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Abstract

This thesis summarizes the works of the author as a master/ doctor student of
Osaka University from 1993 to 1997 on concurrency control method for dis-
tributed database systems. ‘ ‘

Concurrency control is one of the key aspect in design of database systems
(DBS). Concurrency control is to schedule concurrently executed transactions
in order to preserve database consistency. Its objective is to make concurrency
of transactions as high as possible. In this thesis, a scheduling algorithm for
distributed DBSs is studied so that high concurrency of transactions is obtained
without 1mpos1ng special conditions into transactions. v

Our scheduling method is based on Serialization Graph Testmg (SGT),
which achieves higher concurrency than others. In SGT, a scheduler malntalns
a directed graph called Serialization,Graph (SG) and traverse of the SG is’
necessary for scheduling. In distributed *DiBSs, which consist of multiple sites,
intersite communication is required for maintenance and traverse of the SG.
This communication cost is the most serious problem of SGT in distributed
DBSs. In our method, to suppress the communication for maintenance of the
SG, thé SG is maintained in distributed manner, that is, each site maintains a
subgraph of the SG, called a local SG. In this case, an global SG traverse should
be done by assembling traverses of local SGs at several sites throngh message
passing. Moreover, we let these local SG traverses be performed simultaneously -
at several sites to suppress the SG traverse time. Therefore, fractional tags
are introduced to detect the completion of global traverse of the SG. Using
fractional tags, we proposed the method for the distributed SG traverse.

The correctuess of this method is shown and the performance is evaluated
by simulations in terms of the number of messages sent for scheduling. -

In addition to improvement of the SG traverse, we considered modify-
ing SGT itself to suppress the effect of the scheduling cost to the system

- performance, We adopted SGT certification because the number of requlred‘
SG traverses is much smaller in comparison with usual SGT:. On the other
hand, the delay of abortion in SGT certification may encourage undesirable
phenomenons known as cascading aborts. To eliminate cascading aborts, we
introduced the idea of another scheduling method, _called Optimistic Concur-
rency Control (OCC), into SGT certification. Thus we proposed a. variant of
SGT certification so that cascading aborts do not occur. Like OCC, substantial |
write operations are deferred in the proposed algorlthm The correctness proof

and performance evaluation of our algorithm are also presented in thls thesis.



In researches of concurrency control in distributed DBSs, SGT has been ig-
nored because of its large scheduling cost. However, considering appearance
of new types of databases (e.g. Multimedia databases or Ob ject Oriented
databases) in which execution time of transactions tends to become long, high
concurrency of SGT should not be ig’nbred. In this thesis, two methods are pro-
posed so that the drawback of SGT is relieved. Simulation results showed that
they are useful to suppress the scheduling cost of SGT in distributed DBSs.
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Chapter 1
Introduction

Concurrency control is one of the key aspect in design on database systems
(DBS). Concurrency control is to schedule transactions which are executed con-
currently in order to preserve database consistency. Scheduling algorithms are
evaluated by the following factors. That is, (1) the concurrency of transaction,
(2) the scheduling cost and (3) the ratio of abortions to executed transactions.
Of course, one goal of such scheduling algorithms is to provide high concurrency
of transactions. The higher the concurrency is, the fewer the cases in which a
transaction have to wait for another one are. Transactions which do not have to
wait for other transactions are processed quickly and therefore the throughput
of DBSs increases. Reducing the scheduling cost is also significant because the
time for scheduling directly affects the execution time of each transaction. In
distributed database systems (distributed DBSs) which consist of several sites,
intersite communication is required for scheduling. In the case of distributed
DBSs, this communication cost is also taken into account as the scheduling cost.
Some transactions mdy be aborted for scheduling. The abortion of a transac-
tion means waste of the time for which the transaction executed. If the wasted
execution time increases, then the throughput of DBSs decreases. Hence it is
desirable that the ratio of abortions is small. |

Serializability is commonly used as a criterion of validity for concurrent exe-
cution of transactions. Many researchers proposed lots of scheduling algorithms
based on serializability. The proposed scheduling algoﬁthms can be classified
into two types, that is, locking protocols which locks data items for scheduling,
and non-locking protocols which do not lock data items. ;

Two Phase Locking (2PL) is the simplest and most well-known locking
protocol. In 2PL, before a transaction 7" accesses a data item z, T must obtain

the lock of z. If another transaction 7" is holding the lock, T has to wait until



T’ releases the lock. Moreover, 2PL imposes a rule which is called two phase
rule, that is, once a transaction T has released a lock, T should not subsequently
obtain any more locks. The main cost for 2PL is maintenance of a table which
is called the lock table. Thus 2PL is easy to implement and its scheduling cost is
small. This is the merit of 2PL. The shortcoming is that transactions are blocked
in 2PL. That is, some transactions stop waiting for other transactions. Due to
the transaction blocking, the concurrency provided by 2PL is not so high. Some
blocked transactions often form chains and the chains may become long. Such a
long chain is undesirable because the transaction at the end of the chain should
wait for many transactions. Moreo?er, some blocked transactions may cause
deadlocks. Hence some deadlock detection scheme is needed for 9PL. When a
deadlock is detected, one transaction involved in the deadlock should be aborted
~ to solve a deadlock. However, deadlock is the only case in which 2PL aborts
transactions. Therefore, the number of abortions in 2PL is relatively small.
Since 2PL is the most common scheduling algorithm, a lot of 2PL variants have
been proposed to overcome the drawback of 2PL—low concurrency.

Some 2PL variants use a pr_ibri knowledge of transactions [8][9]. They
require each transaction to predeclarc the readset and the writeset, i.e., the set
of data items which the transaction intends to read and write. Since a scheduler
knows which data items each transaction intends to access, locks held by the
transaction can be released sooner. New*erthelesé, it is very difficult for many
transactions to predict the readset and the writeset precisely before execution.
Hence the cases in which such algorithms are available are limited.

There are many 2PL variants which use semantic knowledges of transac-.
tions [1][2][11)[13][21][31]. In algorithms proposed in [2], [11], [13] and [21],
each transaction has several breakpoints at which other transactidns can inter-
leave. By using semantic knowledges, some non-serializable executions can be
permitted by such algorithms. However, users who design transactions must
specify what type of transactions can interleave the transaction which he wants
to execute. This imposes a heavy load on users. Moreover, these algorithms
have the potential risk of users’ mistakes in their specifications. In other words,
the reliability of DBSs may be spoiled under these algorithms. In [1] and [31],
abstract atomic operations (e.g. deposit, withdraw and member operations)
is introduced in addition to primitive read and write operations.  Since com- -
mutativity of such abstract operations are higher than that of primitive ones,
higher concurrency is obtained. However, atomicity of such operations depends

on implementation of database sy.sten‘ls‘. Furthermore, there are different types



of 2PL variants [12][27].

Locking protocols are studied much more actively than non-locking pro-
tocols. Practically, they are widely used in many applicafions. Nevertheless,
the problems of transaction blocking and deadlocks are inevitable in locking
protocols. To eliminate it perfectly, we should introduce norl-locking protocols.

Non-locking protocols do not lock any data items and therefore no transac-

tions are blocked. Instead, some transactions may violaté database consistency.
Such transactions are aborted and all their effects are wiped out. Abdrted trans-
actions are restarted later. Therefore, the ratio of abortions may become larger
than that in locklng protocols. '
* In compensation for release from the blocking problems", non-locking pro-
tocols suffer from the phenomenon which is called cascading abort. In locking
protocols, a transaction T cannot read a data item x which is locked by another
transaction. In most implementations of locking protocols, transactions release
their locks at the time of commitment. Hence there exist no cases in which
a transaction reads a data item which was updated by"another.u-ncor'n‘mitted
transaction. On the other hand, under non-locking protocols, a transaction T
can read a data item x updated by an uncommitted transaction. Althbugh this
feature increases the concurrency, it also causes the problem.' Suppose that T'
read a data item z which was updated’ by T". When T is aborted, the value of -
x which T read becomes invalid. Hence T should be aborted too. In this way,
an abortion of a transaction may cause other abortions. This phenomenon is
called cascading abort. Cascading abort is a problem because it can lead to a
large number of abortions. | , '

While most locking protocols are variants of 2PL, there exist several types
of non-locking protocols.  Timestamp Ordering (TO) is the most common non-
locking protocol. Instead of locking data items, TO uses timestamps for schedul-
ing. In TO, each transaction is assigned a unique timestamp. Transactions are
scheduled according to the total order of timestamps. Before the execution of
an dperation o of a transaction T, the scheduler compares the timestamp of T
w1th the timestamp of 7" whose previously executed operation o ‘conflicts with
o. If the timestamp of T is larger than that of 7' (i.e. T is newer than T"),
then o is executed. Otherwise o is rejected and T is aborted. The scheduling
cost of TO is not so large. It consists of generation and comparison of times-
tamps. TO’s drawback about concurrency is that the total order of timestamps,
which are assigned before executing transactions, restricts conc_“ur‘rent" execution

: Of transactions. If the TO scheduler could foresee future execution of transac-’



tions, it could assign the timestamp according to the order that the execution
will be serialized. In this case, all serializable executions would be permit-
ted. Practically, the TO scheduler cannot know about the future, and it may
assign timestamps which conflict with serialization order of future execution.
Thus some serializable executions are prohibited in TO. Several TO variants
has been proposed [20][26]. TO and its variants avoid the blocking problem of
2PL, which is the greatest advantage of TO. However, it does not necessarily |
means that TO provides higher concurrency than 2PL. The class of concurrent
executions permitted under TO does not include that under 2PL and vice versa.
Therefore, it is difficult to compare the concurrency prov1ded by TO with that
provided by 2PL.

Though algorithms based on 2PL or TO are simple and their scheduhng
cost is relatively small, they excluded some serializable executions for simplicity
of scheduling. Hence they cannot permit all serializable executions. This is a
limit of concurrency provided by variants of 2PL and TO. As mentioned above,
to achieve high concurrency with these approaches; some special condition is
needed on DBSs. ' _

So far, another non-locking protocol called Serialization Graph Testing
(SGT) [4] has not received much attention. SGT uses a directed graph which
is called serialization graph (SG) for scheduling. In SGT, database consistency
is preserved by ensuring that the SG remains acyclic. An SGT scheduler main-
tains the SG which represents the relative order of the executed operations.
The scheduler traverses the SG before the execution of an operation o, and if
o does not cause any cycle to the SG, o is executed immediately, otherwise o
is rejected. The feature of SGT is that all serializable executions are permitted
under SGT. Therefore, SGT provides higher concurrency of transactions than
2PL and TO [4]. Since SGT uses abortions for scheduling as TO does, the ratio |
of abortions may be larger than that of 2PL. Due to high concurrency, however,
executions which are rejected in TO may be permitted in SGT. Hence the ratio
of abortions is smaller than TO. The most serious defect of SGT is its schedul-
ing cost. SGT requires traverse of a directed graph for each operation and it -
needs much cost. The recent studies of SGT are scarcely reported. Badrinath
et al. [3] discussed about abstract operations to increase concurrency of SGT.
Cautious Scheduler [16] uses the transaction IO graph which is a variant of the
SG. | | | | |

At last, Certifications ,which are most ‘aggressive in non-locking protocols,

should be mentloned In usual scheduling methods, before executing each op-



eration, it is checked whether the operation preserves the database consistency
or not. In Certifications, however, all operations of transactions are executed
immediately. At the time of commitment of a transaction, the consistency check
for the transaction is done. If it has succeeded, the transaction is committed.
Otherwise the transaction is aborted.

There are some Certifications using different ways of the consistency check.
Locking based Certification is discussed in [14]. ‘Despite its Iiame, it does not
really lock data items. It uses optimistic locks for scheduling. When a transac-
tion T accesses the data item z, which takes the optiinistic lock of z. Note that
T can take it even if it is held by another transactlon In validation of T, if \
optimistic locks held by T' conflicts any optimistic lock held by another execut-
ing transaction 7", T' is aborted. Otherwise T' is committed. Timestamp based
Certification is studied by many researchers [5][7)[14][28][32]. SGT based Cer-
tification is discussed in [4][6][32]. We call it SGT certification. Certification
approach seems to be suitable for SGT, because consistency is checked only
when transactions are to be committed while usual SGT checks consistency
for each operation. Optimistic Concurrency. Control (OCC) [19] ‘uses unique
method for validation. In OCC, a transaction consists of three phases, the read
phase, the validation phase and the write phase. Basically, the validation of
OCC is the same as that of Timestamp based Certification. However, OCC -
is more restrictive and therefore concurrency provided by OCC is lower than
Timestamp based Certification. The advantage of OCC is that it can avoid
cascading aborts.

The feature of Certifications is that validation is done only once for each
- transaction. In scheduling algorlthms other than Certifications, it should be
made sure that each operatibn preserves database consistency before it is exe-
cuted. That is, validation is done for each operation. Hence the scheduling cost
in Certifications is much smaller than others. The drawback is that conflicts are
not detected until a transaction is about to commit and there_fore the abortion is
~ delayed. If the abortion of a transaction is delayed, then the waste of execution
time becomes larger. Moreover, this delay of abortions increases the poss1b1hty
of cascading abort.
| As described above, lots of scheduling algorithms have been proposed so far.
Nevertheless due to the recent development of databases and their apphcatlons
new scheduling algorlthm is required.

In traditional database applications, for example banking systems, seat

reservation systems in a1r11nes and so on, the task for each transactlon is sim-



ple. Therefore, the execution time of transactions are generally short. In such
DBSs, the ratio of the time for scheduling in the execution time of transaction is
large. Thus reducing the scheduling cost is more important than increaSing the
concurrency of transactions and avoiding. abortions. However, circumstances
around DBSs are changing nowadays. First, the performance of computers has
improved remarkably. Hence the relative costs of coinputations in DBSs are de-
creasing rapidly. Second, new types of databases are appearing in recent years,
for example, Multimedia Databases, Object Oriented Databases and so on. One
of the features of such databases is that the execution time of transactions tends
to become long. Such transactions are called Long-lived transactions (LLT).
As circumstances change, the demand on concurrency control is also chang-
ing. That is, high concurrency and few abortions are becoming more important
than low scheduling cost. The scheduling cost is almost computational‘, for ex-
ample, updating the lock table, comparing the value of two timestamps, traverse
~ the SG and so on. By improvement of performance of the MPUs, memories and
so on, the effect of the scheduling cost to the performance of DBSs has become
small, and we can expect that it will become smaller in future. In DBSs in which
LLTs exist, the relative effect is much smaller. On the other hand, the concur-
rency affects the execution time of transactions in a different way. It is related
to the time for which transactions wait for other transactions. The number of
abortions affect the wasted execution time. The execution time of transactions
includes the access time of mechanical devices (e.g. hard disk drives), the com-
munication delay for data transmission, the waiting time for user interaction
and so on. Clearly, such kinds of times are very difficult to reduce drastically.
In this thesis, we attach more importance to the concurrency of transac-
tions and the number of abortions than the scheduling cost. In spite of large
scheduling cost, we chose SGT as the scheduling algorithm because SGT per-
mits all serializable executions. Furthermore, in order to develop the scheduling
algorithm which is useful in general cases, it seems to be worthiness to eliminate
any kind of a priori knowledges, semantic knowledges and abstract operations.
When SGT is applied to distributed DBSs, the communication cost is the
most serious difficulty. In distributed DBSs, SGT needs much intersite commli-
nications for checking acyclicity of the SG because of the global stfucture of the
SG. This communication cost accounts for a large part of the scheduling cost
of SGT in distributed DBSs. ‘
In this thesis, two approaches to overcome above difficulty of SGT are -

proposed and evaluated. R



In Chapter 2, the preliminaries of the thesis is described. Overview of our
model of database system, some formal definitions and the basic SGT algorithm
are included. : ’ ;

To suppress the communication cost of distributed SGT, the method for
traverse of the SG in distributed DBSs is proposed in Chapter 3. We call the
method Fractional Tag Method (FT). The aim of FT is suppression of the cost of
SG traverse in distributed DBSs. Transacvtions in distributed DBSs are classified
into two types, that is, local transactions, which access its local database only,

and global transactions, which access severél remote databases. As Ozsu et
~al. have pointed out in [24], most distributed DBSs are structured to gain
maximum benefit from data localization. Hence local transactions are dominant
in most distributed DBSs. The problem is that the distributed SGT scheduling
needs some communications even for‘loc‘al transactions. FT suppresses this
communication cost for local transactions. Therefore, FT is useful in distributed
DBSs in which most transactions are local ones. In Chapter 3, we show the
correctness of FT and evaluate its performance by simulations in terms of the
number of messages which are neceded for SChedulillg.

To suppress the effect of the scheduling cost to the system performance,
a variant of SGT is proposed in Chapter 4. Even if F'T is used, the commu-
nication cost for scheduling is still large especially in global transactions. To
alleviate the effect of the scheduling cost, we adopted SGT certification. Under
SGT certification, a scheduler traverses the SG only once for each transaction.
Thus the scheduling cost of SGT is suppressed. On the other hand, the delay
of abortion increases the possibility of cascading aborts. To solve the prob-
lem of cascading aborts, we exploited the fact that 0OCC [19] avoids cascading
aborts. The interesting feature of OCC is that it first performs write operations
to internal buffers, and the values are then written to the actual database at
the termination of the transaction that wrote them. Since the values in the
bufferskcannot be accessed by other transactions, write operations are deferred
practically. We apply this feature of OCC to SGT certification and propose
- a scheduling algorithm. In our algorithm, substantial write operations are de-
ferred as in OCC. Therefore, we call it SGT with Write Deferring (SGT-WD).

The feature of SGT-WD is (1) no cascading aborts occur, (2) the number of
abortions is suppressed, and (3) data restoring is unnecessary when transaction
is aborted for scheduling. In Chapter 4, the SGT-WD algorithm and its correct-
ness are presenfed. Moreover, the performancés‘of SGT-WD, -SGT, and SGT

certification are evaluated by simulations on distributed database systems.



In Chapter 5, a summary of the methods and théir results described in this

thesis are presented, and future works are discussed.



Chapter 2
Preliminari‘es:'

2.1. Database system overview

The main component of a database system model is a transaction. Informally, a
ktra‘nsaction is an execution of a program that accesses a shared database. The
goal.of concurrency control is to ensurc that transactions execute atomically,

meaning that

1. cach transaction accesses sharcd data without interfering with other trans-

actions, and

2. if a transaction termihates:normally, then all of its effects are made per-

manent; otherwise it has no effect at all.

A database consists of a set of named data items. Each data item has a
value. The values of the data items represent a state of the database. The size v
of the data contained in a data item is called the granularity of the data item.
Granularity will usually not be significant to our study and therefore it will be
left unspecified. ' _

A database system (DBS) is a collection of hardware and software modules

_that support commands to access the database, called database operations, or
simply operations. The most important operations are Read and Write. It is
assumed that a Read (or Write) operation can access only one data item. To
access multiple data items, multiple operations are required. .

The DBS also supports transaction operations: Start, Commit, and Abort.
A program tells the DBS that it.is about to begin executing a new transaction
by issuing the operation Start. It indicates the termination of the transaction by
issuing either operation Commit or Abort. By issuing a Commit, the program
tells the DBS that the transa;ction has terminated normally and all of its effects
-should be made permanent. 'B‘ybivssuing an Abort, the program tells the DBS -

9
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Figure 2.1: A system configuration of a database system
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Figure 2.2: A distributed database ‘system.

that the transaction has terminated abnormally and all of its effects should be
obliterated. -

A DBS consists of three modules : a transaction managef, which performs
any required preprocessing of database operations and transaction operations
it receives from transactions ; a schedulér, which controls the relative order in
which database operations and transaction operations are executed; and a data
manager which operates directly on the database.

Database operations and transaction operations issued by a transaction to
the DBS are first received by the transaction rhanager. The operations then
move down through the scheduler, and data manager. Thus, each module sends
requests to and receives replies frbr_n the next lower level module. Figure 2.1
shows a system configuration of a database system. - ' ‘ ,

A distributed database system (distributed' DBS) is composed of multiple
DBSs. A distributed DBS is a collection of sites connected by a communication
network. Each site is a DBS, which stores a portion of the database. Figure 2.2
shows a system conﬁguration of a distributed DBS.

‘In distributed DBSs, transactions are classified into two types.

10



e Local transactions: which access only data items stored in the site that

executes it.

e Global transactions: which access data items stored in more than one

sites.

To consider the scheduling algorithm that preserves database consistency,

consistent states of the database must be defined. It is assunied that
1. the initial state of a databaée is consistent, and
2. any transaction preserves consistency of a database if it is executed alone.

Thus, all states obtained by executing transactions serially from the initial state
are consistent and others are not.

Since recovery problems are not discussed in this thesis, it is assumed that
1. there are no cancellations of transactions by a user,
2. there are no errors in any transaction programs, and

3. any type of system failure does not occur.

2.2. Scheduling

A scheduler is a program or collection of programs that controls the concurrent
execution of transactions. It performs this control by restricting the order in
- which the data manager executes Reads, Writes, Commits, and Aborts of dif-
ferent transactions. Its goal is to order these operations so that the resulting
execution preserves consistency of the database.

To execute a database operation, the transaction manager passes the op—l
“eration to the scheduler. After receiving the operation, the scheduler can take

one of three actions:

1. Execute: The scheduler can pass the operation to the data manager.
When the data manager finishes executing the operation, it sends a reply
to the scheduler. Moreover, if the operation is a Read, the data man-
ager returns the value(s) it read, which the scheduler rela,ys'back to the

transaction.

2. Reject: The scheduler can refuse to process the operation, in which case
it tells the transaction manager that its operation has been rejected. This

causes the transaction to abort.
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3. Delay: The scheduler can delay the operation by placing it in a queue
internal to the scheduler. Later, it can remove the operation from the
queue and either execute it or reject it. In the interim (while operation is

being delayed), the scheduler is free to schedule other operations.

Using its three actions — executing an operation, rejecting it, or delaying
it — the scheduler control the order in which operations are executed. When
it receives an operation from the transaction, it checks whether the operation
can be executed without violating the database consistency or not. We call
this ConsiStency check the validation. If the validation succeeded_; then it passes
the operation to the data manager right away. Otherwise, it either delays the
operation (if it may be able to correctly process the operation in the 'futufe) or
reject the operation (if it will never be able to correctly process the operation
in the future). Thus it uses execution, delay and rejection of operations to help
produce correct executions. .

The scheduler is quite limited in the information it can use to decide when
to execute each operation. It is assumed that it can only use the information
that it obtains froin the operations that transactions submit. The scheduler does
not know anv details about the programs comprising the transactions, except as
conveyedb to it by operations. It can predict neither the operations that will be
submitted in the future nor the relative order in which these operations will be
submitted. When this type of advance knowledge about programs or operations
is needed to make good scheduling decisions, the transactions must explicitly
supply this information to the scheduler via additional operations. Unless stated

otherwise, we assume that such information is not available:

2.3. Serializability

When two or more transactions execute concurrently, their database operation
execute in an interleaved fashion, i.e. operation from one transaction may ex-
ecute between two operations‘from another transaction. This interleaving can
cause transactions to behave incorrectly, or interfere, thereby leading to an in-
consistent database. This interference is entirely due to the interlea\king. That
is, it can occur even if each transaction program is coded correctly and no com-
ponent of the system fails. The goal of cbncurrency control is to avoid such

interference and thereby preserve database consistency.

12



2.3.1 Transactions

Transaction is a particular execution of a program that manipulates the database
by means of Read and Write operatious. Formally, a transaction is a represen-
tation of an execution of the Read and Write operations and indicates the order
in which these operations are to be executed. For each Read and Write, the
transaction specifies the names, but not the values, of the data items read and
written respectively. In addition, the transaction contains a Commit or Abort as
its last operation, to indicate whéther the execution was terminated successfully
or not. - :

In general, a notation r;[z] (or w;[z]), where z is a data item, is used
to denote Read (or Write) operation issued by the transaction T; on a data
item z. To keep this notation unambiguous, it is assumed that no transaction
reads (or writes) a data item more than once. Similarly, ¢; and a; is used
to denote Commit and Abort operations of T; (respectively). In a particular
transaction, only one of these two can appear. The arrows indicate the order in
which operations execute. Thus in the example r;[z] = w;lz] = ¢;, w;[z] follows
("happens after”) r;[z] and precedes ("happens before”) ¢;. v

A transaction may represent concurrent execution of programs. Therefore,
a transaction is modeled as a partial order. |

The definition of a transaction is formalized as a partial ordering of opera-
tions. The name of the partial order (i.e. transaction name 7;) is used to denote
not only the partial order itself but also the set of operations in the partial order.
The meaning of a symbol that denotes both a partial order and its elements will
always be clear from the context. In particular, when r;[x] € T;, means that
r;[z] is an element (i.e. operation) of T;, T; denotes the set of operations in the

partial order. The formal definition is following.

Definition 2.1 Let DB be a set of all data items in a database system. A

transaction T; is a partial order with the ordering relation <; where

(1) Ti € {nifa], wile] | = € DB} U {as, i}

(2) a; € Ti iff ¢; ¢ Tj;

(3) if t is ¢; or a; (whichever is in T;), for any other operation p € T;, p <; t;

and . :

(4) if 7;]z], wily] € T; and = N'y # @, then either r;[z] <; w;ly] or wyly] <; rifz].
‘ - O

Figure 2.3 shows examples of transactions.
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Pa [y.2] -

T1:  s1—ri[xy] c1
w7
r2ly] —» w2[y] ‘
T2: s2 < 4 ™ c2
~a r2z] —» wo[z] /
w2[x]

Figure 2.3: Examples of transactions
s3 — r3[x] —» w3[x] — C3
H: s1-r1[x]— wi[x] — w1]y] —C1

$2 — r2[x}] —+w2[y] — c2

Figure 2.4: An example of a history

2.3.2 Histories _
A history indicates an order in which operations of transactions were executed
relative to each other. Since some of these operations may be executed in

parallel, a history is defined as a partial order.

Definition 2.2 Two operations are said to be conflict if they both operate on

a same data item and at least one of them is a Write. » O

Definition 2.3 For two partial orders H and H' (with ordering relation <
and <’y respectively), H' is said to be a prefiz of H if p <y ¢ for any p,q € H'
such that p <g q. ‘ D

Definition 2.4 Let T = {T},Ty,...,T,} be a set of transactions. A -complete ‘
history H over T is a partial order with ordering relation <gz where: |
(1) H = UL T;

(2) <g D UL, <;; and E ,

(3) for any two conflicting operations p,q € H, either p <y q or ¢ <g p.

Any prefix of a complete history is called a history.  , O

Figure 2.4 shows an example of a history. o
Thus a history represents a possibly incomplete execution of transactions.
A failure may interrupt the execution of active transactions. Therefore, arbi-

trary histories must be considered, not merely complete ones.
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A transaction T} is said to be committed (or aborted) in history H if ¢; €

H(or a; € H). T; is said to be activein H if it is neither committed nor aborted.

Definition 2.5 For a history H; the set of possible complete histories of H,
denoted PH(H), is the set of all complete histories which include H as prefix.
O

A dot(:) represents connection of a operation' to a history. Let H be a
history and o be a operation. If history H' = H - o, then for any operation
0, € H, 0; <g o. '

2.3.3 Conflict Serializability
The goal of scheduling is to produce histories which preserve database consis-
tency. The simplest way to preserve database consistency is to execute trans-
actions serially. However, this would mean that the database system could not
execute transactions concurrently. Without such concurrency, the system may
make poor use of its resources, and so might be too inefficient. Therefore, the
class of allowable executions is broadened to include executions that have the
same effect as serial ones. Such exccutions are called view serializable [4]. The
set consists of all view serializable histories is called class VSR. View serializable
histories preserve database consistency. Therefore, all view serializable histories
may be accepted by the scheduler. Nevertheless, no scheduling algorithms that
accept all view serializable histories are known, because it is difficult to exam-
ine whether a given history is view serializable or not. In fact, it is proven tvhati
testing a history for view serializability is NP-complete [25]. ,

Therefore, the subclass of VSR called conflict serializability (CSR) [4] is
introduced as a set of histories which may be allowed by schedulers. Before

giving the definition of conflict serializability, conflict equivalence is defined.

Definition 2.6 Two histories H; and H, are conflict equivalent iff

(1) H, and H, are defined over the same set of transactions and have the same
operations; and . 7 ’

(2) Hy and H, order conflicting operations of non-aborted transactions in the
same way; that is, for any conflicting operations p; and g¢; belonging to trans-
actions T; and T (respectively) where a;,a; € Hy, if p; <m1 ¢; then p; <ps g;
(this implies: p; <g1 ¢; Hf p;i <m2 ¢;) ’ ‘ ‘ o

Definition 2.7 A history H is conflict serializable(CSR) iff one of the element
of PH(H) is conflict equivalent to a serial history Hs. - , ~ a
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Figure 2.5: An example of a serialization graph

In the literature, the word serializable (SR) usually means CSR. In the rest of

this thesis, the word serializable (SR) is used instead of conflict serializable:

2.3.4 Serialization Graph

The (conflict) serializability of a history is determined by analyzing a graph
derived from the history called a serialization graph (SG). A serialization graph
is a directed graph derived from a histbry, and has one node for each transaction.
Forsimplicity, a transaction name is also regarded as the harﬁe of the node for

the transaction.

Definition 2.8 For a history H, the serialization graph SG(H) = (V,E) is a
directed graph such that | ’ :

V = {T; | T; is a transaction that is already commuted in H}

E = {(T;,T;) | there exists conflicting operations o; € T; and o; € T; such
that o; <y o; where T;, T, € V} | - O
Figure 2.5 shows an example of a serialization graph.

Each edge (7;,7;) in SG(H) means that at least one of T;’s operations
precedes and conflicts with one of T}’s. This suggests that T; should precede
T; in any serial history that is equivalent to H. If a serial history H, which is
consistent with all edges in SG(H) is found, then H, is conflict equivalent to
H and therefore H is SR. This is possible as long as SG(H) is zicyclic. The

following theorem was shown in [4].
Theorem 2.1 A history H is SR iff SG(H) is acyclic. o
The reachability of nodes in a directed graph is defined as follows.

Definition 2.9 A node T is reachable from a node T; in a dlrected graph G iff
there is a directed path from T; to T in G. o D

Note that T is not reachable from T itself unless a directed path from TtoT.

exists in G.
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2.4, Ser1al1zat10n Graph Testing _
Serialization Graph Testing (SGT) is a method for controlling the order in which
operations are executed in order to preserve database cons1stency. '

In SGT, validation is done using the serialization graph (SG). A scheduler
»maintains the SG of a history that represents the execution it controls. As
the scheduler sends new operations to the data manager, the history chahges
and the SG maintained by the scheduler also changes. A scheduler attains SR
executions by ensuring that the SG it maintains always rer_nai‘ns acyclic.

Suppose a scheduler has an acyclic SG. When it receives an operation o,
it begins the validation for o and checks the acyclicity of the SG assuming that
o has been executed. If the SG is acyclic, then the validation is- successful.
Otherwise it is failed. According to the result of the val1dat10n the scheduler

: executes, rejects, or delays the operatlon 0.

2.4.1 Behavior of Scheduler v
From the definition in section 2.3.4, an SG contains nodes for all comm1tted :
transactions and no others. Such an SG differs from that usually mamtalned
by a scheduler, because the latter usually contains nodes for all active transac-
tions, which are not yet committed. Therefore, serialization graph with active

transactions (SGA), which is defined as follows, is introduced.

Definition 2.10 For a history H, the serialization graph with- active imnsac—
tions SGA(H) = (V, E) is a'directed graph such that
V ={T; | Ti is active or committed transaction in H}
’ E_ = {(T,,T) | two operations o; € T; and o; € T conflict such that
0; <g oj where T;,T; € V'} _ . O

A sc‘h'.eduler maintains an SGA instead of an SG. Suppose a scheduler re-
ceives an operation p;[X] from the transaction manager. If a node for T} does
not yet exist in its SGA, then the scheduler first adds the node in its SGA. Next,
it adds an edge from T; to T for every prev1ously scheduled operation g; [Y] that
conflicts w1th p;[X]. Then the scheduler. traverses the SGA and checks acyclicity

of it.. Two cases are pOSS1ble

1. The r‘.esultlng SGA contains a cycle. This means that if p,[X] were to
be scheduled now (or at any pointin the future), the resultmg execut1on
would be non-SR. In this case, the scheduler rejects p;[X] and T; is aborted.
It sends a; to the data manager and,when a; is acknowledged, it deletes T;
and all edges incident with T; from the SGA. Deleting T; makes the SGA



acyclic again, since all cycles that existed involVed Tl Since the SGA is
acyclic, the execution produced by the scheduler — with 7; aborted —
SR NS T o |

2. The resulting SGA is still acyclic. In this case, ‘the scheduler can accept
pilX]. It can schedule p; [ X] immediately, if all conflicting operations previ-
“ously scheduled have been acknoWle’dged by the data m'anager' otherWise
(it must delay p;[X] until the data manager acknowledges all conﬂ1ct1ng

operat1ons

2.4.2 Addition of Edges to the Serializatiou Graph 3

The readset and wrzteset of transaction T are deﬁned as follows

Definition 2.11 For a transaction T and a h1story H readset(T H) {a: | T
has read from z in H} wmteset(T H) {z | T has written to zin H} |

That is, they are the sets of data items that have been read and ertten by Tin
history H. In SGT a scheduler detects conﬂ1cts between transact1ons in order
to add edges to the SGA To detect conﬂlcts for each transact1on T, the sched—'
uler must maintain the readset and . writeset of T. In a scheduhng algorithm,
readset(T) ‘and wrzteset(T) stores readset(_T, H) and writeset(T, H) respec-
tively where H is the history produced so’far. When an operation o o_f\a’tfans-'
action T reads (writes) a data item z, « is added to readset(T) (writeset(T)).
For a transaction T; such that z € writeset(T;) (z € readSet(Ti)L_J-wrivtveset(Ti)),
an edge from T; to T is added to the SGA. . o ' ,

2.4.3  Abortion of Transactions _
Described in section 24.1a transaction may be aborted by failure of Validation
When a transaction aborts, the DBS must wipe out its effects. The effects of a
transactlon T are of two kinds: (1) effects on data, that is, values that T wrote
~in the database and. (2) effects on other transact1ons namely, transact1ons that ‘
read values Wr1tten by T. Both should be obl1terated ' ‘
, The DBS should remove T’s effects by restormg, for each data item :
updated by T, the value z would ‘have had if T had never taken place.. Isay
that the DBS undoes T’s Write operations. Maintaining the restoring value
involves a complex problem o : o B
‘The DBS should remove T’s effects by abortmg the affected transact1ons
' vaortmg these transactlons may tr1gger further abortlons a phenomenon called :

. cascadmg abort
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244 Deletlon of Unnecessary Nodes .
In section 2.4.1, the SGA contains nodes for all actlve transactions and all com— :
mitted transactions. Of course, the number of commltted transaction increases
as time goes-on. That is, the size of the SGA grows very large and so does the
cost of ‘maintenance and traverse of the SGA. -T_herefore, the nodes which are
no longer necessary for scheduling, should be deleted from the SGA. An unnec-
essary node for scheduling is a node which is never involved in any cycle that
will be produced in the future. Suppose that a hlstory H contains transaction
T; committed by operatlon ¢;.- Since all operations in 7; have already ﬁmshed :
all transactlons containing a operation executed after c; must appear after T;
~ in any serial histories which is conﬂict-preserVing equivalent to H. Therefore,
no edges incoming to node T; are added to the SGA by opera‘t‘i'onsexec_uted,
after c;. When T; is committed if there are no edges incoming to T}, no cycles-
1nvolv1ng T; will-be produced in the future. In this case, node T; and all edges
outgomg from T; can be deleted from the SGA. Deletinig these node and edges |
may trigger another deletions. As a result of deletlon of edges outgoing from T;;
if all edges incoming to another node T are lost, then T; and aﬂ edges outgoing
from T} can be deleted. I call this, phenomenon cascadmg node deletzon In this
way, the node for committed transactlon is sure to be deleted at some t1me
and the size of the SGA does not BTOW S0 large A subgraph of a SGA made by

deletion of all unnecessary nodes is called a stored serialization gmph (SSG). ,

Definition 2.12 For a hlstory H, the stored serialization gmph SSG(H)
(V,E ) is the maximum subgraph of SGA(H) such that -
={T;| T, is commltted in H and T; has incoming edges or T; is actlve

in H} . , |
E = {(Tz,T) | two operations o; € T and 0; € T conﬂlct such that -
oZ<HOJWhereTZ,T EV} ' - e , o

Theorem 2.2 A history His SR iff SS’G’(H) is acychc

[Proof] (if) Suppose that SSG(H) is-acyclic. SGA(H) is also acychc because

any node T; € SGA(H) where T; ¢ SS’G(H) has no incoming edges_. Since
SG(H) C SGA(H SG(H) is also acyclic. By theorem 1, HisSR.

’ (only if) Suppose that a history H is SR. There exists a complete h1story :

VH € PH(H) such that H, is conflict- -preserving equivalent to a serial history.

~ Clearly H, is SR. From theorem 1, SG(H ) is acyclic. Since H,is a complete

history, ‘SG(H) = SGA(H.). That is, SGA(H,) is acychc too. Because H
contains H, as prefix, SGA(H) c SGA( ¢)- Therefore, SGA(H) is acychc |
Since SSG(H) C SGA(H), SSG(H) is acychc too. . O



In usual SGT algorithnr an SSG is used forischeduli’ng instead of an SG. For )
simplicity, the stored serialization graph (SSG) is referred as the serialization
graph (SG) in the rest of th1s thesis. -

2.4. 5 Using a Locklng Scheme v ‘
Under SGT, when a transaction T reads or Wr1tes a data 1tem z, the following

‘processes are executedr.
. _Edges are added to the SG.
ox is added tovrea’dset’(T) (w'rzteset(T))
| ‘e zis read frorn (Written to) the‘actuel ‘data.base‘.

If the above processes are mterleaved Wlth other conﬂlctlng operatlons the
SG mamtalned by the scheduler may contradict with SG(H ). For example,
suppose that a_,transactmn Ty tries to erte a data item . vwmteset(Tl) has
been updated, but the value of T has 16t been written into the actual database ,
When’ another transaction Ty reads z. ‘The edge from 7} to Tg' is then added to
the SG according to writeset(Th). However, Tj reads the value of the “old” z
that has not been updated by T;. The edge from T1 to T, contradicts with the
fact that T; reads x before T wrltes it. In order to avoid such a case, we use
a locking scheme. Before accessing a data item z, therea,dlock (writelock) of :
z is held by o to prohibit the execution of operations that conflict with o (line
2 of read phase and line 2 of validation phase). Then, the above processes are
exectited. The lock i is released when o finishes reading (writing) z. The locking |
scheme used here is dlfferent from that used in two—phase locking (2PL) Under .
2PL, the lock of a, data item z is held by a transaction T when T accesses z, and
is not released until 7 holds all required locks. Thus, the lockmg time depends |
on the internal processing of transactions. In the case of long-lived transactions; -
the lockmg time - ‘may be very long. On the other hand, under SGT, the lock -
is held durmg the SG updatlng and the data accessing. The lockmg time is
‘independent of the internal ; processmg of transactmns T herefore ‘the’ influence

of our locking scheme on the concurrency of transactions is much sru_aller than -
that of 2PL. | | ' o

2 4 6 Basic SGT Algorlthm : - .
Table 2.1 shows the SGT algorlthm The SG mamtamed by a scheduler is
'denoted as SG in Table 2.1, ' ‘
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» Tab1e>2‘._1: The SGT algorjthm
Basic algorlthm of SGT

1 if an operation o of transactlon T is recelved from the transactlon manager
(TM) then

2 if o = start then
3 add a node T to SG
4 start T’ . ‘ ’
5 send a reply such that T is started to the TM
6 else if o = commit then .
7 commit T
8 delete unnecessary nodes from SG ;
-9 send a reply such that T is committed to the TM
10 else /* 0o =read(z) or o = wmte(w) x
11 if 0 = read(z) then :
12 set the readlock ofztoT :
13 for each Tj such that z; € writeset(T};) do
14 . add an edge T; — T to SG -
15 - add z to readset(T)
16 else /* o = write(z) */
17 set the writelock of z to T ‘ '
18 - for each T such that z; € readset(T) writesvet(Tj) do
19 add an edge,‘T — T to SG - L .
20 add z to writeset(T) . '
21 ‘if SGT-validation(T) = true then
22 ‘ if 0 = read(z) then
23 read z from the database
24 . release the readlock of z
25 else /* o =write(z) */
26 write z to the database
27 release the writelock of
28 send a reply such that o succeeded to the TM
29 . else /* SGT-validation(T) = false */ '
30  Abort — {T} = -
31 - while there exists a transaction T} ¢ Abort which read from’
- Tj € Abort do ' :
32 Abort — AbortU {T}
33 for each T; € Abort do -
34 abort T .
35 delete T from SG
36 delete unnecessary nodes from SG _
37 ' send a reply such that all transactlons in Abo'rt are aborted to
~ the TM » |

Note: SGT-validation(T) is a function such that it returns true if a se-
rialization graph SG has no cycles mcludmg T and otherw1se it returns
;‘false IREE ' :
21



2. 5. Assumptlons
In thls thesis, we discuss the scheduling method for dlstrlbuted DBSs “Assump-
‘tions of d;strlbuted DBSs we deal with are described as follows, -

e FEach site is connected ’by e-large scale network. That is, the communica-

tion delay cannot be ignered and message broadcasts take large costs.

e Each s1te knows locatlons of all of data items. When a transaction T in- a.b
site s accesses a data item stored in another site s', T can d1rectly access

gl because s knows that the data item is stored in s

e The number of 51tes 1ncluded in a dlstrlbuted DBS is not so: large (about
10 SlteS)

) ‘M‘ost of transactions are local transactions,

~e Most of global transactions do not'ac'Ce_sS so mary sites. |



:Chapter 3
A Dlstrlbuted Graph Traverse
Method for Suppressmg

Communlcatlon Cost

3.1. Introductlon . . .
~ In this chapter the. method for traverse of the SG i in dlstrlbuted DBSs is.pro-
‘posed. It suppress the communication cost of dlstrlbuted SGT ,

It is known that Serlahzatlon Graph Testing (SGT) brings hlgher concur-
rency of transactions than other scheduhng algorithms. In dlstr1buted DBSs,
however, the SGT method needs much intersite ,cornm.umcatlon for checking
- acyclicity of the SG, because the SG has global structure. This communication
cost seriously affects the performance of DBSs This is the major dlﬂiculty in
using SGT for dlstrlbuted DBSs. '

In distributed DBSs which we are 1nterested in, most of transactlons are
local transactions. Performance of such DBSs is improved by suppressing com-
munication ‘cost required for Scheduling of local transactions We considered
a method for traverse of the SG in which no communrcatrons are required for
~ most local transactlons S ‘ o

~ For dlstrlbuted DBSs there are two types of scheduhng centmlzzed 3chedul— ' B
- ing using only one scheduler for the whole DBS, and distributed schedulmg usmg :
local schedulers. at all sites. Since centralized scheduling harms durability and ,
site autonomy of distributed DBSs, we adopted distributed scheduling. A sim- -
'ple way to 1mp1ement distributed SGT scheduhng is that each site has a copy
of the global SG. In this case, ‘however, frequent broadcasts are necessary for .
synchromzatlon of all SG copies. This means that large communication cost

s requlred for malntenance of the SG Hence we have chosen another ‘type of o



~ distributed SGT sched,uler, that is, each site maintai_ns a local subgraph of SG
which is concerned with its local data items. In this case, there exists a prob_-
lem how to detect glob‘al cycles, ‘i.e., cycles which do not‘appear in any local
| subgraphs ‘
| The detection of global cycle in the distributed SGT scheduhng is similar
to the distributed deadlock detection using wait-for gmph (WEG). Distributed
deadlock detection uslng WFG is studied by many researchers and a lot of meth-
ods have been proposed [10, 15,17, 18, 22,23, 28, 29]. In deadlock detection, a
cycle of WFG corresponds to a deadlock. That is, d1str1buted deadlock detec—
tion is cycle detectlon of the distributed WFG. However, there is an 1mportant
dlfference between the distributed SGT scheduling and the distributed deadlock
detection. In’ the distributed deadlock detection, any transactlon which is not -

" involved in deadlocks can be executed and committed regardless of the progress'

o_f the deadlock detectron. On the other hand, in the SGT scheduling, the SG is -
traversed to deternnne whether to execute an operation. That is, any operation
cannot be executed until its: SG trayerse completes. Hence the completion of
the ‘,check of vthe SG should be informed to related vsites as soon as possible.
In the distributed‘ SGT scheduling, it is difficult to detect the compietion of
checking of the SG which is eXecuted in a distributed manner. For this purpose,
we introduced fmctzonal tags In this chapter we propose the method for de--
tecting such global cycles using fractional tags. ‘We call our method Fractional
Tag method (FT) Under FT, each site has to maintain -only its local SG and
therefore the communication cost for maintaining the SG is suppressed.

We show the correctness of F'T and evaluate its performance by simulations-

in terms of the number of messages Which are needed for scheduling.

- 3.2. Dlstrlbuted Serlallzatlon Graph Testlng -
The distributed version of the SGT algorlthm in section 2.4.6 is presented in
- this sectron. The problem is how to maintain the SG in drstrlbuted DBSs. -

321 Dlstrlbuted Schedullng :
For d1str1buted DBSs, there are two types of scheduhng centmlzzed schedulzng -
using only one scheduler for the whole DBS and distributed scheduling usmg
’ vlocal schedulers at all sites. In the case of centralized scheduling, all operations -
are scheduled in the central scheduler. This damages the site autonomy of dis-
‘ trlb_uted DBSs. Moreover, centrahzed scheduling is less durable than dlstrlbuted

24



scheduling. In distributed DBSs, if one site crashes ‘other sites are 'still avail-
‘able except that they cannot access the crashed site. In centrahzed scheduling,
however, this is not always true. When the central scheduler crashes the whole
~ database stops and even local transactions cannot access local data items. In
this way, centralized scheduhng damages durablhty of distributed DBSs. ‘For
 these reasons, we consider that central scheduling is not sultable for dlstnbuted .
DBSs. Therefore, dlstrlbuted scheduling is discussed in this thesis.
’ When SGT is implemented as distributed scheduhng, there are two ways
of 1mplementat10n A simple way is that each site has a copy of the global SG.
In this case, maintenance of the SG costs too much. Each site should inform
all s;tes of all changes of the SG it maintains. That is, a site should broadcast
a' message to all other sites eveh ‘when the, site executes a local transaction.
" This means that the communication cost growé very much. Therefore, we have |
chosen another way. In the distributed SGT we propose, each site maintains a
‘ subgraph of the SG reflecting only conflicts on the data items Wh‘iCh are stored
in the site. The‘”subgraph of SG.is called local serialization graph (local SG).

Deﬁnltlon 3.1 For a. hlstory H and a 81te s, the local semalzzatzon graph
LSG(s,H) = (V,E) is the subgraph of SG(H) such that . .

V ={T; | T; is in SG(H) and T; accessed a d_ata item stored in s in H}

E = {(Ti,T;) | there exists two operations o; € T; and o; € T}, which
conﬁict for a data item stored in's such that o; <y o; where T;, Tj € V} O

In the scheduling algorithm we propose, LSG(s) stores LSG(S H) where
. H is the hlstory produced so far.

3.2.2 Node Stormg Site Group
In our dlstrlbuted SGT, each site maintains a local SG whlch contains all nodes
for transactlons that conflict with each other for data items stored in the site.

Node storing site group is deﬁned as follows.

‘ Deﬁnltlon 3.2 For a hlstory H and a transactlon T, the node stomng stite g'roup
NS (T H)isa group of all sites whose local SG has the node for transactlon T
“inH. -~ C » ‘ . : ~a

In an execution of a: Read or Wr1te operatlon of a transaction T, every
edge added to the SG is incoming to T- or outgoing from T Therefore, all sites
_ whose local SGs are changed by a Read or Write operatlon of T are 1ncluded in
. N S(T H ) ' ' ' ’
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In the scheduling algorithm we propose, NS(T, H) is maintained by each
scheduler in NS(T, H). Therefore, NS,(T) stores NS(T, H) in site s where H
is the history produced so far. NS, (T) can be maintained locally at s because
each site knows where each data item is stored (as described in section 2. 5).

- When s knows that T accesses a data item z, a site which stores z is added to’
N5,(T). |

3.2.3  Addition of Edg'es to the Serialization Grap-h o
As descfibed in section 2.4.2, a _scheduler maint‘ains readsets and writesets for
~ scheduling. In the case of the distrib.uted SGT which we propose, however, each

schednler cannot maintain readsets or writesets defined in'section 2.4.2 because.

" each scheduler does not know which transactions accessed data items in other

© sites. Instead ‘schedulers mamtam local readsets and local writesets.

Definition 3.3 For a transaction T, a hlstory H and a site s, - |
readset—local(s, T,H) = {x |z is stored in s and T has read from  in H}
writeset—local(s,T,.H) = {z | = is stored in s and T has written to z in

- In the scheduling algonthm we propose readset—local (s, T) and wmteset—‘

‘ local(s T) stores readset—local(s T, H) and writeset- local(s T,H) respectlvely

Wher.eH is the history produced so far. When an operatlon oof a transactlon

T is executed in s, s sends EDGE messages which inform all sites in NS (T,H)

that o will be executed. The site s; which received the message updates readset-

local(s T) or wmteset-local(s T) and adds edges to its local SG |

'3.2.4 Abortion of ’_I‘rans‘ac_tions E
When a transaction is aborted, othe-r'transactions which read from the aborted
transacti‘onsshould also be aborted. Ther‘efore, it is required to search the
~ SG and detect such transactions. Since each site does not maintain the global
- SG, this SG search should __be;done at any sites whose local SGs include the.
~aborted transaction Abortion of a transaction is done in the following way. If
a cycle is detected in the SG during the validation of T, the home site of T -
~(denoted s) aborts T and sends ABORTED messages Wthh inform all sites in_
'NS(T,H) that T is-aborted. Each site received the ABORTED message deletes

T from its local SG and searches transactions which should be aborted. If such

a transaction 7" is detected the site sends an ABORT message to the home
site of T (denoted s'). Recelvmg the ABORT message s aborts T' and sends ‘
ABORTED messages as above ' ‘ '

.} 2



- 3.2.5 Deletion of Unnecessary Nodes

As mentioned in section 2.4.4, the nodes which are unnecessary for schedulmg
should be deleted from the SG. In the case that each site maintains a local
‘subgraph of the SG the node deletion is a little difficult. This is because it
is impossible to determine whether a node can be deleted by analyzing a local ‘
SG. Even if a node has no incoming edges in a local SG, the node may have an
incoming edge m another local SG. To determine locally when a node can be

deleted, the home site of committed transactlon T mamtams the set of nodes'
- which should be deleted before Ti is deleted

Definition 3.4 For a transactlon T
before(T,H) = {T; | an edge (Tz,T) exists in SG(H)} , o
‘ before-local(s, T, H) = {T; | an edge (T,,T) ex1sts in LSG(s H)} o

‘ In the scheduling algorithm we propose,‘be f ore(T) stores be f ore_(T, H ) and
| be fore-local(s,T) stores beforeJo‘cal(s, T, H) where H is the history produced
so far. ,before—local(s, T) is locally maintained in site 5. before(T)is maintained
in'the home site of T as follows. When a transaction T is committed, the home -
site of T (denoted s) sends COMMITTED messages to sites in NS(T, H) A site
~s; which received the COMMITTED message makes the set be fore-local(s;; T)
and sends it back to s." s receives the be fore-local’s and sets before(T) to the -
sum of them. If before(T) becomes empty, s sends DELETE messages to sites in
NS(T,H). When a site s; receives the DELETE message, it deletes T' from its
~local SG and removes T from be fore(Ty)’s (for any Ti). If before(Ty) becomes
: empty,_ s; determines fhat Tk can be deleted and sends DELETE messages.

3. 2 6 Distributed SGT Algorlthm _
The distributed SGT algorithm which we propose is shown in Tables 3 1 and -
32, In the tables, messages are denoted as follows where [ 1s an operat1on T

is a transactlon and be f ore- local is a set of transact1ons

e an EDGE message M EDGE(O)

a reply for an EDGE message M REPLYz (o)

a COMMITTED message MCOMMITTED (T)

a reply for a COMMI TTED message M REPLYC (T be f ore- local)

an ABORT message M ABO RT(T)
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T1mT2 Ty { )Tgl T1UT2

Sites1 ) - the giobal 56 \Site 52
_ Figure 3.1: An ekample of a global cycle.
® an ABORTED message MABORTED(T)

® 3 DELETE message MDELETE(T)

The subtraction of sets is defined as follows |

» 'Deﬁuit_ion ’3.5 'Fortwq sets A and B, - L v S
'A—B={$|‘x€,Aaudm_¢B}ﬁ : o O

- 3.3. Fract1onal Tag Method

In thls section, 1t is con51dered how to traverse the SG mamtalned as descrlbed
in sect1on 3.2,6. We propose a method which we call Fractional Tag Method to

suppress ‘the communication cost for scheduhng

3.3. 1 Traverse of" Serlahzatlon Graph , , :

" In the dlstr1buted SGT algorlthm descr1bed in section 3.2. 6 each site maintains

“a local SG. In th1s case, it is poss1ble that all local SGs are kept acychc but the
global SG may 1nclude a cycle. For example cons1der the situation of Figure -
3.1. Though local SGs of site s; and site s, are both acyclic, there is acyclein
the global SG. Such cycles' are called global cycles: It is a problem how to detect
global cycles. We propose a method for traverse of the SG to detect global
cycles. Each local SG is traversed only when it is necessary to check whether
there is a cycle in the global SG. '

- In the algonthm descrlbed in section 3.2. 6 the SG is traversed in functlon

e SGT—Vahdatmn(T) The details of the funct10n is described later in section

3. 3 4. Roughly speakmg, the scheduler usmg otr method traverses the SG as
follows. ‘ ‘ - |
“Suppose that so far a h1story H has been produced and the scheduler of the
s1te 1 recelved an operatmn o of a transaction T from a transaction manager.
- Ifoisa READ or WRI TE operatmn then the scheduler sends the REQUEST
~ message to all s1tes in NS(T, H) to request checking whether T will be reachable
- from T itself in the1r local SGs after o is executed The site s is called the home

, szte of T.
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Table 3.1: The dlstrlbuted SGT algorlthm
The dlstrlbuted SGT algorlthm at site s |

‘ 1 ifan operatlon o of transactlon T is recelved from the transactlon manager
(TM) then
2 if o = start then
3 “ start T : ’
4 senda reply that T is started to the TM
5 else if o = commit then: '
6 commit T =~ :
7 send Mcommrrrep(T) to all sites in NS,(T) -
8 “wait until all Mpgpry,(before-local(s;, T)) are recelved

9 . before(T) — Ussens, ) before- local(sz,T)
10 . ifbefore(T) = ¢ then _
11 | send MDELETE(T) to all sites in NS,(T)
S 12 send a reply that T is committed to the TM
- 13 if o = read(z) or o = write(z) then
14 NS,(T) « NSs(T)U {s; |  is stored in site sJ}
15 send Mgpgr (o) to all sites in NS (T)
16 ~wait until all Mgrgpry, (0)’s are received
17 (if SGT-validation(T) = true then
18  if o= read(z) then
19 | read z from the database
20 - release the readlock of x
21 if o = write(z) then
22 " write z to the database
23 release the writelock: of z
.24 ~ send a reply that o succeeded to the TM
25 else /* SGT—Va11dat1on(T) false */
26 . abortT oy
27 - send MABORTED(,T) to all s1tes in V.S, (T)

28 » send 3 TesSage, that T is aborted to the TM

* Note: SGT—Vahdatmn(T) is a functlon such that it returns true if a seri-
allzatlon graph has no cycles including 7" and otherw1se it returns f alse. -
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Table 3.2: The dlstrlbuted SGT algorlthm (contlnued)

A site s; recelved a message M from site s does the following:

29 lfM MEDGE(O) then
- [* suppose that o = read(z) or o = write(x) */
30 NS, (T) « NS,,(T)U{s; | = is stored in site s;}

31  if z is stored in s; then .

32 Cif T ¢ LSG(s;) then

33 ~add a node T to LSG(s;)

34  if 0 = read(z) then

35 set the readlock of z to T .

36 - for each T} such that z; € writeset- local(s,,T) do
37 add an edge T; —» T to LSG(s;) -~

38 readset local(s;, T) — readset-local(sz, T)U {:c}
39  if o = write(z) then

40 set the writelock of z to T
41 . for each T such that z; € Teadset-local(sz, T,)u
- writeset- local(s;, T}) do .

42 add an edge T; — T to. LSG(S,) L

43 - writeset-local(s;, T) — wrzteset-local(sz, ) u{z}

44 send MREPLYE( ) to site 8
45 lf M = MCOMMITTED(T) then : o
46 send Mrgpry, (before- local(s,, T)) to 51te s
47 if M = M ABoRT (T) then ' '

48 abort T
49  send M aporrep(T) to all sites in NS (1)
50 send a message that T is aborted to the TM
51 lf M = MABORTED (T) then . :
52  delete T from LSG(s;)
53 for each before(T;) mamtamed in s; do

54 ~ before(T;) «— before(T;) — {T}
55 ~  if before(T;) = ¢ then
- 56 send MDELETE(T) to all sﬂ:es in NS,,(T3)

57 - Abort «— {T} : '
58 - while there exists a transactlon T, ¢ Abort Wthh read from T; € Abort _
in site s; do :

59 Abort — Abort U {TZ}
60 for each T; € Abort do
61 send M. ABORT(T ) to the home site of T}

62 if M = MDELETE(T) then
63  delete T from LSG(s;) ,
64~ for each before(T;) maintained in s; do

- 65 . before(T;) « before(T;) — {T}
66 if before(T;) = ¢ then

67 - send MDELETE(T) to all sites in. NS (T;)
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When the REQUEST' message from s; is received by a site s5, s, traverses
its local SG from node T. If T is reachable from T, then s, sends a CYCLE
‘message to the home site of T (site s1) that there is a cycle i in the global SG
and the traverse,ends,_ Otherwise for each node T; which is reachable from node

T, sy sends REQUEST messages to all sites in NS(T;, H) (except. sy itself) to
request checking whether T Wﬂl be reachable from T; (not T) in their local
SGs. If there are no sites to send REQUEST messages, then s, sends an END
message to the home site to inferm that s, sent no- REQUEST messages.
' Each site S; Wh1ch received the REQUEST message which mdlcates a re-
quest to check whether T is reachable from T;, traverses its local SG from T;.
| Since T; is reachable from T in s,, if T is reachable from T, then T i is reachable
from T. In th1s case, s; sends a CYCLE message to the home site and the
- -traverse ends with detection of a cycle in the global SG. OtherW1se s; sends
., REQUEST messages or an END message as 55 does.
‘ In this way, REQUEST messages are sent in turn When all sites cannot
send REQUEST messages, the traverse completes and it is guaranteed that the
‘ operatlon o doesn’t cause any cycle in the global SG. ‘ k
Flgure 3.2 shows an example of the SG traverse. In this example an SG
traverse for an operation of the transaction 7} is executed. The home site s;
“sends a REQUEST message to s, ‘because NS(Ty; H) shows thatthere is the
node.T; in t_he'site S9. S receives the message and tra'verses.its local SG. T;
is reachable from T; in the local SG. According to NS(Ts, H), s, sends other
-REQUEST messages to s3 and s4. Receiving them, s3 and s4 traverse their
~ local SGs. There are no reachable nodes from T3 in s3’slocal SG, then s3 sends
an END message to s;. On the other hand, 84 sends other REQUEST message
to s, because T} is reachable from T3 in s4’s local SG and 32 e NS(T,, H).
sy Teceives the message from s, and traverse its local SG. Now suppose that
the edge from T to T; (broken line in F igure‘3.2):does not exist. In this case,
only T is reachable‘from T, in the 1o¢a1‘ SG. However, T5 causesne REQUES T
messages because NS (T5,H ) includes s, only. Therefore, s, sends an END
- message to s;. In the case that the edge from T to Ty ex1sts T, is reachable
from T, in the local SG. This means. that there is a cycle 1nclud1ng T1 1n the :
global SG Therefore, s, sends a CYCLE message to 5. ‘

3.3.2 Fractlonal Tags |

In the method mentloned in sectlon 3. 3.1, the SG traverse completes when all

sites cannot send REQUEST messages. Now it is a problem how to notify the
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NS(Tq, H)=(s1. s3}

NS(To, H)={s1, 53}, " | R T4 )
NS(Tg, H)=(s2, 83, 54} .\H’T‘t
NS(Ty4, H)={s2, 54} Site 54

NS(Ts, H)={sp}
' ~ Figure 3.2: An example of SG traverse.

home site of the completion of the traverse. It should ‘be done as soon as possible
" because any operat1on cannot be executed until its val1dat1on ie. SG traverse
' completes For this purpose, fract1ona1 tags are 1ntroduced A fractlonal tag is
a fract1on ‘which is attached in a message. ’ o

In order to notify when traverse of the SG is completed fractlonal tags are

used as follows. Suppose s, is the home site of T and so far a history H has been
produced. When the function SGT—val1dat1on(T) is called, 51 sends REQUEST ‘
messages to all sites in NS(T, H) with the fractional tag 1/|NS(T, H)|-

_ Receiving a REQUEST message with the fractional tag t, the site sy tra-
_verses its local SG. If there are no sites to send REQUEST messages, then s,
“sends an END message to the home site: with the tag t Wh1ch is equal to the re-
ceived tag. On the other hand, if there are m sites to send REQUEST messages,
then s, sends the messages to them with the fractional tag t/m.

The home site stores the sum of the values of the tags of the recelved END
messages for each operation. If the sum amounts to 1, then the site concludes
-that no more REQUEST messages of the operation will be sent from any site.

The correctness of this algorithm is shown in section 3.4. " o

. Figure 3.3 shows an example of transfer of fracti.onal tags. In this example,

- the site s; passes the tag 1/2 to the sites s, and s3. Then s, returns the received

tag 1/2 to 5,. On the other hand, s3 divides the received tag into three and'
“sends 1/6 to three sites. Three sites received them returns the tag: 1/6 to s;.
The sum of tags received by s; is 1/2 +1/6 +1/6 +. 1/6 = 1. Clearly, the
‘numerator of a fractional tag is always 1. Therefore, a fractional tag can- be

1mplemented by only one integer which represents denominator.

‘3 3.3 Unnecessary Messages ,
'Consider the situation shown in Figure 3. 4 In the traverse for an operatlon of
Tl, the s1te 81 sends REQUEST messages ‘to the s1te sy-and s3 because T is-
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- tag=1/6
tag=1/2

W ——————END -
' _SSI:e e——_pEND ¢ tag=1/6
/'[: tag=1/8 \ .
{ \ Site” REQUEST
’ REQUEST s5
=1/2

- REQUEST
tag=1/6

v Flgure 3 3: An example of fractlonal tags.

REQUEST;
END '
o, -
REQUEST O
. T3

| Sitesg . © T3
‘Figure 3.4: An example of an useless message.

reachable from T1 ReCeivirl_g the message' s3 sends a REQUEST messagekto ’
sy because T3 is reachable from T5. Recelvmg the message from s3, s2 sends'
: REQUEST messages to sy and s3 because T, is reachable from Ts. Then s;

send_s a REQUEST message to s, again. This message is useless because the

same message has been sent before. To avoid-such a case, each REQUEST
k message includes the set of nodes which have already been traversed We call

the set track. Even when Tj is reachable from T in the local SG if Tj is included -
in the track of the recelved REQUEST message, REQUEST messages are not
«sent

3.34 Algorlthm

The proposed method is called chtzonal Tag M. ethod (FT) The functlon SGT—S :
Va11dat10n using FT for a transactlon T (denoted SG T—Va11dat1on rr(T)) is shown‘ .

» “in Table 3.3.

Followmg messages are used where 0 is an operatlon T and T is a trans- .
action, £ is a fractronal tag and Trk is.a set of nodes vmeyntlonedln section
333 B o | |

. a REQUEST message MREQUEST(T T t T’I‘k)

e . an END message MEND(T t)
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Table 3.3: A function SGT-validation(T) using FT |
‘A function SGT-validationpr(T) at site s

1 tg « 1/|NS,(T)|

2 Trk « {T}

3 sum 0

4 send MREQUEST(T T,tg, Trk) to all sites m NS,(T)
5 while sum < 1 do - , _
6 wait for a message M from other site

7 lfM MEND(T tg) then -

8 . sum « sum+tg '

9 if M = MCYCLE(T) then

10 - return false

1 return true

A site silreceived Mreguest(T, Teur, tg, Trk) does the followihg:.

12 if T, has no outgoing edges in LSG(s;) then
.13 send Mgnp(T,tg) to T’s home site -
14 else if T is reachable from T, in LSG(sz) then '
15 send Mcyorp(T) to T’s home site: '
16 else . S
17 for each T; € R( Teur) do : '
(R(Tewr) = {T | T is reachable from Tpr in LSG(S,) and T ¢ Trk})

1‘8 L otg (t9/|R( cur)')/(|NSs (T3)| - 1)
19 - Trk; < TrkU R(Te,)

20 send MREQUEST(T T;, th,Trk ) to all sites in NSSL(T) except s;

. a C’YCLE message Mcycrr(T,t) o

LSG(s) and NS,(T) are the_same as section ‘3.2._6'. -

3.4. Correctness
3.4.1 Correctness Proof

In this section, we show that SGT us1ng FT causes no deadlocks

Deﬁnltlon 3.6 A message M is held by s1te siff s recelved M and the process
for M has not completed yet. o N - D

Lemma 3.1 In the exeCUtion of fu'nct‘ioni SGT—V&]idathﬁ‘FT(T), the sum of the

_ follOwing values is alwsys_ 1 unless the function-_returns; false.



‘e fractional tags in all REQUEST messages of T’ held by sites or on the

N COIIlmuIllC&thIl hnks

' . fractlonal tags in all END messages of T received. by the home site of T

or on the communlcatlon links.

If the functlon returns f alse, the sum must be less than 1.

[Proof] When SGT-Va11dat1oin(T) is called, the home site sends the RE-
QUEST messages with the tag 1/INS(T)] to all sites in N.S(T') (hne 4) At this
time, the sum of the tags of all REQUEST messages is 1.

Suppose that a site s received a REQUEST message of ) w1th tag tg Three

‘cases are poss1ble

1.8 vsends_ an END message‘to the home site, s sends the message with the
tag which is equal to the tag of the received REQUEST messa‘ge (line 13).
~Therefore, the sum is not changed by the processmg for the REQUEST

- message

2. ‘s sends REQUEST messages to the other sites. The sum of the tags of
these REQUEST messages is. equal to tg (hnes 18 and 20). That is, the
| sum is not changed by the processmg for the REQUEST message in thls

case too.

3. s sends CYCLE messages to T ’s home site. The tag reeeived_ by sis‘not
~ sent and it is lost (line 15). Thereby the sum must decrease. This is the
only case that SGT-validationpr(T) returns false.

Th_erefoire,‘ the sum is 1 unless function SGT-validationpy(T) returns false.

and if the function returns f alse’ the sum must be less than 1. N

Lemma 3.2 When SGT—VahdamonFT(T) is called, REQUEST messages must
v stop to be sent eventually ‘ .
[Proof] At ﬁrst the number of REQUEST messages sent from T’s home site is

bbounded by the number of sites (hne 4). When the site s received a REQUEST
message with a node Tcur and a track Trk, s traverses all nodes those are
reachable from Tcm in its local SG. For each T; ¢ Trk, which is reachable from
Tcm, s adds T; to Trk (line 19) and passes REQUEST messages mcludmg the
new track (hne 20). Therefore, this new track 1ncluded in the passed messages -
s larger than that of the received. message. Slnce the number of nodes i in the

: track is bounded by | the number of nodes in the global SG, this message passmg

e must end eventually Ve WL e v o U
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- Lemma 3.3 In SGT-validationpr(T), vthe sum of the fractional tags in END
“ messages of 1" received by the home site amounts to 1 iff REQUES T messages
~of T stop to be sent unless SGT-validationpr(T) returns false. o
[Proof] (if) Suppose that _'REQUEST mesSagesof T stopped to be sent without
'i SGT—va]idation FT(T)‘returning false. 'REQUEST messages of T will disappear
eventually Therefore, by Lemma 3.1, the sum of tags of END messages of T
becomes 1 and all END messages of T should arrive at the home site of T'. |
(only if) Suppose that the sum of the fract1onal tags in END messages
Cof T received by the home site amounted to 1. Every REQUEST message or k
 END message has a posmve fract1onal tag, it follows from Lemma 3. 1 that no
- REQUEST messages are not held by any site or on the commun1cat1on link.
. Therefore, if the sum amounts to 1, then REQUEST messages_of T has stopped
to be sent. By Le'mma:‘3.1, SGT—Validatioini(T)_ does not return false. a

' Lemma 3. 4 Under SGT usmg FT, any operatlon o recelved from the transac-
tion manager must be executed eventually unless 7' is aborted.

[Proof] When operatlon o is received from the transaction manager, the sched—
uler calls _functlon SGT—vahdatlonFT. In the functlon,, a REQUEST message
is sent to n sites with the tag 1/n where n = |[NS(T)| (line 5)." Suppose that.
T is not aborted. This means _th'at SGT-validation did not return false. By
Lemma 3.2, REQUEST'mesSages must stop to be sent eventually. It follows
from Lemma 3.3 that the sum of the tags in END messages of T received by
‘the home site must amount to 1. Then the function SGT-validationgT . returns
true and o is executed. Therefore o must be executed eventually unless T is
aborted. Do . ' : } O

Lemma 3. 5 Under SGT usmg FT, every actlve transact1on must be committed

" or aborted eventually. . ’ '
o [Proof] By Lemma 3.4, every operatlon of a transaction T sent to scheduler
must be executed unless T is aborted. ' Therefore, if a transaction T is not

aborted T mnst be-‘committed eVentnally, otherwise it is aborted. o

. -Theorem 3. 1 No deadlocks occur under SGT using FT.
'[Proof] From Lemma 3. 5, no transactmns stop infinitely. Hence no deadlocks ’

occur. v _ - » E r , , O

k .3 4 2 leelocks
As descr1bed before, SGT us1ng FT causes no deadlocks However SGT (whether

v usmg FT or not) may cause l1velocks that 1s, there may be some transact1ons
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which repeat restart 1nﬁn1tely When there is a cycle in the SG ‘some transac-
tions in the cycle are aborted, then the cycle disappears. leelocks may occur
‘when all transactions in the cycle are restarted by abortion, and the same cycle
is produced by restarted transactions. Therefore, the livelocks can ‘be av01ded
by selecting one transaction in a cycle and prevent it from abortion. Th1s can

be eas1ly 1mplemented by modlfylng basm SGT algorlthm

3. 5. Evaluatlon _
FT is de31gned to suppress the communication ‘cost of the d1str1buted SGT
: scheduhng when most transactlons access only local dataitems. In this section,
we evaluate the communica;tioh cost of SGT using FT (denoted SGT—'FT)”and
~ compare it with that of the sim.ple'implementatien of distributed SGT, i.e., all
sites maintain a global copy of the SG. Therefore, we call it SGT with Global
Copy (SGT-GC). SGT-GCis shown in Tables 3.4 and 3.5. In SGT—GC, each site

| . s maintains SG(H), readset(T, H), write.set‘(T H) and before(T, H) (for any

T) locally. In Table 3.5, they are denoted by SGS, readset, (T), writesety(T)
~and be fore, (T) respectively. : . .
In this section, n denotes the number of sites in the database system and

~ length(T) denotes the number of operations in- transaction T.

3.5.1 Comparison in Communication Cost
The communication cost depends on the number of messages needed for schedul-
1ng transactlons In this section, the number of messages needed for 'scheduling
“of SGT- -F'T is compared with that of SGT-GC. Since messages sent from a site
to itself do not require any communication, such messages-are not counted.

In the case of SGT-FT, the number of messages differs much among trans-
actions. Suppose that so far a history' H has been produced. If no cycles are

detected, then the number of messages for scheduling One operation is

'MSQ‘Opvl"FT“(T,H) = 2- (INS(T H)|—1 + Z (INS(TZ,H)I—I)i
[ ‘ - TeR(TH) : _

Y (INS(E,H)I—l)
- Ti€RE(T,H) '

where

R(T, H) = {T}U{T;|T;is reachable from T in SG(H)} | _
 RE(T,H) - = {L;|T; E:R(T«; H) and T; has no outgoing edges in SG(H)}.
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Table 3 4: The SGT GC algorlthm
The SGT- GC algorlthm at site s

1 ifan operatlon o of transactlon T is recelved from the transaction manager

- (TM) then
2 if 0 = start then
3 start T ‘ '
4 - - send a reply that T is started to the TM
5 else if 0 = commit then v :
) ~commit T -
7 send Mcoyarrep(T) to all sites
8 send a reply that T is committed to the TM
9 if 0 = read(x) or o = write(x) then
10 . send Mgper(o) to all sites
11 “if T is reachable from T in SG, then
- /* SG, has no cycles including T * /
12 ' if o= read( ) then ,
3 read z from the database
14 : release the readlock of x
15 if 0 = write(z) then
16 " write z to the database
17 _ release the writelock of 2
18 “send a reply that o succeeded to the TM
19 else /* SG, has a cycle 1nclud1ng T */
20 ~abort T -
.21 s send MABORTED(T) tO all sites .
22 . send a message that T is aborted to the TM -
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Table 3.5: The SGT- GC algorlthm (contlnued)
A site s;. received a message M from site s does the follovvmg

C23if M = MEDGE(O) then :
‘ /* suppose that o = read(z) or o = wmte(m) */
- 24 if = is stored in s; then- -

.25 if 0 = read(z) then ‘
- 26 - set the readlock of z to T
27 if 0 = write(z) then .
28 - set the writelock of z to T
29 - if T ¢ SG,, then '
30 add a node T to SGy;
31  ifo= read(z) then ‘
32 for each T such that z; € wrztesetsl (T) do
33 add an edge T; — T to SG,, »
34  readset, (T) «— rea,vdset (T)u {m}
35  if o= write(z) then | B
36 - for each T such that x; € readset,, (T;) U writeset,,(T;) do
37 . add anedge T, — T to SG,, S
38  writeset, (T) « writeset,, (T )U {z}

39 if M = MCOMMITTED(T) then
40 ifbefore, (T) = ¢ then

41 delete T from SGy,
42 - for each before, (T) maintained in s; . do
43 ‘befores (T;) — befores, (T;) — {T}
44  if befores,(T;) = ¢ then
45 . ‘ ‘delete T; from SG,
46 lf M= MABORT(T) then
47 abort T

48 send Magorrep(T) to all 51tes ,

49 send a message that T is aborted to the TM
50 if M = MABORTED(T) then '

- 51 delete T from SG,.

52  for each befores, (T) do -

53 befores(T;) « before, (T;) — {T}

54 . ifbefore, (T;) = ¢ then .
.55 delete T; from SG;,

56  Abort — {T} '
57 while there ex1sts a transaction T; ¢ Abort which read from T} € Abort
in site s; do ..

58  Abort «— AbortU {T;}
.59 for each T; € Abort do . : ‘
- 60 - send MABORT(T) to the home site of T;



The first term of MsgOprpr(T, H) is the number of EDGE messages and their
replies. The term © ‘ ‘
- second term is thenumber of REQUEST messages. The third term is the num-
ber of END mess_ages. Consider a site s which received a REQUEST‘.message

~of an operation of transaction T'. s traverses its local SG and sends REQUEST

—1” ‘means the exception of a message send to itself. The

messages or an END message. When the node from which the traverse starts,
“say T;, has an outgomg edge, REQUEST messages are sent. The number of
REQUEST messages which are sent at this time is

2 (Vs .H)l- 1)
T;€ERL(T,H,s) .

_‘where,; .
RL(T,H,s) _;' {T; |vTi is reachable from T in the local SG of s}. .

" The term “~17 means that a REQUEST message is not sent to s itself. The
second term of MsgOprpr(T, H) is derived from the fact that U, RL(T, H, s) =
R(T,H). An END message is sent when 7; is in RE(T, H), that is, T; has no
outgomg edge. Therefore the third term of M sgOprpr(T, H) is obtained. If

there is a node ‘which has two or more paths from T in the SG the number

of messages is- more than M ngerT(T H ) because the node is traversed re-

: peatedly This extra messages can be removed by a little modification of the -

algorithm..

" Definition 3.7 A transaction‘T is strictly-local iff T and all transactions reach- 'k ’
able from T\in the SG access only the local data items. B 0

The number of messages which- SGT-FT needs for schedulmg a transaction T'
* (when T'is not aborted and restarted) is v

Mngrin(T H) = length(T) - M sgOprpr(T, H) +3. (|NS(T H)| — 1)

The second term of M ngrn FT(T H)is the number of COMMI TTED messages,

: thelr replies and DELETE messages.

In the case of SGT-GC, each site malntams the global SG. Therefore
EDGE messages are always sent to all sites. However no messages are. re-
: qulred for traverse of the SG Moreover node deletion can be done locally. The
number of messages which SGT-GC needs for scheduhng a transactlon T (when '

Tis not aborted and restarted) is
MsgTrnge(T,H) = length(T) (n—1)+@m—1)

40



- The term “~1” in both (n— 1) s means the exception of a message send to 1tself
The first term is the number of EDGE messages. EDGE messages are sent: for
each operation. The second term is the number of COMMITTED messages
They are also sent to all sites. ' R ’

- MsgTrnpr(T, H) may exceed M ngrnGc(T H ) when T and reachable
transactions accesses data 1tems in many sites. However, if T is strlctly-local
then Mngrin(T,H) 0 because INS(T H) =1 and |NS(T,,H)|
for any T; € R(T,H). That is, T requirés no communication for schedulmg
If many transactions are strictly-local, SGT-FT is useful in suppressmg the

commumcatlon cost of the d1str1buted SGT

'3 5.2 Overview of Slmulatlons .
‘To examine quantitatively usefulness of SGT FT in comparlson with SGT-GC
we execute simulations. The number of messages required for: _scheduhng is
“evaluated. ’ ' o " . ’ «
For s1mphcrty, a transactron is regarded as a strmg of operatlons in the-' :
_experiment. , ' B .
Locahty of data access is the most 1mportant factor that affects the per-
formance of SGT-FT. Localzty is defined as the ratio of local transactlons in all
executed transactlons ’
It is assumed that there are 10 sites in the dlstrlbuted database system

Moreover we have followmg assumptlons
1. 100»d’ata items are stored in one site.-

2. The transaction size is fixed; that is, all transactions contain 8 read /write.

~ operations.
3 25%. of all or)eratjons ’are write opérationsL a
- 4. Each global transaction accesses at most 3 sites.
5. All messages are recel\red in the order they are sent

The SGT-GC. scheduler which we 1mplemented does not wait for rephes of the
broadcasted messages. Without the assumptlon 5, SGT GC needs reply mes-
sages to make sure that broadcasted messages are received. It causes’ much

" increase of the number of messages in SGT GC. Therefore, the assumptlon 5 is

in favor of SGT-GC.
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‘ We 1ntroduced several types of messages in section 3 3 4 for SGT FT In
» ‘lmplementatmn, additional types of messages are used to abort - transactlons :

“and delete unnecessary nodes from the SG. -

3.5. 3 “Simulation Results
We compared SGT-FT with SGT- GC in terms of the number of 1 messages needed
for scheduling. . The experiments mvest1gated the effects of variations in data
'_locahty of transactions. - o ' o 3

F1gure 3.5 deplcts the average number of messages which was needed to
execute one transaction. The average number of messages under SGT- FTis less
than that under SGT-GC. Under SGT-FT, t.he number of messages decreases
as locality grows, while it is almost fixed under SGT-GC: This result: shows that
'SGT- FT is much more efﬁc1ent than SGT-GC when locahty is high. '
| ~ For each transaction, we measured the number of messages which were
sent for scheduling the transaction. Figure 3.6 depicts the distribution of these
numbers of 100 transactions in low locahty (locahty = 20%) Under SGT-GC,
most transactlons needs 80 ~ 90 messages;, Under SGT-FT, the numbers of -
messages are widely d1str1buted Flgure 3.7 deplcts the same distribution in
high locality (locality = 80%). Under SGT-GC, the distribution is almost the
same as that in Figure 3.6. Under SGT-FT, it is concentrating .i'n‘the range of
0 ~:10 v'mesﬂsages This 'shows that most local transactions need few messages in

SGT-FT.

3.6. Conclusmns

In this chapter, a scheme for ma.mtenance and traverse of the SG in dlstrlbuted
“DBSs was proposed to suppress the communication cost of SGT.

| In order to suppress the commumcatlon cost of maintenance the SG, each
~ site maintains only a local subgraph of the SG ‘which 1s4concerned Wlth its

local data items. However, acyclicity of the global SG ‘(':annot lrbe examined
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only by analyzing a local sul)_graph of the SG. It is too costly to compose the
~ global SG to check acyclicity. In the propose_d scheme, the global SGrs not -
composed A traverse of the SG is performed through message passing among
‘sites which maintain local SGs requ1red to check acycl1c1ty of the global SG.

Since every sites are not always involved in the traverse, communication cost
can be suppressed. Espe01ally, most local transactlons are scheduled without
any communications:. Moreover several messages can be sent to d1fferent sites
vvs1multaneously Therefore a traverse of the SG may be executed in parallel at i
~ several sites.” The problem is how to detect the completlon of a traverse of the
SG to, related sites as soon as possible. This is difficult because a traverse of the
- 8G is executed at several sites and sites 1nvolved the traverse are determined
dynamlcally For this purpose, fractiona) tags are introduced.. A fractlonal tag
_fls a fractlon which is attached to each message. The site which started an SG

traverse can realize that the traverse is completed by conﬁrmmg that the sum -

- of fractional tags attached to messages it received is 1.

The performance of SGT w1th FTis compared w1th that of the 31mple SGT‘ ‘
in which each site maintains the global SG by s1mulat1ons By the s1mulat10n-

results, it is corroborated that the effect of FT is large for the databases in



which local transactions are dominant.
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Chapter 4

| A Schedulmg Algorlthm for |
| Suppressmg- Scheduling Cost

4 1. Introductlon
In this chapter, a variant of SGT is presented It is proposed to suppress the
effect of the scheduhng cost to the system performance. " '
Usmg FT scheme described in chapter 3, the communication cost for schedul-
ing can be suppressed for local transactions. Nevertheless, the communication
cost is still large for global transactions. In order to alleviate the effect of the
~scheduling cost, decreasing the number of Validations is useful. Only one val-
idation is done for each transaction in SGT certification, while a validation is
required for each operat1on in SGT. This is why we adopted SGT certification.
Under SGT certification, a scheduler traverses the SG only once for each trans-
action. Thus the scheduling cost»of SGT is suppressed. The drawback in SGT
certification is that the abortion of a transaction is delaYed until the transaction
is -about to commit. This delay of abortion is undesirable because it increases
the waste of execut1on tlme To make matters worse, it also i 1ncreases the pos-
sibility of cascadmg aborts. Cascadmg aborts brmgs more abort1ons and the

“abortions may caise another abortions. Therefore, it is s1gn1ﬁcant for SGT cer-

. t1ﬁcat1on how to avoid such cascadmg aborts. One of cert1ﬁcat1ons called occC -

[19], gave good suggestmns Unlike other cert1ﬁcat1ons no cascadmg aborts oc-
‘cur under OCC. It is the feature of OCC that it first performs write operations
to internal buffers and the values are then written to the actual database at
the term1nat10n of the transact1on that wrote them. Slnce the values in the
buffers cannot be accessed by other transactmns, write operat1ons are deferred ‘
pract1cally We con81dered applying this feature of OCC to SGT cert1ﬁcat1on
and proposea variant of SGT In our algonthm substantlal wr1te operatlons are .
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deferred as in OCC Therefore we call it SGT with Write Deferrmg (SGT-WD)..
The merit of SGT- WD is that it suppresses the number of abortlons desplte of
its fewer validations than that of SGT. The fewer validations means_ the smaller
 effect of scheduling cost to system performance in distributed SGT; Moreover,
it is the featnre‘of SGT-WD that data items which is written by a transaction ”

T are actually updated only when T'i is sure to be committed. Thus data restor-

ing is unnecessary when transaction is aborted. This is another large merit of

SGT-WD.
| - In this chapter we present the SGT WD algorlthm and show its correct- ‘
'ness We consider that its merits are apparent especially in distributed database
systems that need communications for scheduhng Therefore, we evaluate the
- performance of SGT- WD, SGT, and SGT cert1ﬁcat10n by 51mulat10ns on d1s- '
~ tributed database systems. ' : :

4.2. Certifications |
Under usual scheduling algorithms, every time a scheduler receives an operatlon
the scheduler does validation and decides Whether to accept reject, or delay the
- operation. Under Certifications, a scheduler can immediately schedule each op-
ération it receives. When the transaction is about to,commlt, it does validation
" for the whole transaction. If it is concluded from the validation that all is well,
then the transaction is committed. If it is detected that it has inappropriately
scheduled conflicting operations, then the transaction should be aborted. In
this way, operations are aggressively scheduled nnder CertiﬁCations in the hope
that no conflicts will occur. Therefore, the processing time of transactions is
shorter than in other scheduling algorithms. ’ ' , .
On the other hand, operations are scheduled even 1f they cause loss of
cons1stency, this is not detected until vahdat10n which is done at the end of -
the transaction. Therefore the abortion of a transactlon tends to be delayed.

This delay of abortion is undesirable by two reasons. First, when a transaction -

is aborted the execution tlme of the transaction is wasted. Delay of abor- .

tion increases this wasted time. Second, if a transaction T Whlch ‘should be
aborted continues its execution, other transaction 7’ may read from T before
T is aborted. When T is aborted, T’ should also be aborted, that i is, cascadlngb
abort occurs. In thls way, delay of abortlon 1ncreases the poss1b1hty of cascadmg o
~ aborts. ' '

Several types of Certlﬁcatlons has been proposed They dlffers in the way of
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validation. Locking-based Certification [14] uses optimistic locks which works as
locks used in 2PL. Timestamp-based Certification [5][7][14] [28](32] uses times-
- ‘tamps for validation. Cert1ﬁcat1on which uses 'SGT for validation has also been
proposed [4] [6] [32]. We call it SGT certzﬁcatzon In order to suppress the effect
of the cost for traverse of the SG, we developed an algorlthm based SGT certifi-
* cation. AmAOng drawbacks of Certification approach, we considered that increase :
of cascadmg aborts is'most serious. Cascadmg aborts bring more abortions and
they may cause another abortlons Such a cascade of abort1ons seems to affect
the throughput of DBSs seriously. Therefore it i is studied how to 1mprove SGT

certrﬁcatmn in order to avoid such cascadmg aborts

4.3. Optlmlstlc Concurrency Control

One of Certifications, called Optzmzstzc Concurrency Control (OCC) [19], gave
good suggestlons for _1mprovement, of SGT certification. - Like other Certifica-
tions, an OCC scheduler aggre"s'sively s‘chedulesoperations The unique feature
of OCC is that it defers substantial write operat1ons by using internal buffers.

In OCC, an executlon of a transactlon T is d1v1ded into- the followmg three

. phases:

Read phase: In this phase, all read operations are executed immediately, and'
‘are completely unrestricted. All ‘write operations take place in 1nternal

buffers that cannot be accessed by other transact1ons

Va_lidation 'phase' In this phase, validation is performed to determine Whether
- the changes made by T' will cause 1ncons1stency in the database. If not

the validation is successful; otherw1se it fails.

 Write phase: In this phase, the Values in internal buffers are wrltten into
the actual database At this t1me the mod1ﬁcat1on made by T become_ o

effective. T comm1ts at the end of the phase

A transaction T first enters the read phase. Wherr T is about to execute a
‘ comm1t operation, it enters the validation phase. If the validation succeeds, T'
enters the wrlte phase and is committed. Otherw1se T is aborted and restarted.
In OCC, in order to verify that ser1al1zab1hty is preserved the scheduler
explicitly assigns each transaction a unique integer called transaction numberr' _
¢(¢) during the course of its execution. The meaning of transaction numbers in
val1dat1ons is as follows there must ex1st a serlally equ1valent executmn in which -

transaction, T comes before transaction T; whenever t(z) < t(5): Transactmn
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numbers arevass_igned at the end of the read phase‘. In the validation phase, the
validation condition is checked. readset(T) and writeset(T) are defined as in -
section 2.4. 2. For each transaction T; with transaction number #(5), and for all -
T; Wlth t(3) < t(): one of the'following three conditi‘ons must hold.

1. T completes its erte phase before T starts its read phase

2 wrzteset(T )ﬂreadset(T )is empty and T completes its wr1te phase before

T; starts its write phase.

3. writeset(T) N (readset(T;) U writeset(T )) is empty and T; completes its
read phase before T} completes its read phase

If none of above three conditions hold for some Ti,.the validation of T} fails. For
more details, see Kung and Robmson[lgl L

OCC checks the consistency accordmg to overlappmg of concurrent exe-
cutions. The concurrency of transactions under _OCC. is not so high as under
SGT. ” I o

OCC s advantage over other Certlﬁcatlons is that an abortlon of a- transac— =
- tion affects no other transactions: erte operations are executed on the actual
database only when the transaction is sure to be committed. ‘Therefore, when
a transaction aborts, there are no data items modified by the transaction. Ac-
cordingly, no more abortions are caused by the abortion. That is; all executions
'produced by OCC are guaranteed not to cause cascading aborts. We call such
executlons cascadeless. 1t is also said that the executions avoid cascading aborts.

‘Regarding transaction numbers as a kind of t1mestamps the validation of
OCC- resembles that of Timestamp-based Cert1ﬁcat1on As described above,
: however ‘OCC is more restrictive and therefore concurrency provided by OCC

is lower than Tlmestamp-based Cert1ﬁcat1on

4.4. Proposed Algorlthm
We apply the OCC approach to SGT cert1ﬁcat1on and propose a new algorlthm :

that overcomes the d1sadvantages of SGT. The 1mportant points are as follows:

1. All operatlons are scheduled 1mmed1ately and they are valldated later
Therefore the schedulmg cost of transactlons is smaller than that of SGT.

2. Write operatlons are deferred until the val1dat10n is complete.. Asa result

executlons produced by this alg0r1thm are cascadeless



- We call our algorithm Serialization Graph Testing with Write Deferring (SGT-
“WD). The SGT-WD algonthm is shown in' Table 4.1." Like OCC;, SGT-WD .
divides the execution of a transaction into three phases For simplicity, Table
4.1 shows the algorithm' for centralized scheduler. It is easily modified to the

distributed version as shown in section 3.2.1.

- 4.5. Correctness |

In this sectlon we show the correctness of SGT- WD The correctness of the
usual SGT is glven by Theorem 2.1. Though SGT- WD ‘also uses the serlal- ”
ization graph for scheduling, the correctness of SGT- WD is notshown by the
‘theorem. Since an SGT-WD scheduler defers Write operations of a transaction,
the execution order of operations differs from the original transaction. There-
fore Theorem 2.1 does not hold 1mmed1ately for SGT-WD. The correctness of
SGT- WD is shown in thls sectlon S

‘Deﬁmtlon 4.15 For each transaction T; 1n H, a wri_te-deferred ‘tra'nsactz'on‘ Twd

is'a transaction such that
o..Ti“’d has the same set of operations as TZ
. _j;Wd"s read operations are execited in the same order as those of T;.
o TP¥s write ope'rations.are”e)‘cecuted after ifs iast read‘ operation.~ |
o | Ti“’d writes the sarhe values to data itehl_s as T;. -
Note that T} ‘and Tffl read and \;&fhite the same values.

Definition 42 For a serial history Hy, a write—deferred serial hiStory H;”dv is a
“history which is derived from H, by-replacing any T,-_ € Hs with T,

Lemma 4.1 A history HY¢ preserves database cons1stency

[Proof] Each transaction T*? € HY? read and write the same values as cor-
' respondmg T; € H;. From the definition of H“’d T“’d and T; appear in the
same order in each hlstory ‘Therefore, H; wd hag the same effect on database_'
as H, does. Slnce H; preserves database cons1stency, H’”d preserves database

‘.cons1stency : S L S P

.v’4.9. :



Table 4.1: The SGT- VVD algorlthm

when a transactlon T is in the read pha,se

1 lf an operation o of T is recelved from the transactlon manager (TM)
then '

2 if 0 = start then »
3 add a node T to SG .
4 start T
5 send reply such that T is started to the TM
6 else if 0 = commat then : :
7 T enters the validation phase
8  else if 0 = read(z) then -
9  set thereadlockof z to T =
10 for each T; such that z € writeset(T;) do
11 add an edge T; — T to SG o
12 . add z to readset(T)
13 write z from the actual database
14 release the readlock of z .
15 send reply such that o succeeded to the TM
16  else /* o= write(z) */ , g :
17 store z to an internal buffer
- (do not add edges to the SG here)
18 send reply such that o succeeded to the TM '

when T is in the validation phase :

1. for each x; Wthh is stored in internal buffers by T do
2 set the writelock of z; to T .
3 for each T} such that z; € readset(T ) U wmteset(T) do
4 add an edge T; — T to SG
5 - add z; to wmteset(T) |
- 6 if SGT-validation(T, SG) = true then
"7 T enters the write phase
8 else /* SGT-validation(T) = false */
9 - delete the node T from SG
‘ 10 abort T
" when T is'in the Write phase . -

1 for each z; stored in internal buffers by T do -
2~ write z; to the actual database

3 release the writelock of z; -

4. commit T '

5 delete unnecessary nodes from SG -

6 send reply to the TM such that o succeeded
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Theorem 4.1 Let H be a history produced by SGT- WD SG(H ) is,acyclic iff
H preserves database consistency. o .
- [Proof] Table 4.1 shows that although wrlte operatlons are deferred the exe-
. cuted transaction writes the same value as the original transaction in SGT-WD.
This means that an SGT- WD scheduler executes T¢ instead of T;. Therefore
H is an executmn in which T“’ds are executed concurrently For SGT-WD,
Theorem 2.1 says that SG(H) is acyclic iff one element of PH (H) is conﬂ1ct
equ1valent to a write-deferred ser1al hlstory HY, Since H wd preserves database
cons1stency from Lemma 4.1, SG(H) is acyclic 1ff H preserves database consrs_—

tency. : ' S S :». T o

As mentioned in sectron 2.4. 5 SGT- WD uses readlocks and writelocks to
execute read /3 erte processes without interleaving with other confhctmg opera—

: t1ons Therefore the following theorem is derlved 1mmed1ately

Theorem 4. 2 SG mamtarned by an SGT WD scheduler 1s always equal to
W-SG(H) | ' , S R o 4 O

The above two theorems show- that an SGT-WD scheduler always produces

' serlahzable execut10ns

4.6. Evaluation

4.6.1 Comparison by Examples

In this sectlon we compare SGT—WD with OCC and SGT cert1ﬁcat1on To
explam the features of the two algorithms, we show some examples of concurrent

executions in figures. In the figures, the following symbols are used:
.S denotes the start of the transaction.
e R(z) ( (z)) denotes the read (erte) operat1on on. data 1tem z.

e V denotes the vahdat10n It 1ncludes the vahdatlon phase and the subse-

' quent write phase
e C denotes the com_m;itment of a transaction.
e A denotes the abortion of a transa‘ction.f

Flgure 4.1 shows concurrent executrons of transactmns produced by OCC and - -
SGT WD respectrvely In the case of OCC, since readset(Tz) and wrzteset(Tl) _
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| 'Figure 4.1: Comparison b.etween OCC and SGT-WD ;

conflict, condltlon 1 in section 4. 3 must hold in the valldatlon of Tz However, -
T, starts its read- phase before T completes its wrlte phase Therefore, the
vahdatlon fails and T, is aborted and restarted. ' '

In the case of SGT-WD, since conflicts between Ty and T2 cause no cycles
. in the SG, the vahdatron is successful and Ty is commltted In this s1tuat10n,
the processing t1me of Ty under SGT—WD is shorter than that under OCC.

’ Generally, suppose that read (z ) of a transaction T; is scheduled after write (:r)
of a committed transactlon T;. Under OCC if T; has been started before T;
was commltted the validation of T; fails and T; must. be aborted In the case of
SGT- WD the validation of such 7} succeeds unless T;, writes the same data item.
Such a situation happens frequently with database systems in which process-
1ng time of transactions tend to become long This fact shows the advantage B
of SGT-WD over OCC. The class of executlons produced by SGT-WD con-
tains properly than that of OCC because the validation of SGT-WD is based
‘ strlctly on the definition of serlahzablhty, which is a correctness crlterlon both
algorithms use. ’ v ’

‘Figure 4.2 shows an executlon produced by SGT certlﬁcatlon and SGT-
WD. Suppose that a transaction T} is involved in a cycle 1nc1ud1ng other trans-
actions.(not Ty) and is aborted. Consider SGT certlﬁcatlon first (top of Figure
4.2). A transaction T; is aborted by the failure, and then T3, Which read the
» data 1tem & ‘written by Tl, must also- be aborted that is, a cascadmg abort -
occurs However, since T, has already been commltted when T, is aborted,
T, cannot be aborted and the database can 1o longer recover to a consistent
state. ‘This shows:that SGT certlﬁcatlon may produce executions that are not
recoverable To make the execution recoverable SGT certlﬁcatlon should defer-
the comnnt of T unt11 T; is comrnltted or aborted (as shown in the middle of

'Flgure 4.2). We call this deferment commzt waiting. Hereafter, we assume that :

52
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Figure 4.2: 'Comperison of SGT '_ce‘rtiﬁc"ation and SGT-WD (case 1) |

SGT cemflcatlon : Serialization Graph

T—>T2

time

Figure 4.3: ‘C%omparison of SGT certification and SGT—WD (case 2)

SGT certification always carries out commit waiting if necessary. On the other
hand, SGT-WD avoids suoh an execution hy deferrihg the write operation of Ty.
"Under SGT-WD, z is not modified when T reads it; while T, reads x modified
by T; under SGT certification. Therefore under. SGT WD Ty does not need to
be aborted when Tj is aborted Clearly, SGT WD is more desirable than SGT
certification in th1s case. Con51der another executlon shown in Figure 43. In
this case, we assume that there are no tr_ansactlons except Ty and T,. Under
SGT certification, Ty and T, do not form a cycle. Under SGT—_»WD,, however_,
- a cycle is formed, because the real execution of W(y) of T, is deferred until
. the wrlte phase Therefore T, should be aborted and restarted. In the case of
- SGT certlﬁcatlon such-a cycle is not formed and neither T} nor T is aborted.
Therefore, it may be concluded that SGT certlﬁcatlon has an advantage over
: SGT WD in this case. However there is commit waiting for SGT certification.
That is, under SGT certlﬁcatlon the commlt operation of T2 must wait until-

‘T’lvrs;commrtted. This means that‘ a transaction waits for another transaction.
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Figure 44 Comparison of SGT,‘certiﬁcation and SGT-WD (case 3)

' Accordingly,'the' merit of certiﬁcations that"aggressively' schedule operations is '

damaged. - On the other hand no transactlons wait for other’ transactions in -

"SGT-WD. In this case, it is dlfﬁcult to say which algorithm is more des1rable
The commit waiting mentioned above is also necessary for usual SGT.

Moreover, most scheduling algorithms (mcludmg TWO—Phase Lockmg and Times-

tamp Ordering) need this type of commit waiting to maintain the recoverability o

of executions[4]. Under SGT-WD, no commit waiting is needed, because all
: 'transactlons read only data items ertten by commltted transactrons ThlS is
- one of the merlts of SGT-WD.-
' In the case of Figure 4.4, SGT-WD is clearly worse than SGT certification.
Under SGT certlﬁcatlon, Ty and T3 do not form a eycle, and both are committed
immediately (without commit Waiting) Under SGT-WD, however, a cycle is’
formed, because the real execution of W(x) and W(y) of T is deferred until the
‘erte phase Therefore T2 should be aborted and restarted '

4.6.2 Overview of Simulations - \ » .

SGT-WD is prop0sed‘-t0 suppress the effect of scheduling cost to the perfor-
~ mance of DBSs. We consider that SGT-WD has a effect' especially for global
transac‘tions; In order to examine howv useful SGT-WD is, the p'rocessixngvtime of
transactions under SGT, SGT certification, and »SGT—WD_-‘is evaluated through
. simulations. The three types of scheduler is implemented on a srmulater.of a
distributed da_tabase Systeni. In distributed database systems, the‘communi‘c‘a—' -
tion cost strengly affects the ‘prOcessing time. To reduce the scheduling cost for
local transactions, FT scheme described in Chapter 3 is used in all schedulers.-

_The following assumptions are sirnilar to 'Chapter 3.
1. A transaction is a strihg‘of operations. -
' 2 There are 10 sites in thedistributed database system; '



3. 100 data items are stored' at one site..

4. The transact1on size is fixed; that is, all transactions contain 8 read /wr1te

0perat1ons
5. 25.% of all o,peratiens are write operations.
6. Each.global transaction accesses at most 3 sites.’

Simulations are executed ,i'nsteps. We measure the transaction processing
time by the number of steps. ‘We considered that the execution time of a
transaction mainly consists of the computation time (including CPU processmg _
:and access to memory) used for scheduhng, the communication delay for sending
messages, and the I/ 0 delay for data access. Among them the computation
time seems to be much smaller than the others. We assume that schedulers can
- process one message in one step, and that the access to a data item (1nclud1ng‘
I/ ) delay) needs 100 steps.

~To execute one operatlon two types of messages are needed
e Messages for sch_eduling, W_hich,are needed to search-for local SGs -
o Messages for data access, which are needed to transfer data values

The number of messages of the former type can be suppressed by the certification

- approach, while messages of the latter type are still necessary.

4 6.3 Simulation Results

In s1mulat10ns the followmg two factors are selected as parameters:

e The time needed to transfer an message between two sites (denoted com-
delay). '

° The"}m’ean interarrival time of transactions (denoted arr-z'nterval).i"

Figure 4 5 deplcts the mean processmg t1me of global transactlons when
“arr- mterval is fixed to 100 steps. The processmg time increases with the com-
munication delay The rate of increase of the usual SGT is hlgher than that of
SGT-WD and SGT cert1ﬁcat1on Of course; the influence of the communication
| delay on the processmg time depends on the number of communications. Since

SGT- WD suppresses: the number of commun1cat10ns by the cert1ﬁcat10n ap-
v proach, the influence of the communication delay is smaller in SGT- WD than
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“in usual SGT. Though the rates of increase of SGT-WD and SGT certifica-
tion are almost equal, there is-a large dlfference between the processing times
. of them. This is because SGT certification causes much more abortlons than
SGT-WD. , ’ _

Flgure 4.6 depicts the mean processmg time of local transactions in the
‘same case as Figure 4.5. This figure shows that processmg time of local trans-
“actions is almost not affected by the communlcatlon delay. This means that the
communlcatlons for local transactions. is effectlvely suppressed by FT scheme.
We con31der that the difference of processmg times of three algonthms is due
to the difference of number of abortions. ‘ '

F1gure 4.7 depicts the mean processing time of global transactlons when
com-delay is fixed to 500 steps. In the figure the mean processmg time of SGT-
WD is the shortest. The processing time of the usual SGT is long because com-
 delay i is: ﬁxed to a large value. However, the increase rate of SGT certification
. is much higher than that of SGT-WD or the usual SGT. This is because SGT
certification causes sO many abortlons under a heavy load. Fi 1gure 4.8 deplcts
the mean. processmg time of l_ocal transactions in-the same case. For local
‘transactions, the processing' time of SGT cer’tiﬁcatiou-is the longest. Since local -
‘ trzinsa,ctiOns are hard to be affected by communication delay, the difference of -
the processing time is caused by the dlﬁerence of the number of abortions. It

1s unexpected that the 1ncrease rates of SGT WD is 31m1lar to that of the usual,
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SGT. ThlS means that though SGT-WD takes the certlﬁcatlon approach its -
: tolerance to a heavy load is almost equal to that of the usual SGT We con81der k
_ that this is the benefit of cascadelessness which is brought by deferment of write

operations. Fi’gure 4.9 depicts the abort rate, where

. 4 of abortlons
# of committed transactlons

The abort rate of SGT WD is lower than that of the usual SGT or SGT
certification. Though SGT- WD adopts the certlﬁcatlon approach, the number of

" abort rate =

“abortions is suppressed, because any cascadlng aborts are avoided by deferment

of writes. Note that the graphs in Flgure 4.8 are s1m11ar to those in Figure 4.9.

Since local transactlons requires few commumcatlons the number of abortions

much affects the processmg time of local transactions. v
Simulation results showed that SGT- VVD succeeded in obtaining tolerance
of the communication delay of SGT certlﬁcatlon without spoiling the load tol-

erance of the usual SGT.

4.7, Conclusmns .
In this chapter a scheduling algorlthm is proposed to suppress. the effect of
scheduling cost to system performance. - We call our 'algorrthm Serialization -
Graph Testing with Write Deferring (SGT-WD). SGT-WD is based on SGT
certification to suppress the number of validations which involve the traverse of
the SG. Dislike SGT certification, howevér, SGT-WD deferslwrite operations
by using internal buffers, Cascading aborts are avoided by this deferment of
write operations.  This is an advantage of SGT-WD over SGT certification.
Though SGT certification can schedule any operations immediately, it often de- _
lays commitments of transactions waiting other commitments in order to avoid
unrecoverable executions. This waiting time may cancel out the merlt of im-
mediate execution of operations in SGT certification. In SGT-WD, however, :
commit waiting is not required. Transactlons can write into data 1tems actually
only when they are sure to be committed. That is, there e)asts no transactlons- |
which read from aborted transactions. Hence recoverability of concurrent exe-
- cution is always preserved in SGT-WD. This is another advantage of SGT-WD.
On the ot-her hand, as the result of deferring write operations, there-‘ex»ist
cases that a transaction Which was to be committed should be aborted. ‘How-
ever, there also exist cases that a transactlon which had to be aborted can be

. comm1tted by write deferrmg T herefore, it is not a dlsadvantage of SGT WD.
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‘We evaluated SGT-WD, the usual SGT, and SGT certification _by means
of simulations on distributed database sysﬁems. Two features of SGT-WD were.
recognized ,through these simulations. First, the influence of the cohiﬁmnica;
‘tion delay on the processing time under SGT-WD is smaller than under the
_usual SGT, Becati‘se of the suppr‘es‘sipn'of communication by the certification
-approa.éh. Second, SGT-WD is more tolerant of a load increase ‘than SGT
véertiﬁcation. This merit results from the deferment of write operatvions.v
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Chapter 5
C'(')n_'clusions |

5.1. Conclusmns
In this thes1s we studied the d1str1buted scheduhng method which prov1des hlgh
' concurrency without imposing special cond;tlons on transactions. To provide
high concurrency, we adopted S\GT as the basis of our method. The major
drawback of distributed SGT is large cost for scheduling which. includes main--
tenance and traverse of the SG in each site of distributed DBSs. To overcome
these drawback, we took two approaches One is to improve the method for tra-
verse of the SG so that the communication is suppressed. Another is to mod1fy
SGT itself to reduce the opportunity of scheduling. ’ :
In Chapter 3, the method for traverse of the SG, called chtzonal Tag
Scheme (FT ), is proposed to suppress the communication cost of distributed
SGT. Uuder FT-, the SG is maintained in distributed manner, that is, each site
- ‘maintains its local SG reflecting only the. conflicts on _the‘ data items which are
stored in the site. 'Therefore, update of local SG in each site can be done without
any communication. In an SG traverse a local SG is traversed at each site.
Acyclicity of the global SG is determined by the results of local traverses which
are gathered through message passing. To suppress the time of SG tra.verse local
SG traverses are performed simultaneously at several s1tes _under FT. ,Fractmn_al
 tags are introduced to detect the completion of whole traverse of the SG. Using
fractional tags, we proposed th_e met_h'od for the‘/distributedi SG traverse. In
Chapter 3, we show the correctness of FT and evaluate its -performauCe by
simulations in terms of the number of messages which are used for scheduling.
In Chapter 4, a variant of SGT is proposed to suppress the effect of the
‘ sche‘duling cost to the system performance. 'We have chosen SGT certification
rather than usual SGT. SGT certiﬁcatlon_ performs'a’ validation, i.e. SG traverse,

- only once for éach transactibn,'while each operation requires validation in usual .
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SGT. This feature of SGT'certification is a great advantage in suppression
of the effect of the’ scheduhng cost to the performance. On the other hand,
the delay of abortion in SGT certlﬁcation may encourage cascadmg aborts.
- To ehmlnate cascading aborts, we integrated SGT certification with the 1dea_
~of Optlmistic Concurrency Control (OCC) which- av01ds cascading aborts by
~ deferring substantial write operations using internal buffers. Thus we proposed
a Serialization Graph Testing with Write Deferring (SGT- WD) which causesno
| cascading aborts. The feature of SGT-WD is (1) no cascading aborts occur, (2)
the number of abortions is suppressed, and (3) data restoring is unnecessary‘
when transactlon is aborted for scheduling. In Chapter 4, the correctness proof
and performance evaluation of SGT-WD are also presented. .
It has been thought that SGT scheduling is so expenswe that us1ng SGT is
unrealistic.. However, appearance of new types of DBSs and surprismg improve-
ment of corn'puters made SGT one possible choice. Nevertheless, in distributed
DBSs, the comrnunication cost is still a‘serious problem because traverse of the
SG‘i‘nvolyesiintersite communication. In this thesis, FT and SGT—WD‘are proQ
posed to soive the problem. Simulation results showed that FT and ‘SG_T-WD .
are useful to suppress the scheduling cost of SGT in distributed DBSs. This
means that the only drawback of SGT is relieved. Thus SGT is now a promis-
ing solution for concurrency control of recent and future DBSS even 1f they are
distributed. ' '

5.2. Future Worksv

As new types of databases appear, a new model of transactlons has also been
proposed. As’ mentioned before, in new types of databases such as object ori-
ented databases, there are transactions called long-lived transaction (LLT). If
en LLT fails, its long lifetime causes large overhead for the rollback. The nested
transaction 1s a new transaction model proposed to deal with such a problem
A nested transaction has a hierarchical structure. It consists of one top-level
transaction and several subtransactions. Abortlon and rollback can be done
for each subtransaction. Most of scheduling algorithms for nested transactions
are based on iocking protocol and it seems useful to introduce SGT to‘improve
concurrency. Therefore we are now studymg how to apply SGT for scheduling
of nested transactions [30]. It is our future work_ to modify the me_thod proposed

in this thesis in order to apply it for’Scheduling'of nested fvtransactions._
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