|

) <

The University of Osaka
Institutional Knowledge Archive

. Remarks on linear Volterra integral equations of
Title .
parabolic type

Author(s) |Tanabe, Hiroki

Osaka Journal of Mathematics. 1985, 22(3), p.

Citation 519-531

Version Type|VoR

URL https://doi.org/10.18910/7182

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Tanabe, H.
Osaka J. Math.
22 (1985), 519-531

REMARKS ON LINEAR VOLTERRA INTEGRAL
EQUATIONS OF PARABOLIC TYPE

Hirox: TANABE

(Received December 20, 1983)

The purpose of this paper is to improve the result of the previous paper
[6] on the linear Volterra integral equation of parabolic type

u(t)—I—S: b(t—s)A(yu(s)ds = f(t), 0=<t<T, (0.1)

in a Banach space X. Here b is a given complex valued function such that
b(0)=1, f and u are given and unknown functions with values in X respectively,
and —A(?) is a closed linear operator in X which generates an analytic semi-
group for each ¢.

In [6] assuming among others that b is absclutely continuous and b&
L*(0, T') for some p>1 (cf. Friedman-Shinbrot [4]), we constructed the funda-
mental solution W(¢, s) of (0.1) which is an operator valued function defined
in 0=<s<t<T satisfying

W(t, 5)-+lim S'+ b(t—7)A(T)W(r, s)dr = I, (0.2)

=, lapwe, =-2-. (0.3)
t—s t—s

“ % Wiz, )

Using the fundamental solution we showed the existence and uniqueness of
the solution of (0.1) such that the integral in the left side of the equation exists
as an improper integral:

[ 80—s) (s = tim S'b(t—s)A(s)u(s)ds . (0.4)

Recently J. Pruss [5] constiucted the fundamental solution for the equation
of nonconvolution type

L o)+ Awue) = [ K(t, ) AOus)ds+1) 0.5)
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which has a bounded operator valued function K(t, s) as its kernel. As for
the smoothness of K(t, s) Priiss assumes only Holder continuity in (¢, s) which
is less restrictive than that of [6] (compare (0.5) with the equation obtained by
formally differentiating both sides of (0.1) in ¢ and note that b L#(0, T), p>1,
implies b is Holder continuous). In this paper we show that the result of [6]
remains valid when b is an absolutely continuous function with derivative b
of bounded variation.

According to the argument of Clément-MacCamy-Nohel [1] and Clément-
Nohel [2] the equation (0.1) is an integral form of the initial value problem
for the following integrodifferential equation

%{u(t)—i’—s‘: B(t—s)u(s)ds} A (Hyu(t)— S:'y(t—s)A(s)u(s)ds — h(p),

u(0) = u = f(0),

where b, f and B, 7, &k are linked through the relations (1.6)-(1.10) of section 1.
The equation (0.6) is an abstract version of the equation which describes heat
flow in material with memory. In this paper it will be shown that the equiva-
lence of (0.1) and (0.6) remains valid when the initial value %, is an arbitrary
element of X and hence the integral of (0.1) and the latter integral of (0.6) exist
only in the improper sense in general.

It is straightforward to extend the results of the present paper to the case
where b(¢) is an operator valued function.

(0.6)

1. Assumptions and results

Let X be a real or complex Banach space. For each t€[0, T'] A(¢) is a
closed, densely defined operator such that —A(t) generates an analytic semi-
group exp(—7A(2)). We assume that a unique fundamental solution U(%, s)
of the evolution equation

du(t)|dt+A(t)u(t) = 0 (1.1)
exists and has the form
Uz, 5) = exp(—(t—s)A(s))+2(2, 9) . (1.2)
There exists a positive number o<1 such that
1 A(2) exp (— (t—95)A(2))—A(s) exp (— (=)A= Cy(2—9)*7,  (1.3)
Z(t, H=Calt—s)",  11(8/08)Z(¢, 5)|| = Cyt—$)*"". (14)
It follcws from (1.2) and (1.4) that

v =S, nawue oS (15)
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As for the precise definition of the fundamental solution see section 2 of [6].
In many cases where the equation (1.1) is solvable, it is known that the assump-
tions above are satisfied.

In (0.6) B, v are real valued functions of bounded variation, %, is an ele-
ment of X, and % is a Holder continuous function with values in X. If we
define functions b and f following [1] by

B(t) = C(O+(p*C)(H), (1.6)

1)) = G@)+(p*G)(®), (1.7)
C) = I—S:‘)’(T)dr, (1.8)
G(t) — uo+§:k(f)df : (1.9)
p()+(B*p)(t)+B() =0, (1.10)

where
(p+O)(t) = S: p(t—95)C(s)ds,

then b is a real valued absolutely continuous function such that & is of bounded
variation, 5(0)=1, and f is a function with values in X having a Holder continu-
ous derivative.

C([0, T]; X) and C((0, T']; X) are the sets of all functions taking values
in X which are continuous in [0, 7] and (0, T'] respectively.

In what follows the notation C denotes constants depending only on the
general assumptions stated above unless it stands for the function defined by
(1.8).

Theorem 1. Suppose b is an absolutely continuous complex valued function
such that b is of bounded variation and b(0)=1. Then, there exists a unique funda-
mental solution W(t, s) of the equation (0.1) which is a bounded operator valued
Sfunction strongly continuous in 0=s=<t="T and satisfies (0.2) and (0.3).

If f is a function with values in X having a Holder continuous derivative,
then

w(t) = W, 0) f(O)—}—S: W, 5)f(s)ds (1.11)

is a unique solution of (0.1) in the following sense: usC([0, T]; X), u(t)€D(A(2))
t

for t€(0, T, AusO((0, T1; X) and S b(t—s)A(s)u(s)ds is uniformly bounded in
4

0<&Zt<T, and

lim S:b(t—s)A (s)u(s)ds = f(£)—u(t) (1.12)
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where the limit in the left side exists uniformly in each compact subset of (0, T).

Theorem 2. Suppose that B, v are real valued functions of bounded varia-
tion in [0, T, u, is an arbitrary element of X, and h is a Holder continuous func-
tion with values in X in [0, T']. Let b and f be functions defined by (1.6)—(1.10).
Let u be a function such that ucC([0, T]; X), u(t)€D(A(t)) for t=(0, T,
AueC((0, T]; X) and w(0)=u,. Then the following two assertions are equivalent.

(1) u s the solution of (0.1) in the sense of Theorem 1.

(ii) u is differentiable in (0, T, St'y(t——s)A(s)u(s)ds is uniformly bounded in
0<est=T,

g'fy(t—s)A(s)u(s)ds — lim g' ¥(t—$)A(s)u(s)ds
0 ¢ e
exists almost everywhere in (0, T'], and (0.6) holds.

2. Proof of Theorem 1
Let 7(¢) be the solution of
13+r—[—13*r =0 (2.1)

As is easily seen 7(¢) is a function of bounded variation. The equation (2.1)
is equivalent to
bt+bsr=1, (2.2)
b+r(0)p+-b%i =0, (2.3)
where
B+ (t) = S'b(t—s)dr(s) .
[}
We construct the fundamental solution W(t, s) as the solution of the integral
equation
Wi, s) = U, s)+f' UG, 7)F(r, s)dr, 24)
where
F(r, 5) = r(7—s)—r(Q)W(r, 5)— S "W(r+-s—a, $)dr(c—s) (2.5)
(cf. Crandall-Nohel [3]). The equation (2.4) is solvable by successive ap-

proximation, and WAt, s) is strongly continuous in 0=s<¢<7. From (1.5)
it follows that for 0<s<r<t<T

U@ 9-Um s S(ET), (26)

K \NT—S$
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where « is an arbitrary positive number<1. Since F(r, s) is uniformly bound-
ed, it follows from (2.4) and (2.6) that

Wi, s)—W(x, s)|;_s_%(t“7)‘+0(t—f)+ C  (t—r)y(r—s) 2.7

T—S§ x(1—k)

for 0<s<7<<t<=T. Applying Fubini’s theorem we get
Wit s) = U(¢, s)—}—S‘ U, 7)yr(r—s)dr—r(0) St U, n)W(r, s)dr
—S' S‘ U(t, Y W(r+s—a, s)drdr(c—s) . 2.8)

We first show the differentiability of the last term of (2.8). If we write

Kl

t
: S U(t, YW(r-+s—a, s)dr

t

= % S exp (—(t—7)A(T)W(r-+s—a, s)dr

0

+% S' Z(t, W(r+s—a, s)dr = I+11, 2.9)
it follows from (1.4) that
imj=c S' (t—rdr = C (1—o) .
L4 24

For simplicity we set
S(t, 7) = A(t) exp (—(—7)A(t))—A(7) exp (—(t—7)A(7)) .
In view of (1.3)
1S, NHll=C—r)*"*. (2.10)
As is easily seen
1= S' S(t, TYW(r+s—a, s)dr
——S:A(t) exp (—(t—7)A@)(W(r+s—a, 5)—W(t+s—a, 5))dr
+exp (—(t—a)A@))W(t+s—a, ) . (2.11)

With the aid of (2.10), (2.7), (2.11) we easily show that I is uniformly bounded,
and hence so is the left member of (2.9). Thus, if t—s is a point of continuity
of r
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t
S S' U(t, PYW(r+-s—a, 8)drdr(a—s)

o
ot
= st% S‘ UG, ©)\W(r+s—a, s)drdr(c—s) (2.12)

exists. Next, we examine the second term of the right member of (2.8). If
r is continous at £, then

2 [lexp (—(t=m)(mr(r—s)ir

:' S: S(¢, T)r(t—s)dT+exp (—(t—s)A(2))r(0)

+ S: exp (—(t—7)A(t))dr(T—s) .

t
Hence it is easily seen that %g U(t, T)r(v—s)dT exists at points of continuity
s

of r and is uniformly bounded. With the aid of (2.7) it is easy to show that
the third term of the right member of (2.8) is differentiable with respect to ¢
and the derivative is uniformly bounded. Thus we have shown that Wz, s)
is differentiable in ¢ and the first inequality of (0.3) holds. It is not difficult

to show
(8/or)W(t, s)+A@)W(t, s) = F(1, s) . (2.13)
Next we prove (0.2). With the aid of (2.13) and integrating by parts

([ se—mammwir, ar
= se—n]{Fer, -2 W, 5)}dr
= [, ot—n)Fr, Yar—W(t, )bt —s—E)W(s-+6, 9 @2.14)
(" bz, ar.
This shows that S:Hb(t—r)A(-r)W(T, s)dr is uniformly bounded and

lim $'+ b(t—)A(r) W, s)d

240
- S‘b(t——T)F(T, Ndr—W(, s)+b(t—s)—S'é(t—T)W(1, Odr.  (2.15)

With the aid of (2.2) one obtains
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j'b(t—T)F(-r, §)dr = 1—b(t—s)—r(0) S'b(t—T)W(r, $dr
_Stb(t—-r) S W(r+-s—a, )dr(o—s)dr . (2.16)
By integiation by parts one gets
t T-2
S b(t—’r)g W(r-+s—a, $)dr(c—s)dr
ste s
- g' Bt — 1) {W(s+-e, 8)r(r—e—s)—W(r, $)7(0)
ste
_ S 62 W(r+s—a, $)r(c—s)do}dr (2.17)
§ g
By a suitable change of variables, Fubini’s theorem, and integration by parts
t T—8 )
S b(t—'r)g — W(r+s—a, S)r(c—s)dodr
s+e s ao'
t T 6
- —-j b(z—T)S 0 Wi, 5) r(r—o)dodr
s+e s+e0g
d 0
= (—0) 2 W, o
ste 60"
= (bxr)(t—s—E)W(s+&, s)+ S'+ ai (b*r)(t—0) W (o, s)do
s+e Qg
— (B (t—s—E)W(s+E, s)+S' b(t—a)W(a, s)do .
ste
Combining this with (2.17) and letting £ —0 we obtain
S'b(t— 7) S W(r-ts—a, )dr(c—s)dr
— —S'b(t—r)W(T, ) dw(O)—s'é(t—a)W(o, 9o . (2.18)
Substituting (2.18) in (2.16) gives
S'b(t—-'r)F(-r, §)dr — 1—b(t—s)+.S‘é(t—a)W(a, o . (2.19)
Combining (2.15) with (2.19) we obtain (0.2), and the proof of the first asser-
tion of Theorem 1 is complete.

Let f be a function in the statement of Theorem 1. With the aid of Fubi-
ni’s theorem we easily get
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(e, syfsyas
= [, e[ e —s)fide—r(0) | Wer, st ar
_KSI St Ut, yW(r-+s—a, )drdr(c—9)f(s)ds . (2.20)

Using (2.12), (2.7) it follows that

% HS Ut, \YW(r+s—a, s)dr dr(z—s)f(s)ds

=1 2 [ v, yWr-+s—o, s)drdr(c—9yfis)ds
- ff e

—4() | U, Wir-+s—o, )drhdr(o—9)fis)ds
= {.§ Wit+s—0, aro—sfisyas

A1) S:St S' U(t, ©)W(r—+s—a, s)drdr(c—s)f(s)ds . (2.21)

The inside of the bracket { } of the right side of (2.20) is Holder continuous.
Hence, from (2.20) and (2.21) it follows that

3 [ we 9foas = jior+{ re—ofras
—(0) || we, oftsyas— [ | Wiets—o, yrte—sifiras
—a) | W, sfys (222)
With the aid of (2.22) and integration by parts
((se—na) | wir, sifasar
= [ se=n 1+ { rr—9fos—r(© | Wir, fiyas
—( [ Wr-+s—a, dric—s)fisyisy ar

— S: Wi, 5)f(s)ds— S; b(t—r) So W(x, s)f(s)dsdr
= (G*f)O)+Eref)®)
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—(0) S:b(t—T) So W(r, )f(s)dsdr
(b= | W ts—o, irto—sificyasas
—$; W(t, $)f(s)ds— S:I;(t—'r)s: W(r, s)f(s)dsd . (2.23)
By the change of variables and (2.3)
(8= Wer+s—a, drte—sfs)isar
— s:s:g:b(t—T)dr(T—o-)W(d, Odof(s)ds
= —{.{. Bt—o)+rOpt— )W (o, o fis)ds. (2.24)
With the aid of (2.2), (2.23), (2.24) we conclude
[Ls0—na(r) | Wir, ofts)aodr
= 01O W, ftsyas . (2:25)

The remaining part of the proof of Theorem 1 is easy and omitted.

3. Proof of Theorem 2
For simplicity we write w()=/A(¢)u(t). Suppose first that (i) holds. Set

Fu(t) = S:b(t—s)w(s)ds.
By (1.6)
Fi(t) = | {C(t—5)HpC)t—s)(s) ds
= [ ct—sis)as+{ ptt—o) | Clo—su(s)isdo . (3.1)
Hence
[(se—mypiryar = 80— cr—spuisyas
+{ (. Bt ptr—o)ar " Clo—syu(s)dsd
= [ 18e—n+ @)t | Cr—syuis)dsar
_ _S:p(t—f) S:C(T—s)w(s)d.sd'r

= —S:(p*C)(t—s)w(s)ds . (3-2)
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The first member of (3.2) is uniformly bounded and converges to (B*(f—u))(T)
uniformly in each compact subset of (0, 7']. Hence the same holds for the

last member of (3.2) and

— [ ere)t—9pi)ds = (Bx(1-w)D) -

(3.3)

Combining this with (3.1) we see that St C(t—s)w(s)ds is uniformly bounded

and tends to
[ Ctt—syuts)ds = fit)—u(e)+(B+(F—u)) )

uniformly in each compact subset of (0, T'].
Noting that

(d)de) (Bxu) () = BOYu(t)+(wxB) (),
where (u%g) (?) =$:u(z—'r)d,8(-r), and
£&) = @) +p(tyut-(iep) (2) »
we get from (3.3) and (1.10)

_% S:(p*c) (t—s)aw(s)ds

= BEAOIH(Bx1) (@)~ (Bw) (1)
= B(E)hr-(BHH) (O)-+(B%p) B
+(B¥I8) ()~ 2 () ()

= Bt (ph) )+ (Bxp) (to—- (B¥u) 1) -

Let & be the solution of

—v+E—vxE=0.
This is equivalent to

C+CxE=1.
Clearly,

£(0) = (0).

In view of (3.7) and (3.9)

(3.4)

(33)

(3.6)

(3.7)

(3.8)

(3.9)
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teT

C(r—s)w(s)dsd E(t—7)

~ @

Il

[
S:SSO(T—s)d,E(t——-T)w(s)ds
[ wOct—9—Ee—9+Em s

I

t t
v(0) S C(t—s)w(s)ds— S!'y(t—s)w(s)ds .
Hence St'y(t—s)w(s)ds is uniformly bounded and converges almost everywhere
in (0, T]as €—0. Since
d tc t ds
L { at—syu(s)ds = u ()| we—symis)as,
we get for 0<e<t<t’
S' C(t'—s)w(s)ds—-S‘C(t—s)w(s)ds
- S' w(@dr—{ | vr—syu(s)sdr.
t t Je
Letting € —0 we get
S' C(t'—s)w(s)ds—S’C(t—s)u(s)ds
0 0
¢ t T
= w(f)dT_S S ¥(r—S)u(s)dsdr .
t t Jo

t
Hence S C(t—s)w(s)ds is differentiable almost everywhere, and
0

i 1,0 9pt5yds = ()= 1=yt (3.10)
From (1.11) we get
u(t)+S:C(t—s)w(s)ds+S:(p*C)(t_s)w(s) ds = fs).

Consequently u(#) is differentiable in (0, 7'] and with the aid of (3.6), (3.10)
we obtain

‘%u(t)—}—‘w(t)—S:'Y(t—s)w(s)ds— Bty

+(pHh)(B)—(B%p) Bt (§40) 1)
= h(t)+p(t)yup-+(h*p) (2) . (3.11)
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From (1.10) and (3.11) it follows that

L ey (@e) O -+w (o) V(e—oyu(e)s
— H(E)+B(D-+(Bp) (o p(e)to = ()

Thus the proof that (i) implies (ii) is complete.
Conversely, suppose that (ii) holds. Integrating (0.7) from & to ¢

u(t)+(8+) (1)~ (e) — (Bw) (€)+ w(r) dr
- S:SZV(T—s)w(s)dsdT — S:h(T)dT .
Hence Stw(-r)d-r is uniformly bounded and converges as €—0. Since

% S:C(t—s)w(s)ds - w(t)——S:'Y(t—s)w(s)ds :

we obtain

g:C(t—s)w(s)ds — j' {w(-r)—~S:'y(T—s)w(s)ds}dT .
From (3.12) and (3.13) it follows that
u(t)+(B+) (1) —€) —(Bxu)(€) + || Cle—s)ats)as

——S:S:'y(‘r—s)w(s)dsdf - S:h(f)dT .
Since

S:‘Y('r—s)w(s)ds = S:’Y(T—s)w (s)ds— S:')’('r~—s)w(s)ds

(3.12)

(3.13)

(3.14)

is uniformly bounded and tends to 0 as £€—0, we see from (3.14) that

t
S C(t—s) w(s)ds is also uniformly bounded and converges as €&—0, and hence
e

the same holds for s (pxC)(t—s)w(s)ds. From (3.14) we get

t
e

[ ott—myutryr + [ o) (@ru) ()i —{ pt—rr @)+ (v}

t

e
T
e

+S' p(i—7) S:C’(’r—s)w(s)dsdf —S:p(z—f) f j:v(a—s)w(s)dsdadr

— s' p(t—) S,:h(a')da-a"r .

Letting €— 0 in the above
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(o) (0)-+(p#330)0) — [ ple—r)ra

+{ () t—9uts =  p(t—) | Ho)doar . (3.15)

It follows from (1.10),

—(B)(®) -+, (p+C) t—3)(5)ds = (G) (1) (3.16)

Letting € —0 in (3.14) we obtain

u(t)+(8x0) () —uo+ |, Cle—s)uts)ds = { mrydr

Combining this with (3.16) we see that (1.11) holds.

(1]
(2]

(3]
(4]
[5]
(6]
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