

Title	$[p]$ -typical formal groups and the homomorphism $\Omega^1_{u_*} \rightarrow \Omega^1_{so_*}$
Author(s)	Araki, Shôrô
Citation	Osaka Journal of Mathematics. 1974, 11(2), p. 347-352
Version Type	VoR
URL	https://doi.org/10.18910/7176
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Araki, S.
 Osaka J. Math.
 11 (1974), 347–352

[p]-TYPICAL FORMAL GROUPS AND THE HOMOMORPHISM $\Omega_*^U \rightarrow \Omega_*^{SO}$

SHÔRÔ ARAKI

(Received October 30, 1973)

In the present note we construct a [p]-typical formal group $F_{[p]}$, p a prime, which is universal for [p]-typical formal groups over arbitrary ground rings; and we study structure of the ground ring of $F_{[p]}$ (Corollary 5). Using $F_{[p]}$ we describe the kernel of the forgetful homomorphism $S: \Omega_*^U \rightarrow \Omega_*^{SO}$ of complex structures (Corollary 7).

Our basic reference is [1] and we use the notations of [1] freely.

1. Universal [p]-typical formal group

Let U be the Lazard ring and F_U the universal one-dimensional formal group defined over U . As usual we identify U with the complex cobordism ring Ω_*^U . Then U is graded by non-negative even degrees (or by non-positive even degrees when we regard Ω_*^U as $U^*(pt)$).

Let p be a prime, R a commutative ring with 1 and F a (commutative one-dimensional) formal group over R . By the terminology of [1] F is [p]-typical iff $\mathbf{f}_{p,F}\gamma_0 = 0$, where \mathbf{f}_p is the Frobenius operator and γ_0 is the identity curve.

Let F be [p]-typical and $u: U \rightarrow R$ the unique unitary homomorphism of rings such that $u_*F_U = F$. By the notation of [1] we put

$$(\mathbf{f}_{p,U}\gamma_0)(T) = \sum_{n \geq 1}^{F_U}(v_{np-1}^{(p)}T^n).$$

Then $v_{np-1}^{(p)} \in U_{2(np-1)}$. Now

$$u_*(\mathbf{f}_{p,U}\gamma_0) = \mathbf{f}_{p,F}\gamma_0 = 0.$$

Hence

$$\sum_{n \geq 1}^{F_U}(u(v_{np-1}^{(p)})T^n) = 0,$$

and by [1], Proposition 2.10, we obtain

$$(1.1) \quad u(v_{np-1}^{(p)}) = 0 \quad \text{for all } n \geq 1.$$

Let

$$J_p = (v_{p-1}^{(p)}, v_{2p-1}^{(p)}, \dots, v_{np-1}^{(p)}, \dots),$$

the ideal of U generated by $v_{np-1}^{(p)}$, $n \geq 1$. By (1.1) u factorizes as the composition of the sequence

$$(1.2) \quad U \xrightarrow{\pi_p} U/J_p \xrightarrow{u_p} R .$$

Define

$$V_{[p]} = U/J_p \quad \text{and} \quad F_{[p]} = \pi_p^* F_U .$$

Then $u_p^* F_{[p]} = F$ and the homomorphism $u_p: V_{[p]} \rightarrow R$, $u_p^* F_{[p]} = F$, is unique by the uniqueness of u . And obviously $f_{p,F_{[p]}} \gamma_0 = 0$. Thus we obtain

Proposition 1. $F_{[p]}$ is a $[p]$ -typical formal group over $V_{[p]}$ and universal for $[p]$ -typical formal groups.

In [1] we observed a $[p]$ -typical formal group over a $Z[1/p]$ -algebra which is universal for $[p]$ -typical formal groups over $Z[1/p]$ -algebras. The present $[p]$ -typical formal group $F_{[p]}$ differs from that of [1] as it is universal for $[p]$ -typical formal groups over arbitrary commutative rings with unities.

2. Structure of \hat{U}/\hat{J}_p

Let

$$\log_U T = \sum_{k \geq 0} m_k T^{k+1}, \quad m_0 = 1 ,$$

the logarithm of F_U over $U \otimes Q$ and put

$$\hat{U} = Z[m_1, m_2, \dots, m_k, \dots]$$

as in [1]. As usual we can identify \hat{U} with $H_*(MU)$. Then the inclusion map

$$(2.1) \quad U \subset \hat{U}$$

is identified with the Hurewicz homomorphism

$$\pi_*(MU) \rightarrow H_*(MU) .$$

Let p be a prime and put

$$\hat{J}_p = (v_{p-1}^{(p)}, v_{2p-1}^{(p)}, \dots, v_{np-1}^{(p)}, \dots)_{\hat{U}} ,$$

the ideal of \hat{U} generated by $v_{np-1}^{(p)}$, $n \geq 1$. In this section we observe structure of the quotient ring \hat{U}/\hat{J}_p .

Recall the relation (6.2) of [1]:

$$(2.2) \quad pm_{np-1} = v_{np-1}^{(p)} + \sum_{\substack{ij=n \\ 1 \leq i < n}} m_{j-1} (v_{ip-1}^{(p)})^j .$$

This is the basic relation we use here. This shows that

$$(2.3) \quad pm_{np-1} \in \hat{J}_p$$

on one hand, and by an induction on n ,

$$(2.4) \quad (1/p)v_{np-1}^{(p)} \in \hat{U}$$

on the other hand.

Let p and q be different primes. For each integer $k \geq 1$ we have

$$(2.5) \quad pv_{pqk-1}^{(q)} \in \hat{J}_p$$

Proof by induction on k . By (2.2) we have

$$qm_{pq-1} = v_{pq-1}^{(q)} + m_{p-1}(v_{q-1}^{(q)})^p.$$

Hence

$$pv_{pq-1}^{(q)} = qp m_{pq-1} - pm_{p-1}(v_{q-1}^{(q)})^p \in \hat{J}_p$$

by (2.3). Thus (2.5) is true for $k=1$. Now assume that $pv_{pjq-1}^{(q)} \in \hat{J}_p$ for $j < k$. Then by (2.2) we have

$$pv_{pqk-1}^{(q)} = pq m_{pqk-1} - \sum_{\substack{ij=pk \\ 1 \leq i < pk}} pm_{j-1}(v_{q-1}^{(q)})^j.$$

$pqm_{pqk-1} \in \hat{J}_p$ by (2.3). For each term under the summation, if $p|j$ then $pm_{j-1} \in \hat{J}_p$, and if $p \nmid j$ then $p|i$ and $pv_{qi-1}^{(q)} \in \hat{J}_p$ by induction hypothesis. Thus

$$pv_{pqk-1}^{(q)} \in \hat{J}_p, \quad \text{Q.E.D.}$$

Here we recall Milnor basis of U . Let s_n denote the Chern number corresponding to $\sum t_i^n$. As is well-known a series of elements $u_n \in U_{2n}$, $n \geq 1$, forms a polynomial basis of U if it satisfies

$$\begin{aligned} s_n(u_n) &= q \text{ when } n = q^s - 1 \text{ for some prime } q, \\ &= 1 \text{ otherwise.} \end{aligned}$$

Such a basis is called Milnor basis. We shall choose a Milnor basis in a specific form.

By (2.2) we see that

$$(2.6) \quad s_{nq-1}(v_{nq-1}^{(q)}) = q$$

for any prime q and $n \geq 1$. First we choose

$$(2.7) \quad u_n = v_{q^s-1}^{(q)} \text{ when } n = q^s - 1, \text{ } q \text{ a prime.}$$

Now let p be the specified prime. When $p|n+1$ and $n+1$ is not a power of p , choosing the smallest prime q dividing $n+1$ and differing from p , we can express n as $n = pqr-1$, r a positive integer. In such a case we put

$$(2.8) \quad u_{pqr-1} = sv_{pqr-1}^{(q)} + tv_{pqr-1}^{(p)},$$

where s and t are integers such that $sq+tp=1$. Then

$$s_{pqk-1}(u_{pqk-1}) = 1$$

by (2.6).

For remaining n , i.e., $p \nmid n+1$ and $n+1$ is not a prime power, we choose u_n arbitrarily so that $s_n(u_n)=1$.

Hereafter we use only the above special choice of Milnor basis. First of all we have

$$(2.9) \quad pu_{pqk-1} \in \hat{J}_p$$

for elements of type (2.8), which follows from (2.5).

Put

$$(2.10) \quad \begin{aligned} m'_n &= (1/q)u_n & \text{when } n+1 = q^s, q \text{ a prime,} \\ &= u_n & \text{when } n+1 \text{ is not a prime power.} \end{aligned}$$

These are well defined elements of \hat{U} by (2.4) and

$$(2.11) \quad \hat{U} = Z[m'_1, m'_2, \dots, m'_k, \dots]$$

since $s_k(m'_k)=1$.

For degrees of type (2.8) we observe the elements $pm'_{pqk-1} - v_{pqk-1}^{(p)}$. These belong to \hat{J}_p by (2.9) and are decomposable in \hat{U} since s_n -numbers are zero. Thus by induction on qk we can replace the ideal basis elements $v_{pqk-1}^{(p)}$ of \hat{J}_p by pm'_{pqk-1} for such degrees and we obtain

Proposition 2. $\hat{J}_p = (pm'_{pn-1}, n \geq 1)$.

Corollary 3. \hat{U}/\hat{J}_p is a direct sum of copies of Z and Z/pZ of which each direct summand is generated by a monomial of m'_k 's. A monomial is of order p when it contains an element m'_k with $p \mid k+1$ as a factor, and otherwise of infinite order.

3. Structure of $V_{[p]}$

Under our special choice of Milnor basis of U we could choose a polynomial basis of \hat{U} so that its each element is a constant multiple of the corresponding element of the Milnor basis (cf., (2.10)–(2.11)).

Theorem 4. $J_p = (u_{p^k-1}, k \geq 1, pu_{np-1}, n \neq p^s)$.

Proof. Inductively on n we replace generators $v_{np-1}^{(p)}$ of J_p by the elements stated in Theorem. Since $u_{p-1} = v_{p-1}^{(p)}$ the replacement is already done for $n=1$. Assume the replacement is done for $k < n$. When $n=p^s$ it is done already. Suppose n is not a power of p . Since $pu_{np-1} - v_{np-1}^{(p)}$ is decomposable we can

express it as a polynomial of u_k 's such that $1 \leq k < pn-1$, say, P . The polynomial expression P' of P in \hat{U} can be obtained by replacing each monomial in P by the corresponding monomial of m' multiplied with a non-zero integer. Now $pu_{pn-1} - v_{pn-1} \in \hat{J}_p$ by (2.9). Then by Proposition 2 each summand of P' belongs to \hat{J}_p . This implies that each monomial in P with non-zero coefficient contains a u_m with $m=ps-1$ as a factor and, when it contains no u_m with $m=p^j-1$ as a factor, then p divides its coefficient. Hence each summand of P belongs to J_p and $pu_{pn-1} - v_{pn-1} \in J_p$. Now we can replace v_{pn-1} by pu_{pn-1} in the system of generators of J_p , Q.E.D.

Corollary 5. $V_{[p]}$ is a direct sum of copies of Z and Z/pZ of which each direct summand is generated by a monomial of u_n 's such that $n \neq p^s-1$. A monomial is of order p when it contains an element u_k with $p|k+1$ as a factor, and otherwise of infinite order.

4. The forgetful homomorphism $\Omega_*^U \rightarrow \Omega_*^{SO}$

Let

$$S: \Omega_*^U \rightarrow \Omega_*^{SO} \text{ and } \Psi: \Omega_*^{SO} \rightarrow \mathfrak{N}_*$$

be the forgetful homomorphisms of complex structures and orientations respectively. Milnor [2] observed that

$$(\Psi \circ S)(\Omega_*^U) = (\mathfrak{N}_*)^2,$$

where $(\mathfrak{N}_*)^2$ is the subalgebra of \mathfrak{N}_* consisting of bordism classes of manifold squares $N \times N$. Let M be a weakly complex $2n$ -manifold and $\Psi \circ S(M) = [N \times N]$. Then the Milnor's result shows that

$$s_n(M) \equiv s'_n(N) \pmod{2},$$

where s'_n denotes the Whitney number corresponding to $\sum t_i$. Thus we have a polynomial basis $\{x_n, n \neq 2^h-1\}$ of \mathfrak{N}_* such that

$$(\Psi \circ S)(u_n) = x_n^2, \quad n \neq 2^h-1.$$

and $\Psi \circ S$ induces an isomorphism

$$(4.1) \quad \Omega_*^U / (u_{2^h-1}, h \geq 1) \otimes Z/2Z \cong (\mathfrak{N}_*)^2.$$

As we remarked in [1], §5, the oriented cobordism $\Omega^*(\)$ is complex-oriented, [2]-typical and $S_* F_U = F_{SO}$. Thus S factorizes as the composition of the sequence

$$\Omega_*^U = U \xrightarrow{\pi_2} V_{[2]} \xrightarrow{\Phi} \Omega_*^{SO},$$

By Corollary 5 we have

$$(4.2) \quad V_{[2]} \otimes Z/2Z = Z/2Z[u_n, n \neq 2^h - 1].$$

By (4.1) and (4.2) we see that $\Psi \circ \Phi$ induces the isomorphism

$$(4.3) \quad V_{[2]} \otimes Z/2Z \cong (\mathfrak{N}_*)^2.$$

By Corollary 5 we have

$$V_{[2]}/\text{Tors} = Z[u_{2n}, n \geq 1].$$

Then by [3], p. 180, we conclude that

$$(4.4) \quad \Phi/\text{Tors}: V_{[2]}/\text{Tors} \cong \Omega_*^{SO}/\text{Tors}.$$

Finally by (4.3) and (4.4) we obtain

Theorem 6. $\Phi: V_{[2]} \rightarrow \Omega_*^{SO}$ is an injection.

Corollary 7. $\text{Ker } S = J_2, \text{ Im } S \cong V_{[2]}.$

OSAKA CITY UNIVERSITY

References

- [1] S. Araki: Typical Formal Groups in Complex Cobordism and K-Theory, Lectures in Mathematics, Kyoto Univ., 6, Kinokuniya Book-Store, 1973.
- [2] J. Milnor: *On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds* Topology 3 (1965), 223–230.
- [3] R.E. Stong: Notes on Cobordism Theory, Princeton Univ. Press, 1968.