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1. Introduction

Max-flow problems and min-cut problems have been investigated in do-
mains in Euclidean spaces as well as on graphs. In this paper, we shall formu-
late general optimization problems which contain the problems such as in [9],
[15], [16] and establish max-flow min-cut theorems related to these problems.

To clarify our idea more precisely, let us begin with recalling a standard max
flow min-cut theorem on networks due to Ford and Fulkerson [6]. Let a and
β be two distinguished nodes of a finite connected graph G, and let c b e a capa-
city function, that is, a nonnegative function on the set Y—E{G) of arcs ( =
edges) in G. Let X=V(G) be the set of all nodes (^vertices) in G. For each
node x, denote by Y+(x) (resp. Y-(x)) the set of all arcs which come from (resp.
go to) x. A flow σ from a to β is a real-valued function on Y such that its
net flow out of x, which is defined by

is required to vanish for each x in X except a and β. The value of a flow σ from
a to β is defined by its net flow out of a. A max-flow problem is to find the
maximal flow value of σ subject to the constraint that σ is a flow from a to β
and I σ \ <c on Y. On the other hand, a subset Q of Y is called a cut separating
a and β if there exists a partition (X', X") of X such that α G Z ' , β^X" and
Q is the set of all arcs joining X' and X". For a cut Q, we call the quantity
ΣyeG c{y) the cut capacity. The min-cut problem related to the above max-
flow problem is to find the minimal cut capacity of all cuts separating a and β.
The celebrated max-flow min-cut theorem in [6] assures that the values of those
problems are equal.

Now we state continuous versions of the above problems. In stead of G
and {α, β}, we take a bounded domain Ω in the ^-dimensional Euclidean space
Rn and mutually disjoint nonempty two subsets (A, B} of the boundary 8Ω of
Ω. A flow σ from A to B is a vector field which satisfies the following condi-
tions :
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divσ = 0 o n Ω , σ-v = 0 on 3Ω—(A\JB),

where v is the unit outer normal to Ω. Note that this definition has no ambi-
guity in case 3Ω, A> B and σ are sufficiently smooth. The net flow into a node
x in Ω U 9Ω is equal to div σ(x) if ^GΩ and to —cr z>(#) if #^3Ω.

Given a nonnegative function c on Ω, we formulate a max-flow problem

(MFI) as maximizing the flow value \ σ v ds subject to the constraint that σ is

a flow from A to B and |σ\ <c on Ω, where ώ denotes the surface element.
A cut S separating A and B is a subset of Ω such that AddS and 5 Π dS=

φ. Furthermore we require that 35 is sufficiently smooth so that we can define

5 cds. Then a min-cut problem (MCI) corresponding to (MFI) is to mini-
asno /.

mize the cut capacity I cds subject to the constraint that S is a cut separating
4̂ and B.

A continuous version of the max-flow min-cut theorem is to assure the
equality of the values of two dual problems such as problems (MFI) and (MCI).
Notice that (MFI), (MCI) are special cases of problems studied in Iri [9], Ta-
guchi and Iri [16]. We mean by " I " in (MFI) and (MCI) that these problems
are of Iri's type. It should be noted that no mathematical conditions which
assure the max-flow min-cut theorem are given in [9] and [16].

In connection with problems raised in capillarity and plasticity, Strang
[15] studied continuous versions of the max-flow problem and the min-cut
problem of another type. We denote them by (MFS), (MCS) and call them
Strang's version. He used some mathematical tools such as functions of bound-
ed variation and coarea formula. Furthermore he noticed that (MFI) and
(MCI) could be treated by his method.

Our aim of this paper is to give rigorous formulations of max-flow pro-
blems and min-cut problems on a bounded domain Ω in Rn with Lipschitz
boundary which contain problems in [9], [15], [16] and to prove max-flow min-
cut theorems for them. For example, we have to give a rigorous notion of a
flow <7, the outer unit normal vy the inner product σ v and the cut capacity of
a cut. To do so, we basically follow Strang's idea in [15]. The space of es-
sentially bounded vector fields with divergence in Ln(Ω) and the space of func-
tions of bounded variation will play important roles in our study. In fact,
a static flow is represented by an element in the former space and a static cut
is represented by a characteristic function which belongs to the latter space. One
of our mathematical tools is a generalized Greens' formula, due to Kohn and
Temam [12], for functions of bounded variation and essentially bounded vector
fields with divergence in L"(Ω). Furthermore as in [9] we treat the general case
when our network is anisotropic. Namely, the capacity constraint is described
as follows:
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σ(tf)eΓ(#) for all xGΩ,

where T(x) is a compact convex set in Rn containing 0 for each xGΩ. TO
deal with anisotropic domain, we need an extended version of the coarea formula.
The mathematical tools will be explained in §2.

We shall introduce in §3 optimization problems (MF) and (MF0) which
may be regarded as generalized max-flow problems on linear spaces. In rela-
tion to these problems, we consider formal dual problems (MF*), (MF(f) and
generalized min-cut problems (MC), (MC0) on linear spaces. Duality relations
will be studied for these problems by means of the minimax theorem in [5].

Our principal results will be given in §4 and §5. In §4 we consider a
max-flow problem (MΦj) and several problems related to it. The problem
(MΦj) is of Strang's type. However, a constraint on σ v in (MΦX) is weaker
than that in (MFS). In (MFS), σ v must be proportional to a prescribed
distribution on 9Ω. In our max-flow problem, σ v can be free on a part of 9Ω
while the difference between σ v and the product of a constant and the pre-
scribed distribution is constrained by two given functions on another part of 9Ω
for each feasible flow σ.

In § 5 we deal with another max-flow problem (MΨ2) which is an extension
of (MFI). Capacity constraints and feasible flows depend on discrete time in
(MΨ2), so we call it a dynamic version of the max-flow problem. A max-flow
min-cut theorem on a network in a dynamic version can be found in Anderson,
Nash and Philpott [2]. The duality theorem for (MF0) is utilized to prove max-
flow min-cut theorems in §4 and §5.

ACKNOWLEDGEMENTS. The author would like to thank Professor M.
Ohtsuka for constant help and encouragement, which were so essential for the
writing of this paper. The author is also grateful to Professors M. Yamasaki
and H. Aikawa for helpful advice.

2. Functions of bounded variation and a space of vector fields

In the present section, we introduce functions of bounded variation and a
class of vector fields on Ω, which are used to define flows and cuts in the next
sections. Throughout this paper we assume that Ω is a bounded domain with
Lipschitz boundary 9Ω in Rn. For such domains, we refer to Maz'ja [11;
Definition 1.1.9/1]. We set

Hn_λ{E) = supβ i ό inf K_ x Σ , f)~ι\ U jB(xj9 r^E, ry<8>

for any subset E of Rn

y where vn^x is the volume of the unit ball in Rn~ι and
B(xjy Tj) is the open ball in Rn with center Xj and radius r ;. It is called the
Hausdorff measure of (n—l)-dimension. By mn we denote the Lebesgue meas-
ure on Rn. Note that the outer unit normal v to Ω is defined i/^-a.e. on 9Ω
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and v is H^-measurable.
In this paper, all derivatives of locally integrable functions on Ω are under-

stood in the sense of distributions unless otherwise stated. Then the space of
functions of bounded variation is defined by

BV(U) = { M G L ^ Ω ) ; du/dXj is a Radon measure of bounded variation

for each/ = 1, •••,/«} .

Let C°°(Ω) be the space of infinitely differentiable functions in Ω. Denoting
the closure of Ω by Π, we set

C-(Π)={/|5;/eC-(20>,

where/1 Q is the restriction of / t o Ω, and set

C<Γ(Ω) = {/eC°°(Ω); supρ/is a compact subset of Ω} ,

where supp/is the closure of {,x:eΩ;/(#)φO}-. By CJΓ(Ω; Rn) we denote {<r=
(o i, —, <ru); σf.eCsr(Ω) for all ί = l , -, n}. We define C°°(Π; Rn) and C°°(Ω; Rn)
in a similar way. Note that, for weL^Ω), WGJBΓ(Ω) if and only if

||VW||Q = sup Π wdiv σ dx\ σGC?r(Ω; i?M), | σ | < l o n Ω }
JQ

is finite, where div σ = Σ ? - i dσJdXi and \σ\ =(Σ/- i ^if12- We set

\\Vu\\u = sup {( w d i v σ ώ ; σGCsr(C/; i?n), | σ | < l on U}

for weJ5F(Ω) and any open subset U of Ω, and thus define a Radon measure on
Ω. We shall denote it by | Vw | and call it the measure of total variation of TJu.
Evidently WIΛ{U)={U^LL\U)\ θw/θ^eL^Ω) for each ί = l , •••, n} is a subspace
of BF(Ω). We say that V } converges to u in BV{U) if u'-+u in LJ(Ω) and

||VnΊ|Q-H|V«||Q.
Let L\dO) be the space of ^^i-integrable functions on 9Ω. By Giusti [8

Theorems 1.17, 2.10, 2.11 and Remark 2.12] we have

Theorem 2.1. (1) There exists a linear mapping γ from BV(Ω) to LX(9Ω)
such that

lim ( I u(y) - γu(x) \dy = 0

for Hn_x-a.e. ΛTGΘΩ, and that ju^-^yu in L\dΩi) if {uj} converges to u in BV(Ω).
(2) For each uζΞBV{Ω)} there exists {uj} (ZBV(Ω) Π C°°(Ω) such that yuj=

ηu H^-a.e. on 3Ω/or allj and {u3} converges to u in BV(Ω).

The function <γu is called the trace of u on 8Ω. We note that
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ΎU(X) = lim I u(y) dv
p̂ o m(nnB(xp)))Qt\B(xP') W) J

for iϊ^-a.e.
Since by Adams [1; Theorem 3.18] the family {/|Q;/eC°°(Π)} is dense in

PFU(Ω) with respect to the norm ||W||IΓ
1'1(Q) = IIWIL1(Q) + IIVM||Q, for each we

BV(Ω) there exists (uj} c { / | Q ; /eC°°(Ω)} such that V } converges to u in
i?F(Ω). It is known that BF(Ω)cLM / ( n"1 )(Ω), more precisely, there is a positive
constant k such that the inequality ||w||z»/c«-i)(Q)<Λ(||w||Li(Q)-)-||Vw||Q) holds for
all «GδΓ(Ω). This is a direct conclusion from (2) of Theorem 2.1 and the
Sobolev imbedding theorem for Wl9\Ω). For the proof of Sobolev's theorem,
we refer to [1 Theorem 5.4].

Furthermore γ is a surjection from PFM(Ω) to L\dΩ). (See Gagliardo [7;
Theorem 1.2].) By the equality in (1) of Theorem 2.1, ju=u\dQ for any we
BV{Cί) Π C(Ω). In order to give another characterization of yu, which is due to
[11; §6.5], we state the definition of the reduced boundary. Let 5 be a subset
of Rn with Xs<=BV(Rn). Then the reduced boundary 3*5 of 5 is the set of all
x^dS such that there exists Federer's normal v=v(x) to 5. This normal v is
characterized by the relation

limP i 0 p-» mn(B(x, p)f)A+ΓlS) = limP i 0 p~n τnn(B(x, p) Π Λ_—S) = 0 ,

where A+={y^Rn; v(y—x)>0} and^4_={jeJRΛ; v(y—x)<0}. Itisproved
that 3*5 is a measurable set and Federer's normal is a measurable mapping from
3*5 to Rn with respect to both | V%s| and Hn_x and that \VXs\(Rn-d*S)=0.
Furthermore it is known that E is ^.j-measurable,

\VXs\(E) = HU^(E) and VXS(E) =-\ v(x) d\VXs\(x)
J E

for each | VXS \ -measurable set E c 3*5. The proof of these facts is given in
[Π; §6.2].

Now let u^BVψ) and set Λ r

r= {yGΩ; u(y)>r} for re i? . Coarea formula
[8; Theorem 1.23] yields that XNr^BV(Ω) for a.e. r(=R. For x(=dΩ,, we set

u*(x) = sup {reiR; XNr^BV(U) and x€Ξd*Nr}

if there is r^R such that XNr(=BV(Ω) and Λ?e3*iVr, and set u*(x)= — oo other-
wise. Since 3*iVr is iί^-measurable, w* is also ίί^.i-measurable. Furthermore
according to [11 Theorem 6.5.4], u* eL^ΘΩ). (As noted after Corollary 6.5.5/3
in [11], conditions in [11; Theorem 6.5.4] are satisfied and the theorem can be
applied to our case.) Hence from [11 Theorem 6.6.2] and the equality stated in
(1) of Theorem 2,1, it follows that u*=γu H^-a.e. on 3Ω. If 5 c Ω and X s e
J5Γ(Ω), then XsEΞBV(Rn) by [11 Lemma 6.5.1/1] and %f=Xd*s,^ Therefore
yXs=Xt*s nθo #*-i-a.e. on 3Ω.
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Next we define a space of vector fields. We set

H(Ω) = {σ = (σ1? ••, σ n); σ ,eL"(Ω) for all i = 1, •••, «

and divσ<ΞLM(Ω)} .

Every σ G i ί ( ί ] ) can be approximated by functions in C°°(Ω; i?Λ) in the following

sense. Let σ G i ϊ ( Ω ) , and {σj} be a sequence in H(Ω). If σ ;->σ a.e. on Ω,

div σ-'->div σ in LW(Ω) and {<ry} is uniformly bounded, then {σ3} is said to ap-

proximate σ in H(Ω) or tend to σ asj-^oo in the sense of H(Ω). The following

proposition is proved in a way similar to Kohn and Temam [10; Lemma 2.3].

Proposition 2.2. Given σ<=H(Ω) there exists {σj} in C°°(Π;Rn) which

approximates σ in H(Ω).

Proof. We give only a sketch. There exist a positive number r0, a finite

number of open sets Ul9 ••*, UN with U*Li UkZ)dΩ and open cones Cly •••, CN

with vertices at the origin of Rn such that £/*Γi9ΩΦφ and (x+CkΓ\ B(0, ro))Π

Ω = φ for each k and Λ:G8ΩΠίΛ. Furthermore we may assume that UkΓ\

( Ω - j ) c Ω for all y G C έ Π 5 ( 0 , r 0 ) and all k. Let t/0 be an open subset of Ω

such that U0Z^Ω—UίLi Uk and the closure of Uo is contained in Ω. Then

U JLo ί7ΛZ)Ω. Let {Λ/ΓΛ; ^—0, •••, Λ̂ "} be a partition of unity subordinate to {Uk\

k=0, « ,iV}, that is, ΣSίr-o'Ψl*=l on Π, ψ A > 0 , s u p p l e ί/Λ and ψAGCSr(i?M)

for all k. We take mollifiers Vo(ΞCo(B(O, 1)) and VkeCΓ(CΛ Π 5(0, 1)) for k= 1,

•••, Λ/* such that ^ > 0 and the integral of ηk over Rn is equal to 1 for each k=0y

•••, ΛΓ. For VkΛή^VkiΦ) Y~ny we set

ψk(y) σ(y) ηk,r(
χ-y) dJ

and <r;=ΣίLo('ΨlAσ )*i7jfefr f° r rz==^lj- O n e c a n prove along the same lines as in the
proof of [10; Lemma 2.3] that dΊv((ψkσ)*ηktr)=div(Λlrkσ)*ηk)r a.e. on Ω for all
sufficiently large j . Hence {σ1} satisfies the required conditions.

The following theorem is due to Kohn and Temam (see [10; Proposition

1.1]).

Theorem 2.3. Let σGff(Ω) and W G J S F ( Ω ) .

(1) The distribution (σVu) defined by

= — I uψ div σ dx— \ uσ
JΩ JΩ

/or ψGC 0

M(Ω) is a Radon measure of bounded variation and thus (σVu) (Ω) is de-

fined and finite.

(2) There exists a function g^L°°(dΩ) such that

\ g yvdHn.! = I σ Vvdx+1 ϋ div cr dx
JdQ JΩ JΩ
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for all ve W1Λ(Ωi). We shall write σ-v for g.
(3) {Green's formula) For (σVu) and σ-v as in (1) and (2), the following

equality holds:

J σ'VjuHn^ — (σVu) (Ω)+ \ u div σ dx .
3Ω JΩ

By Theorem 2.3, σj v->σ v in L°°(9Ω) with respect to the weak* topology
and (σ'Va) (Ω)->(σVw) (Ω) for all wGJ5F(Ω) if {σ;} approximates <r in H(Ω).

Next we are concerned with equalities of the coarea formula type. Let Γ
be a set-valued mapping from Ω to Rn, that is, T(x) is a subset of Rn. Through-
out this paper we assume
(2.1) T(x) is a compact convex set containing 0 for each ΛIGΩ.

Furthermore in this section we assume that the following two conditions are
fulfilled unless otherwise stated:
(2.2) Let Ωo be a compact subset of Ω and S>0. Then there is δ>0 such that

Γ(x)CΓ(y)+B(Oy 6) whenever x, j/GΩ0 and | x—y \ < δ .
(2.3) U * e Q T(x) is bounded.
We define a function βΓ on RnχΩ by

βΓ(v,x) =

for v^Rn and ^EΩ and define a functional ψΓ on BV(Ω) by

J

for MEΰΓ(Ω), where VW/|VM| is the Radon-Nikodym derivative of Vu with
respect to |VM|. If u=Xs^BV{Ω) with 5 c Ω , then VM/| VK| = — v Hu-ra.e.
on Ω Π 9*5 by [11 Theorem 6.2.1] so that

(
J Q n θ*s

where v is Federer's normal to S.
Note that /3Γ is a continuous function on i?wxΩ by (2.1) and (2.2). Thus

/3Γ(Vw/1 Vtf I, ) is I VM I -integrable. Furthermore we set

KΓ = {σGiw(Ω; Rn); σ(*)eΓ(«) for a.e.

We prove a variant of coarea formula.

Proposition 2.4. L*tf wGΰF(Ω) α/zrf set JVr={x

Before proving Proposition 2.4, we prepare several lemmas. We set K?=
{σ—(σi> ..., <7Λ); cr̂  is a Borel measurable function for each i and σ(#)eΓ(#) for
all xeΩ}. Evidently K0

ΓdKΓ.
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Lemma 2.5. (1) For each positive Radon measure μ on Ω and each μ~
measurable mapping v from Ω to Rn, there is σ^K°v such that βΓ(v(x)> x)=v(x)
σ(x)for μ~a.e. Λ e Ω .

(2) Assume that
(2.4) there is po>O such that Γ(x)Z)B(0, ρo)for each # e Ω ,
let σ be a vector field in K? and let μ be a positive Radon measure on Ω. Then

there is (σj} CK$ Π CSΓ(Ω Rn) such that σy->σ μ-a.e.
(3) Lei σbe a vector field in Kτ Π H{Ω) and Ωo he a compact subset of Ω.

Then there is {σy} cC°°(Ω; Rn) such that σj->σ in the sense of if (Ω), | |σ'| |L~ ( Q. *«)
for all

Proof. (1) Let μ be a Radon measure on Ω, B(Rn)> J5(Ω) be the classes of
Borel subsets of Rn, Ω respectively, ίϊ be the completion of B(Ω) with respect
to μ and βχB(Rn) be the σ-algebra generated by {EχEr\ E<=ΞU, E'<=ΞB(R")}.

Since βv is continuous on Rn X Ω, for any Radon measure μ and any /^-measurable
mapping v from Ω to Rn we see that l(x,w)^Ω,xRn; βΓ(v(x)yx)=v(x)'W,
w^Γ(x)}^βχB(Rn). Thus from a measurable selection theorem, it follows
that there is a μ-measurable vector field σ° such that σ°(x)^T(x) and βΓ (v(x),
x)—v{x)'σ\x) for all xGΩ. By considering σ G ί f such that σ=σ° μ-a.e. on
Ω, we complete the proof of (1). (As for the measurable selection theorem, we
refer to Castaing and Valadier [3; Theorem 3.22] or Rockafellar [13; Theorem 2
and Corollary 1.1].)

(2) Let σGi^J. We may assume that μ(Ω) is finite. It suffices to show
that there is V } dK^f] C7(Ω; Rn) such that

JΩ
\σ*-σ\dμ-»0

Ό°. In view of (2.4), considering tσ with 0 < ί < l , we may assume that
σ(x)+B(0, S)dT(x) for all ΛJGΩ, where £ is a positive number. Then σ can be
approximated by simple vector fields in K?. Thus we may assume that σ is
simple, that is, σ ^ Σ J L i ^ ^ , where wk^Rn and {Uk} is a class of disjoint
Borel sets such that Ω = USLi Uk. Furthermore by approximating Uk by com-
pact sets, we may assume that Uk is compact for each k. Finally by approximat-
ing XUk by continuous functions and considering a regularization, we obtain the
desired {σ;}.

(3) Let Ωo be a compact subset of Ω. We set

with ψk and ηk considered in the proof of Proposition 2.2. Let S be a positive
number. In virtue of (2.2), there exists δ > 0 such that </(Ω0, 9Ω)>2δ, and that
Ψk(x—y)< Ψk(x)+ε for all k and T(x-y)(ZT(x)+B(0, S) for all x e Ω 0 and

). Then σ(x-y)EΞΓ(x-y)c:r(x)+B(0,6) for all *eΞΩ0 and a.e.
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y(=jB(O,δ). Thus

so that σr(x)<=(l+(N+l) 6) (Γ(x)+B(0, £)) for all Λ?GΞΩ0 and 0<r<8. Since
σr->σ as r->oo in the sense of iί(Ω), there exists a sequence {r(j)} of positive
numbers such that {σrU)} approximates σ in H(Ω) and σrU)(x)^T(x)+B(Oy 1//)
for all xGΩ0. Furthermore we may assume that ||crr( ;) | |Leo(Q:£»)<||σ | |Leo(Q.ΛM) +
1. This completes the proof.

Lemma 2.6. Letu<=B F(Ω). Then for each σ^Kvf] H(Ω)

Furthermore if Γ satisfies (2.4), then

σVtt) (Ω) = s u p σ e ^ o r n C e o ( Ω . Rtl)

Proof. First assume that Γ satisfies (2.4). Let σ be an element in Kvf\
ίf(Ω). For £>0, there exists a compact subset Ωo of Ω such that | Vw | (Ω—Ωo)
<£. Let {σ;} be a sequence as stated in (3) of Lemma 2.5. Then

Vtt) (Ω) = limy^σ'Vw) (Ω)

i n f ^ ( σ*dVu

Hence

(σVu) (Ω)

Since U Λ e Q Γ(^) is bounded, the converse inequality follows from (1) and
(2) of Lemma 2.5 and Lebesgue's convergence theorem.

Next we consider the general case and prove (σVw) (Ω,)<ψΓ(u) for each
σeΞKΓnH(Ω,). Let σ<=Kτf)H(Ω,). We set Tj(x)=T(x)+B(09 ί/j) for each
^GΩ and each positive integer j . Then Γ ; is a set-valued mapping satisfying
(2.1)-(2.4) and σ^KvdKτ.. Thus from the first part of this proof it follows
that (σVw)(Ω)<ψΓi(M) for each j . Since βVj(v, x)-*βτ(v, x) as/->oo for all
v^Rn and xGί], letting j->°° we obtain (σVM)(Ω)<ψΓ(w) This completes
the proof.

Using Lemma 2.6, we obtain
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Lemma 2.7. Let u be a function in BV(Ω) and {Uj} be a sequence in BV(Ω)

such thatUj->u as j->oo in L\Ω). Assume that Γ satisfies (2.4) or {||Vtfy||Q} is

bounded. Then ψΓ{u) ̂  ϋ m inf)-

Proof. Let u, Uj be functions in BV(Ω) such that Uj->u in L\Ω). First
assume that Γ satisfies (2.4). Then in virtue of Lemma 2.6

J σdVu = — \ u div σ dx — lim ,•_»«, — \ w; div σ dx

= lim ĉo \
J

for each σ G ^ J Π C?(Ω; i?n). Hence using the last part of Lemma 2.6 we see
that Λ/rΓ(#)<lim infy^ ψΓ(Uj).

Next we consider the case where Γ does not satisfy (2.4) and assume that
{||Vtfy||o} is bounded. Let Γ ; be as defined in the proof of Lemma 2.6. Then

ψΓk(u)<lim infy .̂. ψrk(Uj)

for each k. Since tψrk(uj)<t'\]rΓ(Uj)-\-suρi HVWJ HQ Λ"1 for each j , k and ψΓk(u)->
ψr(u) as A->oo, we conclude that ψΓ(w)<lim infŷ oo -ψ Γ(«y). This completes the
proof.

The following lemma is proved in a way similar to the proof of Ohtsuka
[12; Lemma 10].

Lemma 2.8. Assume (2.4) and let u^BV(Ω). Let H and I be open subsets
of Ω such that H-f-B(0y £λ)c:I for some Gι>0, and η be a nonnegative function in

CSΓ(5(0, 1)) satisfying \ η(x) dx=ί. Then for each t> 1 there exists ro>O such
ΛΊ . J 5(0,1)

that

supo ejfO,nC~(H ;RnA σ . V {u*ηr) dx<t-sup^^o n c - ( / . R9) I σdVu
J H JI

for 0<r<r0, where ηr(x)=v(xlr) r~n

Proof. For σ<ΞK°Γ f] C%(H; Rn) and 0<r<6ly

S σ V (u*ηr) dx = — \ (u*ηr) div σdx
H JH

= - f {ί u(x-y) Vr(y) dy} div σ(x) dx
JH JB(0,r)

= - \ . . Vr{y)i\ u{x-y) div σ(x) dx} dy
JB(0,r) JH

= - \ Vr(y)i\ «(*) div σ(y+*) dm} dy
JB(0,r) JH-y

= \ , . Vr(y) dy \ <r(y+z) dVu(z)
JB(0,r) Jl
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where &*ηr(z)=\ ηr(y) σ(y+z)dy. Let t>\. Then by (2.4), there exists
JB(0,r)

0<r0<€j2 such that

Γ(y+z)c:T(z)+B(Q) ( ί -

if .sr+j e i ϊ a n d vGδ(0, r0). It follows that &*ηr(z)&Γ(z) for 0<r<r0. Thus

j 7 (**7r) rfVw <sup σ e i r o Γ n c Γ ( / ; Λ«)ĵ  σdVu = ί s u p σ e ^ n c ? ( / .

This completes the proof.

Lemma 2.9. Assume (2.4). For eαcλ bounded continuous nonnegative func-
tion g on Ω, we set (gΓ)(x)={g(x)v(ΞRn;v<=Γ(x)} and ^ ) = s u p σ 6 J Γ o r n c ? ( Q ; ^

J σdVu. Then μ is additive.
Ω

Proof. Let Ω y ={*eΩ;£(*)>l//}. Then #Γ satisfies (2.1)-(2.4) on Ωy.
Thus applying Lemma 2.5 (2) with Ω, Γ replaced by Ω ; , #Γ respectively, we can
prove that

for each j . It follows that

μ(g) = lim^oo suρ ( r e j r o r n C j β ( Q i .

= lim ôo sup{\ σdVU; σ^K°gτ} = sup{\

Let £x and ^2 be bounded continuous nonnegative functions on Ω. It is easy to

prove μ(gi)~\-μ{g^)<μ>{gι-\-gz)- To prove the converse inequality, we let

r- I f i n fQ ^ > 0 , then

( σdVu=[ g1σl{gι+g2)dVu+\

< M ^ I ) + M ^ 2 ) .

Thus in case infQ£2>0, we obtain μίgi+g^μ(g^)+μ{g^) In the general case,

= lim.40 ίμ(gi)+μ(g2+S)}

= μ(gi)+t*(g2)

Hence we conclude that μ, is additive.

In virtue of Lemma 2.9, μ in the lemma is extended to a linear form on
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C0(Ω). Therefore μ is identified with a Radon measure on Ω.

Lemma 2.10. Let U<=ΞBV{Ω). Then there is {uj} C#F(Ω) Π C°°(Ω) such

that {uj} converges to u in BV(U) and ψr{^)-^Ψr(u) asj->oo.

Proof. First we assume (2.4) and let μ be the additive functional as defined
in Lemma 2.9. We regard μ as a Radon measure on Ω. Let {Gp} be a sequence
of open subsets of Ω such that UJΓ-i G

P=Ω> Gp(zGp+1 and μ(dGp)=0 for all^.
We assume that G0=φ. Now for k>0 we take sequences {Hp} and {7̂ ,} of open
subsets of Ω such that HpZ)Gp+1—Gp and Ip"Z>Hp for allp and that

(2.5) Σ?,! μiIp-(Gp-G^)<llk.

Furthermore let {ap} C CSΓ(Ω) be a partition of unity subordinate to the covering
{Hp} of Ω. By using Lemma 2.8, we can easily see that there exists a sequence

of positive numbers such that

(2.6)

(2.7)

and

(2.8) s u p σ e j ? Γ μ c - ( ^ ; Rnλ σ V (u*ηXp) dx<(\ + \jk) supσξΞKor(]C~(Ip; Rnλ
JHp J Ip

We set ιι»=Σr-i <*,(u*vxj. Then ||ιι*-tt||Li(Q)<l/Λ by (2.6), and

σ ap V(u*ηλp) dx .

Since Σip-o Vα ί=V(Σ?-o «ί)=0, by (2.6) we see that the first term of the right
hand side is less than 1/k. For the second term, by (2.8) we obtain

: Rn) Σ?-l j ^ ' Ctp

; Rn) \ dx

Thus by (2.5) we see that the second term is less than (1 + 1/β) (μ(Ω)+l/&). In
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virtue of Lemma 2.6, At(Ω)=supσeκo,nc~(Q;Λ») I σdVu=ψ r(u). It follows that

ψ*(u*)£(l+l/*) (ψAμ)+Vk)+ίlk. Furthermore since supσ e J Γ r I M ^ o : * • > £

Po and J t ί (/ ί -(G,-G ί . 1 ))>Pol V w U / . - ί ^ - G ^ O ) by (2.4), using (2.6) and (2.7)
we obtain

||Vκ*||Q<sup { Σ .J ( σ-(Vap) (mVλ) dx; <r<=C0~(i2; Rn), \σ\ ^ 1 on

+sup {ΣJ_! ί σ afV(u*7)λp)dx; σeCΓ(Ω;i?"), | σ | ^ 1 on Ω

ff

Hence lim SUP^OOIIV^HQ^IIVWIIQ. Since uk-^u in L^Ω), ψΓ(z/)<lim inf^*, ΛJTΓ

(uk) by Lemma 2.7 and ||Vw||Ω<lim inf̂ oollVM Îo by [11; Lemma 6.1.2/2]. It
follows that ψΓ(u)=]imk^)O ψΓ(uk) and ||Vtt|Iα=limjk_

To prove the general case, let T1(x)=T (x)+B (0,1) and apply the first part
of this proof to Γlβ Since

u\, -)d\Vu\ = JQ {βΓ(Vul\Vu\, )+l} d\Vu\

we obtain the desired {u3}. This completes the proof.

Proof of Proposition 2.4. First assume (2.4) and let u be a function in
J3F(Ω). Let {#'} be a sequence stated in Lemma 2.10 and set iV ;. f f={«£fl;
w'*(#)> r}. By [11; Lemma 6.1.6], we may assume that XNj,r-*'X>Nr

 m L\Ω)
for almost all r. Then for eachj, by [11; Theorem 1.2.4],

, - ) d x = [ βΓ(yujlIVuf I, )I VwJ'I dx

= Γ ^ (
J-oo JθiVΛrnQ7

where Ω ' = { Λ ; G Ω ; W'ΦO}. In view of Sard's theorem, VujΦO on Λ r

and 9ΛΓy>rΠΩ is of C°°-class for a.e. r^R. Furthermore XNjtr^BV(£L) and
«y I =VXNj,rl I V% ŷ,r | Hn_ ra.e. on 8iVy>r Π Ω for a.e. r. It follows that
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By I and I we denote the upper and lower integrals respectively. Since XNJtr

XNr in Lι(Ω) as j-> oo for a.e. r, in virtue of Lemma 2.7 -ψ^X^^lim infy.^ ψΓ

(XNJ,r). Hence

ψΓ(u) = lim^oo ψΓ(uj) = lim^co \ ψΓ(X>Nj,r) dr
J-oo

^ Γ liming *r(X»/.r)<fr̂ Γ +&«)*•
J -oo J -oo

On the other hand, by [11 Theorem 1.2.3],

J σdVu = — \ u div σdx = —\ u+ div σdx-\-\ u~ div σ dx
Q JQ JQ JΩ

= — \ dr\ XN divσdx+\ dr\ (1—XN_ ) άiv σ dx
Jo J Q

 r Jo J Q
 r

J Q J-OO JQ

for all σ<=Co{Ω\ Rn), where u+=max(w, 0) and w"=-max(—K, 0). Thus

σdVXNr<

J oo

ψr(XNr) dr.
- o o

To prove the general case, we consider Γy(#)—Γ(#)-l-.B(0, 1//). Since /5Γy

(z;, JC) I jδΓ(α, Λ;) for all v^Rn and ΛIGΩ, by letting j-><χ> in

J -

we see that

This completes the proof.

REMARK 2.11. Suppose that Γ satisfies (2.1), (2.3), (2.4) but (2.2) is
replaced by the following condition:

(2.2') Let £>0. Then there is δ>0 such that Γ(x)dΓ(y)+B(0, 8) whenever
and \x—y\<8.

Then we can choose \σj} in (3) of Lemma 2.5 such that σi(x)^T(x)+B(0y \jj)
for all ΛIGΩ. Furthermore by (2.4), we may assume that σi(x)^T(x) for all

and ally.
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Let σ be a vector field in H(Ω,). We take Γo such that Γ0(x)={w^Rn;
I to I < I |σ| |L~ ( Q. Rtt)} for all xG Ω and apply Remark 2.11 to these σ and Γo. Then
we obtain a sequence {σ;} in C°°(Π;Rn) such that |k' | |L~(Q; Λ«)<Ξ|k||z«(Q;Λι )
for allj and σs-+σ asy->oo in the sense of H(Ω). Since {σj p} converges to
σ v weakly* in L°°(8Ω) as stated after Theorem 2.3, we obtain

<lim inf^

REMARK 2.12. Instead of (2.2) and (2.3), we assume that {(#, w);
«/GΓ(Λ;)} is a bounded Borel subset of Ωxi?n. Then the statement of Lemma
2.5 (1) is true. Let u^ Wlt\Ω). Then using Lemma 2.5 (1) we can prove that

ψΓ(M)=sup< r e j r r\ σ-Vudx. Furthermore let {uj} cWι'\Ω,) such that \\Vuj—

Ω)-*^ asj->oo. Then

\Ψr(uj)-ψΓ(u)\<supσ(ΞKr

It follows that ψr{ui)~*Ψr{u)

3. Duality theorem

In this section, we define optimization problems (MF) and (MF*) and
state a duality relation for the problems. Furthermore as an application, we
prove a duality theorem for a max-flow problem in a general form.

Let X, Y and Z be real linear spaces. We consider two more real linear
spaces Yx and Zx with Y{ΏY and ZX<Z.Z. Let K be a convex set in Y1 contain-
ing the origin and P be a convex cone in X with vertex at the origin. Further-
more we consider functionals LXy Lγ and h. Let LXy Lγ be bilinear functionals
defined on XxZ, YxZ respectively and h be a linear functional defined on X.
We assume that L r is defined and bilinear also on Y1χZ1.

We define (MF) and (MF*) as follows:
(MF) Maximize h(p) subject to the constraint that p e P and ( ^ J ) G F

for some y^K f] Y,
where V={(p,y)^Xx Y\ Lx(p, z)=Lγ(y, z) for all #eZ}.
(MF*) Minimize Ψκ(z) subject to z& W>
where Ψκ(ss)=sup^κnγLγ(y9 z) and W={z^Z; Lx(p, z)>h{p) for all p(ΞP}.
We denote the values of (MF) and (MF*) by MF and M F * respectively. Thro-
ughout this paper we use the convention that the supremum on the empty
set is — oo and the infimum on the empty set is oo. If p^P and (p,y)^V for
some y^Kf] Y, then we call p a feasible element of (MF). Similarly we call

a feasible element of (MF*). Since K contains the origin, Ψκ(z)>0 for
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all z e Z . We can easily prove

Lemma 3.1. MF < M F * .

We give a sufficient condition for MF*=MF. In what follows, we assume
that Yx and Zj are locally convex Hausdorff spaces and Lγ(y, •) and Lx(p> •)
are continuous on Zx for each y& Y1 and p^P respectively. We define an auxi-
liary value MF' by

MF1 = sup {h(p);p^P such that (pJy)^V1 for some

where Vy=>{(p9y)^Xx Yx\ Lx(ρ, z)=Lγ(y, z) for all seZj} . Then we have

Lemma 3.2. Tλe equality MF'==s\iρyGK i^zewr\zι Lγ(y, z) holds if the fol-
lowing two conditions are satisfied:
(3.1) LX(P) = {Lx(ρ, •); p^P} is a closed set of the topological dual space Zf

of Zx with weak* topology.
(3.2) For eachpzΞP, i n f ^ n Z l L * ( A z) = h(p).

Proof. For simplicity we stt f(y)=mizGWriZlLY(y> z) for y^K and A=
suPy<=κf(y) m this proof. Let y be an element in K. We define a linear func-
tional μy on Z1 by μy(z)=Lγ(y9 z). Then μy^Zf. First we assume that μy&
LX(P). By (3.1) and the separation theorem (cf. Schaefer [14; Theorem 9.2 in
Chap. 2]), there exists zo^Z1 such that μy{z0)<0 and Lx(ρ, zo)>O for all
Then for z1^WΓ\Zι and r>0, rzo+sι1GWΓ[Z1 and therefore

z1)=—oo.

Next we assume that μy^Lx(P). Then there exists po^P such that μy(z)=
Lγ(y,z)=Lx(p0,z) for all « G Z , By (3.2), A(ίo)=inf, W nz ι ^(A,«)=/(y)
Thus/(3/)<MF' for any ytΞK so that A<MF'.

If MF'= — oo, then naturally A=MF'. Suppose there exists J > G P such
that ( ^ j O e F j for some y e £ Then L r(j;, z)=Lx(p, z) for all ^ e Z x and
h(p)=f(y) by (3.2). It follows that h(p)<A which shows MF'<A. Thus
MF'=A. Our lemma is now proved.

It is easy to see that MF=MF' if the following conditions (3.3) and (3.4)
are satisfied:

(3.3) Let j e Y andpGP. If Ly(y, z)=Lx(p, z) for all s e ^ , then Ly(y, * ) =
Lx(pyZ)for 2L\\Z<=Z.

(3.4) Let yG yx and p^P. If L r(^, z)=Lx(p, z) for all ^ G Z 1 } then y<= Y.
On the other hand,

MF' =

by Lemma 3.2 and a minimax theorem (cf. Fan [5; Theorem 2]), if conditions
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(3.1), (3.2),
(3.5) K is compact,
(3.6) L r( , z) is continuous on K for each ZEίZx

are fulfilled. Using these facts we prove

Theorem 3.3. Assume that conditions (3.1)—(3.6) are satisfied. Then the
duality relation MF=MF* holds. Furthermore if MF is finite, then there is an
optimal solution of {MF).

Proof. By the definition of MF*, inf,eϊΓnZl sup^^y Lγ(y, z)>MF*.
From the above observation, it follows that MF>MF*. The converse inequali-
ty follows from Lemma 3.1. Next we assume that MF is finite. Since MF=
supyξΞKinf2ςΞWr)Zί Lγ(y,z) and f(y)=in£tewnZιLγ(y9 z) is upper semicontinuous
on K by (3.6), according to (3.5) there is yo^K such that MF=f(y0). Since
MF is finite, as shown in the proof of Lemma 3.2, there is po^P such that
Lγ(yo, z)=Lx(pOy z) for all ZSΞZX and f(yo)=h(po). By (3.3) and (3.4), p0 is a
feasible element of (MF). It follows that p0 is an optimal solution of (MF) and
the proof is completed.

Next we are concerned with min-cut problems. By a cut of a domain,
we mean a partition of the domain into two parts. We identify any cut with
the characteristic function of one of the parts. Let Zo be a subset of Z con-
taining 0. Later Zo will be taken to be a class of characteristic functions. Here
we define (MC) as follows:
(MC) Minimize Ψκ(z)IU(z) subject to z^Z0 and Π(a)>0,

where Π(s) = inf {Lx(p, z);p<=P, h(p) > 1} .

We denote the value of (MC) by MC. Let Z be the set of all ^ G Z satisfying the
following condition:
(3.7) There exist Lebesgue measurable subsets / and / ' of R and a subset

{zr}ref ofZ0 such that J'dJciR, and that Ψκ(zr) and Π(sr) are integr-
able functions of ronj and ]' and satisfy

respectively.
Then we have

and Π(*) = j ^ Π ( * r ) <ίr

Theorem 3.4. Assume that h>0 on P and that there is a sequence {z}} c Z

satisfying Π(^ ;)>0/or each] and

lim sup^o. Ψκ(z>)iπ(zj) < Ψκ(z)IU(z)

ifzείZ and Π(*)>0. Then MF*=MC.
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Proof. If h(p)=0 for all p^P, then, by considering z=Qy we can see
MF*=MC=0. Thus we consider the case where there exists po^P such that
h(po)>O. First we define an auxiliary problem (M*):
(β*) Minimize ψκ(z)lΠ(z) subject to z e Z and Π(s) > 0.

We denote the value by M*. We show that MF*=lSϊ*. If there is no feasible
element of (MF*), then MF*=oo >Λf *. If *<ΞZis a feasible element of (MF*),
that is, Lx{p,z)>h(p) for all p<=P, then Π(^)>1 and therefore Ψκ(z)IU(z)<
Ψκ(z). It follows that iίϊ* < M F * . We may now assume that there is a feasible
element of (ΛΪ*). Let z be such an element. If p^P and h(p)>Oy then h{p)"ιp
e P and h(h(py1p)=ί. Thus £*(/>, */Π(*))^A(ί>) if ί ^ P and Λ(jp)>0.
Furthermore, if^>ePand h(p)=0, then by considering p-{-tp0 and letting £->0
we obtain £*(/>, %!U(z))>h(p). Thus Π(^)"1 ^ is a feasible element of (MF*)
and MF*<Ψ i f(Π(^)" 1^)=Ψ J Γ(^)/Π(^). Since z may be an arbitrary feasible
element of (Λ?*), M F * < M * so that MF*=M*.

Next we show that M*=MC. Evidently 1M[*<MC. So we assume M * <
oo. First we suppose there exists # e Z which is a feasible element of (ifif*).
Then there exist /, / ' and {5fr} which satisfy the conditions stated in (3.7). In
particular, all %rEzZQ and

and U(z) = \ jfU{xr) dr .

Since Π(#)>0, the Lebesgue measure of {r^J'\ Π(^ r)>0} is positive. If
Ψκ(zr)IΠ(zr)>Ψκ(z)ln(2) for all r e / such that Π(* r)>0, then

Φκ(z)> j 7 / Ψ A ) *>(ΨJΓ(*)/Π(*)) J7/ Π(«r) dr = Ψκ(z).

This is a contradiction. Thus there exists r o e / r such that Π(£ f o)>0 and
Ψκ(zro)/Ώ(zro) < Ψκ(z)IΠ(z). Hence MC < Ψκ(z)/Π(z). Next let z be an arbi-
trary feasible element of (M*), By our assumption, there is a sequence \z'} in
Z such that Π(«y)>0 for each; and

lim sup y _ Ψκ(z>)in(z>)<Ψκ(z)IΠ(z).

Since zje2 and ^' is a feasible element of (iβf*), MC^Ψκ{zi)IU(zi). It follows
that

MC<lim

Thus MC<M*. This completes the proof.

Let us consider special X, Y, Z, Y19 Zly Lx, Lγ and h. Let Γ be the set
of all nonnegative integers. We set



MAX-FLOW MIN-CUT THEOREM 823

Yι = i{<r» tct)teT£Ξ(L-(Ω; iT) X L~(8Ω))Γ Σ # « lk#lli-(Ω ;*«><«>

and ΣΓ-o κs exists in L°°(E)} ,

where E is a Borel subset of 9Ω. Let K be a convex set in Y2 containing the
origin and P be a convex cone in X with vertex at the origin as required in the
beginning of the present section. We assume that Λ;,=0 Hn-λ—a.e. on 9Ω—E
for all (σ f, κt)teτ^K. Furthermore we set

Y = {{*» KiUτ& Yι; σ,eff(fϊ) for all tZΞT} ,

Zx = {(Λ#) ί6ΓeZ; ^ e ϊ F ^ Ω ) for all ί e Γ}

in the definition of Z, y is the mapping defined in Theorem 2.1 (1).
Let Ω' and ̂ 4' be Borel subsets of Ω and 8Ω respectively. We define Lx,

Lγ, h by

Lγ(y, z) = Σ ί e r {(σ ί V»ί) (Ω)-1 κt γzt
J E

h(ξ) = Σ ί e

for f=(f l f /, f 2 | ί ) ί 6 Γ GX, af=(2 f ) ί 6 Γ eZ and y=(σί, κt)teτ^ γ- S i n c e 7 is a con-
tinuous mapping from ^ ^ ( Ω ) to L\dΩ), using Theorem 2.1 (2) we observe for

where k is a constant depending on Ω. We infer easily that Lx(ξy z) and h(ξ)
are finite. Setting θ , = Σ ί - o κs and θ_ x =0, we have

Σϊ-o( κt yzs dHn_x - Σί-o ( {Θs-Θ^yZsdH^
J E J E

= Σ £ o ( θI(7* t-y*m)ίi!H;_1+ί θ (

Letting ί-» oo, we see that /vr(j ,2) is also finite and

(3.8) Lγ(y, *) = Σ ( e r {(σ, V^) (Ω)

where we set θ=ΣΓ»o *cs and jsr_1=O. For y=(σty κt)i(ΞTG Y1 and z=(zt)teτ

Zi, irC^j *) is defined by
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Lγ(y, z) = Σ3ίer{\ crrVzt dx-\ κt

JQ JE
t <γzt

E

With the above data we consider (MF) and (MF*) as in the beginning of
this section and denote them by (MF0) and (MF?) respectively. As usual we
denote the values of (MF0), (MFif) by MF0} MFf respectively. From Lemma
3.1 it follows that MF0<MFf.

We define a max-flow problem (MΦ0) as follows:

(MΦ0) Maximize Σ*er(\ — d i v σt d*+ \
J Ω' J A'
\ t \ r r t ) i )
J Ω' J A'

subject to (σ,, κt)teτ^K and (—div σu σt v-—κ^)t

where Theorem 2.3 (2) is used to see that σ v may be regarded as a function of
L°°(9Ω) when σε£Γ(Q). We denote the value of (MΦ0) by ΛfΦ0. For any fea-
sible element (σt, κt)t^τ of (MΦ0), one may call (σt)teT a feasible flow of (MΦ0).
We prove

Proposition 3.5. MΦ0=MF0.

Proof. Let p=(put,p2,t)t^τ^P be a feasible element of (MF0). Then
there is y=(σtitct)ieτGKΓ[Y such that Lx(p, z)=Lγ(y, z) for all z^Z. In

particular, \ ρx t vdx+ \ p21

 rγvdHn_1= \ σt*Vvdx— \ tcflvdH^ for all te T
JQ ' Jθo ' JQ JE

andi>eiT u (n) . Hence I pltvdx = \ σt-Vvdx for all V(=CQ(U) and thus
JQ ' J Q

pιti=—div σt a.e. on Cί for all t^T. Furthermore since ^ = 0 Hn^ι—a.e. on

9Ω—E, by Green's formula we obtain I p2trγvdHn_ι=\ (σt v—κt) γvdH^
JθΩ JθQ

for all ί G Γ and v^W1Λ(Ω,). From {γv; v^W1Λ(β)}=L\dΩ) it follows that
p2,t=crt'v—Kt Hn_1—a..e. on 9Ω. Thus {σu κt)teτ is a feasible element of (MΦ0)
and MΦ0>MF0.

Conversely let y=(σty κt)mτ be a feasible element of (MΦ0) and set

P = (Pi.t*p2.t)teτ = (—div σt, σt v.—iet)teτ .

Then|>GPand^GH(Ω) for all te Γ. Since

^} = Lx(p, z)

for each z=(zt)tξΞT^Z> it follows thatp is a feasible element of (MF0) and MF0>
MΦ0. This completes the proof.

To state a duality theorem for (MF0) and (MF?), we define topologies on
Zλ and Yv Let WlΛ(G)* be the topological dual space of W1Λ(Ω) and set
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IIZ IÎ MCQ)* = sup{v(u); \\u\\wι.i(Q)<l}

for v e PFU(Ω)*. Furthermore we set

Zt = ί(vt, vtUT^iW1-1^)*XL~(E)Y; Σ ^ Γ I H L ^ C Ω ) * is finite

and ΣΓ-o ηs exists in L°°(E)} .

We define a bilinear form < , •> on Z1xZf as follows:

for 5f=(<2r/)ίeΓ^2ri and (υ, η)=(vty ηt)mτ&Zf. In the same way as the fini-
teness of Lγ(y, z) one can show the finiteness of <#, (v> η)y and hence that
(Zv Zf, < . •)>) is a paired space. On Zx and Zf we consider the weak topolo-
gies defined by the pairing, and on Yx the topology induced by the product
topology of the weak* topologies on £°°(Ω; i?n)xL°°(9Ω). Then Zf is regard-
ed as the topological dual space of Zv

Now we prove

Theorem 3.6. Assume that K is compact and that conditions (3.1), (3.2)
and the following condition are satisfied:

(3.9) There are sequences {at} and {bt} of positive numbers such that

Ίjteτ<*t<°°, lifnt-*~ δf=0> and that IkJI^Q ;*«)<£„ ||ΣΓ-# tf.llr-ceo)^
for all (<r,

Then MF0=MF$. Furthermore if MF0 is finite3 then there is an optimal solu-
tion of (MF0).

Proof. We note that Lγ({σ, κ)y •) and Lx(p> •) are continuous on Z1 for
each p e X and (σ, te) G Yv In fact, define vt e W1'1^)* by

for wGpF u (n), and set ηt=-—κt\E for each ί e Γ . Then (vuηt)t^τ^Zf and
Lr((σ, /e), ̂ )=<5f, (ϋ, ?7)> for all z&Zv It follows that Lr((σ, /c), •) is continuous
on Zv On the other hand, by letting

v't(to)=\ ρlttwdx+\

for W G ^ Ω ) and considering (v'ty O) ί e r eZf, we obtain the continuity of
L (̂/>, •). In order to prove this theorem it suffices, according to Theorem 3.3,
to check that (3.1)—(3.6) are satisfied. By assumptions, (3.1), (3.2) and (3.5)
are satisfied. Using Theorem 2.1 (2), we can easily prove that (3.3) is fulfilled.
Since P i s a subset of (Ln(Ω)X//°(aΩ))Γ, (3.4) is also fulfilled. Finally (3.6)
follows from (3.9) and the equality in (3.8). This completes the proof.
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We give a lemma that will be used to check (3.1).

Lemma 3.7. Assume that there exist two convex cones P1 and P2 in (Ln(Ω) X
L°°(3Ω))Γ satisfying the following conditions:
(3.10) P1 and P2 are closed with respect to the canonical weak* topology on

(LM(Ω)xL~(3Ω))Γ.
(3.11) P1 is a finitely generated convex cone contained in X.
(3.12) pltt=0 a.e. on Ωfor all t^T and ^2,f=0 H^-a.e. on E for all t>N if

{Pi,t>p2,t)mτ^P2> where N is a positive integer independent of (pitt,p2,t)teτ
(3.13) P=P1+P2ΠX and P ι ΓI(- i*)={0} .
Then LX(P) is a closed set in Zf.

Proof. Since LX(P1) is a finitely generated convex cone which is closed in
Zf, LX(P1) is locally compact.

We show that LX(P2 Π X) is closed in Zf. Let {p*} = {(0, p2,t)mτ} b e a n e t

in P 2 Π X and (vt, ηt)t<=τ be an element in Zf such that

Lχ(p\ z) -> Σ w {»#(*#)+ ( Vt ΎZt dHn_λ}
J E

for each z=(zt)tGT^Z1. In particular,

\ ηt<ywdHn_λ
E

for all W<EWU\Ω) and ί e ϊ 1 . We set τt(w)=vt(w)+ [ Vt <γwdHn_v Then τ,(Ξ
J E

WUXΩ)*. Since r^w)—0 if <γw=0 Hn_x-2i.t. on 3Ω, we can regard τt as a con-
tinuous linear functional on WlΛ{Ω)IWlΛ(Ω) which is topologically isomorphic
to Lι(dΩ). Hence there is p2 ^GL°°(9Ω) such that τt(w)= \ p21 <γwdHn_λ for all

w^W1A(Ω). Using the fact that {<γw; w e ί Γ u ( Ω ) } = L1(8Ω), we see that
p2,*~*p2,t with respect to the weak* topology on L°°(3Ω) for each ίGΪ 1 . Hence
(3.10) implies (0,_p2f ί) ίeΓGP2. To prove (vt,Vt)teΞT(=Lx(P2Γ)X)y it suffices to
show that (0,p2tt)t(ΞT^X. Since p2,t=0 i7n_ra.e. on JS for all t>N and all i by
(3.12),/>2>ί=0 jffn_ra.e. on E for all *>iV. We claim that SierllA./IL-WQ) i s

finite. Suppose that Σίerllί2,/ILββ(βQ) = o o T n e n there is iqt}tsτ(ZL\dΩ) such
that llίίlLioo)^!, qt=0 Hn_x a.e. on i?,j>2>ί qt>0 iffn_ra.e. on 3Ω for each
and

Furthermore in virtue of [8; Theorem 2.16] there is {wt}t^τdWι'\Ω) such that
ywt=qt iίn_ ra.e. on 3Ω and suρ/6Γ | |w/ | |1Γi.i(Q)<oo. Then (zot)teτGZ1 and thus

ΣίeΓ τt(wt)~Σίer \ />2 ί Ύ ί̂ dHn_Y<i oo. This is a contradiction. It follows

that Σ/GTll&ίlL-CθΩ) is finite and ( 0 , ί 2 ί ) ί 6 Γ 6 l This shows that ^ (
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is closed in Zf.

It follows from the relation P 1 ^ — ^ ) = { 0 } in (3.13) that Lx(Pι)Π(-Lx

(P2f]X))={0}. Hence in virtue of Dieudonnέ [4; Proposition 1], Lx(Pι)+Lx

(P2f]X) is closed. Since Lx(P)=Lx(P1+P2ΠX)=^Lx(P1)+Lx(P2r\X) by
(3.13), we conclude that LX(P) is closed. This completes the proof.

We set

Q(0) = i(St)ieτ; S,cΩ, XSttΞBV(Ω) for all ί e ϊ 1 } ,

^o = { W i s r ^ ^ ; (*/)/er = (Xs/)#er o r (**)feτ = ( — Xst)t<=τ

for some (St)teτ G 0(0)}

and denote the problem corresponding to (MC) by (MC0). Theorem 3.4 gives
some conditions under which the value MC0 of (MC0) equals MF$.

The formulation of (MF0) is owing to an advice given by H. Aikawa at
Gakushuin University.

4. The first max-flow min-cut theorem

In this section, we consider a special case of (MF0). Let i?=9Ω and let
T9 X, Y,ΎU Z, Zu Lx> Lγ, Ω', A', h be as defined for (MF0) and (MFί) in

Let a0) aΌ be nonnegative functions in L°°(9Ω), let Γo be a set-valued
mapping from Ω to Rn which satisfies (2.1), (2.2), (2.3) and define Ko, Kί by

Ko = ϋ:Γ o, K'O = {/ceL°°(8Ω); -a<><ic<a'o Hn^a.e. on 6Ω}

respectively. Let Λ be a Borel set such that A'dAddΩ,,
and set

K = {(σt, κt)t(ΞT& Y1; σoGXo? / f 0 G β and σ, = 0 a.e. on Ω ,

κt = 0 i ί^^a.e. on 9Ω for all ί > 1} ,

P = {(A.#» A.#We-y; A.o = λί 1 a.e. on Ω,^?,o = λ/

iϊn_1-a.e. on Λ for some λ > 0 and plt = 0 a.e. on Ω ,

^ 2 t ί = 0 fίΛ_!-a.e. on 9Ω for all t>ί} .

Since Γo satisfies (2.1)-(2.3), K is a compact set in Yv We denote the problems
(MF0), (MFί), the quantities MF0) MF% for the above data by (MFj), (MFf),
MF19 MFf respectively. Furthermore let Zo be a subset of Z as defined at the
end of §3 and denote (MC0), MC0 for the above data by (MQ), MCX respec-
tively.

We define a max-flow problem of Strang's type and its dual problem as
follows:

i) Maximize λ \ Fdx+X \ fdH^ subject to λ > 0 ,
JΩ' JA'
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div σ =—XF a.e. on Ω and σ v—/e=λ/iϊ;l_1-a.e. on Λ

for some (σ, K)^KOXKQ.

(MΦf) Minimize ψo(
u)+ζo(Ύu) subject to u(=BV(Ω),

L(u)> [ Fdx+ [ fdH^ and yu=0 i7n_ra.e. on 9Ω-Λ,
JΩ 7 JA'

where L(u)=\ Fudx-{-\ fyduHn_v ΛlrQ(u)==Λ]rΓJu) and
JΩ JΛ

S- / x f JTT f / + l , _ λ , r r

ζo(
rγu)=suΌκ(=κ' \ — κfγudHn^1== I (α 0 ytr+αί yu ) dkin_x.

0 JθΩ JθΩ

We denote the values of (MΦX), (MΦf) by MΦ l 5 MΦf respectively. Let«

If there are λ > 0 and κEzK& such that div <x——XF a.e. on Ω and σ v—κ=Xf

ίί,l_1-a.e. on Λ, then we call σ a feasible flow of (MΦj). Furthermore if
λ ( | Fdx+\ fdHnΛ=?MΦu then σ is called an optimal flow of (MΦ,). We

JΩ' JA'

observe that MΦ 0 corresponding to the above data is equal to MΦV

Using Proposition 3.5, we obtain

Lemma 4.1. MΦj= MFV

For the dual problem, we have

Lemma 4.2. The inequalities MFf<MΦf<°o and

hold for all ( ^ ) ί e Γ G Z . // Γo satisfies (2.4), then MFf=MΦf and

for all (sst)teτ^Z.

Proof. Let us show that MΦf is finite. Set a=\ Fdx+\ JdHn_v If

α = 0 , then u=0 is a feasible element of (MΦf). If «Φ0, then [ \F\dx+ [ \ f\
JΩ J Δ

dHn_{>S). In case I \F\dx>0, there exists ueC?(Ω) such that L ( M ) = \ Fwî c
JΩ /» p JΩ

> α so that u is feasible. In case I \F\dx=0 and \ |/1dH„_{>$, there exists

ί j Ω JΛ

fyudHn^>a and yu=0 Hn_ra.e. on 3Ω—Λ.
A

This shows that u is a feasible element of (MΦf). Since MΦf >0, MΦf is

finite.

Let (s^gyGZ. Then in virtue of Lemma 2.6,

Furthermore from the second part of Lemma 2.6 it follows that
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if Γo satisfies (2.4).
Let z0 be a feasible element of (MΦf) and set #,=0 for all t>\. Then

(zt)t<ΞT is a feasible element of (MFf). Thus from the fact stated above it fol-
lows that MFf< MΦf.

Conversely let ( ^ ) ί e Γ G Z be a feasible element of (MFf). Then it is easy
to see that z0 is a feasible element of (MΦf). If Γo satisfies (2.4), then MΦf <
MFf and hence MFf=MΦf.

Using Theorem 3.6, we shall prove

Lemma 4.3. MF^MFf.

Proof. To prove this lemma, it suffices to check the conditions in Theorem
3.6. We note that the topologies on Yly Zx and Zf are defined before Theorem
3.6. To check (3.1), we set two cones P1, P 2 in (Z,n(Ω)XL°°(9Ω))Γ as follows:

P1 = i(Pi,t>p2,tUτ^(Ln(Ω)xL~(d£l))τ;puo = XF a.e. on Ω,
P2 0 == λ/i f^-a.e. on Λ, p2tQ = 0 ίf^-a.e. on 8Ω—Λ,
Put — 0 a.e. on Ω andp 2 t = 0 jH^-a.e. on 9Ω for all t> 1},

P2 = {(k#ι A . ί W G ( r ( Ω ) χ L - ( 8 Ω ) ) Γ ; ί l f ί - 0 a.e. on Ω
for all ίGΓ, ^>2#0 = 0 i ϊ^-a.e. on Λ and p2t — 0
FIn_ra.e. on 9Ω for all ί > 1}.

Then P 1, P 2 satisfy conditions (3.1O)-(3.13) in Lemma 3.7. Hence in virtue of
Lemma 3.7, LX(P) is closed in Zf. It follows that condition (3.1) is satisfied.

To check (3.2) we let pGP and let λ be a nonnegative number such that
^) l i 0=λFa.e. on Ω and p2,0='hf ί^M_!-a.e. on Λ. Since the set W of all feasible
elements of (MFf) is given by

W= {Z<ΞZ; Lx(p, z)>h{p) for all p(=P}

%o = 0 #a-i-a.e on 3Ω—Λ and

it follows that

h(p) = inf (,/ ) / e 2 ? e ί Γ n Z l λL(^0) = inf(tt)tfΞτf£WnZι Lx(py (zt)teτ)

and (3.2) is fulfilled. Finally we note that (3.9) is evidently satisfied. Thus
applying Theorem 3.6 to (MFX) and (MFf) we conclude the proof.

Now we obtain a duality theorem.

Theorem 4.4. MFY—MFf=MΦ1=MΦf. Furthermore they are all finite
and each of (MFX) and (MΦX) has an optimal solution.

Proof. In virtue of Lemmas 4.1, 4.2 and 4.3, MΦ^MF^MFf <MΦf
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<oo. Since ΛfΦj^O, all the quantities in the theorem are finite. We have
seen in the proof of Lemma 4.3 that we can apply Theorem 3.6. Therefore
(MFJ has an optimal solution. It is easy to see that also (MΦ2) has an optimal
solution.

Next we prove MΦ1=MΦf. If Γo satisfies (2.4), then noting Lemma 4.2
we obtain MΦ1=MΦf. In the general case, since MΦX<MΦ^, it suffices to

prove MΦx>MΦf. If ( Fdx+\ fdHΛ^=09 then MΦ1=MΦf=Q. Hence
J Ω' J A'

we assume that ( / Fdx+\ fdH^ΦO. We set Γoj(x)=To(x)+B(O, ί/j) for all

Λ G Ω and j . Using Γ0 ; instead of Γo, we can define two problems similar to
(MΦX) and (MΦf). We denote the two values by Mj and Mf respectively.
Since Γoy satisfies (2.4), Ms=Mf for all j . Choose λ i > 0 and (σ', κ>) e KΓQ. X K'o
for each 7 such that —div σi=\j F a.e. on Ω, σj v—/ej=\jfHM_1-B..e. on Λ and

λ ; (l f FdxAΛ fdHn_^>Mj—\lj. Since KQ and K'o are weak*-compact sets in

i°°(Ω; Rn) and L°°(3Ω) respectively, there is a subsequence {(σy/, /cj')} of {(σ\ κj)}
such that σ ; -J>σ€ΞK0 and K? -J>K€ΞK/

0. Then —div σ=\F a.e. on Ω and σ v—

κ=\f Hn_x-2L.z. on Λ, where λ=lim ; _>oo λ^limy.,^ M ; /(l iVfo+l fdHn_^).

Thus ΛίΦ1^lim i^β βΛf~lim^β βΛf*^AfΦf. It follows that MΦ^MΦf.
This completes the proof.

Before defining a min-cut problem corresponding to (MΦX), we prove two
lemmas.

Lemma 4.5. Let u^BV(U)y and set Nr= {^Gίl; u(x)>r} and N'r=
3Ω; ju>r} for r^R. Then the relation

holds Hn_ra.e. on dΩfor a.e.

Proof. We use u* which is defined in §2. First we note that
for a.e. r e i ? and JHΛ_1(9Ω—3*Ω)=0. Let r be such a real number. Suppose
there exists #e9*Ω with u*(x)>r, and take r' such that u*(x)>r'>r and XNr,^
BV(Ω). Then *e9*iV,/Π 9*Ωc9*iVr Π 9*Ω so that

By the definition of u* we have

Since u*&Lι(dΩ), JEΓίl_1({ye9*Ω; κ*(;y)=g})=0 for a.e. q(=R. Thus for a.e.

tlu*z>q}=%9*Nq(\za H Λ -ra.e. on 9*Ω. It is easy to see %a*jNrίn8Ω=^*ί f° r
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a.e. q&R. Noting that u*=^yu holds i ϊ^-a.e. on 3Ω as was stated in §2, we
conclude the proof.

Lemma 4.6. Let u<=BV(Ω). Then

L(u) = £ L(XNr) dr+\[_ L(-XMr) dr ,

where Nr={x^Ω; u(x)>r} and Mr={x^Ω; u{x)<r}. Furthermore if\ Fdx-\-

\ fdH^O, then L(u)=\~ L(XNr)dr.
J Δ J — °°

Proof. We have

[ Fu+dx=[°dr\ FdxA ' Fu~ dx = [~ dr[ Fdx
JQ JO Jitter) JQ JO Jiu^-r)

by [11 Theorem 1.2.3]. Using Lemma 4.5, we can show that

JΛ JO J t e r l n Δ n Jo JΔ r

[ f(rγu)-dHn_1=\ dr\ fdHn_1=\ dr\ fηXM_rdHn.λ.
JΛ JO Jte-rlnΛ Jo JΔ

Thus

L(u) = Γ ( ( FXNr dx+[ fΎXNr dHn.λ) dr
Jo JQ JΔ

— 1 (\ FXM_ dx+\ ίyXM dHnΛdr.
Jo JQ

 r
 J Δ ~r

It follows that L(u)=[°°L(XN) dr+[° L(-XM)dr.
Jθ J-oo

Next assume) Fdx+\ fdH^^O. Since ΎXN.r+ΎXM.=Ύ{XN.r+XM_r)
J Ω J A

= 1 ^^i-a.e. on 3Ω for a.e. r,

FXM_rdx+\ fΎ^M.rdHn^=-\ FXN_rdx-\ frγXN_rdHn^

W r <iH,-i) = Γ

Hence

J Q J Δ

Now we define a min-cut problem (MΓJ associated with (MOJ. Let

0(1) = {Sail; % s GδF(Ω), γ%s = 0 ίfΛ- ra.e. on 9Ω-Λ} .

Then (MΓi) is defined as follows:
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(MΓO Minimize ( j ^ Fdx+^fdH^) {ψo(u)+ζ,>(7u))IL(u)

subject to the constraint that u = Xs or u = — Xs for some

S e Q ( l ) and L(u)>0.

We denote the value of (MI\) by MΓV If S e Q ( l ) and if %s or -Xs is a
feasible element of (MΓΊ), then S is called a feasible cut of (MΓΊ).

We shall assume

(4.1)

in Lemmas 4.7, 4.8 and Theorem 4.9. The case when (4.1) does not hold will
be examined in Remark 4.10.

Lemma 4.7. Assume (4.1). Let ( ^ f ) / e Γ e Z and Π δe the functional on Z
as defined before Theorem 3.4. Then

π ((*,W) =

if rγzo=O Hn_λ-a.e. on 8Ω—Λ α/xί/L(^0)>0, ^Wi/n((^) i e r)= —oo otherwise.
Furthermore MCx<>MΓly and MCι=MYι if Γo ^

Proof. Since (4.1) is satisfied, the first assertion follows from the definition
of Π, Lx and h. Assuming MΓ-^oo, let £0 be a feasible element of (MΓ^ and
set #f=0 for all £>1. Then !!((#,), e Γ)>0 and thus (zt)t<ΞT i s a feasible element
of (MCX). Hence the inequality MC1<MΓ1 follows from Lemma 4.2.

Conversely assume that Γo satisfies (2.4) and suppose that there exists a
feasible element (zt)tεiτ of (MQ). By the aid of the first part of the present
lemma we see that z0 is a feasible element of (MΓj). Thus Lemma 4.2 yields

This completes the proof.

Lemma 4.8. Assume that Γo satisfies (2.4) and that (4.1) is fulfilled. Then
the equality MFf=MCι holds.

Proof. In order to prove MFf=MC1 it suffices to check the conditions in
Theorem 3.4. By (4.1), h(ρ)>0 for all/>eP. Suppose there exists 2=(zt)teτ^
Z with Π(s)>0, and set #S=#0 and s ί = 0 for all t> 1 andj. We set stίtr=XNi
for r > 0 and jδr{>r=—%My r for r<0, where iV{>r={Λ:GΩ; 4(Λ?)>r} and MJ'>r=
{ίίGΩ; s}<r}. Then ( ^ f Γ ) / e Γ G Z 0 for a.e. re/?. As in the proof of Lemma
4.6 we have

o ( 7 ^ ) . i + (
θΩ J 9Q

= J d r L α° ̂ ^ ̂ - ^ L dr L
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It follows from this relation and Proposition 2.4 that

and from Lemmas 4.6 and 4.7 that

Thus {(^Oίer} satisfies the conditions required in Theorem 3.4 and this theorem
yields MFf=MCV This completes the proof.

Now we obtain the first max-flow min-cut theorem.

Theorem 4.9. Assume (4.1). Then MΦ^MT^MC^

Proof. If Γo satisfies (2.4), then in virtue of Lemmas 4.2, 4.7 and 4.8
MΦf=MT1 and hence by Theorem 4.4 MΦ1=MT1. In the general case, one
can prove the equality along the same lines as in the proof of Theorem 4.4.
From Theorem 4.4 and Lemma 4.7 it follows that MΦ1=MFf<MC1<MTv

Hence MΦ1=MT1=MC1 and the proof is completed.

REMARK 4.10. Suppose (4.1) does not hold, namely, \ Fdx+\ fdHn_λ<
J Ω' J A'

0. Then MΦ1=0. We note that U(z)=c^ for all z^Z0. Thus each element
in Zo is a feasible element of (MQ) and MCX=Q. Let us examine (MΓ\). If
ί IFI dx+ [ I /1 dHn_x=0, then there is no feasible element of (MΓJ and hence

^ o o . If f \F\dx+[ I / I Λ Ϊ ^ X ) and ( Fdx+[ fdH.^0, then
JQ JΔ JΩ' JA'

^O. If ί Fdx+[ fdHn.x<^ then MYX<Q and both the case when
J Q 7 JA'

MT1==0 and the case when M Γ ^ O may happen.

REMARK 4.11. Assume that one of the following two conditions is satisfied:

(Hl-a) Λ = 9Ω, [ Fdx+ [ fdHn_x = 0 and a0 = a'o = 0
JQ JA

i^.i-a.e. on ΘΩ.

(Hl-b) ,F>0 a.e. on Ω and / > 0 FΛ_!-a.e. on Λ .

Then

(4.2) MYX = inf j Q /

such that L(Xs)>0} .
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In fact if (HI-a) is satisfied and u=—Xs is a feasible element of (MΓΊ), then

ί+u=XQ^s is also a feasible element of (MΓ\), ψo(u)=ψo(l+u) and L(u)=

L(l+u). If (Hl-b) is satisfied and u is a feasible element of (MΓj), then

L(u)>0 and thus u>0. Hence (4.2) holds.

5. The second max-flow min-cut theorem

In this section, we consider another special case of (MF0). Let A, B be

disjoint Borel subsets of 3Ω, take 9Ω—(A U B) as £, take φ as fl' and take A as

A' in §3. Furthermore let Γ, X, Y, yx, Z, Z,, L x, L r, A be as defined for

(MF 0 )and(MFί)in§3.

Let ati a't be nonnegative functions in Z/°(9Ω) such that at—a't=Q Hn^-

a.e. on A U B and Γ* be a set-valued mapping from Ω to Rn which satisfies

(2.1), (2.2) and (2.3) for each tGΞ T. We set

Kt = KTt and .£{ = \κ e Z,°°(8Ω) — α ^ / c ^ α j i/^-a.e. on 3Ω} .

In the present case, we take

K= { ( ^ , 4 6 r E 7 i ; σ . e ^ , Σί.o^eJSΓί for all t(=T} ,

^ = {(A.#, A.#We-y; A.# = ° a.e. on Ω, ̂ 2 t / > 0 iϊ^^a.e.

on A and />2,*=0 ίίn-i-a.e. on E for all ί e T} .

With these data we consider the problems corresponding to (MF0),

(MΦ0) and denote them by (MF2), (MFf), (MΦ2) respectively, In addition we

denote by (MC2) the problem which corresponds to (MC0) given at the end of

§3. We denote the values of (MF2), (MFί), (MΦ2), (MC2) by MF2y MF$, MΦ2,

MC2 respectively. Throughout this section we assume that

(5.1) Σ#er supβ-e^ | |σ|L~(Q ; Λ«.)<oo and

L-(d Q )) = 0 .

Then if is a compact convex subset of Yv

Now we define a max-flow problem (MΨ2) of Iri's type and its dual problem

(MΨ?) as follows:

(MΨ2) Maximize ΣίeΓ \ σt'vdHn^x subject to (σt)teτ^Uteτ Kt,
J A

div σt = 0 a.e. on Ω, σt v>Q Hn_λ-2i.£. on A and

(ΣLo<rs-v)'X>E^K't for all ί G Γ .

(MΨf) Minimize Σ*sr('Ψl/(*#)+ε'ί(7^—Ύ*t+i)) subject to

( 4 e Γ G B 7 ( Ω ) Γ , jzt> 1 i ϊ^-a.e. on A and

<γzt = 0 ίfΛ_ra.e. on B for each

where ψt(v)=ψΓt(v) for v^BV(Ω) and
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ζt(φ) = sup^/1 -κφdHn^ = \ at φ+dHn^ + (
9Q

for <p<=L\dΩ).

We denote the values of (MΨ2), (Mψf) by MΨ2, MΨf respectively. We call
each feasible element (σt)teτ of (MΨ2) a feasible flow of (MΨ2). We note
that (MΨ2) is slightly different from (MΦ2).

An application of Theorem 3.6 yields

Lemma 5.1. MF2=MFf.

Proof. We check the conditions in Theorem 3.6. From (5.1) condition
(3.9) directly follows. Hence we prove that (3.1) and (3.2) are satisfied. Let

p=(0,ρ2tt)tςΞT^P. Since h(p)=Σteτ ) p2,t dHn-i and the set W of all feasible
elements of (MFf) is given by

W = {z = ( ^ ) / e Γ G Z ; γ#*>l jE/^-a.e. on A and jzt = 0

iffl.i-a.e. on B} ,

Lx(p, z)=h(p). Thus (3.2) follows.
To prove that (3.1) is satisfied, we set two cones P 1 and P2 in (Ln(Ω)X

L°°(dΩ))τ as follows:

P1 = i(Pu,p2,tUτ^(Ln(Ω)xLoo(dΩ))τ;pht = 0 a.e. on Ω

and p2tt = 0 iί^i-a.e. on 8Ω for all / G Ϊ 1 } ,

J°2 = {(A.#, A.#)#6re(L (Ω)xi-(8Ω))Γ; A,, = 0 a.e. onΩ ,

p2,t>0 i?»_i-a.e. on A and ^2,* = 0 ί/Λ_1-a.e. on £

for all ί G Γ } .

Then P1, P 2 satisfy conditions (3.1O)-(3.13) in Lemma 3.7. Thus Lemma 3.7
yields that LX(P) is closed in Zf and (3.1) is satisfied.

Hence we can apply Theorem 3.6 to (MF2) and (MF^) and obtain MF2=
MFf. This completes the proof.

Let ( ^ ) / e Γ G Z and let Π be a functional on Z as defiend before Theorem
3.4. We set

essinfz(Ξil <ysst(x) = sup{rGiϊ; ffH(iflM!,r) = 0} ,

where M/ > r ={^e9Ω; yzt(x)<r}. Then it is easy to prove that U((zt)tGT)=
inf/€ΞΓ essinfxSil 7zt(x) if 7 ^ = 0 ϋΓ^-a.e. on B and γ.^>0 if^-a.e. on 4̂ for all

, and Π((^) / e Γ )= —oo otherwise.
We prove

Lemma 5.2. Let (zt)t(Ξτ^BV(Ω)τ be a feasible element of (MΨf) such that
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*—T*ι+i)) is finite. We set Π 0 =inf ί e r essinfx€ΞΛ yzt(x). Then
there is a sequence {(#{)*er} in Z such that

lim sup^oo Σ\ιe-τ(Ψt(2ί)+ζt(Ύ4-Ύzi+ι))

and {z{)mτ is a feasible element of (MΨf) satisfying the following condition for
eachj:

(5.2) There is t^Tsuch that z{ = zJ

tj for all t>tj.

Furthermore if zt is a characteristic function for each t^T, then we can take
{(#*)*er} such that z{ is a characteristic function for all j and t.

Proof. Let ( ^ ) / e r G δ 7 ( Ω ) Γ be a feasible element of (MΨί). Considering
#f/Π0, we may assume that Π 0 = l . We set £,—min(max(^, 0), 1). Then using
Proposition 2.4 we see that ψt(Zt)^Ψt(%t) Furthermore using the fact that
ryu—u* i ϊ^-a.e. on 3Λ for any u^BV(Ω), we obtain γ ^ = m i n (max(γ^, 0), 1)
ifn_ ra.e. on 9Ω. Thus (y2t—yZt+i)+^(Ύ*t—ΎXt+i)+ a n d (7^—7^+0
yzt+i)~ fl*-i-a.e. on 9Ω. It follows that

Now we fix an arbitrary characteristic function w in BV(Ω) such that yw=l
Hn^λ'2L.t. on A and yw=0 Hn_λ-dL.t. on JB. For each positive integer j , we set
zί=2t if 0<t<j, and 2j

t=w if t>j+ί. Then

= Σί-o Ψ ^

In virtue of (5.1),

ΣΓ-y+i Ψ#(w) -* 0 as j

and

-^oo. Hence

If ^̂  is a characteristic function for each ίGΪ 1 , then <2rJ is also a characteristic
function for each ί G T and;. Hence {(*ί)ίeΓ} satisfies the required conditions
and the proof is completed.
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Now we prove a duality theorem.

Theorem 5.3. MF2=MF$=MΦ2=MΨ2=MΨf. Furthermore they are
all finite and each of {MF2)> (MΦ2) and (MΨ2) has an optimal solution.

Proof. Let z=(zt)t<ET^Z andy={σu κt)t(ΞT^KΓ\ Y. Then from (5.1) we
infer that ΣΓ-o * ^ ° #"»-i-a.e. on 3Ω and from (3.8) that

Ly(y, z) = Σ w fa V*#) (Ω)- ( θt(yzt-yzt+1)
J E

where θ,=Σί-o «,. Thus using Lemmas 2.6 and 5.2 we see that MFf<MΨf.
The equality MF2=MFf holds according to Lemma 5.1 and MF2=MΦ2 follows
from Proposition 3.5. Therefore the relation MΦ2—MF2=MFf <MΨf is de-
rived.

Let us show that MΨf is finite. Let w be a function in JBF(Ω) such that
γ w = l ϋM_1-a.e. on 4̂ and γ ^ = 0 ίΓΛ_1-a.e. on 5. Taking «; as zt for all
we see that

by (5.1). Thus MΨf is finite.
In case each Γ, satisfies (2.4), the equality MFf=MΨf follows from

Lemma 2.6 and the relation MΨf=MFf=MF2=MΦ2 is obtained. In the
general case, we prove the desired equalities along the same lines as in the proof

of Theorem 4.4. We set ΓtJ(x)=Γt(x)+B(0, j ' 1 2"') for each x^Ω and positive
integer/. By My and Mf we denote MΦ2 and MΨf corresponding to {Ttj}mτ

respectively. As shown above, each Mf is finite. Since Γ ί ; satisfies (2.4), M.~
Mf. Choose (σ{, κ{)teτ in (L°°(Ω; Rn) XL°°(9Ω))T for each such that σί(*)e
Γ 0 (Λ) for a.e. Λ G Ω , — α ^ Σ ί - o ^<ce{ BΓ̂ .x-a-e. on 9Ω for all ί e ϊ 1 , (—divσ{,

and

Then we may assume that {σ{}, com^er^es to an element σ̂  in L°°(Ω; Rn) with
respect to the weak* topology for each ίGΪ 1 . The relation (—div <τ{, σ{ v—
κt)teτ^P implies that div σ{=0 a.e. on Ω and σ{ v—Λ{=0 H^^a.e. on £.
Hence div ^ = 0 a.e. on Ω and according to Theorem 2.3 (2) σ\*v-^σt v as/-»oo
with respect to the weak* toploogy on L°°(3Ω). Furthermore we may assume
that {κi}j converges to an element κt in L°°(3Ω) with respect to the weak*
topology for each t. Then σt v—κt>0 iίll_1-a.e. on A, σt v—κt=0 ίΓJI_1-a.e.
on £" and (σ,, κt)tEίT^K. We note that ^ = 0 f/*n_ra.e. on 4̂ \JB since α^=α{
= 0 ΐfΛ_ra.e. on A U S for each * e Γ. Using the fact stated before Remark 2.12
and the relation crt v=tct valid iίM_Γa.e. on E, we obtain
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by (5.1). It follows that (—div σt> σt v—^)/eΓGP. Hence (<τti/ct)tξ=τ is
feasible element of (MΦ2). Furthermore using (5.1) we can prove that

JA J A

asy~>oo. Hence

lim^co M* = lim^co M, = lim^c Σ ί e Γ \

It follows that MΨf=MFf=MF2=MΦ2.
Next we prove that MΦ2<MΨ2<MΨf. Since (<rt)tζΞT is a feasible flow of

(MΨ2) for each feasible element (σ,, κt)teτ of (MΦ2), the first inequality directly
follows. To prove the second inequality, let (σt)tGT be a feasible flow of (MΨ2)
and (zt)teτ be a feasible element of (MΨf). We set 2 ί=min (max (^, 0), 1).
Then as noted in the proof of Lemma 5.2,

Thus using Green's formula in Theorem 2.3 (3) we obtain

- f (Σί-o σt

[ Σ3J

ί l 1
A

for each positive integer k. In virtue of (5.1)

Σϊ-o <rs-vΎ

<max (llαJL

as /ί--̂  oo. Hence

Thus MΨ 2<MΨ 2*. Since MΦ2=MΨf, we conclude that MΨ 2 =MΨf. Now
we have proved that MF2=MFf=MΦ2=MΨ2=MΨf and the value is finite.

Finally as shown in the proof of Lemma 5.1 one can apply Theorem 3.6
and conclude that (MF2) has an optimal solution. It is easy to see that also
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(MΦ2) and (MΨ2) have optimal solutions. This complets the proof.

To define a min-cut problem (MΓ2) corresponding to (MΨ2), we set

Q(2) = {SCΩ; XS<=BV(Ω) such that <γXs = 1 i ί^-a.e. on A

and γXs = 0 ffίl_1-a.e. on 5} .

Then (MΓ2) is defined as follows:

(MΓ2) Minimize lltej(ψt(Xst)+ζt(ΎXs,-y%st+ι)) subject to

We denote the value by Λf Γ2. We call each feasible element (St)tGT of (MΓ2)
a feasible cut of (MΓ2).

Before stating the second max-flow min-cut theorem, we prepare a lemma.

Lemma 5.4. Let a and b be nonnegative functions in L°°(dΩ) and set

ξ(φ)=\ aφ+dHn_M bφ-dH.^
JdΩ JdΩ

for φ^LXdΩ). Let φu φ2eL\dΩ). We set Nitr={x^dΩ; <Pi(x)>r}, φitT=
XNitr for r > 0 and M f > = {x^dΩ φ^x)<r}, <pitr= — XMhr for r<0, where i= 1, 2.
Then

ί oo ^

%(<Pl.r—9>2.r)dr-
- O O

Proof. Set D+= (x^dΩ; φ^^ψzix)} and ^ + = \ ^{φ\—φ2)+dHn^v

Then by using [11; Theorem 1.2.3] we obtain

+ = J + a(φι-φ2) dHn.λ

( " I - t + t
dr[ adΉn_λ.

Jx>+n(M2>Γ-Mi, r)
[
Jo

Since (9Ω-D+) Π (Nhr-N2},)=φ for r>0 and (9Ω-D+)n(M 2, r-M 1, r)=φ for
r<0,

Similarly

I b(φ1-φ2)'dHn_1 = \
JdΩ Jd
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° dr\

Hence

?(9>i-9>2) = Γ dr \ ia(XNvr-XN2try
v 0 JθΩ

oQ

$ 00

- 0

and the proof is completed.

Lemma 5.5. Assume that Tt satisfies (2.4) for all t^T. Then MFf=
MC2.

Proof. We check the conditions in Theorem 3.4. Evidently h(p)>0 for
all pG:P. In virtue of Theorem 5.3, MFf is finite. Let (^) / e Γ be a feasible
element of (MFf). Then ( ^ ) ί e Γ is a feasible element of (MΨf). Let {{4)t<zτ}
be a sequence as in Lemma 5.2. As noted before Lemma 5.2,
essinfΛ€Ξi4 72*(#). Hence

lim

Now we set Ns

ttr={x^Ω; z{(x)>r}, zs

ttr=XN^ r for r > 0 and Mitr

zί(x)<r}y zi,r=—XM{ r f° r ^<0. Since z{=z{+ι for all sufficiently large t if we

fixy, ( ^ , f ) ( ε Γ G Z 0 for a.e. r^R and for each j , where Zo is the subset of Z de-

fined at the end of §3. In virtue of Lemma 4.5 7#ί,r=%{y*> r^r) i^-i-a.e. on 9Ω

for a.e. r > 0 and 7^ttr=—X{yg{ r<,r) ί^n-i"a e o n 9^ f°Γ a e ^<0. Hence taking

a=at and i=α# in Lemma 5.4 we obtain

Ύt+ι) [ ξt(Ύi,rΎi+i,r) dr .

Thus by Proposition 2.4

-r
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Furthermore we can easily prove that

Π((*ί.,),eΓ) = 0 for a.e. r G ( - o o , 0) U (Π((*ί)#eΓ), oo)

and

Π ( K r W ) = 1 for a.e. re(0, Π ((*/),„)) •

Hence

Π((*f)#eΓ) = Γ
J-o

It follows that the conditions in Theorem 3.4 are satisfied. Applying Theorem
3.4 to (MFf) and (MC2), we complete the proof.

Now we obtain the second max-flow min-cut theorem.

Theorem 5.6. MΨ2=MΓ2=MC2.

Proof. First assume that Tt satisfies (2.4) for each ί e T . Then using
Lemma 2.6 and the last part of Lemma 5.2 we can prove MC2=MT2. Hence
from Theorem 5.3 and Lemma 5.5 it follows that MΨ2=MT2.

In the general case, one can prove the relation MΨ2=MT2 along the same
lines as in the proof of Theorem 5.3. Furthermore using Lemma 5.2, we can
prove that MC2<MV2. Since MΨ2=MF2=MFf<MC2 by Theorem 5.3, we
see that MΨ2=MC2=MT2. This completes the proof.

REMARK 5.7. The following equality holds:

MΨ2 = sup{Σ ί e Γ \ σt vdHn_λ ( σ ( ) / ε Γ E Π ί e Γ Kt such that
J A

div σt = 0 a.e. on Ω, (Σί«o <ra v) XE<ΞK't for all / G Ϊ 1 } .

To prove this, we denote the right hand side of the equality by M for a moment.
Then evidently MΨ2<>M. On the other hand, we can prove M<MΨf in the
same way as in the last part of the proof of Theorem 5.3. Hence from Theorem
5.3 it follows that MΨ2-=M.

In the caise where .£,= {0} for all t>\ and at=ai=0 on 9Ω for all
problems similar to (Mψ2) and (MΓ2) are investigated in Iri [9; §4.2]. Fur-
thermore if c is a nonnegative bounded function in C(Ω) and To(x)~{zo^Rn;
\ΪO\<C(X)} for all Λ G Ω , then in virtue of Remark 5.7 (MΨ2) corresponds to
(MFI) in §1. A problem similar to (MΨ2) on networks with continuous time
is treated in [2]. The equality MΨ2=M in Remark 5.7 was orally noted by
H. Aikawa.
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