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There is considerable interest in how large the fundamental units of real
quadratic fields may be. For example, when factoring a rational integer using
the Continued Fraction Method, see [2], one avoids expansions of quadratic
surds in fields with too small a fundamental unit. More classically Gauss'
conjecture that infinitely many real quadratic fields have class number one
could be shown if fields with huge enough fundamental units were known.

In 1971 Yamamoto [4] gave classes of large fundamental units. It is
well known that in real quadratic fields the class number and the logarithm
of the fundamental unit are roughly inversely proportional. See Hua [1, p. 336]
for a precise statement. Yamamoto's theorem, and ours, uses hypotheses
about ideals being principal to imply lower bounds on fundamental units.

Let N denote the natural numbers and Q the rational numbers. For
d^N with d>l and d not a square we write Q(\/~d) for the quadratic field with
discriminant D=Dd, fundamental unit £—£,/, class number h—hd, and ring
of integers Od. Yamamoto's theorem is:

Theorem 1.1 (Yamamoto). Let ply •••, pn^N be primes. Let I be a set of
infinitely many square-free positive integers. Suppose that for all l<i<n and

d^I that one has (̂ >, )— £P, ί?,-, gcd(ph d)=l and £Pt principal in Odί then there is
a constant c so that

log βd>c(log d)n+1 for

Yamamoto then gave a class of sets / with n~2. In this paper we will
generalize his theorem so that it is effective. Since our theorem is not asymp-
totic there is no need for an infinite set /. The hypothesis that pl9 ••-, pn be
prime will be weakened. Furthermore, we will give many other classes of
examples with n=2. That is, we will give many fields whose fundamental
units are large in this sense. It should be remarked that these theorems fall
far short of settling Gauss' conjecture.

1. Effective lower bounds on fundamental units

We give here several Lemmas that we will need. See Yamamoto [4]
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and his references for proofs. He does not state the last lemmas; hence, we
include proofs of these.

A quadratic irrational σ= r~τ~sv " is reduced if σ>l and σ= r~s^ d

satisfies -l<σ<0. t t

Lemma 1.1. Let w= — ""^ where D is the discriminant of Q(\/^).

Every ideal Jl of Od has the unique canonical form Jl=aZ+(b+cw)Z with ay

b, c, d^Z satisfying', (i) a, c>0 (ii) ac=N(Jΐ) (iii) a=b = Q (mod c)
(iv) N(b+cw) = Q (mod ac) (v) — a<b+cϊϋ<Q.

For such ιA=aZ+(b+cw)Z we define the map a(Jl)= b+cw . Jl js called
a

a reduced ideal if c= 1 and a(JL) is a reduced quadratic irrational.

Lemma 1.2. The above map JL^>a(JL) gives a bijection of the set of all
reduced ideals to the set A of reduced quadratic irrationals with discriminant Z).
It induces a bijection of the ideal class group of Q(\/~d) to the set {Aly A2, •••, Ahd}
of the equivalence classes of A.

Lemma 1.3. If an ideal Jl satisfies N(Jί)< andgcd(Jίy JL)=l where
Jl is the conjugate ideal to Jly then JL is reduced.

Next, we need the following integral:

Lemma 1.4. ((•••( (*1+#2+ +<)* 1̂ ^n=- - 1

&*+* , ,
*1+

J.̂ L (n-l)l(k+n)
*, >o

Now letting xi=cizi we get the following easy corollary of Lemma 1.4.

f f f bk+n

Lemma 1.5. I I — I (̂ H ----- \-cnzn)
kdzl dzn= - - -

JJ J _ c^-cJn— 1)1 (n+k)
Cι*ι+ ~+CΛZ»£b 1 «V 9 V /

We want to replace the primality of ply •••, pn in Yamamoto's theorem
by the following notion.

DEFINITION 1.6. aly •••, an^Q are said to be quadratically independent
provided

Now we can get a theorem giving effective lower bounds on some funda-
mental units.

Theorem 1.7. Let the quadratic number field Q(\/~d) have discriminant
D and fundamental unit £. Suppose aly •••, an^N are quadratically independent
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with (ai)=<JLi JUi where Jl{ is principal and gcd(Jlh Jlj)=\ for l<i,j<n. Then

2 /

provided log ̂ - > max{Q2, 4 en(n + 1) ζ? + 2} w/zm; P= log «! ••• log «„, <? =

j)^ ----- h(log #»)2 flw<^ e zί ̂  ̂ βίe °/ ̂ e natural logarithm.
n

Proof. Consider the ideals of the form .3= Π <->?f1'; since gcd(^Λiy
» = 1

— 1 we can apply Lemma 1.3. Therefore, such a ̂  is reduced provided

y . Denote these principal, reduced ideals by ^B^ •••, *Bt. As before,
2

£=ΐl a(!3)> li <x(l$i)>\ 2 ) Π aei-~ae» w^ere t'ιe ^rst Pr°duct is over

& principal and reduced. Notice that the e{s depend on j. Let L=l
So,

t = card{(^, •••, en): eλ log a^ ----- \-en log an<L} > ••- dxl -dx

where the integral is for #,->() with x1 log a^-\ ----- \-xn log an<L—Q. Notice

that Q was chosen to move the hyperplane inward the distance of the length
of the diagonal of the ^-dimensional cube. This ensures that the integral
underestimates the number of lattice points. By Lemma 1.5 we see that

1 (L-Q)n

~P n\ '

Likewise,

S = log( Π αίi βί ) - Σ(^ log aL+ +e. log an)

where the sum is over the positive integers el9 •••, en with el log a±-\ ----- f-

en log an<L. Then we see :

(ffj log αH ----- h^» log a

where the integral is over tft >0 with

*ι log «H ----- h*» log α

Therefore,

s 1
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Combining these yields:

log 6>tL—S

>L (L-Q)n _ 1 (L+Q)"+1

P nl P «_l) !(«+!)

+l -"— 1 Γ*Q«+1-
-« W V A

But by distributing the factor (n — 1)! we see

nl (-1)-* ___ «(»-!)!

-!)-*-« -(A+l+n)
(A+l)!(n-A)I (A+1)!(«-A)! '

Therefore,

log £>-L Γ_ !̂L _ g "+^+1 _ L*+1 Q.-_ J^Ί
6 P L(n+l)I ^ (A+l)!(n-A)I («+l)ϋ

Estimating the second term we see that

(n-l)!*=

<2
-

^^_ (L+—V"1 provided
n — 1 1 V n '

Since (1-| J increases to e as n goes to infinity. Now we estimate the third
\ n I

term of the sum:
/Ί2 τ'n

provided that L>Q2 and L>nQ. Assuming the

above provisos we get

2P (w+1)!
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provided

1 Ln+1 2eL"Q L"
2 (n+l)l (n-\)\ (n+l)l '

that is, L>4e(n+l)nQ+2. Notice that this implies L>nQ. Therefore we
see that L>max{Q2, 4 e(n+l)nQ-\-2} is the needed hypothesis. This com-
pletes the proof.

In order to handle the assumption that gcd(Jliy Jlj)=\ we need the fol-
lowing lemma.

Lemma 1.8. Let JLly •••, Jln be ideals of Od, d>l square-free with a{=
i) and such that:

(a) o?!, •••, Jin are principal
(b) gcd(aiy D)=l, where D is the discriminant
(c) #!, •••, an are quadratically independent.
Then there are ideals 3)19 •••, $n with b^N^) so that:

(i) ^B19 •••,&„ are principal

(ii) gcd(^Sj)=l_for l<i^<n _

(iii) Q(Va, , •-, \/αy )=β(\/ft1 , " , Vbj ) for \<j<n
i «

(iv) Iog2 bj^ Σ Π Iog2 aj+1_, forl<j<n
«=1 v=l

Proof. We proceed by induction on k in ̂ , ••-, *Bk.

For Λ=l, let Q=gcd(JllJ JtJ. Then we can write J11=QQ^S1 where

gcd(Sί9 iδι)=l. We used the fact that gcd(Q, Q)=l since gcd(aly D)=l.

Furthermore, by the quadratic independence of al and the fact that QQ=(q)
where N(Q)=q we see that ̂  is principal and Q(\/^ΐ1)=Q(\/])l). Notice that
&ι<0ι*, hence, Iog261<log2α1.

Now suppose we have constructed &19 •••, ̂ -x satisfying the properties
(i)~(iv). By hypothesis, ,̂ •••, 3$k-λ are products of prime ideals £Plv •••, Sm

where gcd(£>i9 <Py)=l. We can write Jlk=-S^S{^-^^^f

m

m Jl where ̂

and Si do not divide Jl for i=l, •••, m. Now we multiply by suitable powers
of 3$i so that we get an ideal

C = Jlk Π &t = 5>ίί ̂ {ί-ffi- ̂  c^
i = l

with ^i>/ί. Let Q=gcd(C, C). We again use the fact that o?* has no rami-
fied factors since gcd(ak, D)=l to see that

where gcd(JL" > Λ")=\ and e//=e/

i-f/

i^0. Now let ®k=$$-Sfr Jl" and
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we see that <Bk is principal, Q(Vav —, Vah)=Q(Vbv —, \/^) and gcd(Sh

= 1 for \<ίj<k.

Lastly, we must check the bound on Iog2 bk. From the factorization of Jίk

see that Σ /,-, th<
*=1

of <Bk and C we see:

we see that Σ /,•> the number of £P, , is less than Iog2 ak. From the definition

Let 5= max δf and notice Σrf. <Σ/i so that
-

The bounds on i^ •••, ^_x given by induction hypothesis are increasing; hence,

log2B< Σ Π log ak.υ.

Therefore,

ft-l u

Iog2 δΛ<log2 βA(l+ Σ Π Iog2 ak-,)

k u

= Σ Π Iog2 ak+1-9 .« = 1 » = ι

This completes the lemma.

Now we extend Theorem 1.7 to avoid the assumption that gcd(JLiy <JLj)=l.

Theorem 1.9. Let the quadratic number field Q(\/~d) have discriminant

D and fundamental unit β. Suppose aly ••-, an^N are quadratically independent

with (ai)=<JLi <JLi where <JLi is principal and gcd(ah D)=l for l<i<n. Then

log£>8 2

provided log >max{Qϋ, 4en(n+ 1) Q0+2}

= Π Σ Π

Ql = π Σ (Σ Π Iog2 «B+1_S)
2.

(Here logarithms without explicit base are natural logarithms and e is the base.)

Proof. We use Lemma 1.8 to choose ideals ̂ , •••,&„ satisfying the hypo-
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thesis of the effective theorem, Theorem 1.7, including gcd(3)h <Bj)=l. The
P and Q of the effective theorem are

P = log hi ••• logbn

where bi=N(^i). Using the bound from Lemma 1.8 we have

k u

Iog2 bk< Σ Π Iog2 ak+1.v for l<k<n.
«=1 t> = l

We see that P0>P and Q0>Q and hence the theorem holds.

2. The monomial norm equation

We now turn to the problem of finding classes of D satisfying the hypo-
theses of Theorem 1.9. The main hypothesis is that Jli is principal; that is,
there is an element of Od with norm a{ for /—I, 2, •••, n. Notice that the fol-
lowing suffices: If we have Aiy Biy D^Z[x]y e{^Ny p a prime and

Al-B\D=p

A2i—B2i D == Ci xef i = 2, ••-, n

then the class of fields given by D(pk) has principal ideals of norm p, c2y •••, cn.
We call the following generalization of this the Monomial Norm Equation:

A]-B2i D = CiX*i i= 1, -,fi

where Aiy Biy D^Q[x]y e^N and cly ••-, cn are quadratically independent.
Many properties of the monomial norm equation are studied in Reiter

[3]. We give some fundamental properties here. The first shows that we
need to consider the monomial norm equation and not a constant norm equation.

We can divide A^—B] D—Ci by a square so that Ai can be taken to be
monic. Then the highest coefficient of D is a square; therefore, we can factor
it out so that we may assume 5, and D are monic also.

With these conventions in mind we can prove the uniqueness of the con-

stant norm for a fixed D(x).

Theorem 2.1. Suppose Aίy Bh D^Q[x] with D nonconstαnt but not neces-
sarily square-free and with A\—E\ D=c{ for ί=l, 2. Then cly c2 are quadratic-
ally dependent.

Proof. Suppose not, choose Ai9 Bh c{ so that Bl has the smallest possible
degree and B2 has the smallest degree possible once the degree of Bλ is fixed
where cl9 c2 are quadratically independent. Let deg B{= j{ and deg D=2k.
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So deg A~ ji+k and J\<j2.
We have seen that we can take Aiy Biy D to be monic. Now A2—B\ D=

c, and Al-B2

2D=c2 implies A2

lB
2

2-BlB-lD=c1Bl and AlB\-BlB2

2D=c2B\.
Thus, (AJ&i-Aβύ (A^+Aβ^AlBl-BlAl^cβl-cβl Let deg(j4A-

A2B1)= e, so ()<£</! -f-72+£ By comparing degrees of the above we have
e+jι+J2+k=2j2; i.e., e=j2—j\—k.

We also see that
(A1—B1\/~D)(A2+B2\/'D)=A1A2—B1B2D+(A1B2—A2B1)\/^ has norm 2̂.

Now CD c^ are quadratically independent since q, £2 were taken to be. By

the minimality of j2 we see that /2<deg(^jJ?2— ̂ 42^ι)=^ So J2<j2— j\— k;
i.e., fe+y^O. This is the desired contradiction since 0<deg D=2k.

This theorem excludes the wild hope of finding polynomials D(x), E(x)
so that A(x, y)2—B(x, y)2D(x)=E(y) where D(x) and E(y) take on infinitely
many quadratically independent values. In particular it excludes two quad-
ratically independent values. Since no D(x) can have polynomial witnesses to
two independent constant norms we will need to study the monomial norm
equation to get sequences of length two or more to which we can apply Yama-
moto type theorems.

Next we get some control on the degree of D in terms of the number of
monomial norms.

Theorem 2.2. Let A2

i-B2

iD=cix
2fiy Ah Bh D(=Q[x], f^N for \<ί<

n and with cly • • - , € „ quadratically independent. Suppose of^D and let t=power of
2 dividing deg D. Then n<t.

Proof. Let G=<<7!>X ••• X<σM> be the Galois group of

over Q. This is generated by the automorphisms σ]y •••, σn where σ, : \J~c{

i— > — V7Q and leaves everything else fixed. We want to show that that D =
Π Z)^for some DΛGQ(y/c^9 ••-, \/c~H) [x]. Then 2n= | G | will divide deg D and

we will have our result.

We first show the following fact: Any factor F^Q(\/~cv •••, \/ck^)[x] of
D factors as F=F1F1

σk where F^Q(\/~cv •••, \/~c^ [x]. Suppose we have
such an jP, so D=FE and B2

kFE=B2

kD=(Ak + \/~^ xfή (Ak— \/7kx
fk\ Let

/ be any irreducible factor of F and Ak-}-\/~ck xf* in Q(^~c~v •••, \/^) M Then
J *\F*=F. If /=/'. then /=/'* | (At- V7k xf*) so / 1 (Ak+ V7k xf>)-(Ak-
Vckx

fft)=2\/ckx
fk', hence, / is a monomial. D=FE has an even number of

irreducible factors since B2

k and B2

kD do; therefore, such a /— /σ* would
require another K=K<Γk also dividing D. Then x2 divides JK which divides
D; this is a contradiction. Thus /Φ/σ* and hence JJσk\F. Repeating this
argument for Ithe other irreducible factors of F we see F=F1FΪ* for ί\ e

••, V~c~k)[x] as desired.
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We now use the above fact repeatedly. First, k=l and F=D gives D=

A^Γ1; then k=2 and F=D1 gives D^DJOfc hence D= Π D2. We
σ e<cr1>χ<<r2>

continue this and conclude D= Π Dσ

n as suffices to prove the theorem.
σe<?

We get the following immediate Corollary.

Corollary 2.3. Let A2

i-B2

iD=cix\ Ah Bh DeQ[x], e^N for \<i<n
and with cl9 •••, cn^Q quadratically independent. Suppose x^D and let t be the
power of 2 dividing deg D. Then if the e^ are even, n<t, but in any case n<t-\-\.

Proof. If some £, is odd map x\->x2. Then apply the theorem with ί+1
replacing t.

We mention, without giving the tedious proof, the following theorem

from Reiter [3].

Theorem 2.4. // D=A2

i—ci xei where D, A^Q[x]9 i=l, •••, n and cλ, — ,
cnξ=Q are quadratically independent, then n<2.

In order to get n=3 with this monomial norm approach we can have at
most one constant norm; Corollary 2.3 implies 4|deg D\ and Theorem 2.4
implies nonconstant Bys will be needed. Thus, the simplest solution to the
Monomial Norm Equation with n=3 must be fairly complicated; the author
conjectures such a solution exists. We now turn to new examples with n—2.

3. Classes of large fundamental units

In this section we give two broad classes of Z)'s which have fundamental
units which are large in the sense that log 8d~>c (log d)3 as was the case in Yama-
moto's example. The first class gives a two parameter family of D's for every
factorization of x' — 1 for j odd. Yamamoto's example arises from the trivial
factoriation x— \ = \(x— 1). The second class also gives a two parameter family
of Z)'s for every factorization of x'—\ for j odd. These new examples use
higher degree B.

Notice that if 4F1F2=c2x
i—c1 then

(F1 xί—F2)
2—c1 xi=(Fl xi+F2)

2~c2 xi+j. In practice we want a prime norm.
The easiest way to do this is to let ί=0, cl=pί c2=pqs. Then we get:

Theorem 3.1. Let p, q&Z, p>2 a prime and q odd and quadratically
independent with gcd(q, p—l)=l. Suppose F1F2=x}—l for ί\, F2^Z[x] and
e N odd and let Gl(x)=Fl(qx\ G2(x)=F2(qx). Then
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and there is a constant c so that

log Sd>c (log df

where d>b is the square-free part of D(pk)for some k^N, k>l.
Here b and c are given explicitly in Theorem 1.9.

Proof. The fact that (G1~pG2)
2—4 ρ=(G1+ρG2)

2—4pq}' xj is clear.
Since j is odd, p and^><?; are quadratically independent. We need to check

that gcd(py Dd] — 1, gcd(q, Dd)=1.
Notice that the constant terms of Gl and G2 are different and either 1 or

— 1. Hence, D(pk)==(±l)2—0= 1 (mod p), so p^D(pk) and so gcd(p, Dd)=l.

Let a prime r\q. We know G1(x) = —G2(x)==±l (mod r), so D(pk) = ((±l)
-p(±l))2-Q = (l-p)2. Therefore gcd(q, jp—1)=1 implies that r^Dd\ there-
fore gcd(q, Dd)=l. Thus we can apply Theorem 1.9 and get the claimed re-
sult.

We now turn our next broad class.

Lemma 3.2. Suppose FlF2=xi~\for F19 F2^Z[x] andp^Z. Let

A = F\,

B = Fl+p

D = (FlX>

Then A2-B2D = -4p3.

We replace x by pqx and divide by p2 to get:

Theorem 3.3. Let Fl9 F2^Z [x] with FlF2=3ci— 1, ;>3 odd, and p9

both odd, quadratically independent and with p a prime. Let G1(x)=Fl(pqx)9

G2(x)=F2(pqx) and

A = Gf pi'1 <f xj+G,(2pj q> xj+l)+pG 2

B=Gl+p

D = (G^p*-1 qj oci+G2)
2+4pί-1 qj

Then A2-B2D = -4 .

If d is the square-free part of D(pk) for

log 84>c (log dγ

for d>b where b and c are effective constants given by Theorem 1.9.

Proof. We see that in Od we get principal ideals of norm p and pj~l qj pjk

and hence of norm p and qj. Neither p nor any factor of q divides D(pk) since
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G2 has a constant term of ± 1 and p and q divide all the other terms. So there

are two principal ideals with quadratically independent norms and no prob-

lems with ramification. Therefore, we can apply Theorem 1.9 to get the above

bound on the fundamental unit.
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