x,, ***, ¥,.,,2) such that the
slices given by x,.,.,=const., +:-, ¥, ,2=const. are integral manifolds of m
([11, p- 89, Theorem 1). Since two submanifolds W(p) and z7(x) of z~'(N(x))
are transverse at their intersection, we can change this coordinates such that, in
addition to the above condition, the set V={¢= U: x,(q)="+-=x,(¢)=0} toge-
ther with the restriction of (x4, ***, %4i,,2) to V form a local chart on z7'(x)
containing w (compare the proof in [5], p. 30, Lemma 6). Hence W(p)NV
is the union of certain sets of planes represented by x,=0, -+, x,=0, %4, +,=
const., *+, X, ,2=const., each of which is an open set of W(p)N=~'(x). The
intersection W(p)N U is the union of certain sets of slices given by x,.,.,=
const., ***, Xny,2=const. The paracompactness of M implies that the connected
submanifold N(x) of M and hence = '(IN(x)) satisfies the second axiom of
countability and so does the connected submanifold W(p) of = (N(x)). Then
it follows that the intersection W(p) N U is the union of at most countably many
of slices and so the neighbourhood V' of w in z7(x) can meet at most countably
many connected components of W(p)Nz~'(x). Thus we have shown that
each wE 7 7'(x) has a neighbourhood V' in z~'(x) which meets at most countably
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many connected components of W(p)N~="'(x). Since = '(x) can be covered
with countably many of these open sets, we have the second part of (1).

Each element of F(LJ)={F(u): uc LS} is tangent to submanifold = (x)
at all points and so defines a vector field on #z7'(x). The vector fields on
7~'(x) so obtained is a Lie algebra which we shall denote by F(LJ). Then the
orbit W(w) under F(LJ) through w is the connected component of W(p)N
7~'(x) containing w and so a maximal integral manifold of F(LJ) through w.
Since F(L?) is invariant by the action of GL(m, R), the translations R, (a€
GL(m, R)) permute among themselves the maximal integral manifolds of
F(L%). Thus for w=p-a with a€GL(m, R) we have W (w)=W,p)-a and so
W(p) Nz "'(x) can be written as the disjoint union

@) Wp)N=~(x) = U Wi(p)-a.

By (1), the index set A4 is at most countable. Next consider the diffeomorphism
v:p-a—a of n7'(x) onto GL(m, R). We put y(W(p)N="'(x))=GCG(x, p). By
the definitions of v and G(x, p), we have G(x, p)={a=GL(m, R): p-ac W(p)}.
Since W(p) is the set of all points that can be joined to p by finite number of
integral curves of F(L) and since each vector field of F(L) is invariant by the
action of GL(m, R), it follows that G(x, p) is a group. If we introduce the
differential structure on G(x, p) by v, G(, p) is also a submanifold of GL(m, R).

(3) G(w, p) is a Lie subgroup of GL(m, R) and the Lie algebra of G(x, p)
is isomorphic to gj(x).

To prove this statement, we put g(x, p)={ys#: #EF(LJ)}. If we regard
gl(m, R) as the Lie algebra of right invariant vector fields on GL(m, R),
g(x, p) is a subalgebra of gl(m, R). Let G(x, p) be the connected Lie subgroup
of GL(m, R) whose Lie algebra is g(x, p). Since Gy(x, p) is the maximal
integral manifold of g(x, p) containing the identity element of GL (m, R), we
have G(x, p)=v(W(p)). Corresponding to (2), the submanifold G(x, p)
of GL(m, R) is the disjoint union of integral manifolds Gy(x, p)-a (a€A) of
a(x, p)

G(x) P) - }EJAGO(x’ P)'a .

Since A is countable, G(x, p) satisfies the second axiom of countability and so
the mapping (a, b)—ab™' of G(x, p)xX G(x, p)—>G(x, p) is differentiable (see
[1], p. 95, Proposition 1. To prove this fact the connectedness of G(x, p) is
not needed. See also [2], p. 10, Proposition 1.3). Hence G(x, p) is a Lie
subgroup of GL(m, R). 'To prove the second part of (3), let F' denote the
mapping of L{—F(LJ) induced by F: L(M)—L(F(M)). The mapping F is
a Lie algebra homomorphism of L? onto F(L?) and the kernel of F is precisely
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Ll. Thus we have
a3(x)=F(L3)=2g(x, p) -

Now we shall conclude the proof of Theorem 1. For any yeN(x), take
g W(p) with z(g)=y. Then W(p) is also a maximal integral manifold of
F(L) through ¢q. If we put G(y, 9)={a=GL(m, R): g-ac W(p)}, then by the
same argument as (3), G(y, ¢) is a Lie subgroup of GL(m, R) having at most
countably many connected components and whose Lie algebra is isomorphic to
al(y). Since a differential system F(L) on z~*(N(x)) is invariant by the action
of GL(m, R), the translations R, (¢ GL(m, R)) permute among themselves the
maximal integral manifolds of F(L). It follows that two Lie subgroups G(x, p)
and G(y, q) of GL(m, R) coincide as set. Since G(x, p) and G(y, q) satisfy the
second axiom of countability, they coincide as Lie subgroups (see [2], p. 40) and so
do their Lie algebras. Hence we have gj(x)=g3i(y). This completes the proof.

Remarks 1. If L is transitive, the submanifold W(p) of F(M) and the group
G(x, p) in the preceding proof form the required G-structure of order 1 in
Theorem 2. The higher order case can be proved, if we put =0 and s=/ in the
above proof of Theorem 1.

2. If we restrict vector fields of L to an orbit N(x), we get a transitive
Lie algebra L of vector fields on N(x). In general the (¢, s)-isotropy algebras
ai(y) of L are different from the (¢, s)-isotropy algebras gi(y) of L for yEN(A)

For example let L be the Lie algebra generated by a vector field —y— " +x A
on R’. Then the origin o is an orbit under L and the linear isotropy algebra gl(o)
of L at o is not zero, while g3(0) is zero. Thus in order to prove Theorem
1 it is not sufficient to prove only the transitive case.

3. Let us give an example L with is not invariant under the automorphism

¢i(u)s of L(M) generated by any non-zero element u of L. Let M be R' with
a coordinate (x) and let L be the Lie algebra consisting of vector fields of the form

xzf(x) 3’ where f(x) is a polynomial function on R'. Then this L has the
desired property. In fact if we put ¢,(u)*x2f(x) =g(t, x)—- , then g(t, x) is a

~ meromorphic function of x and ¢.

4. 'There exists a Lie algebra L to which our theorems cannot be applied.
Let M be R' witha coordinate (x). Take a C~-function f(x) on R' with a compact
support which is not identically zero. Let L be the Lie algebra generated by

= and f(x) . Then L is transitive and so L has only one orbit M. We have
gk x) {0} for er supp f and all k, while g3(x)= {0} for x with f(x):l:O and all k.
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