|

) <

The University of Osaka
Institutional Knowledge Archive

A Translation Method from Natural Language
Title Specifications of Communication Protocols into
Executable Algebraic Specifications

Author(s) |AE, H#E

Citation | KPrKZ, 1995, {&Et:m

Version Type|VoR

URL https://doi.org/10.11501/3100717

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

ek

S

A Translation Method from Natural Language
Specifications of Communication Protocols into

Executable Algebraic Specifications

Yasunori Ishihara

January 1995

A Translation Method from Natural Language
Specifications of Communication Protocols into

Executable Algebraic Specifications

by

Yasunori Ishihara

January 1995

Dissertation submitted to Graduate School of Engineering Science of
Osaka University in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Engineering

Abstract

In a software development process, informal requirements and/or specifications are of-
ten written in a natural language since they become readable and the intuitive meanings un-
derstandable. However, natural language specifications are apt to be incomplete. To verify
whether a program satisfies a specification, the specification needs to be written formally. '

In this dissertation, we propose a translation method from natural language specifica-
tions into algebraic specifications such that (1) incompleteness of a natural language specifi-
cation is detected or reduced in a translation process, (2) information necessary for translation
(e.g., lexical items) can be obtained as automatically as possible, and (3) derived algebraic
specifications are executable. An input of the translation method is a part of a protocol spec-
ification which specifies action sequences performed by the protocol machine (program).

In Chapter 1, related topics on translation methods are briefly summarized from the
above viewpoints (1)-(3).

Chapter 2 summarizes algebraic specification language ASL, which is adopted as a for-
mal specification language in this dissertation. An algebraic specification in ASL is a pair of
a context-free grammar (cfg) and a set of axioms. A cfg specifies a set of expressions and
their syntax, and a set of axioms specifies their semantics.

Usually, a sentence in an input natural language specification implicitly specifies the
state of the protocol machine at which the described actions must be performed. In Chap-
ter 3, we propose a method of analyzing the implicitly specified states of the protocol ma-
chine taking the OSI session protocol specification (265 sentences) as an example. Implicitly
specified states are determined by analyzing dependency, called S-dependency, among con-
stituents (phrases, clauses, or sentences) in the natural language specification. The method
uses the following properties and information: (a) syntactic properties of a natural language
(English in this dissertation), (b) type information assigned to words in a natural language
specification, and (c) properties specific to the target domain, e.g., properties of data types. In
this method, these properties and information are assumed to be given and stored in a dictio-
nary. An input natural language specification is analyzed by this method and translated into
algebraic axioms in the form of logical formulas. The result of applying this method to the
main part of the OSI session protocol specification (29 paragraphs, 98 sentences) is also pre-
sented. For 95 sentences, the S-dependency was uniquely determined by using only (a) and
(b) described above. By using (c) in addition, the S-dependency of the remaining three sen-
tences was uniquely determined. Thus, this method is effective in reducing incompleteness
of natural language specifications.

In Chapter 3, an assignment of data types to words in a natural language specification

is assumed to be given. However, it is desirable that data types be assigned systematically.
Chapter 4 proposes a method of constructing a cfg representing an assignment of data types
to words in a natural language specification. The resulting cfg becomes a part of the cfg
specifying the syntax of logical formulas in an algebraic specification. In our method, a
cfg is mechanically constructed from sample sentences in a natural language specification,
where the cfg represents type declarations of expressions and type hierarchy. Then, the cfg is
appropriately modified by adding nonterminals/production rules that represent type inclusion
relation. Finally, the cfg is simplified based on structural equivalence. The result of applying
this method to a part of the OSI session protocol specification (39 sentences) is also presented.
By using the cfg obtained by our method, we reduced an ambiguity in the natural language
specification, which was not reduced by a cfg given manually.

Chapter 5 proposes a method of translating logical formulas, which are derived by the
method in Chapter 3, into executable algebraic specifications called BE programs. A BE
program specifies action sequences performed by a machine, called the BE interpreter, which
has a finite number of registers and I/O buffers. In this method, for each predicate p in logical
formulas, the meaning of p is given as a BE subprogram and stored as a lexical item of p.
Then a BE program for the logical formulas is constructed in a bottom-up manner. The result
of applying this method to the logical formulas derived from a part of the OSI session protocol
specification (18 paragraphs, 45 sentences) is also presented. The behavior of the obtained
BE programs was just as the human translator intended.

In this way a natural language specification of a communication protocol can be trans-
lated into an executable specification within a single framework of algebraic specification
methods. Chapter 6 summarizes our research.

-ii-

Acknowledgments

I am deeply indebted to many people for the advice, feedback and support they gave
to me in the course of this work. I would especially like to thank Professor emeritus Tadao
Kasami, currently Professor of Nara Institute of Science and Technology for his invaluable
support, discussions and encouragement throughout the work. '

I am grateful to my supervisor Professor Kenichi Taniguchi for his invaluable sugges-
tions and discussions on the work. I am also obliged to Professor Mamoru Fujii and Professor
Akihiro Hashimoto for their helpful comments and suggestions. I would like to thank Pro-
fessor Hideo Miyahara, Professor Tohru Kikuno, and Associate Professor Teruo Higashino
for their valuable comments. I am also thankful to Professor Minoru Ito of Nara Institute of
Science and Technology for his invaluable comments and continuous encouragement.

I would like to thank Dr. Kazuhito Ohmaki of Electrotechnical Laboratory, Associate
Professor Motoshi Saeki of Tokyo Institute of Technology, and Mr. Hisayuki Horai of Fujitsu
Laboratories Ltd. for their valuable comments.

I am extremely thankful to Associate Professor Hiroyuki Seki of Nara Institute of Sci-
ence and Technology for his invaluable discussions and great support throughout the work.
I also thank to Mr. Jun Shimabukuro, Mr. Tetsuya Yagi, and Mr. Atsushi Ohsaki for their
helpful discussions.

1 would like to thank Associate Professor Toru Fujiwara, Associate Professor Toyoo
Takata of Nara Institute of Science and Technology, Dr. Robert H. Morelos-Zaragoza, Re-
search Associates Masahiro Higuchi, Ryuichi Nakanishi and Kozo Okano for their kind and
helpful support. I am thankful to Research Associates Yuichi Kaji and Hajime Watanabe of
Nara Institute of Science and Technology for their valuable support. I am also grateful to Ms.
Machiko Uehara for her kind support.

Lastly, I would like to thank all the members of Kasami Laboratory of Osaka University
and Ito Laboratory of Nara Institute of Science and Technology.

- iii -

List of Publications

Journal Papers

{1] Ishihara, Y., Seki, H., Kasami, T., Shimabukuro, J. and Okawa, K., “A Translation
Method from Natural Language Specifications of Communication Protocols into Algé—
braic Specifications Using Contextual Dependencies,” IEICE Transactions on Informa-
tion and Systems, Vol. E76-D, No. 12, pp. 1479-1489, Dec. 1993.

[2] Ishihara, Y., Seki, H. and Kasami, T., “Implementation of Natural Language Specifica-
tions of Communication Protocols by Executable Specifications,” Transactions of Infor-
mation Processing Society of Japan (to appear).

[3] Ishihara, Y., Ohsaki, A., Seki, H. and Kasami, T., “Assignment of Data Types to Words
in a Natural Language Specification,” IEICE Transactions on Information and Systems
(submitted).

International Conferences

[4] Ishihara, Y., Seki, H. and Kasami, T., “A Translation Method from Natural Language
Specifications into Formal Specifications Using Contextual Dependencies,” Proceedings
of the IEEE International Symposium on Requirements Engineering '93 (San Diego,
California), pp. 232239, Jan. 1993.

Workshops

[5] Ishihara, Y., Seki, H. and Kasami, T., “On a Translation from Natural Language Spec-
ifications of Communication Protocols into Algebraic Specifications in the Form of an
Abstract Sequential Machine,” IPSJ SIG Notes, SE-82-11, Dec. 1991 (in Japanese).

[6] Ohsaki, A., Ishihara, Y., Seki, H. and Kasami, T., “Generation of Signatures of Functions
in Translation from Natural Language Specifications into Algebraic Specifications,” IPSJ
SIG Notes, SE-96-10, Jan. 1994 (in Japanese).

[7] Ishihara, Y., Seki, H. and Kasami, T., “An Algebraic Definition of a LOTOS-Like Lan-
guage and Its Application,” IPSJ SIG Notes, SE-99-1, July 1994.

-1V -

Contents

1 Introduction 1
2 Algebraic Specification Language ASL 6
3 Analysis of Contextual Dependencies in Natural Language Specifications of
Communication Protocols 8
3.1 Introduction e 8
3.2 Framework of S-Dependency Analysis 9
3.3 Analysis of S-Dependency among Constituents of a Sentence 11
3.4 Analysis of S-Dependency among Constituents of Different Sentences . . . 14
34.1 Definitions 14
3.42 Analysis Based on Syntax of a Natural Language 17
34.3 Analysis Based on Data Types Assigned to Words 19
3.4.4 Analysis Based on Axioms Specifying Data Types 20
35 AnalysisSystem 26
36 Conclusions 26
4 Construction of a Context-Free Grammar for Logical Formulas from a Natural
Language Specification 30
4.1 Imtroduction 30
4.2 Naive Construction of a Grammar for Logical Formulas 31
4.3 Augmentationof the Grammar 38
44 Simplification of the Grammar 40
4.5 Evaluation of the Construction Method 47
46 Construction SYStem i e e e e e 47
47 Conclusions 49
5 Translation from Logical Formulas into Executable Specifications 51
5.1 Imtroduction e 51
5.2 Logical Formulas from a Natural Language Specification 51
5.3 A Subclass of Executable Specifications — BE Programs — 52
54 TheBEInterpreter 56
5.4.1 Definition of the BE Interpreter e e e e 56
542 Propertiesofthe BE Interpreter 62

5.5 Translation from Logical Formulas into BE Programs e e 63

551 Overview e e e e e e 63

552 TranslationMethod 64

553 Correctness i e e e e e e e e e e e e e 72

5.6 Translation System from Logical Formulas into BE Programs 72

57 Conclusions e 74

6 Conclusions 75
References 76

-vi -

Chapter 1

Introduction

In a software development process, informal requirements and/or specifications are of-
ten written in a natural language since they become readable and the intuitive meanings un-
derstandable. However, natural language specifications are apt to be incompléte. In order
to verify whether a program satisfies a specification, the specification needs to be written
formally. Therefore, it is desirable for a natural language specification to be translated into
a formal one. Moreover, if derived formal specifications are executable, rapid prototyping
techniques can be easily applied to natural language specifications.

Various researches on semi-automatic translation methods from natural language spec-
ifications into formal specifications are carried out [5], [22]. From the point of view of a
human translator, a translation method should satisfy the following requirements:

(1) In atranslation process, incompleteness of a natural language specification is detected
or reduced;

(2) Information necessary for translation (e.g., lexical items) can be obtained as automati-
cally as possible; and

(3) A derived formal specification is executable, or can be easily translated into an exe-
cutable program.

This dissertation aims at developing, for specifications describing dynamic behavior of sys-
tems, a translation method which satisfies the above three requirements (1)-(3). It is impor-
tant to develop a translation method for such specifications since many of practical specifi-
cations such as protocol specifications describe dynamic behavior of systems. However, few
systematic translation method for such specifications have been proposed.

In this dissertation, we adopt natural language specifications of communication pro-
tocols as input specifications. In most of protocol specifications, protocol machines are
modelled as sequential machines. Therefore, most of protocol specifications contain only
sequential or conditional descriptions, i.e., “compléx” execution control such as repetition,
recursion, etc. is not used. Because of this simplicity, we can develop a translation method
satisfying above (1)-(3) by solving only the essential problems in (1)-(3). '

As a formal specification language, algebraic specification language ASL [13]is adopted
because of the following reasons:

1. Abstract data types can be defined simply in algebraic specifications;
2. Formal semantics of a specification is simply provided by axioms (equations); and

3. One can write a specification with arbitrary structure and arbitrary degree of abstrac-
tion. ‘

An algebraic specification in ASL is a pair SPEC = (G, AX) of a context-free grammar (cfg)
G and a set AX of axioms. G specifies the set of expressions and their syntax, and AX
specifies their semantics. Chapter 2 gives the formal definition of ASL.

Among the above three requirements, main difficulty in the translation lies in many kinds
of incompleteness of natural language specifications. Balzer et al. [1] classify the incomplete-
ness of natural language specifications into partial sequencing, missing operand, incomplete
reference, scope of conditionals, and so on. They claim that the incompleteness in three ex-
ample specifications (27 sentences all together) are successfully handled by their prototype
system. To reduce the incompleteness, they use some criteria for program well-formedness.
For example, to reduce the ambiguity in scope of conditionals, it uses a criterion that, for
each case of conditionals, there exists an input data which makes the case true. Although five
criteria are presented in Ref. [1], how the incompleteness is systematically handled by their
approach is not described in detail.

In Chapter 3, a systematic method of reducing incompleteness of a natural language
specification of a communication protocol is proposed. In a protocol specification, a sen-
tence often specifies an action which a protocol machine (program) has to perform, and as
illustrated in the following example, it often specifies implicitly the state of the protocol ma-
chine at which the described action has to be performed.

Example 1.1: Consider the following consecutive sentences in Ref. [10]:

(E1) A valid incoming MAJOR SYNC POINT SPDU (with ...) results in an S-SYNC-
MAJOR indication.

(E2) If Vscis false, V(A) is set equal to V(M).

“MAJOR SYNC POINT SPDU” and “S-SYNC-MAIJOR indication” are names of data, and
“Vsc,” “ V(A),” and “V(M)” are names of registers of a protocol machine. A protocol ma-
chine has to perform the actions specified by (E2) immediately after it performs the actions
specified by (E1). However, sentence (E2) does not specify explicitly when the actions has
to be performed. O

In this dissertation, a state of the protocol machine specified implicitly in a natural language
specification is called a situation. Moreover, for a constituent (i.e., a phrase, clause or sen-
tence) X, the pre-situation of X is defined as the situation at which the action(s) specified by

X has to be performed, and the post-situation of X is defined as the one immediately after the
action(s) is performed. When the pre-situation of X, and the post-situation of X, indicate the
same situation, we say “X, S-depends on X;.” For example, (E2) S-depends on (E1) since
the pre-situation of (E2) is equal to the post-situation of (E1). The pre-/post-situations are
also defined for a sequence of sentences.

In general, a constituent X does not necessarily S-depend on the constituent appearing
immediately before X. S-dependency among constituents is analyzed based on the following
properties and information:

(a) propérties of the syntax of natural languages,
(b) type information assigned to words in the input natural language specification, and
(c) properties derived from the axioms on data types.

These properties and information are assumed to be given and stored in a dictionary. After
the analysis of S-dependency, algebraic axioms in the form of logical formulas are generated.

According to the proposed analysis method, we implemented a prototype system. By
using this system, the S-dependency in a part of the OSI session protocol specification (29
paragraphs, 98 sentences) was analyzed. For 95 sentences, the system uniquely determined
the S-dependency using only (a) and (b) described above. By using (c) in addition, the S-
dependency of the remaining three sentences was uniquely determined. Thus, this method
is effective in reducing incompleteness of natural language specifications of communication
protocols.

As for the above requirement (2), it is time-consuming to construct lexical items (dic-
tionary) manually. Saeki et al. [17] developed a pseudo natural language called TELL/NSL.
By a method called lexical decomposition, they analyze sentences written in TELL/NSL in
which the meanings of words are defined. In an input specification, each word has to be
defined by built-in words of TELL/NSL, but they do not consider the change of the vocabu-
lary. The vocabulary used for writing specifications varies according to the problem domain.
Hence, it is unrealistic to fix the vocabulary or built-in words. In this dissertation, we let the
lexical items and the syntax of a natural language be definitely separated from the translation
method. Then, if necessary, a human translator can expand the vocabulary and the syntax of
a natural language.

In the method proposed by Chapter 3, type information assigned to words is assumed to
be given and stored in a dictionary. In Chapter 4, a method of constructing a cfg representing
an assignment of data types to words in a natural language specification is proposed. When
a natural language specification is translated into algebraic axioms, the cfg representing an
assignment becomes a part of the cfg specifying the syntax of expressions in the algebraic
axioms.

In ASL, each data type is represented by a nonterminal, and subtype relation is defined
based on the derivation relation between nonterminals. In our construction method, each
of sample sentences in a natural language specification is parsed based on a given grammar
of the natural language. Next, from each parse tree, a set of “expressions” is generated,
where, roughly speaking, each verb corresponds to a prefix function symbol and each noun
corresponds to a variable of axioms. A set of nonterminals and a set of production rules to
generate those “expressions” are mechanically constructed. Then a syntactic analysis of the
union EXP of the sets of “expressions” is performed. That is, for each function symbol f,
each argument position ¢ of f, and each sub-expression exp of an expression in EXP, it is
examined whether exp appears as the i-th argument of f in EXP. The result of the syntactic
analysis is represented as subtype relation (i.e., derivation relation between nonterminals) to
be satisfied by the cfg to be derived. Next, in a semantic analysis, a human analyzer considers
the meanings of the words in the natural language specification, and then

¢ groups some data types (i.e., nonterminals) together and introduces a new supertype of
them, and

¢ augments the subtype relation to be satisfied.

Finally, a cfg which meets the result of the analyses is constructed, and then simplified based
on structural equivalence [20].

According to the proposed construction method, we implemented a prototype system.
By using this system, a part of the OSI session protocol specification (39 sentences) was
analyzed. By using the cfg obtained by our method, we reduced an ambiguity in the natural
language specification, which was not reduced by a cfg given manually.

As for the above requirement (3), it is also difficult to translate a natural language spec-
ification into a program directly since a natural language specification does not necessarily
define the operational semantics of all words appearing in it. To fill the gap, a human trans-
lator has to give the operational semantics of all words in the natural language specification.
Ichikawa et al. [9] proposed a translation method from TELL/NSL specifications into Prolog
programs. In their method, an input specification is translated into Horn clauses. Then, the
order of the literals and clauses are semi-automatically modified so that the obtained Horn
clauses become an executable Prolog program. That is, a human translator gives the opera-
tional semantics of words by modifying the order of the literals and clauses. However, they
do not consider translating specifications that describe dynamic behavior of systems. On the
other hénd, the method of Seki et al. [18] translates a natural language specification into an
algebraic specification [4], [13] whose axioms are in the form of logical formulas, but they
do not consider translating such logical formulas into executable programs.

In Chapter 5, a method of translating logical formulas, which are derived by the method
in Chapter 3, into executable algebraic specifications is proposed. In the method proposed in

Chapter 3, each word specifying actions in a natural language specification is translated into
a predicate. Then the valid sequences of actions defined by the specification are represented
by axioms in the form of logical formulas. To develop a translation method from such logical
formulas into an executable specification, a model of protocol machines must be defined so
that a human translator can give the operational semantics of the logical formulas.

A natural language specification of a communication protocol, such as Ref. [10], often
assumes that a protocol machine has registers. In Chapter 5, we define an interpreter (ma-
chine), called the BE interpreter, as a model of protocol machines. The BE interpreter has
a finite number of registers and unbounded I/O buffers, and performs three kinds of atomic
actions: (1) input from a buffer, (2) output to a buffer, and (3) calculation using its registers.
An input program for the BE interpreter, called a BE program, specifies the order of actions
by means of operators such as action-prefix, choice, conditional, and so on. The syntax of
BE programs is defined within the framework of algebraic specifications. The semantics of
BE programs, i.e., the behavior of the BE interpreter, is defined by axioms based on a state
transition model. Therefore, the BE interpreter specification with a given BE program can
be easily compiled into an executable program.

Adopting the BE interpreter as a model of protocol machines, Chapter 5 proposes a
method of translating logical formulas into BE programs. The operational semantics of each
-predicate is given as a BE subprogram. Then, a BE program for logical formulas is con-
structed in a bottom-up manner from BE subprograms for the predicates.

According to the translation method, we implemented a prototype system. By using this
system, the logical formulas derived from a part of the OSI session protocol specification (18
paragraphs, 45 sentences) are translated into BE programs. We also implemented a simulator
which executes a given BE program. For the above BE programs obtained by the system, the
simulator behaved just as the user intended.

In this way a natural language specification of a communication protocol can be trans-
lated into an executable specification within a single framework of algebraic specification
methods.

Chapter 2
Algebraic Specification Language ASL

As stated in Chapter 1, this dissertation adopts algebraic specification language ASL [13]
as a formal specification language. A specification in ASL is a pair SPEC = (G, AX) of a
context-free grammar (cfg) G and a set AX of axioms. G specifies a set of expressions and
their syntax, and AX specifies their semantics.

Let G = (N, T, P), where N, T, and P are sets of nonterminals, terminals, and pro-
duction rules respectively. Let A = a denote that A € N generates a € (N U T)* by

one-step derivation in G. Let :;> be the reflexive and transitive closure of =G> Moreover, let

Le[Al={weT*| A :;> w}, and let Lg = U4cw Lc[Al. An element in L is called an
expression (in the specification SPEC). N corresponds to the set of sorts (data types); A non-
terminal A is sometimes called “data type A” and an expression in L[A] may be called “an
expression of type A.” For A, A’ € N, we say that A is a subtype of 4’ (or A’ is a supertype
of A)if A’ -—é> A. T corresponds to the set of function symbols. P corresponds to the set of
signatures of functions and definitions of subtype relation.

An axiom is a pair exp == exp’ of expressions with variables. A variable of an axiom
is denoted by a symbol with the upper bar (e.g.,). With each variable Z in an axiom a
nonterminal A; is associated (declared by “Z : A4;” in SPEC), and an arbitrary expression in
L[A;] can be substituted into . The least congruence relation that satisfies all the axioms
in AX is denoted by =gpzc. See Ref. [13] for details.

Throughout this dissertation, a fixed specification SPEC, = (Gy,AXy) (Gy =
(No, Ty, Fy)) of primitive data types (e.g., integer, Boolean, set, and so on) is assumed. It
is also assumed that SPEC) supports the following data types:

1. Boolean; Let Bool be a nonterminal which generates Boolean expressions.

2. Sequence; Let Seq_be a constructor on data types to support sequences of a given data
type, i.e., for any data type A, Seq_A generates sequences of expressions of type A.
Formally, SPEC; has the production schemata and axioms shown in Table 2.1, where
A, -, head, tail, member € T;. Constant function A denotes the empty sequence and
function “-” denotes the concatenation operation. For a given sequence, head returns
the first element and tail returns the sequence obtained by eliminating the first element.
Predicate member is true if and only if the first parameter is an element of the second
parameter. ‘

Table 2.1 Specification of sequences.
o Production schemata:

Seq A4
Seq. 4

A

Seq-A - A,
head(Seq_A),
tail(Seq.A4),
member(A4, Seq_A).

Seq_4
Bool

'S
L

e Axioms:

Tseq:Seq.4, T, : A

head(Zseq -) == Iif Fsoq = A then Z else head(Zseq),
tail(Zseq -) == if Tseq = A then X else tail(Zseq) - 7,
member(z,)\) == false,
member(z, Zsq -) == if =& then true else member(z, Zseq)-

Chapter 3

Analysis of Contextual Dependencies in
Natural Language Specifications of
Communication Protocols

3.1 Introduction

In Chapter 1, the problem of reducing incompleteness of a natural language specifica-
tion is considered as the one of analyzing S-dependency of the specification. In this chapter,
the part which defines valid sequences of operations of the protocol machine in the OSI ses-
sion protocol specification [10] (265 sentences), denoted SPEC g, is adopted as a translation
example, and a method of analyzing S-dependency in a natural language specification is pro-
posed.

It is assumed that a natural language specification is a set of paragraphs (sequences of
sentences) and there exists no contextual dependency between distinct paragraphs (i.e., for
any constituent X in a paragraph, the pre-situation of X is either the pre-situation of the
paragraph or the post-situation of another constituent in the paragraph). In most of protocol
specifications, for each kind of input data, there is a paragraph which specifies sequences of
actions to be performed when a protocol machine receives an input data of that kind at the
pre-situation of the paragraph. Therefore, the pre-situation of a paragraph usually denotes
a state in which a protocol machine is waiting for an input. And, if a protocol machine
reaches the post-situation of a paragraph, then the machine waits for a next input. Under these
assumptions, each paragraph in a natural language specification is independently translated
into an algebraic axiom in the form of logical formulas.

The proposed analysis method consists of the following two phases:

(i) Sentence analysis; Each sentence S is analyzed independently and the pre-situation of
each constituent of S is represented as a value relative to the pre-situation of the whole
sentence S.

(ii) Context analysis; S-dependency among constituents of different sentences is analyzed 7
based on the following properties and information:

(a) properties of the syntax of natural languages,

(b) type information assigned to words in the input natural language specification,
and

(c) properties derived from the axioms on data types.

The pre-situation of each constituent is represented as a value relative to the pre-
situation of the paragraph.

As an example for the analysis system which we implemented, we concentrate on the
main part of the OSI session protocol specification, denoted SPECyn in the rest of this chap-
ter. SPECyain covers kernel, half-duplex, duplex, minor synchronize and major synchronize
functional units, and it defines valid sequences of actions performed by the session protocol
machine. In SPECyay, there are 98 sentences, which form 29 paragraphs; The number of
the different words is 251 and each sentence consists of 5 to 50 words (the mean value is
about 15 words). The lexical items for SPECyan Were constructed by analyzing the part of
Ref. [10] which defines the data types or the meanings of the terms used in SPECyain-

Table 3.1 shows two paragraphs I'y: (S1)-(S7) and I';: (88)~(S10) in SPECyam. A
noun phrase between brackets is treated as a single word in this paper since it is a term de-
fined within the OSI specifications to denote a protocol data unit, a service primitive, etc.
We will use abbreviations such as “MAP” for “MAJOR SYNC POINT SPDU” or “SSYN-
Mind” for “S-SYNC-MAIJOR indication,” according to the abbreviations defined in the OSI
specifications.

This chapter is organized as follows. Section 3.2 presents the framework of analysis of
S-dependency. In Sections 3.3 and 3.4, the sentence analysis (phase (i) above) and the con-
text analysis (phase (ii) above) are described respectively. Section 3.5 describes an analysis
systemn implemented according to the proposed method. Section 3.6 summarizes this chapter.

3.2 Framework of S-Dependency Analysis

As mentioned in Chapter 1, pre-/post-situations are often specified implicitly in a proto-
col specification. To express pre-/post-situations formally in an algebraic specification, data
types Event, Seq.Event and Situation are introduced. An expression of type Event de-
notes an atomic action of a protocol machine such as a transmission of data or an update of a
particular register. An expression e of type Event is simply called “event e.” Seq_Eventisa
type of sequence of events which is generated by type Event with the constructor Seq- (see
Chapter 2). An expression of type Situation is either a constant function of type Situation
or A(o, e), where ¢ and e are expressions of type Situation and Event respectively. A(o, e)
denotes the situation immediately after event e occurs at situation . Each pre-/post-situation
is expressed by an expression of type Situation.

Table 3.1 Some Paragraphs of SPECyamn.
Paragraph T'y:
(S1) An [S-CONNECT (reject) response] results in a [REFUSE SPDU].
(S2) This SPDU is sent on the [transport normal flow].
(S3) No [session connection] is established.

(S4) If the [Transport Disconnect parameter] indicates that the {transport connection] can
be reused, the SPM waits for a [CONNECT SPDU]J.

(S5) Otherwise the SPM starts the timer, TIM, and waits for a [T-DISCONNECT indica-
tion].

(S6) If the timer expires before receipt of a [T-DISCONNECT indication}, the SPM re-
quests [transport disconnection] with a [T-DISCONNECT request].

(S87) The timer is cancelled on receipt of a [T-DISCONNECT indication].
Paragraph I',:

(S8) A valid incoming [MAJOR SYNC POINT SPDU] (with received [serial number]
equal to V(M)) results in an [S-SYNC-MAJOR indication].
(89) If Vscis false, V(A) is set equal to V(M).

(§810) V(M) is incremented by one.

-10 -

The relation between expressions of type Situation is represented by a predicate = which
takes two arguments of type Situation. If o = ¢’ is true, ¢ and o’ denote the same situation.
We extend A to apply to a situation and a sequence of events as follows:

Ao, X)

a,

A(A(0, eseq), €)-

A(0, €xeq - €)

Example 3.1: By using types Event, Seq_Event, Situation and other primitive types, the
two sentences in Example 1.1 are translated into an axiom of F == true, where F is the
following formula in a first-order predicate logic (Existential quantifiers are defined in the
framework of ASL by transforming them into functions similar to Skolem functions [19]):

1,3}, 07, 2, 85,04, 04 : Situation
%, : SPDU %, :SSprm
V&,Y%,3673%,35135,30535, 357"
(TH [valid(z;) A incoming(z;) A MAP(z,) D
[SSYNMind(z,) A
[receive(z,, 51, 67) A send(Z,, 61, 61)] A
[6] = A(G1,in(Z) - OUt(Z,, £3))] A

R1-2) [6, = 1] A

(T2) [if_then(Vsc = false,
set_equal_to(Va,Vm, 57, 57"),
2, aI1].

We use i, d,,... as variables to denote pre-situations and &1, 33,... as variables to denote
post-situations unless otherwise stated.

In the above formula, SPDU is a data type which denotes data units transmitted and
received by protocol machines, and SSprm is a data type which denotes service primitives
provided by a protocol machine to its user. Sub-formulas (T1) and (T2) correspond to sen-
tences (E1) and (E2) respectively. (R1-2) states that the pre-situation of (E2) is equal to
the post-situation of (E1). Intuitive meanings of subexpressions in the formula are shown in
Table 3.2. 0

3.3 Analysis of S-Dependency among Constituents of a Sentence

In Refs. [18] and [21], an I-structure which represents local (not contextual) information
on a constituent was introduced. S-dependency among constituents of a sentence is analyzed
by constructing the I-structure of the sentence.

-11 -

Table 3.2 Meanings of subexpressions.

valid(z,): Z; has a valid data format.

incoming(z,): 7, is an incoming object.

MAP(Z,): Z, is a data unit MAJOR SYNC POINT SPDU.
SSYNMind(z,): Z, is a service primitive S-SYNC-MAJOR indication.

=

receive(z,, d,, 51): At situation d,, the event “receipt of Z,” is allowed to occur and
the situation immediately after the event is 77

send(Z,, 67, 51): Atsituation &7, the event “sending Z," has to occur and the situation
immediately after the event is &7}.

set_equal_to(Va,Vm(a,), 5, d3"): At situation &}, the event “setting the value of
V(A) equal to the value of V(M) has to occur and the situation immediately after

the event is 75’

if then(q, pred, ,, 3): At situation &, the events specified by pfed occur if ¢ is true,
and no events occur otherwise. The situation immediately after these events is).

-12-

An I-structure is a parse tree each node of which is labeled with a structure called C-
structure, which is resembling a category of HPSG [16]. A C-structure is a finite set of pairs
of a feature and its value such that for any two pairs (f;,v;) and {f;,v,) in the set, if f; = f,
then v; = v;. For a C-structure C and a feature f, Let C.f be v if (f,v) € C, and undefined
otherwise. If v is a sequence, v#: represents the i-th value of v. For a constituent X, let
CR[X] denote the C-structure which is the label of the root of the I-structure of X. The I-
structure of a word is defined and stored as (a part of) the lexical item in the dictionary, and
the I-structure of a constituent is constructed in a bottom-up manner. '

In this dissertation, we introduce new features pre, post and event defined as follows.
For a constituent X, CR[X].pre and CR{X].post denote the pre- and post-situations of X
respectively. Actually, the value is an index o7 of type Situation in a C-structure. The same
indices of type 4 denote the same expression of type A. When the axiom is generated, every
index of type Situation is replaced by a variable of type Situation. CR[X].event is a set of
expressions of type Seq.Event such that

\/ (CRIX].post = A(CRIX].pre, es)) Ssprc true,
€seqECR[X 1.event
where SPECir is the algebraic specification into which the natural language specification
is translated. When the I-structure of a sentence S is constructed, the pre-situation of each
constituent of S denoting an event is represented as a value relative to the pre-situation of the
whole sentence S.

Example 3.2: We show how the S-dependency among the constituents of a sentence S =
“Xy results in X,” is analyzed. For a constituent X, let pre[X] denote the pre-situation of
X, and post[X] denote the post-situation of X.

To analyze the sentence S, the [-structure of “results” for phrase “results in” must be
defined in the dictionary (see Fig. 3.1). By analyzing the function of “results in” in SPECog;,
it is found out that S always means “on receipt of data X, the SPM has to transmit data
X5" in SPECog; [23]. Therefore, for example, phrases “a valid incoming MAP”. and “an
SSYNMind” as constituents of (E1) specify events, although they just stand for the names of
data by themselves.

Let C denote the C-structure in Fig. 3.1. C.args#1 and C.args#2 (and also C.subcat#1
and C.subcat#2) correspond to X; and X respectively. By C.subcat, indices z,T and z,T are
supposed to denote the expressions representing the meanings of X; and X, by themselves
respectively. The values of pre, post and event in C, C.args#1 and C.args#2 claim that

e pre[X;] = pre[S],

o pre[X,] = post[X1] = A(pre[Xi], In(z, 1)) = A(pre[S], in(z;1)), and

-13-

o post[S] = post[X3] = A(pre[X,], out(z,T, z31))
= A(pre[S], in(z17) - oul(z>T, z31)).

Thus, we can analyze S-dependency in any sentence in the form of “X; results in X,” in
SPECqs;.) O

The value of feature trans is an expression representing the meaning of the constituent
in terms of ASL. Let C' = CR[X] for some constituent X specifying events. Then, C.pre,
C.post, C.event and C.trans are related as follows (see also the explanation of (T1) and (T2)
in Example 3.1):

1. If C.event is a singleton and the element e is an incoming event (e.g., receipt of data or
expiration of a timer), C.trans represents that e is allowed to occur at situation C.pre
and the situation immediately after it occurs is C.post.

2. Similarly, if C.event is a singleton and the element e is an outgoing event (e.g., trans-
mission of data or cancellation of a timer), C.trans represents that e has to occur at
situation C.pre and the situation immediately after it occurs is C.post.

3. If C.eventis a singleton and the element is a sequence of events e; - - - e, withn > 2
(e.g., sentence (E1) in Example 1.1), then C.trans = p; A+ - -Ap,, where p; (1 < i < n)
represents that e; is allowed to (or has to) occur at situation ¢;_; and the situation
immediately after it occurs is oy, gg = C.pre and ¢,, = C.post.

4. If C.event is not a singleton, thatis, C.event = {€xq, - . . , €seqm } fOr some m > 2, then
C.trans = ¢; V- - -V g, where g; (1 < ¢ < m)is the predicate determined by applying
the above 3 to egeq;.

Let X be a constituent of a sentence S. Let CSs[X] denote
CR[S).args#i,.args#i,. args#i,

which corresponds to X . If § is obvious from the context, we write just CS[X 1. As illustrated
in Example 3.2, CSs[X] represents information on the actually given X as a constituent of
S.

3.4 Analysis of S-Dependency among Constituents of Different Sentences

3.4.1 Definitions

For a paragraph, we define the S-dependency graph of the paragraph, which is a digraph
to represent the relation among the pre-/post-situations of the constituents in the paragraph.

-14 -

pre ol

post o'

event {in(z;7) - oul(z,1, 237}

trans receive(x;1,01,0"7) A send(z,t, 6"1,0'T)
type Bool

subcat || trans z1

type Data
trans z;7
type Data
— r‘- -
args pre o"1
post o'

event {out(z,7,z37)}
trans send(z,1,0"1,0'T)

| type Bool |
| pre o
post "1

event {in(z;7}
trans receive(z;T,01,0"1)
| type Bool

Fig. 3.1 CR[“results”] for phrase “results in”.

_15 -

Definition 3.1: The S-dependency graph of a paragraph P is a digraph G = (V, F) such that

1. V has a one-to-one correspondence to {CS[X].pre, CS[X].post | X is a constituent
which appears in P}; and

2. E={v; -5 v, | There exists a constituent X in P such that (a) v; and v, are nodes in V
which correspond to CS[X].pre and CS[X].post respectively, and (b) CS{ X].event =
{e} where e is a single event (hence, neither a null sequence nor a sequence of events
of length > 2)}.

The node which corresponds to the pre-situation of P is called the initial node. a

Let G = (V, E) be an S-dependency graph. For v € V, let 5, be a variable of type
Situation which expresses the pre-/post-situation corresponding to v. The quantifier of &, is
universal if v has no incoming arcs, and existential otherwise. An arc v < v' means that -

(&v’ = A(&va 8)) ESPECLF true)

where SPEC;x is the algebraic specification into which the natural language specification is
translated. If »' has n incoming arcs v; =5 v/,. .., v, =5 ¢/, then the arcs claim that

\Gu = AGy;, e)) =sprc,, true.

i=1

A paragraph P is translated into an axiom in the form of

F1:A,.. . Ty Am
Ql’il "'Qmjm[pl > [pm > [FO]"']] == true) (31)
where Fy is a logical formula without quantifiers, Z;,..., Z,, are all the distinct variables

appearing in Fp, and 4; (1 < j < m) is the data type of Z;. We mean by p; > F that
i@, ..,) AN Fif Q; =3, and p;(Zy,...,%;) D Fif Q; = V. Each p; and A; in Eq. (3.1)
are determined by the values of features restriction (whose value represents conditions to be
satisfied by variables) and type respectively [18].

Let G = (V, E) be the S-dependency graph of P = Sy ---S;. The formula Fj is con-
structed as follows: 1

Fy £ TRANS(G) A (A\ CR[Sk].trans) .
k=1

Now we define TRANS(G). If v € V has no incoming arcs, then

TRANS_V(v) £ true.

-16 -

2 v. Let &, and 3,, (1 <4 < n,)
be a variable of type Situation corresponding to v and v; respectively. Then,

Suppose that v € V has n, incoming arcs v; =5 v,. .., ¥,

v

TRANS_V(v) & \v/(av = A(G,,, €)).

i=1

TRANS(G) is defined as follows:

TRANS(G) £ /\ TRANS_V(v).

veV

3.4.2 Analysis Based on Syntax of a Natural Language
The S-dependency is

1. explicitly specified by special words and phrases (we call them S-dependency con-
trollers), and

2. implicitly specified by the order of sentences in the paragraph.

An S-dependency controller is a conditional, an anaphoric phrase, a conjunctive adverb, or
one of their equivalents. For example, conditionals associated with each other (see Exam-
ple 3.3 and 3.4) specify that the pre-situations of the sentences including one of the con-
ditionals are the same. Such an anaphoric phrase as “the former” or “the latter” restricts
the set of candidates for the constituent on which the sentence including the anaphoric phrase
S-depends. Such a conjunctive adverb as “then” specifies that the sentence including the con-
junctive adverb S-depends on the previous sentence. In general, S-dependency controllers
can introduce discontinuous structure into the S-dependency. On the other hand, the order of
the sentences gives continuous structure to the S-dependency as far as it is consistent with
the structure specified by S-dependency controllers. This section summarizes these proper—
ties formally as the following properties of an S-dependency graph.
First, we examine conditionals.

Example 3.3: Consider the following paragraph:

(E3) If the Transport Disconnect parameter indicates that the transport connection can be
reused, the SPM waits for a CONNECT SPDU.

(E4) V(M) is incremented by one.
(ES) Otherwise the SPM starts the timer, TIM, and waits for a T-DISCONNECT indication.

The word “otherwise” in (E5) is associated with the word “if”” in (E3) since the “if” precedes
the “otherwise” and is the closest to it. Therefore (E3) and (ES) are conditionals under the
same situation. O

-17 -

Example 3.4: Consider the following paragraph:
(E6) If Vscis false, V(A) is set equal to V(M).

(E7) If the Transport Disconnect parameter indicates that the transport connection can be
reused, the SPM waits for a CONNECT SPDU.

(E8) Otherwise the SPM starts the timer, TIM, and waits for a T-DISCONNECT indication.

The word “otherwise” in (E8) is associated with the word “if”” in (E7) as. mentioned in Ex-
ample 3.3. However, the syntax of natural languages can not determine whether the “if”” in
(E7) is associated with the “if”” in (E6) or not. : O

Property 3.1: Let S;---5; be a sequence of sentences including conditionals associated
with each other in the above sense, where S; precedes .S; in the paragraphif ¢ < j. Then, for
1 (2 <1 < 1), pre[S;] = pre[S1] holds. The pre-situation of .S} will be determined by another
S-dependency controller or the order of sentences. u

Next, we examine anaphoric phrases.

Example 3.5: Consider sentence (S6) in paragraph I'; of Table 3.1. The anaphoric noun
phrase “the timer” refers to “the timer, TIM” in (S5), and can not refer to any constituents in
(S1)—(S4). Therefore (S6) does not S-depend on any constituents in (S1)—(S4). O

Property 3.2: Let S be a sentence with an anaphoric phrase PH in it, and v be the node of the
S-dependency graph which corresponds to pre[S]. Then, on every path from the initial node
to v, there exists at least one node which corresponds to the pre-situation of the constituent
including the antecedent of PH and specifying a single event. O

Lastly, we consider the order of the sentences in a paragraph.
Example 3.6: Consider the following paragraph:

(E9) If the Transport Disconnect parameter indicates that the transport connection can be
reused, the SPM waits for a CONNECT SPDU.

(E10) Otherwise the SPM starts the timer, TIM, and waits for a T-DISCONNECT indication.
(E11) V(M) is incremented by one.

It is ambiguous whether V(M) is incremented by one only when the condition stated in if-
clause of (E9) does not hold, or it is incremented independently of the condition. However,
it is probable that this paragraph does not specify that V(M) is incremented only when the
condition in (E9) holds. ‘ [

-18 -

Now we introduce a reduced S-dependency graph for concise representation of the continuous
structure.

Definition 3.2: For an S-dependency graph G = (V, E), the reduced S-dependency graph
(of G) is a digraph G’ = (V' E') satisfying the following conditions:

1. V’ consists of every node in V' that corresponds to pre[S] for some sentence S

2. Forany vy, v, € V', v; — v, € E' if and only if there exists a path from v; to v, in G
and no nodes on the path except v; and v, belong to V'. 0

Property 3.3: Let G’ = (V’, E') be the reduced S-dependency graph of a paragraph. Suppose
that a sentence S satisfies the following conditions:

(a) S is not the first sentence in the paragraph; and

(b) S includes no S-dependency controllers or includes conditionals but they are not asso-
ciated with any other conditionals preceding them.

Let v be the node in G’ corresponding to the pre-situation of S. Then, v has n incoming arcs
vy — v,...,v, — v forsome n > 1, and the following conditions hold:

1. Let S; (1 < 7 < n) be the sentence whose pre-situation corresponds to v;. For any 14,
S; precedes S in the paragraph and v; has no outgoing arcs except v; — v.

2. Moreover, there exists ¢ such that S immediately follows S; in the paragraph. 0O

3.4.3 Analysis Based on Data Types Assigned to Words

For expressions including variables, unification [8] (denoted by A) is useful in checking
the possibility that the expressions denote the identical object. In analysis of S-dependency,
unification is used for detecting those constituents which indicate the same event.

Example 3.7: Consider sentences (S1) and (S2) in paragraph I'; of Table 3.1. In these sen-
tences, constituents specifying single events are

X; = “an S-CONNECT (reject) response,”
X, “a REFUSE SPDU,” and
X3 “this SPDU is sent on the transport normal flow,”

where “this SPDU” in X refers to X,. That is, X3 specifies the flow (“the transport normal
flow”) to refine the event “output of a REFUSE SPDU” indicated by X,. Therefore pre[X3]
is not post[X,] but pre{ X,].

-19 -

Let z,T be an index of type SPDU denoting “a REFUSE SPDU,” TNF be an expression
of type Flow denoting “the transport normal flow,” and out(d, f) be an expression of type
Event denoting the event “sending a data unit d on the flow f.” Then, the expression e,
which denotes the event indicated by X is

ey = out(z2 T, z3 1), (3.2)

where 23T is an index of type FlOw representing that the second parameter of out is unknown.
On the other hand, the expression e; which denotes the event indicated by X3 is

e3 = out(z,1, TNF), . (3.3)

since “this SPDU” refers to “a REFUSE SPDU.” From Eqgs. (3.2) and (3.3), the value of
es A ez is defined. Hence it is possible that X, and X3 specify the same event. a

Suppose that sentence S, S-depends on some constituent of sentence S; and that the
properties of the syntax of natural languages stated above can not decide which constituent
S, S-depends on. If there are constituents X in S; and X, in S, which specify events and
satisfy Condition 1 stated below, then it is possible that the event specified by X is equal to
that specified by X;. Otherwise (i.e., no constituents satisfy Condition 1), post[.S;] is selected
as the first candidate for pre[S;]. We analyzed SPECyan using the translation éystem based
on this method, and all of the first candidates were correct.

Condition 3.1: The value of C;.event A C,.event is defined, where C; = CSs, [X;] and
Cy = CS5,[X3]. 0

The translation system lists every pair of constituents X; and X, satisfying Condition 1, and
asks a human translator whether the event specified by X is equal to that specified by X,. If
the human translator answers in the affirmative, both C;.event and C,.event are replaced by
Ci.event A C,.event. |

3.4.4 Analysis Based on Axioms Specifying Data Types

Let SPECiyx = (Gifr, AX]f) be an algebraic specification obtained by analyzing S-
dependency in a natural language specification. SPEC is incomplete since, usually, it
does not specify properties specific to the pfoblem domain of the specification. To ob-
tain a complete algebraic specification SPECiy = (GLr, AXF), an algebraic specification
SPECpom = (Gpom, AXpom) specifying such properties must be added to SPEC ., where
Gyig = Gh; U Gpom and AX g = AXII_F U AXpowm-

Suppose that AX] ¢ includes axioms which represent ambiguity of S-dependency, e.g.,
(0; = 0;) V (0; = gy) == true. It is expected that this ambiguity is reduced in SPECyy, e.g.,
(0; = 05) =sprc,, true and (0; = 0%) =spec,, false. However, since it is undecidable, in

-20 -

general, whether exp; =gprc,, exp, holds for given expressions exp;, exp, and specification
SPEC, this does not always work.

In SPECyain, there are three sentences the pre-situations of which can not be determined
uniquely by using only the properties stated so far. For these three sentences, the reason why
the S-dependency can not be uniquely determined is the same. In the rest of this section, we
show that this ambiguity is resolved by considering properties on data types.

Example 3.8: Consider the S-dependency in paragraph I'; of Table 3.1. By using only the
properties stated so far, it can not be determined whether pre[(S7)] is equal to pre[(S6)] or
post[(S6)] (See Fig. 3.2). The reason is that it can not be determined whether the condi-
tional “on” in (S7) is associated with “if”” in (S6) (pre[(S7)] = pre[(S6)]) or not (pre[(ST)] =
post[(S6)]). ' m|

Consider a property of timer: “Cancellation of a timer makes sense only if the timer is
on.” Then, we can conclude that (S6) and (S7) are associated with each other and pre[(S7)] =
pre[(S6)]. In Example 3.9 stated below, a predicate VALID(s) which denotes the requirement
for any situation s to meet is introduced. VALID(s) reflects properties of the domain (see
Ref. [6] for detailed explanation of VALID). These properties are represented by axioms.
These axioms are added to the set of axioms derived from the natural language specification.

Example 3.9: Let o5, 0%, 0, 07, 0 and ¢4 be the situations indicated in Fig; 3.2. Precisely,
these situations are denoted by variables with existential quantifiers or Skolem functions.
However, for notational convenience, parameters of these Skolem functions are omitted in
this example. Table 3.3 illustrates the axioms obtained from (S6) and (S7), where expire and
cancel denote the events “expiration of the timer” and “cancellation of the timer” respec-
tively, and out(TDISreq) and in(TDISind) denote the events “output of a T-DISCONNECT
request” and “input of a T-DISCONNECT indication” respectively. Table 3.4 shows the ax-
ioms claiming that every situation has to be “valid.” Table 3.5 shows axioms on properties of
timer, where & is a variable of type Situation and timer_on(z) is a predicate which is true if
and only if the timer is on at situation &. Axiom (AX9) claims “the timer is off immediately
after the timer expires,” (AX11) and (AX12) claim “neither in(TDISind) nor out(TDISreq)
affects the state of the timer,” and (AX14) implies “the situation immediately after the timer
is cancelled is valid only if the timer is on at the situation immediately before the timer is can-
celled.” Table 3.6 illustrates axioms on primitive data types. The ambiguity of S-dependency
illustrated in Example 3.8 is resolved by these axioms.
First, from (AX4), (AX18) and (AX19),

VALID(¢) < VALID(A(c7, cancel)) = true,
and from (AX7), (AX15) and (AX14),

VALID(0%) A timer_on(o7) = true,

-21-

T i =9 “on’’

oo = pre(S6I @@ 1= prel(ST)]

expire in(TDISind)

cancel

07 = post{(ST)]

Fig.3.2 Ambiguity of S-dependency.

Table 3.3 Axioms Obtained from Sentences (S6) and (S7) in Table 3.1.

o = A(os, €Xpire) == true (AX1)

oy = A(oy,out(TDISreq)) == true (AX2)
o} = A(os,in(TDISINd)) == true (AX3)
o, = A(o7,cancel) == true (AX4)

(o7 = 06) V (07 = 0f) == true (AX5)

-22 -

Table 3.4 Axioms on Validity of Every Situation.

VALID(o;) == true

VALID(o7) == true
VALID(¢}) == true

VALID(¢}) == true

VALID(¢7) == true

Table 3.5 Axioms on Properties of Timer.

timer_on(A(z, expire)) == false

timer_on(A(3,cancel)) == false
timer_on(A(G, in(TDISind))) == timer_on(s)
timer_on(A(3, out(TDISreq))) == timer_on()

VALID(A(7, expire)) == VALID(a) A timer_on(s)
VALID(A(7, cancel)) == VALID() A timer_on(a)

223 -

(AXé)

(AXT)

(AX8)

(AX9)
(AX10)
(AX11)
(AX12)
(AX13)
(AX14)

Table 3.6 Axioms on Primitive Data Types.

trueez == & (AX15)
7 & false == -Z (AX16)
Ty == §& 27 (AX17)
(3=3)D(f(8) & f(@) == true (AX18)
true>z == = (AX19)
z D false == -z T (AX20)
zVvfalse == % (AX2])
truenz == 7 (AX22)
-—F == I (AX23)
~true == false (AX24)
—false == true (AX25)

S04 -

and hence from (AX8) and (AX22),
timer_on(sy) = true.

Moreover, from (AX3) and (AX18) and (AX19),

timer_on(o’) < timer_on(A(s7,in(TDISind))) = true,

and hence from (3.4), (AX15) and (AX11),
timer_on(o;) = true.

On the other hand, from (AX1), (AX18) and (AX19),

timer_on(o}) & timer_on(A(as, expire)) = true,

and from (AX9),
timer_on(sg) < false = true,

and hence from (AX16), (AX23) and (AX24),
timer_on(oy) = false.

Moreover, from (AX2), (AX18) and (AX19),

timer_on(og) < timer_on(A(s¢, out(TDISreq))) = true,

and from (AX12) and (3.6),
timer_on(oy) < false = true,
and hence from (AX16), (AX23) and (AX24),
timer_on(cg) = false.

Hence, from (AX15), (3.5) and (3.7),

timer_on(o;) < timer.on(oy) = false.

From (3.8) and (AX18),
(07 = 0g) D false = true,

and from (AX20), (AX23) and (AX24),

(07 = gg) = false.
From (AX5), (3.9) and (AX21),

(07 = 0g) = true.

Thus the ambiguity of S-dependency is resolved.

-25 -

(3.4)

3.5

3.6)

3.7

(3.8)

3.9

3.5 Analysis System

According to the proposed method, an analysis system was implemented on DECsta-
tion 3100 and incorporated into a translation system based on the method in Ref. [18] (see
Fig. 3.3). The syntax rules of English are written in GPSG [3]. Parser was implemented
by translating the rules in GPSG into the rules in Definite Clause Grammar (DCG) [15]. It
consists of about 140 DCG rules. I-structure Constructor was implemented in Prolog and has
about 240 clauses. Context Analyzer was implemented in C. It consists of Anaphoric Bind-
ing Analyzer (400 lines), Quantifier Scoping Analyzer (100 lines), S-dependency Analyzer
(900 lines) and some libraries (600 lines). S-dependency Analyzer uses the properties of
the syntax of natural languages and type constraints stated in Section 3.4. Axiom Generator
was implemented in C and has about 500 lines. At present, Dictionary consists of about 320
lexical items.

In SPECuaN (29 paragraphs, 98 sentences), there are 120 constituents which specify
single actions. Table 3.7 shows the result of the analysis of S-dependency in SPECyan. The
CPU time needed for the translation was about 750 seconds.

3.6 Conclusions

In this chapter, a method of analyzing S-dependency in a natural language specification
was proposed. The result of applying this analysis method to the main part of the OSI session
protocol specification was also presented.

As mentioned in Chapter 1, we assume that there are many kinds of incompleteness in
natural language specifications and we have to reduce the incompleteness to translate them
into formal ones. Ref. [1] is a pioneer work whose aim is similar to ours. In the following,
we make a comparison between Balzer’s method proposed in Ref. [1] and our method.

For the analysis of S-dependency among constituents of a sentence, our method uses the
relation between pre- and post-situations of each word. The relation is formally represented
as the I-structure of the word in the lexical item. On the other hand, in Ref. [1], it is not
described how each word in the natural language specification has been analyzed and how
systematically the result of the analysis is used in their method.

For the analysis of S-dependency among constituents of different sentences, our method
assumes that the order of sentences implicitly specifies the S-dependency unless a disconti-
nuity is explicitly expressed, while Balzer’s method just assumes a partial description of the
sequence of operations. This difference is important when we analyze, or translate, a natural
language specification which describes actions to be performed, in order of execution, e.g., a
protocol specification. As shown in Table 3.7, our method can determine the pre-situations of
26 constituents by using the property of the order of sentences. On the other hand, Balzer’s

_26 -

Natural Language Specification

I Parse Trees I

I-structure Constructor

l I-structures I

Context Analyzer

Dictionary

Syntactic Information

I-structures of Words

-

@naphoric Binding Analyzerj
@uantiﬁer Scoping AnalyzeD

CS~dependency Analyzerj

Axioms on the
Meanings of Words

l S-dependency Graphs I

Axiom Generator

| Algebraic Specificati(;n I

Fig. 3.3 Translation System.

_27-

Table 3.7 Analysis of S-dependency in SPECyain-

the pre-situations of the paragraphs | 29
determined by sentence analysis 43
determined by context analysis 48
using property (a) 32
conditional 4

anaphoric phrase 2

order of sentences 26

using property (b) 13

using property (c) 3

| total | 12ﬂ

property (a): syntax of natural languages
property (b): type constraints
property (b): axioms on data types

-28 -

method reduces the incompleteness by using only properties of program well-formedness.
Therefore, Balzer’s method can not probably resolve the ambiguity of S-dependency among
constituents of different sentences unless it introduces stronger criteria based on the syntactic
properties of a natural language (property (a) stated in Chapter 1 and Section 3.1). Besides
property (a), our method uses properties of the translated algebraic specification such as type
constraints (property (b)) or axioms on data types (property (c)). They could be formalized
in Balzer’s method as criteria for program well-formedness mentioned above. However, it
was not discussed how such properties are represented and handled. _

Consequently, our method based on formalized properties of both source and object
languages in a combined way is more systeniatic and effective when it is applied to protocol
specifications.

.29

Chapter 4

Construction of a Context-Free |
Grammar for Logical Formulas from a
Natural Language Specification

4.1 Introduction

This chapter presents a method of constructing a context-free grammar (cfg) for logical
formulas to be derived from a natural language specification. The resulting cfg is stored as a
part of lexical items used by the translation method in Ref. [18] and Chapter 3.

Most of formal specification languages have a concept of data type. When a natural
language specification is translated into a formal one, it is important for objects and operations
appearing in the natural language specification to be éppropriately classified according to the
framework of data types. The reasons are as follows:

¢ The formal specification becomes simple and concise. Hence, the refinement step will
be easily done; and

¢ Ambiguity or incorrectness of the informal specification can be detected or reduced by
means of type checking of the derived formal specification.

However, it is difficult to classify them manually, since in general a large number of objects
and operations appear in an informal specification.

Let SPECyy. be a specification written in a natural language (English in this dissertation).
Suppose that SPECy is translated into SPEC; g = (GLg, AXLr) by the method in Chapter 3.
Each function or predicate appearing in A Xyf corresponds to a word or phrase in SPECyL,
and its data type is specified by Gy (see Chapter 2). However, in Chapter 3, Gr is assumed
to be given and only A X r is generated. It is desirable for G r to be constructed mechanically
and systematically.

Let EXP be the finite set of all the expressions appearing in AX;g. EXP can be obtained
from SPECy;, based on a grammar Gy, of the natural language. Our method of constructing
G'r for EXP consists of the following three phases (see Fig. 4.1):

1. A set of nonterminals and a set of production rules to generate EXP are mechanically
constructed. Then subtype relation (see Chapter 2) to be satisfied by Gy is obtained by

-130 -

analyzing such an expression exp in EXP that exp occurs as a subexpression in another
expression in EXP;

2. A human translator adds some sentences which are semantically correct but not in
SPECy to the set of expressions in the following way:

e groups some nonterminals (i.e., data types) together and introduces a new super-
type of them, and

e augments the subtype relation to be satisfied by Gyg;
and

3. From the set of nonterminals, the set of productions, and the subtype relation, Gy is
constructed. Gy is simplified based on structural equivalence [20] of cfg’s.

Phases 2-3 are repeated until G ¢ becomes appropriate.

This chapter is organized as follows. Sections 4.2-4.4 explain the phases 1-3 above,
respectively. Section 4.5 shows that ambiguity of a natural language specification can be
reduced by a cfg obtained by our method. Section 4.6 describes a construction system im-
plemented according to the proposed method. Section 4.7 summarizes this chapter.

4.2 Naive Construction of a Grammar for Logical Formulas

Table 4.1 shows six sentences containing phrase “results in” in Ref. [10]. In the rest of
this chapter, these sentences are used for explaining our construction method.

In the first phase of our method, a cfg G for the set EXP of expressions in the logical
formulas from a natural language specification is naively constructed. EXP is generated simi-
larly to the method in Ref. [18] and Chapter 3. In the method, each noun with no parameters is
translated into a variable and a prefix predicate symbol called the restriction of the noun. On
the other hand, each noun with parameters (e.g., gerunds) is translated into a prefix function
symbol. Each verb or modifier is translated into a prefix predicate symbol.

Example 4.1: Consider sentence (S16) in Table 4.1. This sentence is translated into the
following axiom, where “implicitly specified parameters” introduced in Chapter 3 are omitted
for simplicity:

Z; : In_.SPDU z, : Out_.SSprm
Vi, 3z,(valid(Z,) A incoming(z;) A MAP(Z;) D
(SSYNMind(z,) A result_in(z;, z,))) == true

-31 -

semantically correct SPEC
sentences NL

, EXP

- -
L T Ys WL e

(D

nonterminals,
production rules,
subtype relation

»G1F

3)

Fig. 4.1 Overview of the construction method.

-32 -

Table 4.1 Sentences containing “results in” in Ref. [10].

(S11) An S-CONNECT request results in the assignment of a transport connection.
(S12) An S-CONNECT accept response results in an ACCEPT SPDU.

(S13) A valid incoming ACCEPT SPDU results in an S-CONNECT accept confirm.
(S14) A valid incoming ABORT SPDU results in sending an ABORT ACCEPT SPDU.
(S15) An S-SYNC MAIJOR request results in a MAJOR SYNC POINT SPDU.

(816) A valid incoming MAJOR SYNC POINT SPDU results in an S-SYNC MAJOR indi-
cation.

-33-

The set of expressions generated from the sentence (S16) is:
{result_in(z,, 7,), &1, To, MAP(&,), valid(z,), incoming(z,), SSYNMind(z,)}.
O

Then, (1) acfg G = (N, T, P) which generates EXP and (2) a subtype relation R to be satisfied
by Gy are mechanically constructed. Gyr is obtained by modifying G in the second and third
phases. \

The initial values of N, T, and P are the following sets:

T {47, C, "YU {f | f is a function (predicate) symbol appearing in EXP}

N

]

{As | f € T is a function (predicate) symbol}

U{A,1),-- -1 Ay | f € T is an n-ary function (predicate) symbol}

U{A: | Z is a variable appearing in EXP}

P = {45 — f(Agy,. .., Ayn) | f €T is an n-ary function (predicate) symbol}
U{A. — ¢| ¢ € T is a constant (0-ary function symbol)}

The intuitive meaning of each nonterminal is as follows: Ay denotes the type of the return
value of f. A, denotes the type of the i-th parameter of f. A; denotes the type of Z.

Example 4.2: From the six sentences shown in Table 4.1, 15 production rules shown in
Table 4.2 are constructed. O

Next, a subtype relation R to be satisfied by Gy is obtained as follows:

o For each variable Z and function symbol f appearing in EXP, if f(...,Z,...) appears

in EXP, then Ay = A, is in R. Intuitively, the type of Z must be a subtype of the
one of the ¢-th parameter of f.

e For each function symbol g and function symbol f appearing in EXP, if
fC..,9(-),...) appears in EXP, then Aty = A, is in R. Intuitively, the type of

the return value of g must be a subtype of the one of the ¢-th parameter of f.

Example 4.3: From the six sentences shown in Table 4.1, a subtype relation shown in Ta-
ble 4.3 is constructed. The phrase to which each variable appearing in Table 4.3 corresponds
is shown in Table 4.4. a

Table 4.2 Production rules constructed from the sentences in Table 4.1.

A[abort_accept_spdu] ---> abort_accept_spdu(4labort_accept_spdu,1])
Alabort_spdu] ---> abort_spdu(Af[abort_spdu,1])

Alaccept_spdul ---> accept_spdu(A[accept_spdu,1])

Afassignment] ---> assignment (A[assignment,1]).

Alincoming] ---> incoming(A[incoming,1])

Almajor_sync_point_spdu]

—-~=> major_sync_point_spdu(A[major_sync_point_spdu,1])
A[results_in] ---> results_in(A[results_in,1],A[results_in,21)
A[s_connect_accept_confirm]

---> s_connect_accept_confirm(A[s_connect_accept_confirm,1])
A[s_connect_accept_response]

---> s_connect_accept_response(Als_connect_accept_response,1])
Als_connect_request]

---> s_connect_request (A[s_connect_request,1])
Als_sync_major_indication]

---> s_sync_major_indication(A[s_sync_major_indication,1])
Als_sync_major_request]

---> s_sync_major_request (Als_sync_major_request,1])
Alsending] ---> sending(A[sending,1],A[sending,2])
A[transport_connection]

---> transport_connection(A[transport_connection,1})
A[valid] ---> valid(A[valid,1])

-35-

Table 4.3 Subtype relation constructed from the sentences in Table 4.1.

Alabort_accept_spdu,1] ===> A[_x7]
Alabort_spdu,1] ===> A[_x9]
Alaccept_spdu,1] ===> A[_x3]
Alaccept_spdu,1] ===> A[_x6]
Alassignment,1] ===> A[_x1]
Alincoming,1] ===> A[_x6]
Alincoming,1] ===> A[_x9]
Alincoming,1] ===> A[_x13]
Almajor_sync_point_spdu,1] ===> A[_x10]
Almajor_sync_point_spdu,1] ===> A[_x13]
Alresults_in,1] ===> A[_x2]
Alresults_in,1] ===> A[_x4]
Afresults_in,1] ===> A[_x6]
Alresults_in,1] ===> A[_x9]
Alresults_in,1] ===> A[_x11]
Alresults_in,1] ===> A[_x13]
Alresults_in,2] ===> A[_x3]
Alresults_in,2] ===> A[_x5]
Alresults_in,2] ===> A[_x10]
Alresults_in,2] ===> A[_x12]
Alresults_in,2] ===> A[assignment]

Alresults_in,2] ===> A[sending]

A[s_connect_accept_confirm,1] ===> A[_x5]
Als_connect_accept_response,1] ===> A[_x4]
Als_connect_request,1] ===> A[_x2]

Als_sync_major_indication,1] ===> A[_x12]

A[s_sync_major_request,1] ===> A[_x11]
A[sending,1] ===> A[_x8]

A[sending,2] ===> A[_x7]
Altransport_connection,1] ===> A[_x1]
Alvalid,1] ===> A[_x6]

Afvalid,1] ===> A[_x9]

Alvalid,1] ===> A[_x13]

=36 -

Table 4.4 Variables appearing in Table 4.3.

Variable | Sentence Phrase

Al_x1] (S811) “a transport connection”

Af_x2] (S11) “an S-CONNECT request”

A[_x3] (812) “an ACCEPT SPDU”

A[_x4] (812) “an S-CONNECT accept response”

A[_x5] (S813) “an S-CONNECT accept confirm”

A[_x6] (813) “a(valid incoming) ACCEPT SPDU”

A[_x7] (S14) “an ABORT ACCEPT SPDU”

A[_x8] (S14) the subject of “sending”

A[_x9] (814) “a (valid incoming) ABORT SPDU”
Af[_x10] (815) “a MAJOR SYNC POINT SPDU”
Al_x11]1 | (S15) “an S-SYNC MAIJOR request”
A[_x12] (§16) “an S-SYNC MAIJOR indication”
A[_x13] (§16) “a(valid incoming) MAJOR SYNC POINT SPDU”

-37-

4.3 Augmentation of the Grammar

In the second phase, the set IV of nonterminals and the subtype relation R are augmented
appropriately by a human translator. This augmentation method consists of the following
three steps (a)—(c):

Step (a): From the semantics of a natural language adopted in this dissertation, the data type
A of the return value of each function corresponding to a verb or a modifier, or the restriction

of each noun must be Bool. For such a data type 4, Bool = A and A = Bool are added to
R.

Example 4.4;: To the subtype relation obtained in the previous section, the subfype relation
shown in Table 4.5 is added, where “A <==> B” means “A = Band B = A.” O

Step (b): A natural language specification often defines and uses some new noun phrases
(such as “S-CONNECT request” in Ref. [10]). Such definitions of new noun phrases should
be translated into a part of cfg as well as axioms.

Let w;y,...,w, be new noun phrases which have a common property. Let Z;1, ..., Zim,
(1 < 1 < n) be variables corresponding to w; (there are more than one such variables in
general since a variable is introduced for each occurrence of w;). Then, a data type A denoting
the common property is introduced and added into NV, and, foreach Z;; (1 <: < n,1 <j <
m;), subtype relation 4 = A;,, is added to R.

Example 4.5: In Ref. [10], there is a description of SS primitives and SPDUs as follows:

Information is transferred to and from the SS-user using the session service prim-
itives listed in table 1. Table 1 also defines the SPDUs associated with each of
the service primitives.

Table 1 of Ref. [10], whose caption is “session service primitives,” has three columns: The
first one is “service,” the second one is “primitives,” and the third one is “associated SP-
DUs.” According to the table, the subtype relation shown in Table 4.6 is added, where
“p ===> Bi|...|Bn” means “A = B1,..., A = Bn.” In this example, a supertype SPDU
of the types of the variables corresponding to “ABORT ACCEPT SPDU,” “ABORT SPDU,”
or “MAJOR SYNC POINT SPDU” is introduced. Similarly, for noun phrases denoting SS
primitives, a supertype SSprm is introduced.

In the case of Ref. [10], Step (b) can be semi-automated by considering the meanings of
verbs such as “list” and “define,” and fixing the semantics of tables. For example, consider
sentence “Xs are listed in table Y.” Suppose that noun phrases wy,...,w, are listed in
table Y. Let Z;1,..., Zim, (1 <1 < n) be variables corresponding to w;. Then, the sentence
is translated into a data type Ax and subtype relation A = Az, 1<i<n,1<j<my). O

-38 -

Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool

SPDU
SSprm

Table 4.5 Subtype relation added by Step (a).

Afabort_accept_spdul
Al[abort_spdul
Alaccept_spdu]

Alincoming]
Almajor_sync_point_spdul
Afresults_in]
A[s_connect_accept_confirm]
A[s_connect_accept_responsel
Als_connect_request]
Als_sync_major_indication]
Als_sync_major_request]
Altransport_connection]
A[valid]

Table 4.6 Subtype relation added by Step (b).

> A[_x3]1A[_x6T1AL_x7] |A[_x9] |A[_x10] |A[_x13]
> AL x2] 1AL x4l 1AL x5] 1AL _x111 1A[_x12]

-39 -

Step (¢): To make R appropriate, natural language phrases which are semantically correct
but not in SPECy, are taken into account. The syntax of the restrictions of nouns is also
considered. However, this is difficult when the size of the input natural language specification
is large.

We use the following heuristics:

Heuristics 4.1: Let A and B be nonterminals. Suppose that for any nonterminal C, B = C
whenever A = C. Then, A may be a subtype of B. a

Heuristics 4.2: Let A and B be nonterminals. Suppose that for any nonterminal C, C = A
if and only if C = B. Then, A = B or B = A or both of them may hold. m|

All the tuples of nonterminals satisfying the conditions in the above heuristics can be
mechanically generated. A human translator examines each tuple by considering the mean-
ings of words which have type A or B, and decides whether the tuple should be added to
R.

Example 4.6: Suppose that a human translator decides that the the data types of the param-
eters of the restrictions on SPDUs are the same, and she/he also decides similarly for SS
primitives. Then, the subtype relation shown in Table 4.7 is added to R.

Next, according to Heuristics 4.1, the set of candidates shown in Table 4.8 is obtained.
ntl and nt2 are the equivalence classes of &, and the elements in these equivalence classes
are also shown in Table 4.8. A human translator examines each candidate. For example, for
the first candidate in Table 4.8, she/he examines whether for any natural language word or
phrase w, if “incoming w” is semantically correct phrase, then the type of w is SPDU. For
the eighth candidate, she/he decides whether abort_accept_spdu, abort_spdu, etc. take
expressions of type SPDU as their first parameter. According to such examination or decision,
each candidate is added to R or discarded. » o

In general, there is a subtype relation which should be satisfied by G1r but is not neces-
sarily obtained by the above heuristics. A human translator must find such a subtype relation.
If G and R are simplified by the method stated in the next section, finding such a subtype
relation becomes easier.

4.4 Simplification of the Grammar

In the last phase, G = (N,T, P) and R are simplified based on structural equiva-
lence [20] of cfg’s. For simplicity, in the following definitions on structural equivalence,
each element A = B in R is regarded as a production rule A — B to be in P.

First we define the notion of structural equivalence.

- 40 -

Table 4.7 Subtype relation for restrictions.

Alabort_accept_spdu,1] <==> Alabort_spdu,1]

Alabort_spdu,1] <==> Alaccept_spdu,1]

Alaccept_spdu,1] <==> Almajor_sync_point_spdu,1]
A[s_connect_accept_confirm,1] <==> A[s_connect_accept_response,1]
A[s_connect_accept_response,1] <==> A[s_connect_request,1]
Als_connect_request,1] <==> A[s_sync_major_indication,1]

Als_sync_major_indication,1] <==> A[s_sync_major_request,1]

Table 4.8 Subtype relation obtained by Heuristics 4.1.

SPDU ===> A[incoming,1]

SPDU ===> nt1l

SPDU ===>_A[sending,2]

SPDU ===> A[valid,1]

SSprm ===> nt2
Alassignment,1] ===> [transport_connection,1]
Alincoming,1] ===> [valid,1]
nti ===> SPDU

ntl ===> Alincoming,1]

ntl ===> A[sending,2]

ntl ===> A[valid,1]

nt2 ===> SSprm

Alresults_in,1] ===> Alincoming,1]
Alresults_in,1] ===> A[valid,1]
A[transport_connection,1] ===> Al[assignment,1]

Alvalid,1] ===> Alincoming,1]

nt1 = {A[abort_accept_spdu,1], A[abort_spdu,il,
Alaccept_spdu,1], Almajor_sync_point_spdu,1]}
nt2 = {A[s_connect_accept_confirm,1], Als_connect_accept_response,i],

A[s_connect_request,1], Als_sync_major_indication,1],

Als_sync_major_request,1]}

-41 -

Definition 4.1: Let TREE denote the set of all parse trees generated by cfg G. For any
tree = (V, E) € TREE, define two mappings hy: V — V and hg: E — FE as follows:

hy(¥') (if v has exactly one child node +' and

hy(v) = . v is an internal node)
v (otherwise)
he(@n) = (hv(vD), hv (v2)) Gf hy(v1) # hy (v2))
ERTL T undefined Gf hy(vy) = hy(vy))

In addition, let
h(tree) = ({hv(v) | v € V}, {hg(e) | e € E}),

and
WTREEG) = {h(tree) | tree € TREEG}.
Two cfg’s G, and G, are said to be structurally equivalent, if A/(TREE,) = (TREEg,)
when the labels of the internal nodes are ignored. O

Intuitively, structural equivalence of G; and GG, means that the set of all parse trees gener-
ated by (& is equal to the one generated by (G, when the labels of the internal nodes and
applications of unit productions (4 — A’) are ignored.

Ref. [14] presents an algorithm which decides whether two arbitrary parenthesis gram-
mars are weakly equivalent. For a given cfg G, the equivalence classes of the nonterminals
based on structural equivalence (defined below) are obtained by means of this algorithm. G
is simplified by replacing each nonterminal with its equivalence class.

Definition 4.2: Let TREEg[A] denote the set of parse trees with internal nodes labelled A.
Let TREEG[A — Q] = {tre¢ | tre¢’ is obtained from some tree € TREEg[A] by replacing
one subtree of tree whose root is A with a single node labelled A}. Define h in the same way
as defined in Definition 4.1.

Two nonterminals A and B of G are said to be structurally equivalent, if

MTREEG[A « Q)) = (TREEg[B « QJ)

when the labels of the internal nodes of h(TREEg[A —]) and h(TREE4[B « QJ}) are
ignored. o

The algorithm proposed in Ref. [14] takes O(2%") time for a cfg with r nonterminals.
However, in a grammar to be constructed by our method, each function symbol is a prefix
one. This improves the time complexity of the algorithm. For example, we assume that G
satisfies the following condition: .

42 -

For any function symbol f, there is at most one nonterminal C' such that
C = fAgn Ag, - Agm)-

Then, by Definition 4.2, the following property holds:

Nonterminals A and B are structurally equivalent if and only if for any function symbol
f and its parameter position ¢,

A(f’,') ? A iff A(f,i) :G> B. “4.1)

This method can simplify G in polynomial time of the description size of G.

Augmentation of G and R follows this simplification if necessary. As stated in the end
of the previous section, and as also illustrated in the following example, the augmentation
becomes easier for a human translator.

Example 4.7: Suppose that every subtype relation in Table 4.8 is added to R by a human
translator. The result of simplification of R is shown in Fig. 4.2, where an arc from A’ to 4
means that A is a subtype of A’. Each nt# is an equivalence class of nonterminals based on
structural equivalence, and its members are shown in Table 4.9.

The graph shown in Fig. 4.2 is symmetric when the arc from nt8 to nt12 is ignored.
Consider the meaning of nt12. It is a subtype of nt8, which contains SPDU, and it contains
Alsending,2], i.e., the data type of objects of “sending.” It follows that nt12 is a data type
denoting SPDUs to be transmitted. On the other hand, nt3 is a subtype of bothnt8 and nt10:
Since nt10 contains A[results_in, 2], i.e., the data type of objects of “results in,” nt8 is
also a data type denoting SPDUs to be transmitted. Therefore, it seems appropriate for the
following subtype relation

nt3 <==> nti2

to be added to R.
As a result, the subtype relation shown in Fig. 4.3 is obtained, where the name of each
nonterminal is replaced with a mnemonic one (see Table 4.10). O

. When a human translator considers G and R to be appropriate, each A => B in R is
transformed into a production A — B of G. Then, Gyr is constructed as the component-
wise union of G and G, where Gy is the specification of primitive data types introduced in
Chapter 2.

Example 4.8: From the six sentences in Table 4.1, the grammar shown in Table 4.11 is con-
structed as an appropriate one. ’ O

.43 -

ntl3 nt9 nt8 ntlo0

nt4d nth nt’7 ntl2 nt3

® o
nt6 ntll

Fig. 4.2 Result of simplification of the subtype relation.

Table 4.9 Equivalence classes in Fig. 4.2.

nt3 = {A[_x3], A[_x10]}

nt4 = {A[_x2], A[_x4], al_x11]}

nts5 = {A{_x5], A[_x12]}

nt6 = {A[_x1], A[assignment,i], A[transport_connection,1}}

nt7 = {A[_x6], A[_x9], A[_x13], Alincoming,1], A[valid,1]}

nt8 = {SPDU, A[abort_accept_spdu,1], Al[abort_spdu,1],
Alaccept_spdu,1], Almajor_sync_point_spdu,1]}

nt9 = {SSprm, A[s_connect_accept_confirm,1],
Als_connect_accept_response,1], A[s_connect_request,1],
Als_sync_major_indication,1], Als_sync_major_request,1]}

nt10 = {A[assignment], Al[results_in,2], Al[sendingl}

nt1l = {A[_x8], Alsending,1]}

nt12 = {A[_x7], Alsending,2]}

nt13 = {A[results_in,1]}

In_event SSprm SPDU Out_event

In_SSprm Out_SSprm In_SPDU Out_SPDU

® ®
Connection SPM

Fig. 4.3 Appropriate subtype relation.

Table 4.10 Data types in Fig. 4.3.

In_event: Input events.

Out_event: Output events.

SPDU: Session protocol data units.

SwSprm: Session service primitives.

In_SPDU: Received session protocol data units.
IN_SSprm: Received session sefvice primitives.
Out_SPDU: Transmitted session protocol data units.
Out_SSprm: Transmitted session service primitives.
Connection: Connections.

SPM: Sessian protocol machines.

-45-

Table 4.11 Appropriate grammar.

Bool ---> abort_accept_spdu(SPDU)
Bool ---> abort_spdu(SPDU)

Bool ---> accept_spdu(SPDU)

Bool ---> incoming(In_SPDU)

Bool ---> major_sync_point_spdu(SPDU)

Bool ---> results_in(In_event,Out_event)
Bool ---> s_connect_accept_confirm(SSprm)
Bool ---> s_connect_accept_response(SSprm)
Bool —--> s_connect_request(SSprm)

Bool ---> s_sync_major_indication(SSprm)
Bool ---> s_sync_major_request(SSprm)
Bool ---> transport_connection(Connection)
Bool ---> valid(In_SPDU)

Out_event ---> assignment(Connection)

Out_event ---> sending(SPM,0Out_SPDU)
In_event ---> In_SPDU

In_event ---> In_SSprm

Out_event ---> Out_SPDU

Out_event ---> Out_SSprm

SPDU ---> In_SPDU

SPDU ---> Out_SPDU

SSprm ---> In_SSprm

SSprm ---> Out_SSprm

-46 -

4.5 Evaluation of the Construction Method

Ref. [18] proposes a method of analyzing anaphoric binding in a natural language speci-
fication. In the method, type information is used for selecting candidates for the antecedent of
an anaphoric phrase. For the method to work well, words and phrases must be appropriately
classified. In this section, we show an example in which an ambiguity of anaphoric binding
is reduced by Gy constructed by our method.

Example 4.9: Consider the following sentences in Ref. [10]:
(E12) A valid incoming ABORT SPDU results in sending an ABORT ACCEPT SPDU.
(E13) This SPDU is sent on the transport normal flow.

From these two sentences, the following expressions are obtained:
valid(z,), incoming(z,), result_in(z,, sending(z.)), be_sent_on(z,, z5),

where Z; corresponds to “ABORT SPDU,” Z, does to “ABORT ACCEPT SPDU,” z, does
to “this SPDU,” and %, does to “the transport normal flow.”

Suppose that Z;, %, and &, are of type SPDU. By only using this type information, it
can not be determined whether “this SPDU” refers to “a valid incoming ABORT SPDU” or
“an ABORT ACCEPT SPDU.” k

Now suppose that G ¢ contains the production rules shown in Table 4.11 and Bool —
be_sent_on(Out_event, Flow). Also suppose that L{In_event] N L{Out_event] = @. Then,

o the data type of Z, is INn.SPDU,
o the data type of %, is Out_.SPDU, and
e the data type of Z, is Out_SPDU.

Assume that “this SPDU” refers to “ABORT SPDU.” Then the variables corresponding to
these two phrases are identical, i.e., Z; = Z;, and the type of Z, is the greatest type among sub-
types of both In_SPDU and Out_SPDU. On the other hand, L{In_.SPDU]N L[Out.SPDU] =
0 since L[In_event] N L[Out_event] = §, and hence such a data type does not exist. Thus, it
can be determined that “this SPDU” can not refer “ABORT SPDU.” O

4.6 Construction System

According to the method proposed in this chapter, we implemented a prototype system
(see Fig. 4.4) on SPARCstation IPX. Production Generator consists of about 200 DCG [15]

-47 -

| Natural Language Specification I

'

I Production Generator l

[T)
Augmentation of

Subtype Relation

Productions || Subtype Relation

Simplifier

I Context-Free Grammar I

Fig. 4.4 Construction system.

-48 -

rules and about 660 Prolog rules. Simplifier is written in C and the size is about 230 lines.
We also implemented a program in Tcl/Tk which shows a given subtype relation graphically.

By using the prototype system, a part of the OSI session protocol specification [10] was
analyzed. The part consists of 39 sentences ihcluding words “result” or “wait,” or describing
operations on the registers of a session protocol machine. The result of applying the method
to the 39 sentences is shown in Table 4.12, where a couple of subtype relations A = B
and B = A added simultaneously are counted as one subtype relation. Since the prototype
system automatically substitutes Bool for the type of the return value of the function denoting
the restriction of each noun, subtype relations corresponding to such replacements are not
counted in Table 4.12.

4.7 Conclusions

This chapter proposed a method of constructing a cfg for logical formulas to be derived
from a natural language specification. The result of applying this method to a part of the OSI
session protocol specification was also presented.

In recent years, various object-oriented analysis methods have been proposed [7]. In
many of them, candidates of objects and methods are extracted by considering the part of
speech of each word in a natural language'speciﬁcation. Then, the candidates are refined and
classified by considering the meanings of the words. As stated in Section 4.1, classifying ob-
jects and methods is difficult when an input natural language specification is large. Moreover,
an appropriate classification often seems to be obtained after a human analyzer understands
the natural language specification by trial and error. Therefore, it is desirable that the clas-
sification process be semi-automated. Our semi-automated method will contribute toward
improving those object-oriented analysis methods.

-49 -

Table 4.12 Result of the construction.

IERED

Generated at Phase 1 169 | 180
Added based on

Boolean 1 15

Grouping 11} 111

Meanings of words 0| 14
Obtained by removing & | 127 | 248
Added based on

Heuristics 4.1 0 72
Obtained by removing & | 99 | 121
Added based on

Heuristics 4.2 0| 47
Obtained by removing & 44 | 37
Obtained by simplification | 27 | 23
Added based on

Meanings of words 0 3
Obtained by removing & | 24 | 20

tThe numbers of candidates by Heuristics 4.1 and 4.2 were 84 and 49, respectively.

-50 -

Chapter 5

Translation from Logical Formulas into
Executable Specifications

5.1 Introduction

Chapter 3 proposed a translation method from natural language specifications into alge-
braic axioms in the form of logical formulas. However, such logical formulas are too abstract
to be compiled into an executable program directly. This chapter defines a model of protocol
machines called the BE interpreter, and proposes a method of translating such logical formu-
las into executable algebraic specifications, called BE programs, which are also introduced
in this chapter.

This chapter is organized as follows. Section 5.2 explains logical formulas derived from
a natural language Vspeciﬁcation. In Sections 5.3 and 5.4, BE programs and the BE interpreter
specification are defined respectively. Section 5.5 proposes a method of translating logical
formulas by BE programs. Section 5.6 describes a prototype system based on the translation
method. Section 5.7 summarizes this chapter.

5.2 Logical Formulas from a Natural Language Specification

This chapter assumes that the format of logical formulas derived from a natural language
specification is modified as follows. First, every expression denoting the relation between the
pre- and post-situation of a constituent (e.g., &} = A(G1,iN(Z;) - out(Z,, Z3)) in Example 3.1)
is eliminated, since the information of such an expression can be considered as a part of
meanings of the predicate corresponding to the constituent. Next, every expression denoting
S-dependency among constituents (e.g., ; = &} in Example 3.1) is eliminated by using the
same variable name. Finally, each existentially quantified variable is replaced with a Skolem
function introduced by a human translator. Consequently, it is assumed that a paragraph P
of a natural language specification is translated into an axiom in the form of

g, : Situation, Z;: 41, ..., T;m : Anm _
[RBi A+ ARn1D |\ preds == true,
B SepP

-51 -

where pred; is a logical formula denoting the meaning of sentence S, &y, 1, ..., &,, are all
the distinct variables appearing in Ag.ppred;, and A; (1 < j < m) is the data type of
Z;. Each sub-formula R; (1 < j < m) is called the restriction on Z;. Since each para-
graph is “contextually closed,” the expression representing the pre-situation of a paragraph
is denoted by a variable ;. And, the expression representing each of other situations is
denoted by 7x(89, Zi, . .., Z;), where Zi, ..., Z; represent input data received up to situation

Tk(a'o, f:l, sy 1-:])

Example 5.1: The paragraph which consists of the two sentences in Example 1.1 is trans-
lated into an axiom of F' == true, where F is the following logical formula:

o : Situation, z, : SPDU
[valid(z,) A incoming(z,) A MAP(Z,)] D
[receive(z,, 8¢, 1) A send(SSYNMInd(Z,), 61, 62)] A
[if then(Vsc = false,
set_equal_to(Va,Vm, 4;, 64),

b2, 5)]1]-

In the above logical formula, variable Z; represents an input data MAJOR SYNC POINT
SPDU. And, &y, ..., &5 are expressions of type Situation, where &, = 5, represents the pre-
situation of the paragraph and &y = 7(G¢, Z;) (1 < k < 5) represent the other situations.
SSYNMind(Z;), which is introduced by a human translator, denotes the service primitive S-
SYNC-MAJOR indication to be sent when a protocol machine receives Z;. Intuitive mean-
ings of the other subexpressions in the formula are the same as Table 3.2. O

The semantics of 7 is defined by the semantics of the predicate which includes 73(&y, . ..).
Consider the logical formula in Example 5.1. By the semantics of if_then, &, is equal to 45
and 4, is equal to &5 if Vsc = false holds, and 4, is equal to &5 otherwise. And, by the
semantics of set_equal_to, 4, is equal to the situation immediately after a protocol machine
assigns the value of V(M) to V(A) at situation &3 (see Table 3.2). In the translation method
proposed in this chapter, the semantics of predicates denoting actions is defined in terms of
BE programs.

5.3 A Subclass of Executable Specifications — BE Programs —

As stated in Chapter 1, the BE interpreter has registers and I/O buffers, and performs
three kinds of atomic actions. The syntax and semantics of a BE program are defined to meet
the following requirements:

(a) Arbitrary names can be used for registers and 1/O buffers of the BE interpreter;

-52 -

(b) Data types of contents of the registers and I/O buffers are pre-defined as primitive data
types;

(c) All the registers and I/O buffers of the BE interpreter can be directly accessed by per-
forming (atomic) actions; and

(d) The order of actions can be explicitly specified in a BE program.

This section restates these requirements formally, i.e., describes the conditions which a BE
program SPECprg = (Gprg, AXpra). Grrg = (IVprG, TpraG, Fprg) has to meet. Intuitively,
A Xprg corresponds to a program text, and Gppg does to the syntax of the program text.

First, for the requirement (a), the following two data types, Reg and Buf, are introduced
into Gpgrg: '

1. Reg € Nprg generates names of registers of the BE interpreter.
2. Buf € Npgrg generates names of I/O buffers.

Define REG and BUF as Lg,,,[Reg] and Lg,,,[Buf], respectively. To ensure that the number
of registers and buffers is finite, we simply assume that each element of REG U BUF is a
terminal symbol. We also assume that REG N BUF = §.

Secondly, for the requirement (b), SPECpgrg must satisfy the following condition:

3. SPECprg D SPEC, (component-wise containment).

4. For each reg € REG, there is a unique nonterminal symbol D,,, € Ny such that D,,, —
reg € Pprg. Dy is denoted by type[reg].

5. For each buf € BUF, there is a unique nonterminal symbol Dy, € Np such that
Seq_Dbuf — buf € Pprg. Dbuf is denoted by type[buf]

Thirdly, for the requirement (c), the following data type, Action, is introduced:

6. Action € Npgg generates actions. For each buf € BUF and reg € REG, the following
productions are in Pprg:

Action — in(buf, reg),
Action — out(buf, reg),
Action — set(reg «— D),

where in, out, set, « € Tprg, typelbuf] = typelregl, and D,,, = type[reg]. in(buf, reg)
denotes that the BE interpreter receives a data from buffer buf and the data is stored in
register reg. out(buf, reg) denotes that the BE interpreter transmits a data stored in reg-
ister reg to buffer buf. set(reg «— t) denotes an assignment of the value of an expression
t to register reg (the value of an expression is formally defined in Section 5.4).

-53-

Lastly, for the requirement (d), we introduce behavior expressions, which specify the
order of actions. Some behavior expressions are associated with behavior identifiers so that
a behavior expression can refer (call) another behavior expression, i.e., a behavior identifier
corresponds to a procedure name. The syntax of behavior expressions is defined as follows:

7. B_id € Nppg generates behavior identifiers. There are productions of the following form:
B.id — m,
where © € Tpgrg is a behavior identifier.
8. B_exp € Npgg generates behavior expressions. The following productions are in Ppgg:

B.exp — stop,

Bexp — B.d,

B.exp — Action;B_exp,

Bexp — (B.exp<B_exp),

Bexp — (B_exp|Seq-Action|B_exp),
Bexp — [Bool]l—B._exp,

B.exp — (B_exp> Seq_Action > B_exp),

B.exp — (B_exp[>Seq-Action[>B_exp),

where Stop7 s <>, Ia [)]7 -, (7)’ >>a [> € TPRG~

Table 5.1 shows the intuitive meanings of the operators used in behavior expressions. The
formal semantics is defined in Section 5.4 as the behavior of the BE interpreter.

Now we introduce a predicate := which associates a behavior expression with a behavior
identifier.

9. There is a production ,
Bool — B_id :=B_exp

in Ppgg, and for each 7 € Lg,,,[B-id], there are one or more axioms
m = B ==true

in AXprg, where := € Tppg and B € Lg,,[B-eXpl. m := B =sprcy,, rue means that
« is defined as B in SPECprg. An expression in the form of 7 := B is called a behavior
definition (of 7).

Among the behavior identifiers defined by operator :=, exactly one behavior identifier
must be specified as the main (top level) behavior expression, i.e., the one which should be
executed first by the BE interpreter. ‘

-54 -

Table 5.1 Meanings of operators.

stop means that no actions are performed, i.e., the BE interpreter which executes it
goes into a dead state. '

Execution of a behavior identifier 7 is equivalent to execution of the behavior expres-
sion which is associated with .

Action-prefix: a; B specifies that the BE interpreter performs action a, then executes
behavior expression B.

Choice: (B; ¢ B,) specifies that the BE interpreter executes either B; or B, nondeter-
ministically. If the BE interpreter performs an action performable in common with B;
and B,, it is considered that the BE interpreter is executing “both” of B; and B, (see
the end of Section 5.4 for detail).

Parallel composition: (Bi|) - a; - - - a,| B,) specifies that the BE interpreter executes
behavior expressions B; and B, in a “time sharing” manner. Here, each action a;
(1 <€ i < n) must be simultaneously performed in the executions of B; and B,.

Conditional: [p] —> B specifies that the BE interpreter executes behavior expression
B if predicate p holds, and goes into a dead state otherwise.

Enabling: (By > A - a; - - - a, > By) specifies that the BE interpreter executes behav-
ior expression Bj first. When some action a; (1 < 7 < n)is performed during the
execution of By, the BE interpreter begins to execute behavior expression B;.

Disabling: (B [> A-a; - - - a, [> B,) specifies that the BE interpreter executes behavior
expression By, and the BE interpreter can nondeterministically begin to execute behav-
ior expression B, until some action a; (1 < ¢ < n) is performed during the execution
of B 1.

-55 -

10. There is a production
Bool — main(B_id)

in Pprg. and there is exactly one axiom
main(r) == true

in AXprg, where main € Tppg and 7 € L, [B-id]. main(r) =sprcy,, true means that
« is the main behavior expression.

To execute the main behavior expression, the initial values of the registers and I/O
buffers must be specified:

11. For each y € REG U BUF, the following production is in Pprg:
D, — initial(y),

where initial € Tprg, D, = nypely] if y € REG, and D, = Seq_typely] if y € BUF.
Moreover, for each y € REG U BUF, there is exactly one axiom

initial(y) == ¢,

in AXprg, Where ¢y € Leyltypelyll if y € REG and ¢y € Lg,.[S€q-type[y]] if
y € BUF. initial(y) =spec, ¢y, means that the initial value of y is c,.

5.4 The BE Interpreter

5.4.1 Definition of the BE Interpreter

The semantics of BE programs is defined in terms of the behavior of the BE inter-
preter. A BE program can use arbitrary terminal symbols as names of registers and buffers.
The BE interpreter should have a function of interpreting declarations of names of registers
and buffers in a given BE program SPECerg = (Gprg, AXprg), and it is possible to de-
fine the BE interpreter specification SPECint = (Gint, AXint) (Gint = (WVint, Tint, Pint))
so that the BE interpreter has such a function. However, the main role of the BE inter-
preter in this section is to define the semantics of behavior expressions. Therefore, we
simply assume that Gint O Gprg (component-wise containment), and define SPECint S0
that SPECint U SPECprg (component-wise union) specifies the behavior of the BE inter-
preter when SPECpgg is given as its input program (see Fig. 5.1). Define REG and BUF as
L¢y[Reg] and Lg,,, [Buf], respectively.

To define the semantics of the operators used in behavior expressions, a quadruple
relation EXEC is introduced. Let B,B’ € Lg,.[Bexpl. p € Lg,,[Bool], and a €
Le,[Action]. (B, p,a, B') € EXEC means that “if the BE interpreter is about to execute

- 56 -

BE Program BE Interpreter Specification
SPECerg SPECnr

‘“‘Executable’’ Specification SPEC

Fig. 5.1 Executable specification SPEC.

-57-

behavior expression B, and the values of the registers and 1/O buffers of the BE interpreter
satisfy predicate p, then, the BE interpreter is allowed to perform action a, and it executes
behavior expression B’ after a.” In SPECyr, relation EXEC is represented by a predicate
exec. A production

Bool — exec(B_exp, Bool, Action, B_exp)

is included in Py, and the axioms shown in Table 5.2 are included in A Xnr.
We introduce State € Nint, which is a data type representing states of the BE inter-
preter. The productions whose left-hand side is State are as follows:

State — Sinit,
State — &(State, Action),

where Sinit, 6 € Tint. Sinit denotes the initial state of the BE interpreter, and §(s, a) denotes
the state immediately after action a is performed at state s.
By using the notion of states of the BE interpreter, we define the semantics of each action
a as relation between the values of the registers and I/O buffers before a is performed and
their values after a is performed. To express this relation in SPECiyy, for each D € Ny, a
production
D — val(D, State)

is introduced into Py, where val € Tinr. For any expression ¢ which includes some of
members of REG U BUF, val(t, s) denotes the value of ¢ at state s. The semantics of the
actions is defined by the axioms shown in Table 5.3.
Lastly, a production
Bool — bexp(B_exp, State)

is introduced into P, where bexp € Tinr, and the axioms shown in Table 5.4 into A Xnt.
Let SPEC (= (G, AX)) be SPECppg U SPECyr. Intuitively, bexp(B, s) =spgc true means
that the BE interpreter can execute behavior expression B at state s. By using bexp, define
the behavior of the BE interpreter as follows:

Definition 5.1: The BE interpreter performs, at state s, an action a such that
bexp(B, 6(s, a)) =sprc true

for some B € Lg[B_exp]. If such an action does not exist, the BE interpreter goes into a
dead state. d

.58 -

Table 5.2 Axioms for exec.

B,B',B,, B!, B, B, : B_exp, a : Action,
p’ﬁ/)ﬁlaﬁZ . BOOI, T B—idy A : Seq_ACtlon

¢ Action-prefix:

exec(a; B, true, @, B) == true.
¢ Choice:
exéc(Bl, 71, a, B}) D exec((B, ¢ By),p,a, B) == true,
exec(B,, p,, d, B) D exec((B, © By), p»,d, By) == true.
¢ Behavior identifier:
((7 := B) A exec(B, p, a, B")) > exec(x, p,a,B’) == true.

e Parallel composition:

(exec(By, py,a, By) A ~member(a, 4)) O
exec((B1|A|By), p1, &, (B)|A|By)) == true,
(exec(By, pa, @, B5) A ~member(a, 4)) D
exec((Bi|4|By), by, a,(Bi|A|BY) == true,
(exec(B, b1, a, B)) A exec(By, py, a, B)) A member(a, A)) O
exec((B1|4|By), i1 A b, &, (Bj|A|By)) == true.

o Conditional:

exec(B, p,a, B') O exec([p'] = B,pA 7,a,B') == true.

-59 -

Table 5.2 Axioms for exec (continued).
¢ Enabling:
(exec(By, py, &, B)) A -member(a, A)) O
exec((B, > A> B,), 1, a,(B] > A> B,))
(exec(By, py, &, B;) A member(a, A)) >
exec((B; > A> B,),p1,a, By)

¢ Disabling:

(exec(B,, p1, &, B}) A ~-member(a, A)) D
exec((B, [> A[> By), b1, 8, (B [> A[> By))
(exec(By, i, &, B;) A member(a, A)) D |
exec((B; [> A[> By), b1, a, B))
exec(B,, p,, a, By) D exec((B, [> A[> B,), p», a, By)

Table 5.3 Axioms for val.
5 : State
¢ Calculation: For each ¢ € T,
val(c,5) == ¢,
and for each f € T suchthat A — f(Ay,...,A,) € P,

t-l :Al, ey t_nlAn

val(f(ti,...,1,),5) == f(val(f},3),...,val(,, 5)).

e Initial value: For each reg € REG and buf € BUF,

val(reg, Sinit) =
val(buf, Sinit) =

initial(reg),
initial(buf).

-60 -

true,

true.

true,

true,

true.

Table 5.3 Axioms for val (continued).

e in(buf, reg): For each reg,reg € REG such that reg # reg’, and for each buf, buf' €
BUF such that buf # buf’,

val(reg, 6(3,in(buf, reg))) == head(val(buf, 3)),
val(reg, 6(3,in(buf, reg))) == val(reg, 3),
val(buf, (3, in(buf, reg))) == tail(val(buf, 3)),
val(buf', (3, in(buf, reg))) == val(buf', 3).

e out(buf, reg): For each reg,reg € REG, and for each buf,buf’ € BUF such that
buf # buf’,

val(reg', 6(3, out(buf, reg))) == val(reg', 3),
val(buf, 8(3, out(buf, reg))) == val(buf,s) - val(reg, 3),
val(buf’, 5(3, out(buf, reg))) == val(buf’, 3).

o set(reg « t): Foreach reg, reg € REG such that reg # reg’, and for each buf’ € BUF,

i : typelreg]
val(reg, 6(3,set(reg « 1))) == val(, 3),
val(reg, 8(3,set(reg «— f))) == val(reg, 3),

val(buf', 6(3, set(reg — 1))) == val(buf’, 3).

Table 5.4 Axioms for bexp.
#:Bid, B,B’ : B_exp, 5: State, p: Bool, a: Action

main(w) O bexp(x, sint) == ftrue,
(bexp(B, 5) A exec(B, p, @, B') Aval(p, 5)) D bexp(B',6(5,a)) == true.

-61 -

5.4.2 Properties of the BE Interpreter

This section presents some properties of the BE interpreter. Let SPECpgg be a BE pro-
gram, and let SPEC (= (G, AX)) be SPECprg U SPECnT.

First, SPEC is consistent for any SPECpgg since, intuitively, SPECpgg corresponds to a
program text and its syntax, and SPECyr does to the semantics of the program text. A more
formal reason is as follows. The left-hand side of each axiom for exec or bexp is in the form
of a monotonic inference rule p,ps,...,p, O ¢q. Hence, in the case of bexp for example,
bexp(B, s) =sprc false never holds for any B and s. Also, each axiom for val reduces the
“size” of its parameter expressions in a unique way. Therefore, SPEC is consistent for an
arbitrary SPECpgg. '

Next, we state a property of the choice operator (“$”). Suppose that

bexp((B; ¢ B,), s) =spec true,
where s € Lg([State] and By, B, € Lg[B_exp] such that

exec(Bi,p1,a, B]) =spec true,
exec(B,, py,a, By) =gppc true

for some p;,p2 € Lg[Bool], a € Lg[Action], and By, B} € Lg[B-exp]. If val(py, s) =sprc
true, and val(p,, s) =gprc true, then both of

bexp(Bj, 8(s,a)) =spec true,
bexp(Bj, (s, a)) =spec true

hold by the definition of bexp. That is, if a is a performable action in common with B; and
B,, nondeterministic choice (B; ¢ B,) at state s is replaced by choice between Bj and Bj at
state 6(s, a). Therefore, unlike LOTOS, executing

(a3 ;003 [p1] = By Cars -5 ags [p2] = By)
at state s is equivalent to executing
ag;+ 3 an; ([p1] > By O [p2] = B))

at s, in the sense that for both of these behavior expressions, the BE interpreter chooses
between [p;] —> B| and [p,] —> B} at state §(---6(s, a1),- -+, a,). Similarly, this property
holds in the case that bexp(w, s) =spgc true, where € Lg[B_id] has more than one behavior
definitions. In Section 5.5, we propose a translation method which uses this property.

-62 -

5.5 Translation from Logical Formulas into BE Programs

5.5.1 Overview

Let SPECy. be a natural language specification, i.e., a set of paragraphs. Let SPECr
be the algebraic specification derived from SPECy;, by the method proposed in Chapter 3. In
this section, we consider translating SPECy r into a BE program SPECypgg.

The input of the translation method is as follows:

e An algebraic speciﬁcation SPECLF = (GLF)AXLF) (GLF = (NLF,TLF, PLF)) derived
from SPECyy, where AX; g consists of:

— axioms on primitive data types; and

— axioms in the following form:

ao . Situation, Z; : Ay, ..., T I Ap
A [(R1 A+ ARp)D preds] —= true, (5.1)
sep
where P € SPECy, is a paragraph, and for each j (1 < ' Jj < m), A; denotes a
primitive data type and R; denotes the restriction on Z;. For any paragraph P €
SPECy., the pre-situation of P is denoted by &, and an input data to be received at
the pre-situation of P is denoted by ;.

e The “lexical items” dic for predicates denoting actions in SPECg. Each item
dic[p(...,#,6")] (p is a predicate, and &, &' are the pre- and post-situations respec-
tively) is a set of behavior definitions. The set of behavior definitions contains at least
two behavior identifiers 7; and 75 ; 75 corresponds to the pre-situation & of p, and w4
does to the post-situation &’. Moreover, there is at least one behavior definition of 75
in the set. For example, if a predicate p(...,&,5") denotes a sequence a, ..., a; of
actions, dic[p(...,&,6")] will be {75 = ay;---;ar; s }. Other examples of dic are
shown in Section 5.5.2.

Let SPECpgg be a BE program, and let SPEC (= (G, AX)) be SPECppg U SPECyt. We
say that SPECpgg is a correct implementation of SPECy ¢ with respect to dic if the following
condition holds:

Condition 5.1: There is a mapping 0 : Lg, [Situation] — Lg[State] such that, for any
paragraph P € SPECy, there are registers vary, . .., var, in SPEC such that (note that 7
appears in dic): '

(a) Let oinit be an expression of SPECr denoting the initial situation. Then, 8[cinit] = Sinit
and bexp(ns,, Sinit) =spec true; and

-63 -

() Leta{yi/7, .-,V /7¥m} denote the expression obtained by replacing each subexpres-
sion 7; (1 < j < m) of expression a by expression ;. Suppose that, for some o and

Tlyeeoy Ty

(/\ preds){ao/c'ro,xl/il, ey Ton [Em} SspECy, true
sep

holds by Axiom (5.1). Also suppose that
o bexp(ws,, 8{oo]) =spec true, or
o bexp(my, 0[og]) =spec true for some 7y such that
(mo i=m) A (== W) A v A (ming = 1) A (T = T5,) =sprc true
for some 7y, ..., w; € Lg[B.d] (z > 0).
For each pre-/post-situation &3 appearing in Axiom (5.1) (1 < k£ < [, and §; is the
post-situation of P), let o} be 8x{d0/50, %1/%1,...,Tm/En}. Then,
(i) foreach k (1 < k < 1), 8[op] is a subexpression of 0[oy],
(ii) foreach k (1 < k < 1), bexp(rs,,0[or]) =sprc true, and

(iii) foreach j (1 < j < m), val(var;, 0[o1]) =spec ;.

5.5.2 Translation Method

In this section, a method of translating SPEC; r into a BE program SPECpgg is presented.
Let SPEC = SPECprg U SPECnt (see Fig. 5.2).

In our translation method, each variable of a primitive data type in Axiom (5.1) corre-
sponds to a register. To do this, the following registers are introduced into SPECpgg:

1. REGyar = {vary,...,var,}: Eachregister var; is used for storing the value of variable
Z; in Axiom (5.1);

2. REGpgep = {reg,,...,reg,}: Bachregister reg; has been defined in SPECf (e.g., VsC,
Va, and Vm in Example 5.1); and

3. REGywp: A register in REGtyp is a temporary or dummy one, and denoted by #mp with
some subscripts.

The translation method consists of the following three steps:

Step 1: For each paragraph P € SPECyy, a set Sp of behavior definitions is constructed by
Steps 2 and 3. Then, 8 = PESPECK, [p is the implementation of SPECyy..

For each P, the behavior of the BE interpreter which executes 5, (7 is the pre-situation
of P) defined by p is as follows:

Natural Language Specification

SPECxL
Logical Formulae Behavior Definitions
SPECx for Predicates dic

13

BE Program BE Interpreter Specification
SPECrra SPECwr

-

‘‘Executable’’ Specification SPEC

Fig.5.2 Implementation method.

-65 -

(a) the BE interpreter looks ahead the first element d of an input buffer,
(b) it examines whether paragraph P specifies actions for d, and

(c) it performs the actions specified by P if P passes the examiﬁation (b).

See Fig. 5.3. Each of the black circles represents some state s such that bexp(ms,, s) =sprc
true, and each of the white circles represents the state at which the BE interpreter performs
the examination (b). Each of the lines from the black circles to the white ones represents a
sequence of actions to perform (a). And each of the triangles represents sequences of actions
specified by the paragraph. For each paragraph P, the behavior expression to perform (a) is
the same, and the behavior expression to perform (b) and (c) is in the form of [pp] —> Bp,
where pp corresponds to the examination (b) and Bp corresponds to (c). In order to satisfy
this condition, we assume that dic of any predicate which involves an input action (such as
receive) has common behavior expressions for (a).

Since the pre-situation of any paragraph is denoted by 5o, 8 (= Upesppc, Bp) has in
general more than one behavior definitions of 75,. Let s’ be the state immediately after (a)
is performed. As stated at the end of Section 5.4.2, bexp([pp] = Bp, s') =spec true for
each paragraph P € SPECy.. Therefore, at state s', only the actions specified by a paragraph
P such that val(pp, s") =sprc true are performed (see Fig. 5.4; the oval corresponds to s').
Thus, 3 is the implementation of SPECy.

Step 2: Foreachsentence S € P, logical formula (B, A+ A R,;) D pred is translated into
aset behavior[(Ry, ..., Rn), predg] of behavior definitions. behavior[(R,, ..., Ry), preds]
is the union of dic[pred] and {bind[{Ry, ..., Rn), preds]} stated below.

Behavior definition bind[(Ry, ..., R..), preds] represents the “subroutine” for “variable
bindings,” and is defined by a human translator. Let pre[preds] denote the actual parameter
of predg which represents the pre-situation of predg, and let post{pred] denote the actual
parameter of predg which represents the post-situation of predg. For simplicity, define 7, as
the identity function on type Situation. Suppose that pre[preds] = 7.(Gg, 1, ..., ;) (0 <
J < m) and postlpred;] = T(5o, Z1, ..., &) (§ < j' < m). Then, during the “execution”
of pred,, the input data represented by Z;.1, ..., T; are received and each of Z;1,...,Z; is
bound to some value. A behavior identifier which simulates these variable bindings is denoted
bY Ppretpredspostipreds)- The behavior definition of pprefpreag) postipreds) is in the following form:

Pprelpredg]postlpredg] = Set(varjﬂ o 7?j+1)§ tee ;Set(Varj' — fj');
[(Rj+1 FANCIVAN le){val"l/il_f], ey varj:/i:j,}] -—>
set(tmpying < tMpying); STOP.
Here, £;n (j + 1 < j” < j) is an expression which indicates how the value of var;» is

obtained, and is specified by a human translator. Action Set(tmpy;,q < tmpy;,) is performed
as a “signal” which denotes successful completion of the variable bindings.

- 66 -

(a) Looking Ahead

-- (b) Examining ----------

(c) Performing Actions

BP1 — BPz BPI

Fig. 5.3 Execution of each of 8p, 8p,, .- -, Bp,.

BP1 - BPz BPZ

Fig. 54 Execution of .

-67 -

In what follows, some examples of dic and bind are presented.

Example 5.2: dic[receive(f, 5,4')] is defined as shown in Table 5.5(a), where
type[tmp;,] = D such that

‘Bool — receive(D, Situation, Situation) € Pg.

The meaning of the behavior definition is as follows. When bufi,sppy is not empty, then
look ahead the first element d of bufinsppuy, copy d to a temporary register tmp,_, and perform
variable bindings p; ;. During the execution of ps 5/, Set(tmpy,y < tmp,;,4) is performed if
the variable bindings are completed successfully. Then, move the first element d of bufingppy
to tmp,,, and execute w4,

In addition,

bind[(valid(Z,) A incoming(z,) A MAP(,)), receive(z,, &,, 6,)]
can be defined as

Poos, = Set(vary «— tmp,);
[valid(var;) A incoming(var;) A MAP(var;)] —
St (Impying — tMPyyg); Stop.

Here it is specified that the value of Z; be equal to the value of tmp,, i.e., the first element
of bufingppy. If a common register, say rmp,,, is used to store the input data in dic of all
predicates which involve input actions, a human translator can specify tmp,, as £;« appearing
in bind. =

Example 5.3: dic[send(f, 4, 5")] is shown in Table 5.5(b), where type[tmp,,] = D such that

Bool — send(D, Situation, Situation) € PB.

First, perform the variable bindings p; 5. When this is completed successfully, calculate £,
assign the result to a temporary register tmp,,, and output it to bufoussprm.
The behavior definition

bind[(valid(Z;) A incoming(z;) A MAP(Z))),
send(SSYNMind(z,), 61, 55)]

is simply defined as p;, 5, = Set(tmp,;,q — tMpy;,4); StOP, since there are no variables to be
bound. / O

-68 -

Table 5.5 ‘“Lexical items” for predicates.
(a) dic[receive(f, &, 5")].

7y = ([bufispoy # A\] = set(tmp,, — head(bufinspou)); s 5
> A- Se'((tmpbmd — tmpbi;ld) >
((tmpy, = H{var/Z1, ..., vary [En})] —> inbUfinspou, tmp;,); 761).

(b) dic[send(t, &, 6")].

s = (Pop
> A - set(tmpy,g tMpying) >
Set(tmpout — f{varl/a'sl, ey Varm/-'im});

out(bufoussprm, #MPgy); Tor)-

(c) dic[set_equal_to(fy, 5, &, 6")].

e = (Psp
> A - set(tmpying — tMpying) >

Set(fl — fz{varl/:il, ceey varm/."i:m});w&:).

-69 -

Example 5.4: dic[set_equal_to(f;,t,, 5, 6")] is defined as shown in Table 5.5(c). In addi-
tion, '

bind[(valid(z;) A incoming(z;) A MAP(z,)),
set_equal_to(Va, Vm, 43, 64)]

can be defined as p;, 5, = S€t(tmpy,, — tmpy;,4); Stop. u

As shown in the following example, one can construct behavior definitions for a predi-
cate which takes other predicates as its parameters.

Example 5.5: We define

behavior{{Ry, ..., Ry,),if_then(g, p, 5, &")]

behavior[(Ry, ..., R,), Pl U dic[if then(q, $, &, 6')].

And, dic[if then(g, p, &, 6")] is the set of the following behavior definitions:

me = ([§{vari/Z,...,varn [Em}] = T

<&
[=§{var\/Zi,...,varm &, }] = 7s),

Tpostlp] = Tg'.

O

Step 3: Let 8p = Ug.p behavior[(Ry, ..., Ry}, preds]. Let &; be the post-situation of
paragraph P. Then, 7;, := 75, is added to 5. That is, after the actions specified by P have
been completed, the BE interpreter executes 75, i.€., it looks ahead the next input (recall
that the pre-situation of any paragraph P’ is denoted by ;). The resulting set of behavior
definitions is Gp.

Exampie 5.6: For the logical formula in Example 5.1, the behavior definitions in Table 5.6
are obtained. Here, we write 7, instead of 75, (0 < k < 5). By Step 3, the behavior definition
of w5 is added. g

-70 -

Table 5.6 Implementation of the logical formula in Example 5.1.

m = ([bufiusppy # Al —> set(tmp,, — head(bufisppu)); Psys:
> A - set(tmpyg < tmpyna) >
[(tmp,, = var)] = in(bufinspou, tmpy,); m1),
T = (Psy,6
> X - 86t(tmpyng — MPypg) >
set(tmp,,, — SSYNMind(var));
out(bufoussprm, 1Py); T2),
m = ([Vsc = false] = m3 O [~(Vsc = false)] =),
T3 = (Poy,54
> \-set(tmpyg +— Mpyna) >
set(Va — Vm);),
M4 = s,
s = T,
Pson = Selt(vary — tmp,);
[valid(var,) A incoming(var;) A MAP(var,)] —
set(tmppng < Mpying)s StOP,
Por i = Seltmpy,y «— tmpy,,); stop,
Poye = SEUtmpyq « tmpy;,); STOP.

-71 -

5.5.3 Correctness

We briefly describe a proof of the correctness of this translation method. Suppose that
main(m;,) == true in A Xpgg. Define 8 for Condition 5.1 as follows:

1. 0[0'init] = Sjnit-.

2. Suppose that some ¢y and z;, ..., z,, satisfy the hypothesis of (b) in Condition 5.1.
Define 6 and gy, (1 < k < 1) in the same way as defined in Condition 5.1. Let the BE
interpreter start to execute 75, at state 8[dy] step by step. Define 8[c}] as the first s,
such that bexp(6y, si) =sprc true.

It is easy to show that 4 satisfies (a) and (b) in Condition 5.1 if:

o bind is properly constructed by a human translator, that is, it is correctly specified where
each input data comes from; and

AA

o for each “lexical item” dic[p(. .., 8, 6")], the BE interpreter eventually reaches a state
s' such that bexp(m,, s') =gppc true, if it starts the execution of 7, at any state s and
the variable bindings are successfully completed.

Thus, the correctness of the translation method depends on how dic and bind are defined. A
human translator must know not only the entire of SPECnt (since SPECnt is the semantics
of BE programs) but also how dic are defined and how to define bind correctly.

5.6 Translation System from Logical Formulas into BE Programs

We have implemented a prototype system which translates logical formulas derived from
natural language specifications into BE programs. This system is written in Prolog (100
clauses). Using this system, we translated the logical formulas derived from a part of the OSI
session protocol specification [10] (18 paragraphs, 45 sentences). The number of the “lexical
items” dic is 27, and the output of the system is 189 behavior definitions.

We have also implemented a simulator which executes a given BE program. This sim-
ulator is written in C, lex, and yacc (1954 lines). The simulator executing the behavior defi-
nitions obtained by the translation system behaved just as the human implementor intended.

Fig. 5.5 shows a part of the execution of the simulator when the behavior definitions in
Table 5.6 are given as its input program. When the simulator executes a behavior expression,
it computes actions to be performed by using the axioms on exec (Table 5.2). Since, in
general, there may be behavior definitions which cause infinite applications of the axioms
(such as 7 := (7 < a; 7)), the simulator tries only n applications of the axioms for a given
constant n (10 by default, but the user can change = to a greater value). Then, the user selects
an action to be performed. The user can also request the simulator to show the contents of
all registers and buffers.

-72 -

¥x% recursion depth = 10 **x
bexp: \pi_{s1}

action: \set (\tmpbind \leftarrow \tmpbind)

next bexp: \set (\tmpout \leftarrow \ssynmmind (\var_{1})) ; \out
(\bufoutssprm , \tmpout) ; \pi_{s2}

which 7 1

*¥% recursion depth = 10 **x

bexp: \set (\tmpout \leftarrow \ssynmmind (\var_{1})) ; \out
(\bufoutssprm , \tmpout) ; \pi_{s2}

—_—— 1 ——

action: \set (\tmpout \leftarrow \ssynmmind (\var_{1}))

next bexp: \out (\bufoutssprm , \tmpout) ; \pi_{s2}
which 7 1

*xx recursion depth = 10 *x*x

bexp: \out (\bufoutssprm , \tmpout) ; \pi_{s2}
- 1 —_——

action: \out (\bufoutssprm , \tmpout)

next bexp: \pi_{s2}

which 7 1

k recursion depth = 10 **x%

bexp: \pi_{s2}

—_—— 1 -

action: \set (\tmpbind \leftarrow \tmpbind)

next bexp: \set (\regva \leftarrow \regvm) ; \pi_{s4}
which ? s

\bufinspdu: \lambda \cdot 2001
\tmpin: 2000

\tmpbind: \true

\var_{1}: 2000

\tmpout: 22000

\bufoutssprm: \lambda \cdot 22000
\regvsc: \false '
\regva: 0

\regvm: 0

which 7 1

*** recursion depth = 10 **x*

Fig. 5.5 Ezxecution of the simulator.

-73 -

5.7 Conclusions

This paper has described a method of translating logical formulas derived from natural
language specifications of communication protocols into executable specifications. By using
this translation method and the simulator stated in section 5.6, one can apply rapid prbtotyp—
ing techniques to such a natural language specification. Then, he/she can detect and correct
errors, if any, in the natural language specification easily.

The syntax of BE programs is modeled on the syntax of LOTOS [11]. A major difference
between BE programs and LOTOS is that the BE interpreter has registers while the concept of
p'rocesses (machines) in LOTOS does not have any. Since it is possible to specify the behavior
of registers and buffers by means of processes, LOTOS specifications can be substituted for
BE programs. On the other hand, to implement rendezvous (synchronous communication)
of LOTOS, Ref. [2] uses shared memories, and Ref. [12] uses registers. We can conclude
that LOTOS specifications can be translated into BE programs, and therefore, the expressive
power of BE programs is equal to that of LOTOS.

One of the advantages of introducing BE programs is that the whole translation from
natural language specifications into executable programs is handled in the same framework.
Another advantage is that the BE interpreter is more appropriate for a model of protocol
machines than the concept of processes in LOTOS, since a natural language specification
of a communication protocol such as Ref. [10] often assumes that a protocol machine has
registers as stated above. Because of these two reasons, the whole translation becomes simple
and concise.

On the other hand, it may be possible that one translates a natural language specifica-
tion into a LOTOS specification, and then implements the LOTOS specification by using the
methods in Ref. [2] or [12]. However, there are no published papers on translation from nat-
ural language specifications into LOTOS specifications as far as the authors know. Such a
translation method will be complicated since a protocol machine assumed in a natural lan-
guage specification has registers while the concept of processes in LOTOS does not have
any. Moreover, as stated above, shared memories or registers are introduced when a LOTOS
specification is implemented. This is the reason why we do not use LOTOS for translation
from natural language specifications into executable specifications.

-74 -

Chapter 6
Conclusions

In this dissertation, three important sub-methods in translation from natural language
specifications of communication protocols into algebraic specifications were proposed. In
Chapter 3, a method of analyzing incompleteness of a natural language specification was
proposed. In Chapter 4, for the lexical items to be constructed more easily, a method of con-
structing a context-free grammar for logical formulas to be derived from a natural language
specification was proposed. In Chapter 5, a method of translating logical formulas derived
from natural language specifications into executable algebraic specifications was proposed.
We implemented a prototype system according to the proposed method. By using this system,
a part of the OSI session protocol specification was successfully translated.

Throughout this dissertation, we used a part of the OSI session protocol specification as
a translation example. Although it is a well-written specification, it still has incompleteness
and ambiguity which must be resolved when it is translated into a formal one. Therefore,
most of such incompleteness and ambiguity should be considered inherent in natural lan-
guage specifications describing dynamic behavior of systems. Our method will be useful in
reducing or detecting incompleteness and ambiguity of such natural language specifications.
Moreover, by modifying the BE interpreter and BE programs appropriately, such natural lan-
guage specifications will be translated into executable specifications.

In Chapter 1, we assumed an input natural language specification to contain only sequen-
tial or conditional descriptions. When a specification specifies “complex” execution control
such as repetition or recursion, special words and phrases (called S-dependency controllers in
Chapter 3) must be used. The meanings of such words and phrases can be easily incorporated
into our method so that our method can handle repetition, recursion, and so on.

One of the major advantages of our method is that a natural language specification can be
translated into an executable specification within a single framework of algebraic specifica-
tion methods. Hence, the whole translation became simple and concise. Another advantage
is that our method uses the properties both the source language (natural language) and the
target language (ASL). For example, in Chapter 3, use of these properties made our analysis
of S-dependency more refined. Moreover, in Chapter 4, syntactic information on the target
language was used for classifying words of a natural language specification, and hence, am-
biguity in the specification was reduced. Our method is superior to others which use only the
properties of either the source language or the target language.

-75 -

- References

[1] Balzer, R., Goldman, N. and Wile, D., “Informality in Program Specifications,” IEEE
Trans. Software Eng., Vol. 4, No. 2, pp. 94-102, Mar. 1978.

[2} Cheng, Z., Takahashi, K., Shiratori, N. and Noguchi, S., “An Automatic Implementation
Method of Protocol Specifications in LOTOS,” IEICE Trans. Inf. & Syst., Vol. E75-D,
No. 4, pp. 543-556, July 1992.

[3] Gazdar, G., Klein, E., Pullum, G. and Sag, I., “Generalized Phrase Structure Grammar,”
Basil Blackwell, 1985.

[4] Goguen, J. A, Thatcher, J. W. and Wagner, E. G., “An initial algebra approach to the
specification, correctness and implementation of abstract data types,” IBM Research
Report, RC 6487, 1976, also in Yeh, R. (ed.), “Current Trends in Programming Method-
ology IV: Data Structuring,” Prentice Hall, pp. 80-144, 1978.

[5] Heidorn, G.E., “Automatic Programming Through Natural Language Dialogue: A Sur-
vey,” Readings in Artificial Intelligence and Software Engineering, pp. 203-214, 1986.

[6] Higashino, T., Mori, M., Sugiyama, Y., Taniguchi, K. and Kasami, T., “An Algebraic
Specification of HDLC Procedures and Its Verification,” IEEE Trans. Software Eng.,
Vol. 10, No. 6, pp. 825-836, Nov. 1984.

{7] Honiden, S. and Yamashiro, A., “Object-Oriented Analysis and Design,” Journal of IPS
Japan, Vol. 35, No. 5, pp. 392-401, May 1994 (in Japanese).

[8] Huet, G. and Oppen, D. C., “Equations and Rewrite Rules: A Survey,” Book, R. (ed.),
Formal Languages: Perspectives and Open Problems, Academic Press, pp. 349-393,
1980.

[9] Ichikawa, I., Horai, H., Saeki, M., Yonezaki, N. and Enomoto, H., “The Method of
Transformation from Natural Language Based Functional Specifications into Proto-

type Programs,” Trans. of IPS Japan, Vol. 27, No. 11, pp. 1112-1127, Nov. 1986 (in
Japanese).

[10] ISO, “Basic Connection Oriented Session Protocol Specification,” ISO 8327, 1987.

[11] ISO, “Information Processing Systems — Open Systems Interconnection — LOTOS
— A Formal Description Technique Based on the Temporal Ordering of Observational
Behaviour,” ISO 8807, 1989,

[12] Karjoth, G., “Implementing Process Algebra Specifications by State Machines,” Testing
and Verification VIII, pp. 47-60, 1988.

-76 -

[13] Kasami, T., Taniguchi, K., Sugiyama, Y. and Seki, H., “Principles of Algebraic Lan-
guage ASL/«+,” Trans. IECE Japan, Vol. J69-D, No. 7, pp. 10661074, July 1986 (in
Japanese), also in Systems and Computers in Japan, Vol. 18, No. 7, pp. 11-20, July
1987.

[14] McNaughton, R., “Parenthesis Grammar,” Journal of ACM, Vol. 14, No. 3, pp. 490-
500, July 1967.

[15] Pereira, F. C. N. and Warren, D. H. D., “Definite Clause Grammars for Language Anal-
ysis,” Artificial Intelligence, Vol. 13, pp. 231-278, 1980. :

[16] Pollard, C. J., “Lecture on HPSG,” unpublished manuscript, Stanford University, Feb.
1985.

[17] Saeki, M., Yonezaki, N. and Enomoto, H., “Formal Specification Method Based on
Lexical Decomposition of Natural Language,” Trans. of IPS Japan, Vol. 25, No. 2, pp.
204-215, Mar. 1984 (in Japanese).

[18] Seki, H., Kasami, T., Nabika, E. and Matsumura, T., “A Method for Translating Natural
Language Program Specifications into Algebraic Specifications,” Trans. IEICE Japan,
Vol. J74-D-1, No. 4, pp. 283-295, Apr. 1991 (in Japanese).

[19] Seki, H., Nabika, E., Matsumura, T., Sugiyama, Y., Fujii, M., Torii, K. and Kasami, T.,
“A Processing System for Program Specifications in a Natural Language,” Proc. 21th
Annual Hawaii International Conference on System Sciences, pp. 754763, Jan. 1988.

[20] Taniguchi, K. and Kasami, T., “Reduction of Context-Free Grammars,” Trans. IECE
Japan, Vol. 52-C, No. 12, pp. 827-834, Dec. 1969 (in Japanese).

[21] Taniguchi, K., Seki, H. and Kasami, T., “Translation from Specifications in a Natu-
ral Language into Algebraic Specifications and their Stepwise Refinement,” Linguistic
Engineering '91 (Versailles, France), Vol. 3, Jan. 1991.

[22] Tsujii, J. and Uehara, K., “Software Engineering and Natural Language Processing,”
Journal of IPS Japan, Vol. 28, No. 7, pp. 913-921, July 1987 (in Japanese).

[23] Yagi, T., Seki, H. and Kasami, T., “Translation from Natural Language Specifications
into Algebraic Specifications —Extension of Translation Based on Word Meanings—,”
IEICE Technical Report, SS91-34, Mar. 1992 (in Japanese).

-77 -

