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Throughout this paper all rings are commutative with identity and all
modules are unitary. A ring is called FGC (NFGC) provided every finitely
generated (finitely generated nonsingular) module over the ring is a direct sum
of cyclic submodules. For a given ring R, we denote the sct of all prime ideals
of R by spec (R). For a subset X of spec (R), we use min X and max X to
denote the set of all minimal elements of X and the sct of all maximal elements of
X, respectively. X is said to be a thin patch if it coincides with the (patch)
closure of min X in spec (R) ([10]).

In this paper, we show the following result, which se¢ms to be a generaliza-
tion of R. S. Pierce [7, Proposition 20.1]: Let R be a semiprime NFGC-ring
and X the (patch) closure of minspec (R) in spec (R). Then

(1) X=min X Umax X, and
(2) X has no 3-points.

Using this result, we can guarantee the following conjecture® raised by T.
Shores and R. Wiegand ([10]) is indeed true: Every FGC-ring has only finitely
many minimal prime ideals. Thus, as was point out in [10], we should note that
the solution for this conjecture allows us to remove the hypothesis “with
Noetherian maximal ideal spectrum” from S. Wiegand [13, Corollary]. Con-
sequently, the structure of a semiprime FGC-ring R is completely settled as
follows: R is a finite direct product of h-local Bezout domains and each
localization of R is an almost maximal valuation ring. The reader is referred
to [8]-[12] for the study of FGC-rings.

. The author wishes to express his thanks to Prof. R. Wiegand for his kind
comment about this paper.

Let R be a ring. We denote its maximal ring of quotients by O(R). An
R-module is said to be non-singular if every non-zero element of the ring is not
annihilated by an essential ideal of R.

For a subset I of R, we put V(I)= {x&spec(R)|x21I} and D(I)=spec(R)—

*) After writing this paper, I was informed by R. Wiegand that he had already solved this,
independently. His proof can be found in [11] or [12].
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V(I). Itis showed in M. Hochster [3] that the family of all sets V(a)N D(b,) N
- N D(b,), where a, b,, -+, b, ER, forms an open basis for a topology on spec (R),
and spec (R) becomes a Boolean space (that is, a compact, Hausdorff totally dis-
connected space) with this topology. This topology is called the patch topology.
Note that the patch topology is stronger than the usual Zariski topology. In this
paper, unless otherwise stated, all topological notions on spec (R) refer to the patch
topology.

For a subset X of spec (R), by X?, min X and max X we denote the closure
of X in spec (R), the set of all minimal elements (by inclusion) of X and the set
of all maximal elements of X, respectively. Following T. Shores and R. Wiegand
[10], X is called thin patch provided X=(min X)’.

For a ring extension Q of R with the same identity, by A(Q; R) we denote
the canonical mapping from spec (Q) to spec (R) given by y—yNR. Clearly
A(Q; R) is a continuous mapping. Moreover it is a closed mapping, since both
spec (Q) and spec (R) are compact Hausdorff spaces.

Let X be a topological space, x& X and « a cardinal number. x is called
an q-point if x lies simultaneously in the closure of each member of a pairwise
disjoint family of « open subsets of X which do not contain x ([7]). Let N be
the discrete space of natural number, and let BN be the Stone-Cech com-
pactification of IV (see [1] or [14]). In [7], R. S. Pierce showed assuming the
continuum hypothesis that BN—N has a 3-point, and he then asked if the
existence of a 3-point can be shown without using the continuum hypothesis.
N. Hindman [2] answered this in the affirmative. Using the existence of a 3-
point in BN—N, R. S. Pierce also proved the following remarkable result ([7,
Lemma 21.5]):

(P1ERCE’S LEMMA)  Any infinite Boolean space contains a closed subset which
has a 3-point (relative to the topology of the space).

For latter use, we shall review an outline of the Pierce’s proof of this: Let
X be an infinite Boolean space. Then we can choose a countably infinite family
{P,Ine N} of pairwise disjoint non-empty open-closed subsets of X. Let
x,&P,, and let Z be the closure of {x,|n=N}. When Z has no 3-points, Pierce
elegantly showed the fact that Z contains a closed subset which is homeomorphic
to BN—N.

Now let us start with the following result.

Proposition 1. If R is a semiprime ring, then (minspec (R))’=(spec (O(R))),
where A=X\O(R); R).

Proof. Since R is a semiprime ring, O(R) is a (Von Neumann) regular ring
and hence the patch topology on spec (Q(R)) is just the Zariski topology.
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By [5, Proposition 2.2], we have minspec (R)C (spec (OR))) and hence
(minspec (R))? S\ (spec (O(R))). Putting Y=x"" ((minspec (R))?), Y is a closed
subset of spec (O(R)) and (] (yNR)={0}. Since (] y)NR={0}, we have

yey YEY

(] y=1{0}. Thus, inasmuch as Y is a Zariski closed subset of spec (Q(R)) and

ey

y@ Yy: {0}, we sce that Y=spec (Q(R)). Consequently A(spec (O(R)=MY)=
(minspec (R))?.

Proposition 2. Let R be a ring and X a thin patch of spec (R), and let
I= () x. Then X is homeomorphic to (minspec (R/I))?.

rex

Proof. Let ¢ be a canonical mapping: X— spec (R/I) given by x—x--1.
Then ¢ is a one to one continuous mapping. Since both X and spec (R/]) are
compact Hausdorff spaces, X is homeomorphic to ¢(X) by ¢. Thus, to show
the proposition, we may show ¢(X)=(minspec (R/I))’.

Let Z be the Zariski closure of X in spec(R). Then I= (| x, Z=
reZ

{xespec (R)|x21} and minspec (R/I)={x+I|x=min Z}. Since X is a closed
set, the first corollary of [3, Theorem 1] shows that every element of Z contains
an element of X; whence min Z=min X. Thus minspec (R/])={x+I|x&
min Z} = {x+1 |x Emin X} = ¢(min X), and hence (minspec(R/))?=(p(min X))?
=¢(min (X)?)=¢p(X) as desired.

In [6], the author proved the following result: If R is a (Von Neumann)
regular ring such that every finitely generated R-submodule of Q(R) is a direct
sum of cyclic submodules, then

2>|1"Y(x)|, the number of A\7Y(x)

for all xEspec (R), where A=X\(O(R); R). This result suggests the following
lemma.

Lemma 3 Let R be a semiprime ving, and assume that spec (Q(R)) contains
three points y,, v, and y, such that

My EMY,) and  A(y3) SA(y)

where x=X\QO(R); R). Then there exists a finitely generated R-submodule of O(R)
which is not a divect sum of cyclic submodules.

Proof. Since R is a semiprime ring, O(R) is a regular ring. So, we can
casily choose pairwise orthogonal idempotents e, f and g in O(R) such that

(1) e=1(mody,), f=1(mody, and g = 1(mody;,).

Putting
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A = R(e+f)+R(f+g)

we claim that 4 is not a direct sum of cyclic submodules.
First suppose, to the contrary, that 4 is a cyclic R-module. Then

A = R(re+4(r+s)f+sg)

for some 7, s€R. In A=R(re+(r+s)f+sg), express e+f and f+g as
e+f = aret+a(r+s)f+asg,
f+g = Bre+B(r+s)f+Bsg

where o, B€R. Since e, f and g are pairwise orthogonal idempotents, it follows
that

e = are (mod y,),
0 = Bre(mod y,) and g = Bsg(mody,).

Therefore, using (1), we get

1 = ar (mod A (y,)),
0 = Br(mod A(y;) and 1= Bs(mod r(y3)).

However, since A(y,) S A(yz) and A(y3) SA(y2), it follows

1 = ar (mod \(y,)),
0 = Br (mod \(y,)) and 1= Bs(mod \(y,))

from which we obtain 1&\(y,), a contradiction. Thus 4 is not a cyclic R-
module.
Next assume that 4 is a direct sum of # (>1) cyclic submodules, say

A = R(rie+(ri+s5.)f+58) 7 PR ,e+(r,+5,)f+5.8) -
Then we can verify that
Q4 = Q(re+(r+s)f+8) T T O(r.e+(r,+s,)f+5.8)
where Q=Q(R). Therefore we must have
(2) (re)rie) =0, ((r+s)f)(r;+s,)f) =0 and (sg)(s;8) =0

for i==j. Since e+f and f—}—geA:i T R(r.e+(r,+5,) f+5.£), there exist j, &
and / such that "

reEy,, (rts)fe&Ey, and s fey,.
Then, it follows from (2) that
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3) recy, if i1,
4)  (i+s)fey, if ik, and
(5) s,8€y, if i1,

Here, let us express e++f and f+g in A= ‘_j DR(r.e+(r,45;)f+s.g) as follows:

e_f—f: g a,r,-e+ ,:2"‘ az(rt+sz).f+ 2 azsig ’
ft+e= gﬁirie+ '2:;. Bi(ri+8)f+ g Bisig,

where a;, B;ER, i=1, --:,n. Since e, f and g are pairwise orthogonal idem-
potents, we have then

e = i‘;a,-r,e, f= Z a(r,+s)f, 0= 2"1 a,sg
0= :Zl Bir.e, f: ’é_l ﬁi(’;"f‘si)f, g = .2:1 Bisig.

Hence according to (1), (3), (4) and (5), we infer that

1 =ar(modn(y)), 1= ayr,+s:) (modr(yz), 0= a;s(modr(y,)),
0= B;r;(mod (), 1= Buri+s)(modA(y,)), 1= B (modr(y3)).

Since 0= B,7,=B,7,0;= B,(mod A(y,)), we see that

A

0 = B,(mod A\(y,)); similarly 0 = a,(mod A\(y;)).
Thus, noting A(¥,), M¥;) SA(p),, We get

0= B; = a(mod \(y2)) ,
1 = ay(ryts) = Bu(ritsi) (mod M(y,)) .

From these relations, we must have j%k and /#=k. However (3) and (5) then
show that 0=7,(mod A(y,)) and 0=s,(mod A(y;)); whence 0=r,=s,(mod A (y)),
from which 1=a,(r,+s5,)=0(mod A(y,)), a contradiction.

Now, we are in a position to show the following theorem, which is a gener-
alization of R. S. Pierce [7, Proposition 20.1].

Theorem 4. Let R be a semiprime NFGC-ring and let X=(minspec (R))’.
Then the following conditions hold:

(1) min X=minspec (R), and hence X is a thin patch.

(2) X=min X Umax X.

(3) X has no 3-points.

Proof. (1) always holds.
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(2) follows from Lemma 3.

(3). Put A=x(O(R); R). Then, by Proposition 1 and Lemma 3, X=
A(spec (O(R))) and [ A"Y(x)]| <2 for all x&X. Now, suppose that X has a 3-
point, say x. Then there exist pairwise disjoint open subsets U;, U, and U, of
X such that xeU?’—U,, i=1,2,3. Put W,= "' U,))’, i=1,2,3. Then,
inasmuch as spec(Q(R)) is extremely disconnected space ([7, p. 102]), we see that
W, W, and W; are also pairwise disjoint. Since A is a closed mapping, MW;)
contains U?, =1, 2, 3. It follows that A7 }(x)N W,%0, =1, 2,3 and hence
[A"Y(x)| >3, a contradiction.

Theorem 5. Let R be a ring and X a thin patch of spec(R). If R| | x is
rex’/
NFGC for every subset X’ C X, then X is a finite set.

Proof. Since X is a closed subset of spec (R), X is also a2 Boolean space with
the relative topology. By Proposition 2 and Theorem 4, we conclude that

(*) X=min X Umax X, and

(#*) every thin patch contained in X has no 3-points.

Now, we want to see that min X is a finite set. Thus, assume that min X
is an infinite set. Since X is a Boolean space and min X is an infinite subset of
X, we can easily take a set {P,|nEN} of pairwise disjoint, non-empty open-
closed subsets of X such that P, Cmin X=( for each neN. Choose y,=P,N
min X and let Z={y,|neN}?. Then ZC X and Z is clearly a thin patch of
spec (R). Hence, by (**), Z has no 3-points. Therefore, by the proof of the
Pierce’s lemma, Z contains a closed subspace V' which is homeomorphic to
BN—N. Since V~BN—N, [7, Corollary 21.3] says that I has a 3-point. So,
V' is not a thin patch of spec (R) by (*#) and hence V—(min V)’=¢. Further-
more V' —(min V)’ Cmax V by (x).

Let x&V—(min V)?, and take an open-closed subset W of spec(R) such that
W N (min V)*=@. Putting T=V N W, T is an open-closed subset of V' which
contains x. If 7' is a finite set, then x must be an isolated point in V. But
this conflicts with the fact that BN—N has no isolated points (see, e.g. [14,
p. 74]). 'Therefore T must be an infinite closed subset of spec (R).

Since T=min T, every closed subset of T is clearly a thin patch of spec (R)
and hence, by (**), every closed subset of 7" has no 3-points. However, inasmuch
as T is an infinite Boolean space, the Pierce’s lemma says that T contains a closed
subset which has a 3-point, a contradiction.

As an immediate corollary of Theorem 5, we have

Corollary 6. Every FGC-ring has only finitely many minimal prime ideals.
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