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1. Introduction

Max-flow problems and min-cut problems have been investigated in do-
mains in Euclidean spaces as well as on graphs. In this paper, we shall formu-
late general optimization problems which contain the problems such as in [9],
[15], [16] and establish max-flow min-cut theorems related to these problems.

To clarify our idea more precisely, let us begin with recalling a standard max
flow min-cut theorem on networks due to Ford and Fulkerson [6]. Let o and
B be two distinguished nodes of a finite connected graph G, and let ¢ be a capa-
city function, that is, a nonnegative function on the set Y=E(G) of arcs (=
edges) in G. Let X=V(G) be the set of all nodes (=vertices) in G. For each
node x, denote by Y. (x) (resp. Y_(x)) the set of all arcs which come from (resp.
go to) . A flow o from a to B is a real-valued function on Y such that its
net flow out of x, which is defined by

> o(y)—2 (),

YEY 4 (1) yeY (x)

is required to vanish for each x in X except  and 8. The value of a flow o from
a to B is defined by its net flow out of @. A max-flow problem is to find the
maximal flow value of & subject to the constraint that ¢ is a flow from « to 8
and |[o|<con Y. On the other hand, a subset @ of Y is called a cut separating
a and B if there exists a partition (X', X”’) of X such that a€X’, B X" and
@ is the set of all arcs joining X’ and X”. For a cut @, we call the quantity
Slyeq ¢(y) the cut capacity. The min-cut problem related to the above max-
flow problem is to find the minimal cut capacity of all cuts separating o and 3.
The celebrated max-flow min-cut theorem in [6] assures that the values of those
problems are equal.

Now we state continuous versions of the above problems. In stead of G
and {«a, B}, we take a bounded domain  in the n-dimensional Euclidean space
R" and mutually disjoint nonempty two subsets {4, B} of the boundary 8Q of
Q. A flow o from 4 to B is a vector field which satisfies the following condi-
tions:
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dive=0 onQ, ocv=0 on 3Q—(4AUB),

where v is the unit outer normal to Q. Note that this definition has no ambi-
guity in case 8Q, A4, B and ¢ are sufficiently smooth. The net flow into a node
x in QU 0Q is equal to div o(x) if x€Q and to —o+v(x) if xE0Q.

Given a nonnegative function ¢ on £, we formulate a max-flow problem

(MFT) as maximizing the flow value S o v ds subject to the constraint that o is
A

a flow from A4 to B and |o| <c on Q, where ds denotes the surface element.
A cut S separating 4 and B is a subset of Q such that Ac9.S and BN3S=
¢. Furthermore we require that 3.5 is sufficiently smooth so that we can define

Sa cds. 'Then a min-cut problem (MCI) corresponding to (MFI) is to mini-
Sna

mize the cut capacity S cds subject to the constraint that .S is a cut separating
A4 and B. esna

A continuous version of the max-flow min-cut theorem is to assure the
equality of the values of two dual problems such as problems (MFI) and (MCI).
Notice that (MFI), (MCI) are special cases of problems studied in Iri [9], Ta-
guchi and Iri [16]. We mean by “I” in (MFI) and (MCI) that these problems
are of Iri’s type. It should be noted that no mathematical conditions which
assure the max-flow min-cut theorem are given in [9] and [16].

In connection with problems raised in capillarity and plasticity, Strang
[15] studied continuous versions of the max-flow problem and the min-cut
problem of another type. We denote them by (MFS), (MCS) and call them
Strang’s version. He used some mathematical tools such as functions of bound-
ed variation and coarea formula. Furthermore he noticed that (MFI) and
(MCI) could be treated by his method.

Our aim of this paper is to give rigorous formulations of max-flow pro-
blems and min-cut problems on a bounded domain Q in R" with Lipschitz
boundary which contain problems in [9], [15], [16] and to prove max-flow min-
cut theorems for them. For example, we have to give a rigorous notion of a
flow o, the outer unit normal v, the inner product o-» and the cut capacity of
a cut. To do so, we basically follow Strang’s idea in [15]. The space of es-
sentially bounded vector fields with divergence in L*(Q) and the space of func-
tions of bounded variation will play important roles in our study. In fact,
a s*atic flow is represented by an element in the former space and a static cut
is represented by a characteristic function which belongs to the latter space. One
of our mathematical tools is a generalized Greens’ formula, due to Kohn and
Temam [12], for functions of bounded variation and essentially bounded vector
fields with divergence in L"(Q2). Furthermore as in [9] we treat the general case
when our network is anisotropic. Namely, the capacity constraint is described
as follows:
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o(x)el(x) forall x=Q,

where I'(x) is a compact convex set in R" containing 0 for each x€Q. To
deal with anisotropic domain, we need an extended version of the coarea formula.
The mathematical tools will be explained in §2.

We shall introduce in §3 optimization problems (MF) and (MF,) which
may be regarded as generalized max-flow problems on linear spaces. In rela-
tion to these problems, we consider formal dual problems (MF*), (MF¥) and
generalized min-cut problems (MC), (MC,) on linear spaces. Duality relations
will be studied for these problems by means of the minimax theorcm in [5].

Our principal results will be given in §4 and §5. In §4 we consider a
max-flow problem (M®,) and several problems related to it. The problem
(M®,) is of Strang’s type. However, a constraint on o-» in (M®,) is weaker
than that in (MFS). In (MFS), o-» must be proportional to a prescribed
distribution on 8Q. In our max-flow problem, o-» can be free on a part of 9Q
while the difference between o-» and the product of a constant and the pre-
scribed distribution is constrained by two given functions on another part of 3Q
for each feasible flow &.

In §5 we deal with another max-flow problem (MW,) which is an extension
of (MFI). Capacity constraints and feasible flows depend on discrete time in
(MW,), so we call it a dynamic version of the max-flow problem. A max-flow
min-cut theorem on a network in a dynamic version can be found in Anderson,
Nash and Philpott [2]. The duality theorem for (MF,) is utilized to prove max-
flow min-cut theorems in §4 and §5.

ACKNOWLEDGEMENTS. The author would like to thank Professor M.
Ohtsuka for constant help and encouragement, which were so essential for the
writing of this paper. The author is also grateful to Professors M. Yamasaki
and H. Aikawa for helpful advice.

2. Functions of bounded variation and a space of vector fields

In the present section, we introduce functions of bounded variation and a
class of vector fields on Q, which are used to define flows and cuts in the next
sections. 'Throughout this paper we assume that Q is a bounded domain with
Lipschitz boundary 8Q in R". For such domains, we refer to Maz'ja [11;
Definition 1.1.9/1]. We set

H, (E) = sups,,inf {v,_, 33;757"; U,;B(x;,7;)DE, r;<8}

for any subset E of R", where v,_, is the volume of the unit ball in R*"! and
B(x;,7;) is the open ball in R" with center x; and radius ;. It is called the
Hausdorff measure of (n—1)-dimension. By m, we denote the Lebesgue meas-
ure on R". Note that the outer unit normal » to Q is defined H,_,-a.e. on 9Q
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and v is H,_,-measurable.

In this paper, all derivatives of locally integrable functions on Q are under-
stood in the sense of distributions unless otherwise stated. Then the space of
functions of bounded variation is defined by

BV (Q) = {ucsL)(Q); 9u/dx; is a Radon measure of bounded variation
foreachj=1, -, n} .

Let C=(Q) be the space of infinitely differentiable functions in Q. Denoting
the closure of O by Q, we set

C=(Q) = {fla; fEC~(R")} ,
where f |5 is the restriction of f to £, and set
C3(Q) = {f=C=(Q); supp f is a compact subset of Q} ,

where supp f is the closure of {x&Q; f(x)==0}. By C7(Q; R") we denote {o=
(o1 *+, o); :ECH(Q) for all =1, «++, n}. We define C*(Q; R") and C~(Q; R")
in a similar way. Note that, for uL}(Q), uc BV (Q) if and only if

[IVullg = sup {Sn udiv o dx; c=€C5(Q; R"), |o| <1 on O}
is finite, where div =311, 80;/0x; and |o|=(3;-, 07)¥2. We set
IVully = sup {S u div o dx; c€C3(Us R, || <1 on U}

/4

for ue BV (Q) and any open subset U of , and thus define a Radon measure on
Q. We shall denote it by |Vu| and call it the measure of total variation of Vu.
Evidently W{(Q)={ucsL¥(Q); 0u/dx; € L}(Q) for each =1, -+, n} is a subspace
of BV (Q). We say that {u’} converges to u in BV (Q) if w—u in LY(Q) and
V'] lg— |Vl

Let LY(8Q) be the space of H,_,-integrable functions on 8Q. By Giusti [8;
Theorems 1.17, 2.10, 2.11 and Remark 2.12] we have

Theorem 2.1. (1) There exists a linear mapping <y from BV (Q) to L(9Q)
such that

tim Lo
30 m, (Q N B(x, p)) Jansie

for H,_,-a.e. x€03Q, and that yu'—yu in L0Q) if {u’} converges to u in BV (Q).
(2) For each us BV (Q), there exists {u’y C BV (Q) N C=(Q) such that yuw'=
yu H,_,-a.e. on 3Q for all j and {u’} converges to u in BV (Q).

|u(y)—vyu(x)|dy =0

The function fyu is called the trace of # on Q. We note that
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yu(x) = lim 1

evo m,(QNB(x, p)) Snn B(z,9) w(y) dy

for H,_;-a.e. x€0Q.

Since by Adams [1; Theorem 3.18] the family {f|g; f€C=(Q)} is dense in
W{(Q) with respect to the norm ||u||puiy=|lul|; 1)+ ||VH4lla, for each uec
BV (Q) there exists {u'} C{f|q; f€C=(Q)} such that {u} converges to u in
BV (Q). Itis known that BV (Q)cC L**~9(Q), more precisely, there is a positive
constant k& such that the inequality ||u|] a/»-0eq) <E(||u]|;1q) +]V#||g) holds for
all 4BV (Q). This is a direct conclusion from (2) of Theorem 2.1 and the
Sobolev imbedding theorem for W(Q). For the proof of Sobolev’s theorem,
we refer to [1; Theorem 5.4].

Furthermore 7 is a surjection from W(Q) to L'(8Q). (See Gagliardo [7;
Theorem 1.2].) By the equality in (1) of Theorem 2.1, yu=u|sq for any ue
BV (Q)NC(®). In order to give another characterization of yu, which is due to
[11; §6.5], we state the definition of the reduced boundary. Let .S be a subset
of R" with X;&BV (R"). Then the reduced boundary 3*S of S is the set of all
x<0S such that there exists Federer’s normal v=w(x) to S. This normal » is
characterized by the relation

limyyo p7" my(B(x, p) N A1 N S) = limyyo p™" m,(B(x, p)NA-.—8) =0,

where A,={yeR";v-(y—x)>0} and A_={y=R"; v-(y—x)<0}. Itis proved
that 8*S is a measurable set and Federer’s normal is a measurable mapping from
9*S to R” with respect to both |VXs| and H,_, and that | VXs|(R"—0%S)=0.
Furthermore it is known that E is H,_;~-measurable,

|VXs|(E) = H, ((E) and VXs(E) = —L w(x) d | VXs | (x)

for each |VXs|-measurable set EC8*S. The proof of these facts is given in
[11; §6.2].

Now let u BV (Q) and set N,={yQ; u(y)>r} forr&R." Coarea formula
[8; Theorem 1.23] yields that Xy BV (Q) for a.e. 7&R. For x&0Q, we set

w*(x) = sup {rER; Xy, €BV(Q) and x<0*N,}

if there is 7€ R such that Xy €BV(Q) and x€8*N,, and set 4*(«)=— oo other-
wise. Since 0*N, is H,_,-measurable, »* is also H,_;-measurable. Furthermore
according to [11; Theorem 6.5.4], u* € L0Q). (As noted after Corollary 6.5.5/3
in [11], conditions in [11; Theorem 6.5.4] are satisfied and the theorem can be
applied to our case.) Hence from [11; Theorem 6.6.2] and the equality stated in
(1) of Theorem 2.1, it follows that u*=qu H,_;-a.e. on 8Q. If SCQ and Xs€
BV (Q), then Xs&€BV (R") by [11; Lemma 6.5.1/1] and X¥=Xgsnaa. Therefore
¥YXs=Xarsnoa Hp-1-a.€. on 08



810 R. Nozawa

Next we define a space of vector fields. We set

H(Q) ={o= (0'1) ) a'n); a'iELm(‘Q’) forall i=1,-,n
and diveoeL'(Q)} .

Every o € H(Q) can be approximated by functions in C*(Q; R") in the following
sense. Let c€H(Q), and {o’} be a sequence in H(Q). If o/—c ae. on Q,
div ¢’—div ¢ in L"(Q) and {o’} is uniformly bounded, then {¢’} is said to ap-
proximate o in H(Q) or tend to o as j—oo in the sense of H(Q). The following
proposition is proved in a way similar to Kohn and Temam [10; Lemma 2.3].

Proposition 2.2. Given o €H(Q) there exists {a’} in C=(Q; R") which
approximates o in H(Q).

Proof. We give only a sketch. There exist a positive number 7,, a finite
number of open sets U, -+, Uy with U}., U,D0Q and open cones C}, -+, Cy
with vertices at the origin of R” such that U,N0Q=+¢ and (x+C, N B(0, 7)) N
Q=¢ for each k and x€0Q N U,. Furthermore we may assume that U,N
(Q—y)cQ for all yeC,NB(0, 7)) and all k. Let U, be an open subset of Q
such that U;DQ— U{., U, and the closure of U, is contained in Q. Then
Ulao UpyD Q. Let {4r; k=0, ---, N} be a partition of unity subordinate to {U,;
k=0, .-, N}, thatis, 330 ¥=1 on Q, ¥, >0, supp ¥,C U, and 4, CF(R")
for all k. We take mollifiers »,& C5(B(0, 1)) and »,=Cs(C,N B(0, 1)) for k=1,
.-+, N such that »,>0 and the integral of », over R" is equal to 1 for each k=0,
-+, N. For n, (x)=m([r) r™", we set

i) emn ) = [ 4() 99) =) dy

and o/=3_o(Yr4o)*n, , for r=1/j. One can prove along the same lines as in the
proof of [10; Lemma 2.3] that div((yr, o)%ns,,)=div(Yr o)%7;,, a.e. on Q for all
sufficiently large j. Hence {o'} satisfies the required conditions.

The following theorem is due to Kohn and Temam (see [10; Proposition

1.1)).

Theorem 2.3. Let c=H(Q) and us BV (Q).
(1)  The distribution (cVu) defined by

LoVa)y ¥ = —SQ wir div o dx— Sg eV dx

for 4 €CF(Q) is a Radon measure of bounded variation and thus (cVu) (Q) is de-
fined and finite.
(2) There exists a function g = L=(0QY) such that

S gvvdH, | = S o-Vvdx—}—S v diveodx
2Q Q Q
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for all ve W' Q). We shall write o-v for g.
(3) (Green’s formula) For (cVu) and o-v as in (1) and (2), the following
equality holds:

S oovyuH,_, — (Vi) (Q)+ S udive ds.
9Q Q

By Theorem 2.3, ¢/-v—0 v in L=(0Q) with respect to the weak* topology
and (¢/'Vu) (Q)—(aVu) (Q) for all us BV (Q) if {0’} approximates o in H(Q).
Next we are concerned with equalities of the coarea formula type. Let T
be a set-valued mapping from Q to R”, that is, I'(x) is a subset of R". Through-
out this paper we assume
(2.1) T(x) is a compact convex set containing 0 for each x&Q.
Furthermore in this section we assume that the following two conditions are
fulfilled unless otherwise stated:
(2.2) Let Q, be a compact subset of 2 and €>0. Then there is >0 such that

T'(x)cT(y)+B(0, &) whenever x, yEQ, and |x—y| <8.
(2.3) U ,eaI'(x) is bounded.
We define a function Br on R"XQ by

Br(v, ¥) = supyerc) v-w

for vER” and x=Q and define a functional {rr on BV (Q) by

Vo) = | Be(Vu/|Vul, )| Vul

for ue BV (Q), where Vu/|Vu| is the Radon-Nikodym derivative of Vu with
respect to |Vu|. If u=Xs€BV(Q) with SCQ, then Vu/|Vu|=—v H,_-a.e.
on QN 0*S by [11; Theorem 6.2.1] so that

Vo) = | Bol(—v(2), ) dH, ().

no

where » is Federer’s normal to S.
Note that Bp is a continuous function on R*XQ by (2.1) and (2.2). Thus
Br(Vu/|Vu|, +) is | Vu|-integrable. Furthermore we set

Kp = {c€L~(Q; R"); o(x)ET (x) forae. x€Q}.
We prove a variant of coarea formula.
Proposition 2.4. Let ucBV(Q) and set N,={xcQ;u(x)>r}. Then
) ={" wea,) dr.

Before proving Proposition 2.4, we prepare several lemmas. We set K§=
{o=(oy, ***, 7,); o; is a Borel measurable function for each 7 and o (x)ET'(x) for
all x€Q}. Evidently K} C K.
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Lemma 2.5. (1) For each positive Radon measure p on Q and each p-
measurable mapping v from Q to R, there is o €K1 such that Bp(v(x), x)=v(x)-
a(x) for p-a.e. xQ.

(2) Assume that
(2.4) there is py>0 such that T'(x) D B(0, p,) for each xEQ,
let o be a vector field in K3 and let p be a positive Radon measure on Q. Then
there is {o’} CKAN C§(Q; R") such that o'—o p-a.e.

(3) Lei o be a vector field in KnN\ H(Q) and Q, be a compact subset of Q.
Then there is {c’} C C=(Q; R") such that o’—>o in the sense of H(Q), |lo’|| = ; z7
<llollz=@; zn+1 and o/(x) ET(x)+B(0, 1)f) for all x=Q,.

Proof. (1) Let u be a Radon measure on Q, B(R"), B(Q) be the classes of
Borel subsets of R", Q respectively, B be the completion of B(Q) with respect
to u and BXB(R") be the o-algebra generated by {Ex E'; E€B, E'€B(R")}.
Since By is continuous on R" X Q, for any Radon measure x and any p-measurable
mapping v from Q to R" we see that {(x,w)€QXR"; Br(v(x), x)=v(x)-w,
weT(x)} €BXB(R"). Thus from a measurable selection theorem, it follows
that there is a y-measurable vector field ¢° such that ¢%x)ET(x) and Br (v(x),
x)=ov(x)-0%x) for all x&Q. By considering o €K such that o=¢° u-a.e. on
Q, we complete the proof of (1). (As for the measurable selection theorem, we
refer to Castaing and Valadier [3; Theorem 3.22] or Rockafellar [13; Theorem 2
and Corollary 1.1].)

(2) Let oK) We may assume that 4 (Q) is finite. It suffices to show
that there is {0/} C K3 N C5(Q; R") such that

S lo'—a |dp — 0
Q

as j—oo. Inview of (2.4), considering to with 0<<t<<1, we may assume that
a(x)+B(0, &) CT'(x) for all x=Q, where & is a positive number. Then o can be
approximated by simple vector fields in K% Thus we may assume that o is
simple, that is, o=3}.; w; Xy,, where w,&R" and {U,} is a class of disjoint
Borel sets such that Q= U#}., U,. Furthermore by approximating U, by com-
pact sets, we may assume that U, is compact for each k. Finally by approximat-
ing Xy, by continuous functions and considering a regularization, we obtain the
desired {o7}.
(3) Let Q, be a compact subset of Q. We set

o = 2¥=O(‘l’k°‘)*m.r

with 4, and 7, considered in the proof of Proposition 2.2. Let € be a positive
number. In virtue of (2.2), there exists §>0 such that d(Q,, 802)>28, and that
Yre(x—y) <An(x)+€ for all k and T'(x—y)CT(x)+B(0, &) for all x&Q, and
y€B(0,8). Then o(x—y)eT (x—y)CT (x)+B(0, &) for all xQ, and a.e.
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yEB(0,8). Thus

W) # 2, = dls—9) o (6—9) m3) dy
S((@)+8) CO+B(0, 8),

so that ¢’(x)E(14-(N+1) €) (T'(x)+B(0, &)) for all x=Q, and 0<r<§. Since
o’—0o as r—>co in the sense of H(Q), there exists a sequence {r(j)} of positive
numbers such that {¢"?’} approximates o in H(Q) and o"?(x) T (x)+B(0, 1/j)
for all x€Q,. Furthermore we may assume that ||¢"P|| g, zm <|lo||12@: 2+
1. This completes the proof.

Lemma 2.6. Let ucBV(Q). Then for each o € KpN H(Q)

(oVu) (@) <rr(u) -
Furthermore if T satisfies (2.4), then

Yr(u) = SUPgeknn H(Q) (aeVu) (Q) = SUPsexdn CSO(Q;R")SQ cdVu.

Proof. First assume that I' satisfies (2.4). Let o be an element in KpN
H(Q). For >0, there exists a compact subset €, of Q such that | Vu|(Q—Q,)
<&. Let {0’} be a sequence as stated in (3) of Lemma 2.5. Then

(e Vu) (Q) = lim;,.(c'Vu) (Q)
< (llollz=a; gm+1) €+lim inf,.. S AV

S(lollzocas vt e+ [ Br(Vu]|Va], ) d|Va .

Hence
SUPgekdncy(as R" Sn o quSsup,EKrn ma (V) (Q)
<{_Bevul1vul, ) d1vul .

Since U ,eq I'(x) is bounded, the converse inequality follows from (1) and
(2) of Lemma 2.5 and Lebesgue’s convergence theorem.

Next we consider the general case and prove (oVu) (Q)<+rp(u) for each
c€KNH(Q). Let ceKpNH(Q). We set I'j(x)=I'(x)4B(0, 1/j) for each
x€Q and each positive integer j. Then T'; is a set-valued mapping satisfying
(2.1)~(2.4) and 0 €K CKy,. Thus from the first part of this proof it follows
that (oVu) (Q)<+rr,(u) for each j. Since Br;(v, ¥)— Br(v, x) as j—> oo for all
vER" and x€Q, letting j— oo we obtain (oVu) (Q)<+rp(#). This completes
the proof.

Using Lemma 2.6, we obtain
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Lemma 2.7. Let u be a function in BV (Q) and {u;} be a sequence in BV(Q)
such that u;—u as j—oco in LYQ). Assume that T" satisfies (2.4) or {||Vu;llg} is
bounded. Then yro(u) <lim inf; . Yrp(t’).

Proof. Let u, u; be functions in BV (Q) such that #;,—u in L(Q). First
assume that T" satisfies (2.4). Then in virtue of Lemma 2.6

[ oavu=—| udivode=tim .- u divoas
Q Q Q
— lim,... S cdVu,<lim inf,... ¥o(u;)
Q

for each c€K2N C7(Q; R"). Hence using the last part of Lemma 2.6 we see
that Jrp(#) <lim inf; .. Yrp(u;).

Next we consider the case where I' does not satisfy (2.4) and assume that
{lIVu;lla} is bounded. Let T'; be as defined in the proof of Lemma 2.6. Then

Y, (#) <lim inf, ., Yrp,(4;)

for each k. Since yrp,(#;) <rp(u;)+sup; |[|Va;|lg+ k™ for each j, k and rp,(u)—
yrr(#) as k— oo, we conclude that vrp(#) <lim inf, ., Jrp(;). This completes the
proof.

The following lemma is proved in a way similar to the proof of Ohtsuka
[12; Lemma 10].

Lemma 2.8. Assume (2.4) and let u BV (Q). Let H and I be open subsets
of Q such that H++B(0, &)1 for some &>0, and 7 be a nonnegative function in

C5(B(0, 1)) satisfying S

o n(x) dx=1. Then for each t>1 there exists ry>0 such
that o ‘

SUPgexdncg (e ; R SH oV (uky,) det'SuPaeK‘}, nC(Is R Sz odVu
for 0<r<r,, where n,(x)=n(x/r) r~".
Proof. For c€KiNCH(H; R") and 0<ir<<g,,

SH o+ V (wh,) dx = —SH (w,) div odx
[ AL, w9 n(0) dok div o(w)
= | o] e div o(x) s dy
. Sm,,) ﬂr(y){sﬁ_yu(z) div o y+2) dz} dy

- Sa(o,,) 7{y) dy S, a(y+2) dvu(z)
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= s &*xy,dVu,
1

where &*7;,(2):5 2{(y) o(y+2)dy. Lett>1. Then by (2.4), there exists

B(0,r)

0<7,<&,/2 such that
T'(y+2)CI'(2)+B(0, (t—1) pp) CT'(2)+(t—1) T(2) = tT'(2)
if x4-yeH and yeB(0,7,). It follows that &*x,(2) =tT'(2) for 0<r<r, Thus

SI (6%7,) dVu < SUPsekdnncy U R")SI odVu = t- SUPsexdncy(r s R")SI ocdVu.
This completes the proof.

Lemma 2.9. Assume (2.4). For each bounded continuous nonnegative func-
tion g on Q, we set (gT) (¥)={g(x) vER"; vET(x)} and p(g)=5UPsexypncyas zm
S adVu. Then u is additive.

Q

Proof. Let Q,={x€Q; g(x)>1/j}. Then gI' satisfies (2.1)~(2.4) on Q,.
Thus applying Lemma 2.5 (2) with Q, T replaced by Q;, gT" respectively, we can
prove that

SUPsexynncs(a; R")Sn odVu = sup {Lj cdVu; o€ Ko}
for each j. It follows that
u(g) = lim,., Sup«rex‘}rncg‘(n;:k“)sg cdVu
— lim,... sup{snj cdVi; s €K%} — sup {L cdVu; K2} .

Let g, and g, be bounded continuous nonnegative functions on Q. It is easy to

prove u(g)+pu(g)<u(g,+g). To prove the converse inequality, we let c&
K% +gpr- If infg £,>0, then

[ cavu={_siolte+e) avut| gol(e+e) avu
<)+ n(g) -
Thus in case infg g,>0, we obtain u(g,+g,)=p(g)+w(g,). In the general case,

p(8+g:) = limg o u(g1+£:+€)
= lim, o {n(g))+n(g.+E)}
= w(g)+u(g) -

Hence we conclude that g is additive.

In virtue of Lemma 2.9, p in the lemma is extended to a linear form on
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Cy(Q2). Therefore p is identified with a Radon measure on Q.

Lemma 2.10. Let ucBV(Q). Then there is {u’y CBV (Q)NC=(Q) such
that {u’} converges to u in BV (Q) and \rp(w)—>yrp(u) as j— oo.

Proof. First we assume (2.4) and let x be the additive functional as defined
in Lemma 2.9. We regard p as a Radon measure on Q. Let {G,} be a sequence
of open subsets of Q such that Uj., G,=Q, G,CG,., and u(8G,)=0 for all p.
We assume that Gy==¢. Now for k>0 we take sequences {H,} and {I,} of open
subsets of Q such that H,DG,,,—G, and I,D H, for all p and that

(2.5) o1 wll,—(Gy =G <1k

Furthermore let {a,} C C5(Q) be a partition of unity subordinate to the covering
{H,} of Q. By using Lemma 2.8, we can easily see that there exists a sequence
{\,} of positive numbers such that

(2.6) max (|IVetyllz=ca;: & *SUPsexy, llolli=w: &, ”'SH, |wseny,—u | dx<1/(k2?) ,
2.7) IV (@ M, < (14-1/R)Vulls,
and
(2.8) supeexdncg,: R”)SH, -V (wen,) dx<(1+1/k) supsexgncg,; R”)szp odVu .
We set w*=317.1 a,(usn,). Then ||u*—u|| 1q)<<1/k by (2.6), and
SUPsexfnce(as R")Sn o Vut dx< sUPoerdaciias k) 2pa1 Sn o (Va,) (weny,) dx
+SUPsexdncyia; ) 2p-1 Sn oo, V(ukn,,) dx .

Since 5.0 Va,=V(X5-0 a,)=0, by (2.6) we see that the first term of the right
hand side is less than 1/k. For the second term, by (2.8) we obtain

SUPgexd.ncg(a: B 2ip=1 Sn a-a, V(ukn,) dx
<3351 SUPsexdncyi@i B Sn o-a, V(uxy,) dx
< 205-1 SUPgexnce s B S o+ V(uxy,) dx
Hy

<1+ 1/R) Sims SUpeerpncsayian | odvu
?
— (11/R) S5 (1)
Thus by (2.5) we see that the second term is less than (141/&) (u(Q)+1/k). In
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virtue of Lemma 2.6, u(Q)=sup,exdncyias 27 L adVu=+rp(u). It follows that
Yo(u*) <(1+1/k) (Yo(w)+1/k)+1/k.  Furthermore since supoey, [lollz=q;: zn=>

po and p(II,—(G'p——G,,_l))Z Pol V| (I,—((—?,—G,_l)) by (2.4), using (2.6) and (2.7)
we obtain

IVt lo <sup {35, Sn o (Vaty) (whm,) dv; o €CF(Q; RY), |o| <1 on O}
sup {3 SQ o0ty Vwkny,) di; e €CF(Q; RY), || <1 on O}

<31 IVl zm SE [ukny,—u|dx+351 ||V (@t ),
?

<(po k)" +(1+1/R) 2351 [ Vully,

= (po B) 7' +(1+1/k) 251 {|Vu|(Gy—Gyor)+ | VUl (1,—(Gy—G,-y))}

<(po k)" +(141/k) (IIVulla+(po k) *) -
Hence lim sup,...||V#*||o<||Vu|lg. Since w*—u in LY(Q), Yrp(#) <lim inf, . Yrp
(4*) by Lemma 2.7 and ||Vu||g<lim inf,.||Vu*||g by [11; Lemma 6.1.2/2]. It
follows that rp(u)=limy_,.. Yrp(u*) and ||Vu||g=lim,...||V#*||q.

To prove the general case, let T, (x)=TI"(x)4-B(0,1) and apply the first part
of this proof to T';. Since

V) = | B (Vul|Vul, ) d|Vul = | {Bc(Vul|Vul, )+1} d| Vul
= Yro(w)+|Vulla
we obtain the desired {#/}. This completes the proof.

Proof of Proposition 2.4. First assume (2.4) and let # be a function in
BV(Q). Let {#/} be a sequence stated in Lemma 2.10 and set N, ,={x€Q;
w(x)>r}. By [11; Lemma 6.1.6], we may assume that Xy, ,~>Xy, in LY(Q)
for almost all ». Then for each j, by [11; Theorem 1.2.4],

W) = | 8w, ) dw = | Be(vidl IV, ) 9] ax
=" af  evw]Ivel, ),
—o aNj,rnQ’
where Q'={x€Q; V#/+0}. In view of Sard’s theorem, Vu;40 on 9N;,NQ
and ON;,NQ is of C-class for a.e. 7&R. Furthermore Xy;, €BV(Q) and
Vu;l|Vu;| =VXy;, /| VX | Hyoy-a.e. on ON; N Q for a.e. 7. It follows that

@) = " ar | 8oVl 192101, ) 1 Xiss | = [ el .
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By S and S we denote the upper and lower integrals respectively. Since Xy;,—

Xy, in LY(Q) as j— oo for a.e. 7, in virtue of Lemma 2.7 yrn(Xy, ) <lim inf; .. Yrp
(Xy;,,). Hence

) =l ) = lim e | )
zs“ lim inf,.o. ¥p(X,,) dr> S“ dre(Xy,) dr .
On the other hand, by [11; Theorem 1.2.3],
S ocdVu = —S udivodx = —S ut div adx—}—g u~ div o dx
Q Q Q Q
— —S drS X, diVde—{-S drs (1—Xy_) div o dx
0 Q 0 Q

=" ar o divods =" arf oavx,,
—o0 Q oo Q

for all c€C5(Q; R"), where u™=max (4, 0) and " =max(—u, 0). Thus

Yr(#) = SUPsexdnceas &M S odVu

== SUPsex.ncy(as RY S

i} drS edVXy,< S: ¥r(Xy,) dr .

It follows that yrn(Xy,) is a measurable function of 7 and 1p-p(u)=sw Yro(Xw,) dr.

To prove the general case, we consider I';(x)=I"(x)+B(0, 1/j). Since Br,
(v, x) § Br(v, x) for all vER" and x€Q, by letting j—oo in

Yo, (¥) = S:, VYr;(Xn,) dr

we see that
W) = |7 vt dr
This completes the proof.

ReEMARK 2.11. Suppose that T' satisfies (2.1), (2.3), (2.4) but (2.2) is
replaced by the following condition:

(2.2") Let&>0. Then thereis §>0 such that I'(x) CT'(y)+B(0, &) whenever
x,y€Q and |x—y|<3.

Then we can choose {0’} in (3) of Lemma 2.5 such that o/(x) T (x)+B(0, 1/5)
for all x€Q. Furthermore by (2.4), we may assume that ¢/(x)ET"(x) for all
xe€ and all 5.
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Let o be a vector field in H(Q). We take Ty such that I'y(x)={weR";
|w| <Z|lolli=; g} for all v and apply Remark 2.11 to these o and T',. Then
we obtain a sequence {0’} in C=(Q;R") such that ||o7|| =z <||o||z=@; 2n
for all j and ¢/—¢ as j—>oo in the sense of H(Q). Since {o7-»} converges to
o-v weakly* in L=(0Q) as stated after Theorem 2.3, we obtain

llo vl =@a < lim inf .. ||o7 - 2|| 100

<lim inf;—m ||0‘j“L"°(n ; R")SHO'”L“(Q PR -

Remark 2.12. Instead of (2.2) and (2.3), we assume that {(x, w); xEQ,
w&T(x)} is a bounded Borel subset of QX R". Then the statement of Lemma
2.5 (1) is true. LetueW"(Q). Then using Lemma 2.5 (1) we can prove that

wp(u)zsup,e,(rs o-Vudx. Furthermore let {u/} c W**(Q) such that ||Vu/—
Q

Vu||;1qy—>0 as j—oco. Then

| V) o) | <supoexe | | o+ (Va/— V) i

<SUPsexp llollzoas R“)’Ilvui—vu||z.l(n) ..

It follows that vrp(u/)—>rp(u) as j—co.

3. Duality theorem

In this section, we define optimization problems (MF) and (MF*) and
state a duality relation for the problems. Furthermore as an application, we
prove a duality theorem for a max-flow problem in a general form.

Let X, Y and Z be real linear spaces. We consider two more real linear
spaces Y, and Z, with YD Y and Z,cZ. Let K be a convex set in Y] contain-
ing the origin and P be a convex cone in X with vertex at the origin. Further-
more we consider functionals Ly, Ly and k. Let Ly, L, be bilinear functionals
defined on X X Z, Y X Z respectively and % be a linear functional defined on X.
We assume that Ly is defined and bilinear also on Y, X Z,.

We define (MF) and (MF#*) as follows:

(MF) Maximize i(p) subject to the constraint that p€P and (p,y)EV

for some yeKNY,
where V={(p,y)EXXY; Ly(p, 2)=Ly(y, 2) for all z€Z}.
(MF*) Minimize Wg(2) subject to 2z W,
where Wx(2)=sup,cxny Ly(¥, 2) and W={2&Z; Ly(p, 2)=h(p) for all pP}.
We denote the values of (MF) and (MF*) by MF and MF* respectively. Thro-
ughout this paper we use the convention that the supremum on the empty
set is —oo and the infimum on the empty set is co. If peP and (p,y)EV for
some yeK NY, then we call p a feasible element of (MF). Similarly we call
2E W a feasible element of (MF*). Since K contains the origin, W (2)=>0 for
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all szeZ. We can easily prove
Lemma 3.1. MF <MF*,

We give a sufficient condition for MF*=MF. In what follows, we assume
that Y, and Z; are locally convex Hausdorff spaces and Ly(y, +) and Lx(p, *)
are continuous on Z, for each ye Y, and p& P respectively. We define an auxi-
liary value MF' by

MF' = sup {h(p); pEP such that (p,y)€V, for some yeK},
where V,={(p,y) XX Yy; Lx(p, 2)=Ly(y, 2) for all z&Z}}. Then we have

Lemma 3.2. The equality MF'==sup,ex inf,eyn z, Ly(y, 2) holds if the fol-
lowing two conditions are satisfied:
(3.1) Lx(P)= {Lx(p, *); pEP} is a closed set of the topological dual space Z¥
of Z, with weak* topology.
(3.2) For each pEP, inf,ep 2, Lx(p, 2) = h(P).

Proof. For simplicity we set f(y)=inf,cpnz, Ly(y, 2) for yEK and 4=
sup,eg f(¥) in this proof. Let y be an element in K. We define a linear func-
tional g, on Z, by p,(2)=Ly(y,2). Then p,cZ¥. First we assume that p,e
Lx(P). By (3.1) and the separation theorem (cf. Schaefer [14; Theorem 9.2 in
Chap. 2]), there exists z,EZ, such that p,(2,)<<0 and Lx(p, 2,)=>0 for all p=P.
Then for 2, W NZ, and r>0, rz,+2, €W N Z; and therefore

F(9)<infy5o Ly(y, r20+21) = limyoe 721(20) +Ly(y, 2)) = — oo

Next we assume that p,&ELy(P). Then there exists py€P such that p,(z)=
Ly(y,2)=Lx(py 2) for all 2€Z,. By (3.2), h(po)=inf.ewnz, Lx(po 2)=()-
Thus f(y)<MF' for any ye K so that AL MF’.

If MF'=—oco, then naturally A4=MF’. Suppose there exists p&P such
that (p,y)€V, for some yeK. Then Ly(y, 2)=Lx(p, 2) for all 2€Z; and
h(p)=f(y) by (3.2). It follows that A(p)<A which shows MF'<A. Thus
MF'=A. Our lemma is now proved.

It is easy to see that MF=MF’ if the following conditions (3.3) and (3.4)
are satisfied:
(3.3) LetyeYand peP. If Ly(y, 2)=Lx(p, 2) for all z&Z,, then Ly(y, 2)=
Lx(p, ) for all z=Z.
(34) LetyeY,and peP. If Ly(y, 2)=Lx(p, 2) for all € Z,, then yE Y.
On the other hand,

MF’ = sup,eg inf,epq 2, Ly(y, 2) = infzewnz, sup,ex Ly(y, )

by Lemma 3.2 and a minimax theorem (cf. Fan [5; Theorem 2]), if conditions
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(3.1), (3.2),

(3.5) K is compact,

(3.6) Ly(-, 2) is continuous on K for each z&Z,
are fulfilled. Using these facts we prove

Theorem 3.3. Assume that conditions (3.1)~(3.6) are satisfied. Then the
duality relation MF=MF* holds. Furthermore if MF is finite, then there is an
optimal solution of (MF).

Proof. By the definition of MF*, inf.cy,z, SUP,exny Ly(y, 2)=MF*.
From the above observation, it follows that MF >MF*. The converse inequali-
ty follows from Lemma 3.1. Next we assume that MF is finite. Since MF=
SUpyex infewn z, Ly(y, 2) and f(y)=inf,ep,z, Ly(y, 2) is upper semicontinuous
on K by (3.6), according to (3.5) there is y,&K such that MF=f(y,). Since
MF is finite, as shown in the proof of Lemma 3.2, there is p,&P such that
Ly(y0, )=Lx(py, ) for all 2€Z, and f(y,)=h(p,). By (3.3) and (3.4), p, is 2
feasible element of (MF). It follows that p, is an optimal solution of (MF) and
the proof is completed.

Next we are concerned with min-cut problems. By a cut of a domain,
we mean a partition of the domain into two parts. We identify any cut with
the characteristic function of one of the parts. Let Z, be a subset of Z con-
taining 0. Later Z, will be taken to be a class of characteristic functions. Here
we define (MC) as follows:

(MC) Minimize W.(2)/II(2) subject to 2 Z, and II(2)>0,

where II(2) = inf {Ly(p, 2); pEP, h(p)=1} .

We denote the value of (MC) by MC. Let Z be the set of all z& Z satisfying the

following condition:

(3.7) 'There exist Lebesgue measurable subsets J and J' of R and a subset
{2,},es of Zy such that J'C J CR, and that Wk(2,) and II(2,) are integr-
able functions of 7 on J and J’ and satisfy

W p(2) = S] Wy(z,)dr and II(z) = Sﬂ T(=,) dr

respectively.
Then we have

Theorem 3.4. Assume that h>0 on P and that there is a sequence {2’} cZ
satisfying T1(27)>0 for each j and

lim Supn Wx(#)/I1(=%) < C()/11(=)
if 2€Z and T1(2)>0. Then MF*=MC.
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Proof. If h(p)=0 for all pP, then, by considering 2=0, we can see
MF*=MC=0. Thus we consider the case where there exists p,& P such that
h(py)>0. First we define an auxiliary problem (I7*):

(M*) Minimize W(2)/TI(z) subject to z& Z and II(z)>0.

We denote the value by M*. We show that MF*=M?*. If there is no feasible
element of (MF*), then MF*=oo >M*. If x&Z is a feasible element of (MF¥),
that is, Lx(p, 2) =>h(p) for all p P, then II(2)>1 and therefore W(2)/II(2)<
W(z). It follows that M/* < MF*. We may now assume that there is a feasible
element of (/1*). Let z be such an element. If p& P and A(p)>0, then k(p)~*p
€P and h(h(p)*p)=1. Thus Lx(p, 2/TI(2))=Ah(p) if p€P and h(p)>0.
Furthermore, if p P and A(p)=0, then by considering p+#p, and letting t—0
we obtain Ly(p, 2/TII(2))=>h(p). Thus II(2)™' 2 is a feasible element of (IMF*)
and MF*<W,(I1(2) 7! 2)=Tk(2)/II(2). Since 2z may be an arbitrary feasible
element of (M*), MF*<M#* so that MF*=M#*.

Next we show that M*==MC. Evidently M*<MC. So we assume M*<
oo. First we suppose there exists ¥&Z which is a feasible element of (A7*).
Then there exist ], J* and {z,} which satisfy the conditions stated in (3.7). In
particular, all 2, Z; and

() = SI Wi(z,)dr and II(2)= S]/ II(2,) dr .

Since II(2)>0, the Lebesgue measure of {reJ';Il(2,)>0} is positive. If
Wi(2,)/T1(2,) > ,(2)/I1(2) for all r& J' such that II(z,)>0, then

V(@)= | Tal@) dr>(Ce)ME) | 1) dr = ela)

This is a contradiction. Thus there exists 7,& J' such that II(z,)>0 and
W(2,,)/T1(2,,) <Wi(2)/TI(z). Hence MC<W(z)/II(z). Next let 2 be an arbi-
trary feasible element of (M*). By our assumption, there is a sequence {2’} in
Z such that II(z7)>0 for each j and

lim sup.e. W(2!)/IL(2') < W () 11(z)

Since 2’ Z and 2/ is a feasible element of (M*), MC <W(x")/II(z’). It follows
that

MC <lim sup;.,.. Wx(2’)[T1(2") < Wi(2)/11(2) .
Thus MC <M#*. This completes the proof.

Let us consider special X, Y, Z, Y,, Z, Ly, Ly and h. Let T be the set
of all nonnegative integers. We set

X= {(gl,h EZ,!):ETE(L”(‘Q') XLw(aQ))T; EtET(Ilgl,tllL”(0)+||Ez,t“L°°(80))< °°} )
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Y = {(os, #)1er € (L=(Q; R") X L=(0Q))" ; Dherlloll = : zm<oo
and 237 &, exists in L*(E)} ,

where E is a Borel subset of Q. Let K be a convex set in Y; containing the
origin and P be a convex cone in X with vertex at the origin as required in the
beginning of the present section. We assume that «,=0 H,_,—a.e. on 0Q—E
for all (o4, #;);e7=K. Furthermore we set

Y = {(oy & )1er€ Yy; o €H(Q)  forall teT},
Z = {(2)1er EBV(Q)7; supser(llzil |21 +VZdl o) < oo,

Sherllvzi—v2inllm<oo},
Z, = {(2)1er€Z; 2,€WH(Q)  forall teT} ;

in the definition of Z, v is the mapping defined in Theorem 2.1 (1).
Let Q' and A’ be Borel subsets of  and 8Q respectively. We define Ly,
Ly, h by

Ly, 2)= EIET{SQ ISWEA dx‘l"Sm E e vz dH, 1},
Ly(3, 3) = Sier (o V5) @)= w3, dH, 1},
h(E) = Eter{sn, 51,: dx‘l‘SA, Ez.t dHn—l}

for E=(&,1, 2. )ier € X, 2=(2)1er EZ and y=(o, #;);erE Y. Since 7 is a con-
tinuous mapping from W*(Q) to L'(3Q), using Theorem 2.1 (2) we observe for
(2,)ierEZ that

supser! V2l Lion) < supser R(I12:] L) +11V R la) << o0

where k is a constant depending on Q. We infer easily that Lx(£, 2) and A(£)
are finite. Setting ©,=>!_, x, and O_,=0, we have

St | vm i, =310 | ©-0,) 208,
E E
=5t | euvm—vs) d o+ | ©ivadH,...
Letting t— oo, we see that Ly(y ,2) is also finite and
(3'8) LY(y’ ) = 2ljer {(a’, Vz,) (‘Q)"’SE et(')'zt—')’ztﬂ) dH,_,
‘]‘SE O(v2:—v%-1) dH, 1}

where we set @=317_0 «, and z_,=0. For y=(oy, 4,),erE Y, and 2=(2)1erE
Z,, Ly(y, 2) is defined by
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Ly(y, 2) = EIET{SQ V2 dx_SE Ky Y3y dH, o} .

With the above data we consider (MF) and (MF¥) as in the beginning of
this section and denote them by (MF,) and (MF¥) respectively. As usual we
denote the values of (MF), (MF§) by MF,, MF§ respectively. From Lemma
3.1 it follows that MF,< MF§.

We define a max-flow problem (M®,) as follows:

(M®,) Maximize E'ET(S —div o, dx+ S (oy-v—rs) dH,_y)
Q’ a’
subject to (o, #1);erEK and  (—div oy, o v—K)ier EP,
where Theorem 2.3 (2) is used to see that ¢+» may be regarded as a function of
L~(0Q) when o= H(Q). We denote the value of (M®,) by M®,. For any fea-

sible element (o, #;);er of (M®,), one may call (o,);er a feasible flow of (Mdy).
We prove

Proposition 3.5. M®,—=MF,.
Proof. Let p=(p.s P2s)icrEP be a feasible element of (MF;). Then

there is y=(oy, #;);erEK NY such that Ly(p, 2)=Ly(y, 2) for all z€Z. In
particular, S Prs vdx—\—sa Dot fy'vdH,,_lzg o-,~V'vdx—S kysyvdH,_, for all teT
Q Q Q E

and v € WhY(Q). HenceS P1,s vdx =S o+ Vodx for all v€C7(Q) and thus
Q Q
pri=—div oy a.e. on Q for all t&T. Furthermore since «,=0 H,_;—a.e. on
0Q—E, by Green’s formula we obtain S 2y fy'vdH,,_lzga (os°v—ry) yodH,_,
Q Q
for all t&T and v W"(Q). From {yv; ve W"(Q)}=LY9Q) it follows that
bri=0v—r, H, ;—a.e. on 0Q. Thus (o, #,),er is a feasible element of (M®,)
and M®,> MF,.
Conversely let y=(o, #;);er be a feasible element of (M®,) and set

p= (Pl.n Pz,t)ter = (’*diV Oy 04 V—Ky)ser -

Then peP and o, H(Q) for all t&T. Since
Ly(5,9) = Sierl—|_s,divoydst | (o-0—w) vz, dH,} = La(p,%)

for each 2=(2,),er EZ, it follows that p is a feasible element of (MF,) and MF,>
M®,. This completes the proof.

To state a duality theorem for (MF,) and (MF§), we define topologies on
Z, and Y;. Let W"(Q)* be the topological dual space of W*(Q) and set
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ll2llwracys = sup {v(w); |lullpria)<1}
for ve W*{(Q)*. Furthermore we set

Z¥ = {('Un ﬂt)terE(Wl'l(\Q)* XL”(E))T; EteT”‘z’t”Wl'l(o)* is finite
and .oy, existsin L7(E)} .

We define a bilinear form (-, -> on Z, X Z¥ as follows:

<3, @ m)> = Sherlods)+|_m s dH, )

for 2=(2,);er€Z, and (v, 7)=(vy, 7)ser EZ¥. In the same way as the fini-
teness of Ly(y, 2) one can show the finiteness of <z, (v, n)> and hence that
(Zy, ZF, <+, +>) is a paired space. On Z, and Z¥ we consider the weak topolo-
gies defined by the pairing, and on Y, the topology induced by the product
topology of the weak* topologies on L*(Q; R")X L=(8Q). Then Z¥ is regard-
ed as the topological dual space of Z,.

Now we prove

Theorem 3.6. Assume that K is compact and that conditions (3.1), (3.2)
and the following condition are satisfied:

(3.9) There are sequences {a,} and {b,} of positive numbers such that
Ser ay< oo, limy,.. b;=0, and that ||o/|| =@ ;zm=<ay || Z5s &llL=0a) <b;
for all (o, k)EK.

Then MFy=MF§. Furthermore if MF, is finite, then there is an optimal solu-
tion of (MF,).

Proof. We note that Ly((o, «), +) and Lx(p, <) are continuous on Z, for
each peX and (o, ¥)€Y;. In fact, define o,€ W"(Q)* by

vi(w) = SQ o Vaode

for we W(Q), and set p,=—=x, | for each t€T. Then (v, 9)ierEZ¥ and
Ly((a, k), 2)=<z, (v, 5)) for all z&Z,. It follows that Ly((s, ), ) is continuous
on Z;. On the other hand, by letting

vi(w) = Snpl" wdx‘i“gm Do, YwdH,_,

for weW"YQ) and considering (v}, 0),e,EZ%¥, we obtain the continuity of
Lx(p, -). In order to prove this theorem it suffices, according to Theorem 3.3,
to check that (3.1)—(3.6) are satisfied. By assumptions, (3.1), (3.2) and (3.5)
are satisfied. Using Theorem 2.1 (2), we can easily prove that (3.3) is fulfilled.
Since P is a subset of (L"(Q)xL=(0Q))7, (3.4) is also fulfilled. Finally (3.6)
follows from (3.9) and the equality in (3.8). 'This completes the proof.
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We give a lemma that will be used to check (3.1).

Lemma 3.7. Assume that there exist two convex cones P* and P? in (L"(Q) X
L>(8Q))" satisfying the following conditions:
(3.10) P! and P? are closed with respect to the canonical weak* topology on
(L(Q) x L={0Q))".
(3.11) P is a finitely generated convex cone contained in X.
(3.12) p,,=0a.e.on Q for all teT and p,;,=0 H,_,-a.e. on E for all t>N if
(Pr.ts Po.0)rer E P2, where N is a positive integer independent of (py s, Ds.e)ier-
(3.13) P=P'4+P*NX and P'N(—P*={0}.
Then Ly(P) is a closed set in Z¥.
Proof. Since Ly(P?) is a finitely generated convex cone which is closed in
Z¥, Ly(P") is locally compact.
We show that Ly(P*N X) is closed in Z¥. Let {p’} ={(0, p} ¢)ier} be 2 net
in PN X and (vy, 7:);er be an element in Z¥ such that

Ly(p', 2) = Dier {vt(zt)‘*‘SE ne V2 dH,_}

for each 2=(2y),erE€Z,. In particular,
Sm P4 ywdH,_, — vf(w)+SE 7 YwdH,_,

for all we Wh(Q) and tT. We set -r,(wj:v,(zo)—i—& neywdH,_,. ThenTt,e
E

Wt Q)*. Since 7,(w)=0 if yw=0 H,_,-a.e. on 8}, we can regard 7, as a con-
tinuous linear functional on W(Q)/W¢-'(Q) which is topologically isomorphic
to L'(02). Hence there is p, ,& L=(8Q) such that T'(w):Sa Dot YwdH,_, for all
Q
weWh(Q). Using the fact that {yw;we W (Q)}=LY0Q), we see that
b3.4+—> s+ With respect to the weak* topology on L=(3Q) for each tT. Hence
(3.10) implies (0, p,:)ier P2 To prove (v;, n)ier ELx(P*NX), it suffices to
show that (0, p,;);e;€X. Since p5 ,=0 H,_,-a.e. on E for all £>N and all 7 by
(3.12), p,,=0 H,_,-a.e. on E for all t>N. We claim that 3,c7||psl|1200) IS
finite. Suppose that 3|l p ¢ll~@ay=0c°. Then there is {g;} ;c; ©L*(0Q) such

that ||¢,]|;20y <1, =0 H,_, ae. on E, p,, ¢,>0 H,_;-a.e. on 3 for each t&T
and

EtETSan_E o @ dH, = .
Furthermore in virtue of [8; Theorem 2.16] there is {w,},c,C W"}(Q) such that
yw,=q; H,_,-a.e. on 0Q and sup,er||w,||p11)<<oc. Then (w,),erEZ, and thus
Sher (@) =Ser Sm_E o yw, dH,_,<oo. Thisisa contradiction. Tt follows
that 33,e7l|ps,ll2200) is finite and (0, p,;);e,€X. This shows that Ly(P?*N X)
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is closed in Z¥.

It follows from the relation P'N(—p?)={0} in (3.13) that Ly(P*)N(—Lyx
(P*N X))={0}. Hence in virtue of Dieudonné [4; Proposition 1], Lx(P")-+Ly
(PPNX) is closed. Since Ly(P)=Lyx(P'+P*NX)=Lx(P)+Lx(P?NX) by
(3.13), we conclude that Ly(P) is closed. This completes the proof.

We set
Q0) = {(S))ier; S:CQ, X;,€BV(Q) forall teT},
Zy = {(2)ier€Z; (21)ier = Xster OF (2)ter = (—Xs,)eer
for some  (S});er=Q(0)}

and denote the problem corresponding to (MC) by (MC,). Theorem 3.4 gives
some conditions under which the value MC, of (MC,) equals MFF¥.

The formulation of (MF,) is owing to an advice given by H. Aikawa at
Gakushuin University.

4, The first max-flow min-cut theorem

In this section, we consider a special case of (MF,). Let E=8Q and let
T,X,Y,Y,Z Z, Ly, Ly, Q', A, h be as defined for (MF,) and (MF¥) in
§3.

Let ay, a; be nonnegative functions in L*(3Q), let Ty be a set-valued
mapping from Q to R” which satisfies (2.1), (2.2), (2.3) and define K,, K} by
K, = Ky, K§ = {¢€L>(0Q); —a,<r<aj H, ;-a.e. on 0Q}
respectively. Let A be a Borel set such that A’CcAcdQ, FEL'(Q), f€L>(A)
and set
K = ‘{(O't, ,Cf)tETE Yl; O-OEK')’ MoEK(’) and 0y =— 0 a.c. on ﬂ )
x, =0 H,_ ;-a.e. on 8Q forall r>1},
P = {(pr1s Pr.t)ier EX; pro=AFae.on Q, p,0 =Nf
H, -ae.on A for some >0 and p,, =0a.e.onQ,
pri=0H, ;-ae. on0Q forall t>1}.

Since T, satisfies (2.1)(2.3), K is a compact set in Y;. We denote the problems
(MF,), (MF¥), the quantities MF,, MF¥ for the above data by (MF,), (MF¥),
MF,, MF¥ respectively. Furthermore let Z, be a subset of Z as defined at the
end of §3 and denote (MC,), MC, for the above data by (MC,), MC, respec-
tively.

We define a max-flow problem of Strang’s type and its dual problem as
follows:

(M) Maximizehs Fdx—}-xs fdH,_, subject to >0,
0/ A/
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dive =—\Fae. on Qand o-v—r=\f H, ;-a.e. on A
for some (o, k) EKyX K{.
(M®¥) Minimize ry(u)+Eo(v#) subject to us BV (Q),

L(u)zgn, Fdx+- L/ fdH,_, and yu=0 H,_,-a.e. on 0Q—A,
where L(u)=S° Fudx—l—SA fyduH,_,, \ro(#)=1r,(u) and

Co(vi)=supears |, —wvudH, = (aururaoyw) dH, ..

We denote the values of (M®,), (M®¥) by M®,, M ¥ respectively. Let o €K,
If there are >0 and € K} such that div o=—\F a.e. on Q and o-v—x=\f
H, ,-a.e. on A, then we call o a feasible flow of (M®,). Furthermore if

x(ja, Fdx—l—SA, fdH,_,)=M®,, then o is called an optimal flow of (M®,). We

observe that M®, corresponding to the above data is equal to M®,.
Using Proposition 3.5, we obtain

Lemma 4.1. M®,=MF,.
For the dual problem, we have
Lemma 4.2. The inequalities MF¥ < M®¥ <o and
W i((26)rer) < Vro(20)+Eo(720)
hold for all (2,),erEZ. If T, satisfies (2.4), then MF¥=M®¥ and
Wi((21)rer) = Yro(20)+Eo(720)
for all (2)1erEZ.
Proof. Let us show that M®¥ is finite. Set a———go, Fa’x-}—L/ fdH, .. 1f
a=0, then u=0 is a feasible element of (M®¥). If a=0, then SQ |F ldx—l—SA ¥i

dH,_,>0. In case SQ | F'|dx>0, there exists u< C7(Q) such that L(u)::S Fudx
Q
>a so that u is feasible. In case S | F|dx=0 and S | fI|dH,_,>0, there exists
Q A
ues Wh(Q) such that L(u):S fyudH, ,>a and yu=0 H,_,-a.e. on 0Q—A.
A

This shows that u is a feasible element of (M®¥). Since M®¥>0, MP¥ is
finite.
Let (2;);erEZ. Then in virtue of Lemma 2.6,

W r((2e)rer) <bro(20)+Eo(720) -

Furthermore from the second part of Lemma 2.6 it follows that

Wx((21)ier) = Yro(20)+Eo(v20)
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if T, satisfies (2.4).

Let z, be a feasible element of (M®¥) and set 2,=0 for all £>1. Then
(%¢)ier is a feasible element of (MF¥). Thus from the fact stated above it fol-
lows that MF¥ < M®¥.

Conversely let (2,);erEZ be a feasible element of (MF¥). Then it is easy
to see that 2, is a feasible element of (M®¥). If T, satisfies (2.4), then M®¥<
MF¥ and hence MF¥=M®d¥.

Using Theorem 3.6, we shall prove
Lemma 4.3. MF,=MF¥.

Proof. To prove this lemma, it suffices to check the conditions in Theorem
3.6. We note that the topologies on Y,, Z, and Z¥ are defined before Theorem
3.6. To check (3.1), we set two cones P!, P? in (L"(Q) X L=(8Q))" as follows:
P = {(p.» pz,,),ETE(L”(Q)XL“(GQ))T;pLO =AFae. onQ,
P,y=AfH, ;-ae.on A, p,o=0H, ;-ae. on 0Q—A,
pe=0ae onQandp,, =0H, ;-ae. on 3Q forall t>1},
P2 = {(puss Prt)ierE(L"(Q) X L=(0Q))7; prs = 0 a.e. on Q
forall teT,p,,=0H, ;-a.e.on A and p,, =0
H,_,-a.e.on 8Q forall #>1}.

Then P, P? satisfy conditions (3.10)-(3.13) in Lemma 3.7. Hence in virtue of
Lemma 3.7, Lx(P) is closed in Z¥. It follows that condition (3.1) is satisfied.

To check (3.2) we let peP and let A be a nonnegative number such that
pro=AFae.onQand p,,=Af H, ;-a.e. on A. Since the set W of all feasible
elements of (MF¥) is given by

W = {z€Z; Ly(p, 2)=h(p) forall pcP}
= {(2)ierEZ; ¥2y = 0 H,_;-a.e on 0Q—A and

L(z,,)zggl Fdx+L’ fdH,_}
it follows that

h(p) = inf(z,)},EL,.eWn 2 M%) = inf(z,),efewn 2z, Lx(P, (2¢)ier)

and (3.2) is fulfilled. Finally we note that (3.9) is evidently satisfied. Thus
applying Theorem 3.6 to (MF,) and (MF¥) we conclude the proof.

Now we obtain a duality theorem.

Theorem 4.4. MF,=MF¥=M®,=M®¥. Furthermore they are all finite
and each of (MF,) and (M®,) has an optimal solution.

Proof. In virtue of Lemmas 4.1, 4.2 and 4.3, M®,=MF,=MF¥ < M®¥
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<oo. Since M®,>0, all the quantities in the theorem are finite. We have
seen in the proof of Lemma 4.3 that we can apply Theorem 3.6. Therefore
(MF,) has an optimal solution. It is easy to see that also (M®,) has an optimal
solution.

Next we prove M®,=M®¥. If T, satisfies (2.4), then noting Lemma 4.2
we obtain M®,=M®¥. In the general case, since MP, <MP¥, it suffices to

prove M®,>Mo¥. IfS Fdx+g fdH,_,—0, then M®d,=Md¥=0. Hence
Q/ A

we assume that s Fdx—l—S fdH,_,#0. We set T, ;(x)=T"(»)-+B(0, 1/j) for all
a’ 4

x€Q and j. Using T'; instead of I';, we can define two problems similar to
(M®,) and (M®¥). We denote the two values by M, and M¥ respectively.
Since Ty, satisfies (2.4), M;=M?¥ for all j. Choose A;>0 and (¢”, ') €Ky ;X K§
for each j such that —div ¢/=X; F a.e. on Q, o/-v—w’=\; f H,_;-a.e. on A and

7\.,-(&0, Fdx+ SA, fdH,_,)>M;—1/j. Since K, and K{ are weak*-compact sets in

L=(Q; R") and L~(8Q) respectively, there is a subsequence {(¢’’, ')} of {(c”’, #/)}
such that o-f'——>a-EK,, and x>k K} Then —dive=AFa.e. on Q and o-v—

k=\f H,_-ae. on A, where A=lim,..A;=lim,_. M,./(S‘2 Fdx—{—s fdH, ).
/7 A,

Thus M®, >lim,,., M;=lim;,, M¥>M®¥. It follows that M®,=M¥.
This completes the proof.

Before defining a min-cut problem corresponding to (M®,), we prove two
lemmas.

Lemma 4.5. Let ucBV(Q), and set N,={xcQ; u(x)>r} and N}={xE
0Q; yu>r} for r&R. Then the relation

Xy, = Xorw,noa = YXu,
holds H,_,-a.e. on 0Q) for a.e. rER.

Proof. We use «* which is defined in §2. First we note that X v, EBV(Q)
for a.e. r&R and H,_,(000—0*Q)=0. Let 7 be such a real number. Suppose
there exists x€0*Q with u*(x)>7, and take 7’ such that #*(x)>7">r and Xy €
BV(Q). Then x€8*N, N0*QC0*N, N 0*Q so that

{yeo*Q; u*(y)>r} CO*N,N0*Q .
By the definition of #* we have
9*N,N0*QC {yso*Q; u*(y)=>r} .

Since w*eLY(0Q), H,_,({y=0*Q; u*(y)=q¢})=0 for a.e. g=R. Thus for a.e.
GER, X2 =Xary,n00 Hy-y-a.e. on 0%Q. It is easy to see Xouy,nea=X%¥, for
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a.e. ¢R. Noting that u*=eyu holds H,_;-a.e. on Q) as was stated in §2, we
conclude the proof.

Lemma 4.6. Let ucBV(Q). Then
o 0
L(u) = So L(Xy) dr—|—S_m L(—Xy,) dr,

where N,= {x&Q; u(x)>r} and M,={x=Q; u(x)<r}. Furthermore if SQ Fdx+
[ fat,,=0, then L(u)zr L(Xy) dr.
A —00

Proof. We have
[ Perav=("af rFa | Prae=("af  Fax
Q 0 (ur) Q 0 (u<-r}
by [11; Theorem 1.2.3]. Using Lemma 4.5, we can show that
den—l = Sm drs f(ny, dHn—l )
0 A

fdH,_, — S: drSA FYXu, dH,_, .

SA F(yuy*aH,_, — S: drs
(s~ o]

(Yu2rln A

(Yu<-7}N A

Thus
Ly =" Fxy, dvt{ foxy, dH, ) ar
0 Q A
(P, dvt| foxe, ) ar.
0 Q A
0 0
It follows that L(u)zg L(Xy) dr+S L(—Xy,) dr.
0 —00
Next assume S Fdx—!—sAde,H:O. Since yXy_,+7Xu_,=v(Xy_,+Xu_,)
Q
=1 H,_,-a.e. on 0Q for a.e. 7,
S FXy.. dx—i—g F¥ %o dH,_, = —S FXy_, dx—j FvXy., dH,_,
Q A Q A
= —L(XN_,) .

Hence

1) =" ar(( Px ax+ fonn, i) =7 Loty ar.
Now we define a min-cut problem (MTI) associated with (M®,). Let
Q1) = {ScQ; X, BV(Q), yXs =0 H,_,-a.c. on 3Q—A} .

Then (MT,) is defined as follows:



832 R. Nozawa

(MT,) Minimize (Sa, Fdx+L/ FaH, ) (Vo) +-Eo(ye)) L)
subject to the constraint that # = X5 or # = —X; for some
SeQ(1) and L(u)>0.

We denote the value of (MT',) by MTy. If S€@Q(1) and if Xs or —X;s is a
feasible element of (MT,), then S is called a feasible cut of (MT").
We shall assume

4.1) SQ, Fdx+SA, fdH,_;>0

in Lemmas 4.7, 4.8 and Theorem 4.9. The case when (4.1) does not hold will
be examined in Remark 4.10.

Lemma 4.7. Assume (4.1). Let (2,);er<Z and I1 be the functional on Z
as defined before Theorem 3.4. Then

I ((2,)req) = (Snl Fdx+SA/ fdH,_)" L(z,)

if y2,=0 H,_,-a.e. on 0Q—A and L(2,) >0, and I1((2,);er)=— o otherwise.
Furthermore MC,<MT\,, and MC,=MT", if T satisfies (2.4).

Proof. Since (4.1) is satisfied, the first assertion follows from the definition
of I, Ly and h. Assuming MT,< oo, let 2, be a feasible element of (MI';) and
set 2,=0 for all £>1. Then II((2;);er)>>0 and thus (2,),er is a feasible element
of (MC,). Hence the inequality MC,<MT, follows from Lemma 4.2.

Conversely assume that T, satisfies (2.4) and suppose that there exists a
feasible element (2;);er of (MC,). By the aid of the first part of the present
lemma we see that 2, is a feasible element of (MTI',). Thus Lemma 4.2 yields
MC,>MT,. This completes the proof.

Lemma 4.8. Assume that T, satisfies (2.4) and that (4.1) is fulfilled. Then
the equality MF¥=MC, holds.

Proof. In order to prove MF¥=MC, it suffices to check the conditions in
Theorem 3.4. By (4.1), h(p)=>0for all pP. Suppose there exists 2=(2,),er E
Z with T1(2)>0, and set 2{==2, and 2{=0 for all #£>1andj. We set z{,,=XN; ,
for r>0 and z{,,=——XM{J for r<0, where Nj,={x€Q; zi(x)>r} and M} ,=
{x=Q; 2j<r}. Then (2},)erEZ, for a.e. 7ER. As in the proof of Lemma
4.6 we have

orsd) = | ao(vs) atl, i+ | abvabyat,.,
0

:S drS Ay YXnj dH,,_1+S drS o yXyi dH,_,
0 20 o7 o0 20 0,r
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= s:ﬁ So(v2i,,) dr.
It follows from this relation and Proposition 2.4 that
W ((2h)ser) = Yo(=8)+Eo(v21)
= {7 @bttt dr = O@ter) dr

and from Lemmas 4.6 and 4.7 that

() = | H(@ien) dr -

Thus {(2),er} satisfies the conditions required in Theorem 3.4 and this theorem
yields MF§=MC,. This completes the proof.

Now we obtain the first max-flow min-cut theorem.
Theorem 4.9. Assume (4.1). Then MD,=MT,=MC,.

Proof. If T, satisfies (2.4), then in virtue of Lemmas 4.2, 4.7 and 4.8
M®¥=MT, and hence by Theorem 4.4 M®,=MT,. In the general case, one
can prove the equality along the same lines as in the proof of Theorem 4.4.
From Theorem 4.4 and Lemma 4.7 it follows that M®,=MF§{<MC,<MT,.
Hence M®,=MT,=MC, and the proof is completed.

ReEMARK 4.10. Suppose (4.1) does not hold, namely, SQ Fdx—l—s fdH,_ <
4 A,

0. Then M®,=0. We note that II(2)=o» for all z&Z,. Thus each element
in Z, is a feasible element of (MC,) and MC,=0. Let us examine (MI),). If

S | F| dx—!—s | f|dH,_,=0, then there is no feasible element of (IMT,) and hence
Q A
MT,—co. If S |F| dx—l—s | f|dH,_>0 and S Fdx—}—s fdH,_,—0, then
Q A o’ 4
MT,=0. If S Fdx—l—s fdH,_, <0, then MT,<0 and both the case when
Q’ A
MT,=0 and the case when MT,<0 may happen.

ReMARK 4.11.  Assume that one of the following two conditions is satisfied:

(Hl-) A =00, SQ Fdx+ L fdH,, =0 and ay=aj=0
H,_,-ae. on0Q.

(H1-b) F>0ae.onQ and f>0H, ;-ae.onA.

Then

42 MO =it Favt | faH,) (o) + X LOG);
SeQ(1) suchthat L(Xs)>0}.
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In fact if (H1-a) is satisfied and u=—X; is a feasible element of (MI), then
14u=%Xg._s is also a feasible element of (MTY), yro(#)=1r(14u) and L(u)=
L(14u). If (H1-b) is satisfied and u is a feasible element of (MIY), then
L(#)>0 and thus #>0. Hence (4.2) holds.

5. The second max-flow min-cut theorem

In this section, we consider another special case of (MF,). Let 4, B be
disjoint Borel subsets of 00, take 8Q—(A U B) as E, take ¢ as Q' and take 4 as
A’ in §3. Furthermore let T, X, Y, Y,, Z, Z,, Ly, Ly, h be as defined for
(MF,) and (MF¥) in §3.

Let a;, a; be nonnegative functions in L=(0Q) such that a,=a}=0 H,_-
a.e. on AUB and T be a set-valued mapping from Q to R" which satisfies
(2.1), (2.2) and (2.3) for each t=T. We set

K, =Ky, and K= {¢€L=(0Q); —a,<«c<a}i H, ;-a.e. on 00} .
In the present case, we take
K = {(os, ¥:)ier€ Y,; €K, D0 ks€K; forall (€T},

P = {(p,1 p2.t)terEX; p,y = 0ae.on Q, p,, >0 H,_;-a.e.
on 4 and p,,=0 H,_,-ae.on E forall tT} .

With these data we consider the problems corresponding to (MF,), (MF¥),
(M®,) and denote them by (MF,), (MF¥), (M®,) respectively, In addition we
denote by (MC,) the problem which corresponds to (MC,) given at the end of
§3. We denote the values of (MF,), (MF¥), (M®,), (MC,) by MF,, MF¥, M®,,
MC, respectively. Throughout this section we assume that

(5.1) Slter SUPsek; lloll1=@; gm<<oo  and
limy ool el 2oooa) F- |t 2=ac)) = 0.
Then K is a compact convex subset of Y.

Now we define a max-flow problem (MW¥,) of Iri’s type and its dual problem
(MW¥) as follows:

(M¥,) Maximize ez S,, orvdH,_, subjectto (o))er€Mer Ky,
dive;,=0ae.onQ, o;+v>0H, ;-ae.on 4 and
(Xiaoov)XzEK] forall teT.

(M®¥) Minimize 33er(y(2:)+E(72—72141))  subject to
(2)ierEBV(Q), v2,>1 H,_;-a.e.on 4 and
vz, =0H, ,-ae.on B foreach (=T,

where ry(v)=1Yrp,(v) for veBV(Q) and
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(@) = sup,ex; Sen —kpdH, | = San a ¢+dHn—1+Sm ai ¢ dH,_,

for o= L(8Q2).
We denote the values of (M¥,), (M¥¥) by M¥,, MV¥ respectively. We czll
each feasible element (oy),cr of (M¥,) a feasible flow of (MW¥,). We note
that (MY,) is slightly different from (M®,).

An application of Theorem 3.6 yields

Lemma 5.1. MF,=MF#%.

Proof. We check the conditions in Theorem 3.6. From (5.1) condition
(3.9) directly follows. Hence we prove that (3.1) and (3.2) are satisfied. Let

p=(0, p5..);erEP. Since h(p)=er S Do+ dH,_; and the set W of all feasible
elements of (MF¥) is given by 4

W= {2 = (2)ierEZ; v2;=1 H, ;-a.e.on 4 and vz, =0
H,_,-a.e. on B},

inf,ep oz, Lx(p, 2)=Hh(p). Thus (3.2) follows.
To prove that (3.1) is satisfied, we set two cones P! and P? in (L"(Q)X
L=(8Q))T as follows:

P = {(pu.ts Pr.t)ier E(L"(Q) X L=(0Q))7; p1,s = 0 a.e. on O
and p,,=0H, ;-ae.ondQ forall teT},

P? = {(p,6 P2.)eer E(L(Q) X L=(0Q))7; p1,, = O 2.e. on Q,
p:=>0H, j-ae.ond and p,;,=0H, ;-ae.onE
forall (=T} .

Then P!, P? satisfy conditions (3.10)~(3.13) in Lemma 3.7. Thus Lemma 3.7
yields that Ly(P) is closed in Z¥ and (3.1) is satisfied.

Hence we can apply Theorem 3.6 to (MF,) and (MF¥) and obtain MF,=
MF¥. This completes the proof.

Let (2,);erEZ and let I] be a functional on Z as defiend before Theorem
34. We set

essinf,c , v2,(x) = sup{reR; H,_,(ANM;,) = 0},

where M} ,={x€0Q; v2,(x)<r}. Then it is easy to prove that IT((2;);er)=
inf,e, essinf,c, v2,(x) if y2,=0 H,_-a.e. on B and y2,>0 H,_;-a.e. on 4 for all
te T, and II((2);er)=—oc otherwise.

We prove

Lemma 5.2. Let (2,);erEBV(Q)T be a feasible element of (MY¥) such that
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Sher(Vi(2)+E (72— 72411)) 15 finite.  We set Tly=inf,cp essinf e, v2(x). Then
there is a sequence {(2}),er} in Z such that

lim sup, e Syer(Yr(2)+E(v2i—72is1))
<Dher(Vi(Z) 82— 72141)) [T
and (2i)er is a feasible element of (M¥¥) satisfying the following condition for
each j:

5.2) There is t,& T such that 2} = 2}, or all t>t..
J J J

Furthermore if 2, is a characteristic function for each tE T, then we can take
{(2})ser} such that 2} is a characteristic function for all j and t.

Proof. Let (2,);er EBV(Q)T be a feasible element of (M¥¥). Considering
2,/I1,, we may assume that IT,=1. We set Z,=min(max(z;, 0), 1). Then using
Proposition 2.4 we see that Jr(2;)=>+r(2;). Furthermore using the fact that
yu=u* H,_;-a.e. on 9Q for any u BV(Q), we obtain ¢Z,=min (max(vyz,, 0), 1)
H,_,-a.e.on 0Q. Thus (vZ,—vZ,.,)"<(v2—72,)" and (vZ,—vZ,4,) " <(v2,—
¥2441)” H,y-a.e. on 8Q. It follows that

ZtET('\P’t(zt)_I_Ct('th_'thﬂ)) = Zter(‘h(z:)‘l‘a(ﬁ’zt— VZi11)) -

Now we fix an arbitrary characteristic function w in BV(Q) such that yw=1
H,_;-a.e. on A and yw=0 H,_j-a.e. on B. For each positive integer j, we set
2j=2,if 0<t<j, and 2j=w if t>j+1. Then

EtET(‘\l’t(z{)—[—gt('yz{_'yz;+1))
= Sl V(2 + 205741 ‘P‘t(w)‘i‘z}{:é t(')’zt_')'ztﬂ)‘l‘gj(’)’zj_')’w) .
In virtue of (5.1),
2jnY(w) >0 as j— oo
and

§j(72j—')’w)5max (“aj“z.“"(ao), lletsl]ze=con)) (“"Yzjl|L‘(an)+“')’w”1.‘(an))
<2H,_,(0Q)-max (||at;l|z=(oa)> l@X]l|z>(00)) = O

as j—>oo, Hence

limj e Ser(Vd(23)HE(v2i—72141)) = Shier(V(Z)+E(v2i—v214)) -

If 2, is a characteristic function for each ¢ T, then 2z} is also a characteristic
function for each tT and j. Hence {(2]),cr} satisfies the required conditions
and the proof is completed.
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Now we prove a duality theorem.

Theorem 5.3. MF,=MF¥=M®,=MY,=MY¥. Furthermore they are
all finite and each of (MF,), (M®,) and (M'¥,) has an optimal solution.

Proof. Let 2=(2;)ier€Z and y=(oy, #:);1erEKNY. Then from (5.1) we
infer that 335 #,=0 H,,_;-a.e. on 8Q and from (3.8) that

Ly(y, 2) = Sier (04 V2,) (Q)—SE By(v2—v2y,) dH,_ }

where ©,==31%_¢ «,. 'Thus using Lemmas 2.6 and 5.2 we see that MF¥ <MY¥.
The equality MF,=MF#¥ holds according to Lemma 5.1 and MF,=M®, follows
from Proposition 3.5. Therefore the relation M®,—=MF,=MF¥<MY¥ is de-
rived.

Let us show that M¥¥ is finite. Let w be a function in BV (Q) such that
yw=1 H,_;-a.e. on 4 and yw=0 H,_,-a.e. on B. Taking w as 2, for all t T,
we see that

Shter(Pi(2) FE( 72— 72441)) = Dier Yr(w)<oo

by (5.1). Thus M¥¥ is finite.

In case each T, satisfies (2.4), the equality MF¥=MW¥¥ follows from
Lemma 2.6 and the relation MY¥=MF§=MF,=M®, is obtained. In the
general case, we prove the desired equalities along the same lines as in the proof
of Theorem 4.4. We set T';;(x)=T",(x)+B(0, ;71 27%) for each x&Q and positive
integer j. By M; and M} we denote M®, and M¥¥ corresponding to {T';;},er
respectively. As shown above, each M¥ is finite. Since I; satisfies (2.4), M;=
M¥. Choose (ci, #})ier in (L=(Q; R") X L=(0Q))7 for each j such that of(x)E
Ty(x) for ae. x€Q, —a, <X ei<ai H,_,-a.e. on 0Q for all te T, (—div o},
oiv—rki)erEP and

Dter SA G'{'VdHn—1>Mj_ 1/] .

Then we may assume that {a}}; converges to an element o; in L”(Q; R") with
respect to the weak* topology for each t&T. The relation (—div o, oj-v—
k})ierEP implies that div oj=0 a.e. on Q and of-»v—r{=0 H,_,-a.e. on E.
Hence div o;=0 a.e. on Q and according to Theorem 2.3 (2) o} -v—>0,+v as j—>co
with respect to the weak* toploogy on L*(9Q). Furthermore we may assume
that {«xj}; converges to an element #, in L(0Q) with respect to the weak*
topology for each ¢. Then o;v—#,>0 H, ;-a.e. on A4, oy v—x,=0 H,_;-a.c.
on E and (o4, #;);crEK. We note that «,=0 H,_;-a.e. on AU B since a;=a;
=0 H,_,-a.e. on AUB for each t&T. Using the fact stated before Remark 2.12
and the relation o;-v=«, valid H,_,-a.e. on F, we obtain
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ZtETl IO': * V_"tl |L°°(an) = Dlerl |0't - |L°°(A TS E:eﬂ |0't| IL""(Q ¥ GRS

by (5.1). It follows that (—div oy, oy*v—#k;)ierEP. Hence (o4, #i)ier 1s a
feasible element of (M®,). Furthermore using (5.1) we can prove that

Sher | olvdHy > Sier | o100,
as j—>oo. Hence
MF<lim,.. M} = lim,. M, = lim,... Syer S,, ol-vdH,_,
= Sier | ovevdl, <M.

It follows that M¥¥=MF§=MF,=M®,.

Next we prove that M®,< MY, <MP¥. Since (oy)er is a feasible flow of
(MW,) for each feasible element (o, #;);er Of (M®,), the first inequality directly
follows. To prove the second inequality, let (oy),er be a feasible flow of (M¥,)
and (2,),er be a feasible element of (MW¥). We set Z,=min (max (,, 0), 1).
Then as noted in the proof of Lemma 5.2,

Dher(Pi(2) +El V2 —72441) = Dier(Ve(Z) +E (V2 —Y2144)) -
Thus using Green’s formula in Theorem 2.3 (3) we obtain

Shier(Vil(2) HE(v2—v2111))
> Sool(o, V2) @~ (oo 01o0) (2~ 72000) dHL )

= ELO‘{(O’: Vzt) (Q)_SE oy vy2,dH, .} ”[‘SE ELO oy vy2iy, dH,_,
= ELOS a-t°VdHn—-1+S DI o5 vYZ,,, dH,_,
A E

for each positive integer k. In virtue of (5.1)

|SE 2§=o Us‘V'szﬂ dHn—ll S”Ef=0 0‘3‘V||L°°(E)”'sz+1“1,‘(E)

<max (”ak”L‘”(an)» ”a;e“L”(aQ))‘Hn-l(E) -0

as k—>oo. Hence

Ster(Yre(2) T E (Y2 — VR441)) = Dter SA oyvdH,_; .

Thus M¥,<M¥¥. Since M®,=M¥¥, we conclude that M¥,=MP¥. Now
we have proved that MF,=MF§¥=M®,=M¥Y,=M¥¥ and the value is finite.

Finally as shown in the proof of Lemma 5.1 one can apply Theorem 3.6
and conclude that (MF,) has an optimal solution. It is easy to see that also
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(M®,) and (MW¥,) have optimal solutions. This complets the proof.
To define a min-cut problem (MT;) corresponding to (MW,), we set

Q(2) = {ScQ; Xs&BV(Q) suchthat ¢Xs=1H, ;-a.e.on 4
and oXs= 0H, ;-a.e. on B} .

Then (MT,) is defined as follows:

(MI;) Minimize >}er(Yr(Xs,)+¢ t(')’XSF"YxS,H)) subject to
(S)erEQ(2) .
We denote the value by MT,. We call each feasible element (S;),cr of (MT,)

a feasible cut of (MT).
Before stating the second max-flow min-cut theorem, we prepare a lemma.

Lemma 5.4. Let a and b be nonnegative functions in L=(08) and set

Eip) = |, apta, \+| bpmaH,.,

90
for pLY(8Q). Let @), p,=L}0Q). We set N;,={x€0Q; ¢,(x)>7}, @;,=
X, for r>0 and M, ,={x€08Q; ,(x) <1}, @; ,=—Xy,, for r<0, where i=1, 2.
Then

Epi—pa) = Sl E(@rr—epar) dr .

Proof. Set D*= {x&00; p,(¥) 2 o)} and I*=( a(p—g)*dH, .
Then by using [11; Theorem 1.2.3] we obtain °

I = SD,, a(p—p;) dH,_,
)adH,_,

O e I
0 Dt nilet>r) ptnler=r) Dt nile)>r) p*nlez>r)
o (1]
— s dr S a.le,,_l—i-g drS adH,_, .
p* n(Ny,,—Nz,,) —o°

) D* n (M, ,—My,,)
Since (0Q—D*)N(N,,—N,,,)=¢ for >0 and (0Q—D*)N(M,,,—M,,,)=¢ for
r<0,

It = S” & adH,,_l—}—So_m dr adH,_,

S r
0 Niy=Nay jMzrr‘err

— So ar Sag a(XNx_r—-XNz.,)"'dH,,_l

0
+S—co dr gan a(xMZvr—le,,)+dH”_l .
Similarly

[ bo—pna, = b(@—p)aH,.,
90 Q
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— S” d&r Sm b(Xy,—Xy,) dH, -y

0

0
+{__ar | b0t~ ),
— jo & Sm DXy, —Xy,) dH,

+So-°° dar San b'(XMz"__XMn-r)_dH -1

Hence
Epi—p) = | dr [ {a(tu,,—Xu, )"0 00, ~ X, )} B
+_ar | et i )Y (Yo i)Y A
= S:, E(Prr—ar) dr
and the proof is completed.

Lemma 5.5. Assume that T'; satisfies (2.4) for all t€T. Then MF¥=
MC,.

Proof. We check the conditions in Theorem 3.4. Evidently A(p)>0 for
all peP. In virtue of Theorem 5.3, MF¥ is finite. Let (2,),er be a feasible
element of (MF¥). Then (2,);er is a feasible element of (MW¥¥). Let {(2{);er}
be a sequence as in Lemma 5.2.  As noted before Lemma 5.2, I1((2});er)=inf;er
essinf,c, y2i(x). Hence

lim sup ;e Wr((28)ser)/TL((#])ser)
<Ster(Ye(=)HE (V2 —7R041)) TL((Re)ser) -

Now we set Ni,={xsQ; zi(x)>r}, z{,,zx,v{" for r>0 and Mi,={x=Q;
2i(x)<r}, z{_,=—XM{'r for r<<0. Since 2{==2{,; for all sufficiently large ¢ if we
fix j, (21,,)ier EZ, for a.e. rER and for each j, where Z; is the subset of Z de-
fined at the end of §3. In virtue of Lemma 4.5 '}'Z{,,ZXW,{"Z’) H,_;-a.e. on 8Q)
for a.e. >0 and fyz{,,=—x(.,,{_'5,, H,_;-a.e. on 00 for a.e. ¥<<0. Hence taking
a=a, and b=a}, in Lemma 5.4 we obtain

i —vein) = [”_sval,—vslin dr.
Thus by Proposition 2.4
Px(#)ier) = Sher(let)+Evsi—rala)
= Sertwn(et )t ritret— 2l )

— [ et en) .
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Furthermore we can easily prove that

II((2i,)ier) = 0 for a.e. r&(—o0, 0) U (T1((*})ser), )
and
II((®],)er) =1 fora.e. r&(0, I((2])ier)) -

Hence
(@fher) = [T er)

It follows that the conditions in Theorem 3.4 are satisfied. Applying Theorem
3.4 to (MF¥) and (MC,), we complete the proof.

Now we obtain the second max-flow min-cut theorem.
Theorem 5.6. MWV,=MTI',=MC,.

Proof. First assume that T, satisfies (2.4) for each t&7. Then using
Lemma 2.6 and the last part of Lemma 5.2 we can prove MC,—=MT,. Hence
from Theorem 5.3 and Lemma 5.5 it follows that M¥,=MT,.

In the general case, one can prove the relation M¥,=MT, along the same
lines as in the proof of Theorem 5.3. Furthermore using Lemma 5.2, we can
prove that MC,<MT, Since MY,=MF,=MF¥<MC, by Theorem 5.3, we
see that M¥,=MC,=MT,. This completes the proof.

ReMaRk 5.7.  The following equality holds:

MY, — Sup{Z,ETS oy vdH, 15 (0)ier€M,ep K, such that
A
dive, = 0a.e. on Q, (Zico o, v) Xz €K! forall teT} .

To prove this, we denote the right hand side of the equality by M for a moment.
Then evidently M¥,<M. On the other hand, we can prove M <M¥¥ in the
same way as in the last part of the proof of Theorem 5.3. Hence from Theorem
5.3 it follows that M'¥V,=M.

In the case where K,={0} for all £>1 and a,=a!=0 on 9Q for all t= T,
problems similar to (MW¥,) and (MT,) are investigated in Iri [9; §4.2]. Fur-
thermore if ¢ is a nonnegative bounded function in C(Q) and Ty(x)={weR";
|w| <c¢(x)} for all x€Q, then in virtue of Remark 5.7 (M¥,) corresponds to
(MFI) in §1. A problem similar to (M¥,) on networks with continuous time
is treated in [2]. The equality M¥,=M in Remark 5.7 was orally noted by
H. Aikawa.
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