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1. Introduction

In this paper the author considers the following problem.
Let Ω be a bounded domain in R2 with smooth boundary 3Ω. Let tΰ be a

fixed point in Ω. Let B(S, tΰ) be the ball of radius £ with the center tΰ. We put
Ωβ=Ω\B(£, tΰ)' Consider the following eigenvalue problem

(1.1) — Δ u(x) = λ φ )

u(x) = 0

8*.

Here k denotes the positive constant. And σ is a non negative constant. Here

-5— denotes the derivative along the exterior normal direction with respect to
dvx

Ω8.

Let μj(ε)>0 be thej-th eigenvalue of (1.1). Let μ. be the^'-th eigenvalue
of the problem

(1.2) -Au(x) = \u(x)

Let G(x, y) be the Green function of the Laplacian in Ω with the Dirichlet
boundary condition on 3Ω satisfying — AG(x,y)=δ(x—y).

Main aim of this paper is to show the following Theorem 1. Let <pj(x)
be the L2 normalized eigenfunction associated with μj.

Theorem 1. Fix σG(0, 1). Fix j . Assume that μj is a simple eigenvalue.
Then,

(1.3) μJ(e)-μJ
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when σ=0, we have

(1.3)b i s the remainder of (1.3)=0(β1+β)

for any ySe(0,1).

REMARK. The related topics are discussed in Ozawa [9], [10], [11], Besson
[2], Courtois [5], Chavel-Feldman [3] and the references in the above papers.
It should be noticed that the difference between μj(ε) and μ. is of order £λ~σ

(when σ>0) which is quite different from the case of eigenvalue problem on Ω8

under the Neumann condition on 3J5β. In the Neumann case, £2 is the order of
the difference between μ, (£) and μ..

The other case σG/2\[0, 1) will be treated in part II of the present paper,
since we need some change of our method of proof.

Let us notice the related papers on eigenvalues with many small ran-
domly distributed Dirichlet holes. See Ozawa [12], [13], Kac [7], Rauch-
Taylor [14], Simon [16], Sznitman [17] and the references of the above papers.
It is very interesitng for the author to consider eigenvalue problem of the Lapla-
cian in Ω\many holes under the Robin condition on the boundaries of holes.
Problem of the solution of the Poisson operator with periodically distributed
small holes with the Robin condition is discussed in Kaizu [8]. We want to
consider statistical problem of eigenvalues of the Laplacian in a domain with
randomly distributed Robin holes in the future. In my opinion this paper can
be a step for the above problem.

For other related problems on singular variation of domains the readers
may be referred to Anno [1], Jimbo [6].

Here the author expresses his hearty thanks to Professor M. M. Schiffer,
since my idea of proof of this paper using the Green function was influenced by
the fine book Schiffer-Spencer [15]. And the author expresses his sincere
thanks to Mr. Roppongi who read this manuscript and gave valuable comments.

2. Outline of proof of Theorem 1

We introduce the following kernel pt(x,y).

(2.1) p9(x9 y) = G(x, y)+g(6) G(x, w) G{tuyy)

where <V«, u(w)y Vw v(ίϋ)>= 5 ] — — — | w==%, when w=(wly w2) is an orthonomal
i=i dWj dWj

frame of R2. Here g(€)y h(S) are determined so that

(2.2) P * ( 9

is small in some sense.
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If we put

(2.3) g(S) = -(Ύ-V*)-1 log S+k{2n)-1 θ'" 1)- 1

and

(2.4) h(ε) ((2π s)-ι+ (2π)~ι k £*-*) = k fi

the above aim for (2.2) to be small is attained. Here

<y = lim (G(x, β))+(2π)-1 log \x—W | ) .

Let G8(#, y) be the Green function of the Laplacian in Ω8 associated with
the boundary condition (1.1).

We put

and

(Gf)(X)=]aG(x,y)f(y)dy

(Gj)(x)=\ G,(x,y)f(y)dy
Jo,

(Pj)(χ)=\ P,(χ,y)f(y)dy.

Let T and Γ8 be operators on Ω and Ωβ, respectively. Then, | | Ϊ Ί | , , \\T9\\PtB

denotes the operator norm on LP(Ω,)> Z^(Ω8), respectively. Let/ and gt be func-
tions on Ω, and Ω8, respectively. Then, \\f\\p9 \\g9\\p§9 denotes the norm on
Lp(β), Lp(Ωt\ respectively.

A crucial part of our proof of Theorem 1 is the following.

Theorem 2. Fix σG(0, 1), q>2σ'1. Then, there exists a constant C such
that

(2.5) m-G9\\qtt<os*-*

holds.

The case σ = 0 is treated in Theorem 7.
By the duality argument we get ||P8—6?8 | |9/> 8<C £2-σ for q' satisfying

( !/?)+(Vί ' ί^ l By the Riesz-Thorin interpolation theorem we have the fol-
lowing.

Theorem 2. Under the same assumption as in Theorem 2, we have

\\P.-Gt\\

We put
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t(x,y) = G(x,y)+g(6) G(x, to) G{tt,y)

+h(ε) ξt(x) <V» G(x, a), Vw G{ίD,yj> ξ,(y)

for the characteristic function ξ9(x) of Ω8.
And we put

p fίχ\ =

It should be noticed that the characteristic function ξ8 appears in fi2(x, y).

We compare Pz with P β and we can get an information of P 8 from P 8 , be-

cause the difference between P 8 and P 8 is small in some sense. Since G2 is

approximated by P 8 , we know that everything reduces to our investigation of

the perturbative analysis of G-*Pt. This is our outline of our proof of Theo-

rem 1.

3. Preliminary Lemmas

Fix 0 ^ σ < l . We write B(w; S)=Bt.

Lemma 3.1. Fix M e G~(9J38). Then, the solution of

(3.1) Δ φ ) = 0

u(x)+k ε*— (x) = M(θ) x = (ax+6 cos (9, tO2+S sin θ)
dvx

satisfies

(3.2) K

where

Proof. We put

u(x) = a0 log r+ £ (b, sin jθ+Cj cosjθ) (-j)'lr-'

Then, it satisfies Au(x)=0 for x&R2\B9. We see that

R(ε, σ, r) = ( fj k~2r2 £2i+2~2

oo

= ^o+ Σ3 (sj sin jθ+tj cosjθ)

implies
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Λ0(log ε-k ε'-1) = s0

fory>l. Thus,

(3.3) \ΰ(x)\iZ\s<)logr\l\kε*-1+loSε\

+(Si"2 & r-*(-(llj)-k ε'-yyxi Σ

Since <r<l, the right hand side of (3.3) does not exceed

from

C Max I M{θ) I ((ε1-* I log r I /fc)+(61"7&) ( Σ / "

Σ
i=i

Thus, u(x) satisfies the first and the third conditions of (3.1). We see that

max \u(x)\ =0(S1~<r).
x<=dΩ

We can get the solution u(x) of (3.1) by the same repeating construction of the
functions v[n) in Proposition 1 of Ozawa [10]. That solution satisfies (3.2).

Lemma 3.2. Fix ?^(1, °°). Under the same assumption as in Lemma 3.1
we have

Proof. The second term in the right hand side of (3.2) is a bounded func-
tion for r>6. Therefore, we get the desired result.

4. Proof of Theorem 2

We recall that w=(wu w2). Assume that iΰ=(0> 0).
We put

S(x,y) = G(xyy)+(ll2π) log \x-y\ .

Then, S ^ J J G C ^ Ω X Ω ) . We have the following formulas (4.1), (4.2) in p.
263 of Ozawa [10].

(4.1) <V.G(*,Λ),V

= (2π S)-1 -A. G(ϋ), y)+<yw S(xy tΰ)9όw1
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for x=(S, 0), 0 = 0 ,

(4.2) J L < V w G(xy 0), Vw G(0,y)> = J - <V, S(*, 0), V, G(0,

for Λ?=(6, 0), 0 = 0 .

We put p2(x, y) as before. Then, we have

(4.3) p9(x, y)-k ε° -^-p9{x, y) |
OX

where

= g(S)S(x,®)G(®,y)

L5 = A(e) <VW S(x, tΰ), Va G(iD,y)>

L i k ε ^ S {
OXχ

L9 = -k ε* h(ε) {-{2π)-1 ε-* £- G{m, y))

L10 = -k ? h(ε) / - <vw S(X, a), vw G(a, yy>.
ΌX\

Let 5(0, 0 ) = γ . Then S(Λ?, t0)-S(t0} tΰ)=0(S) as £->0.
We put

(4.4) g(S) (-(2π)-1

Then, L1+L2+L3+.I'7+.£'8 is equal to

(4.5) G(x,y)-G(zo,y).

Here 0(5), 0(6σ |logf |) arises from L3yL&, respectively.
We put

(4.6) h(S) ((2π 6)-ι

Then,
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(4-7) _ . . _,
dwx

Therefore, (4.3) is equal to

+L5+L10

for x=(S, 0).

Let Gw denote the operator v(x)->(G v) (ίΰ). And G( , w) denotes the mul-
tiplication operator u(x)-+G(x> w) u(x).

Using the above facts we get (4.8) for / which is zero on 5 β .

(4.8) Pt f(x)-k ε' A (P,f) (x) 1_(tf0)

= (Gf)(x)-(Gf)(0>)
9

8»i 8*!

- * £' h(ε) -£- <VB 5(x, «), Va{Gaf)>

We know that

^(ε) = -(2πlk) ει-*+0(ε*-2<r \ log ε \)
h{ε) = 2π εt+Oiε3-'),

We want to estimate (4.8). It is easy to show that

\Gf(x)-Gf(a)\.-ι.fi

for p>2. We see that the sum of the third and the fourth term in the right
hand side of (4.8) does not exceed

ίsR c [|Cr/ | | c 1 + τ C Q 5 ^ ^ ™c l\J\\ρ,2

for p>2(ί—T)"1. The fifth term and the sixth term in the right hand side of
(4.8) does not exceed Ch(S) | | / | | Λ ε Ck £σh(S) | | / | | Λ ε , respectively, for/>>2.

We put (Pζ—Ge)f=v. Then, v satisfies (3.1) and M(0)=(4.8), because
Gzf satisfies the given Robin condition on dB2. By Lemma 3.2 we have

for q>2 (1-τ)- 1 , τe(0, l) . Therefore,
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We take 0 < τ < l so that l+τ=2—σ. Then, we get Theorem 2 for q>2σ~\

5. Estimate of the difference between P 8 and P8

We want to estimate

(5.1) \\ξ,P.ξ,-P.\\t.

It does not exceed | |(1—|e) Pt ξ,\\p+\\PtO—ξ,)\\p. We want to estimate the first
term of the above sum.

(5.2) \\(l-ξ,)PtξJ\\P<C(\B,\VPmΆχ \Gx(ξJ)\

+g(ε)(\ G{x,ioγdxψ>\Ga{ξj)\)

for p>ί observing the fact that (1—ξe) ξt=0 in A(f)-term. Therefore, we
get

(5.2)

for/»>l. Then, for

(5.3)

Moreover, ||(1—ξz) Pz\\p has the same bound in (5.3).
We have the duality

Therefore,

(5.4)

As a corollary of the above facts we get the following.

Theorem 3. There exists a constant C independent of £ such that

(5.5) \\P,-ξ,P,ξ,\\t£Cε.

We here want to prove the following.

Theorem 4. There exists a constant C such that
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holds.

Proof of Theorem 4.
We put

A1f(x) = G(x,ϋ))GJ

AJ{x) = U*) <X G{x, 0>), Va Ga(ξJ)> •

Then, Pt=Gt+g(6)Aι+h(ε)A2.

We have the following.

(5.6)

for any/>e(l, oo). And

(5.7)

This is observed by

P 2 / H 2 < ( ( \VwG(x,®)\>dx)V* \VwGH(ξJ)\

Now we get the desired result.

6. Convergence of eigenvalues

Notice that the j-th. eigenvalue of Pt is equal to the j-th eigenvalue of
X9 P9 X2. By virtue of Theorems 2, 3, 4 we see that there exists a constnat C
independent of j such that

(6.1)

holds.
We need more precise estimate for the left hand side of (6.1) to get The-

orem 1. By (6.1) we know that the multiplicity of μj(β) is one for small € when
the multiplicity of μj is one.

7. Perturbation theory for Pz

In this section we consider the behaviour of eigenvalues of P f as £ tends
to 0. We set AQ=G and Aly A2 as mentioned before.

For the present we discuss a formal treatment of perturbation theory for
eigenvalues. We put

= A0+g(6)A1+h(6)Az
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- \o+g(S) Xι+h(€) λ2

so that λ(£) and φ(S) is an approximate eigenvalue of A(S) and an approximate
eigenfunction of A(£)> respectively. We consider the following equations:

(7.1) (A(6)-\(6)) ψ(6) = o (small term),

where the meaning of o (small term) is not specified here. We set

where ( , ) denotes the inner porduct on L2(Ω). Here £—>λ(£) is thought as
a perturbation family. To get (7.1) we examine the folloiwng equations:

(7.2)

(7.3) (A-Xo) *χ =

(7.4) (Ao-Xo) -ψ 2 = (X2-

By the Fredholm alternative theory we see that

λ 2 (£) = (A2 ylr0,

is the conditions to solve (7.2), (7.3), (7.4) when λ0 has multiplicity one.
We see that

(7.5) {A(ε)-χ(ε))ψ(ε)

1-x1) ψ2+(A2-x2) ΨO .
From now on we give a rigorous treatment of perturbation theory for eigen-

value of Pβ. Let μ} and φ} be as in Theorem 1. Thus, μ} is a simple eigen-
value. We see that

(7.6)

and

(7.7)

Then,

(7.8) | λ 2 ( ε ) | < C | l o g £ | .

By the Fredholm theory we see that

(7.9)
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and

(7.10) lhhll,<£0 Il(λ2-Λ)ll2 Uo

Summing up (7.5), (7.8), (7.9) and (7.10) we have the following inequality.

(7.11) |(7.5) I ^C(g{εf+h{εf) (log εf = S(ε).

Therefore, we have the following.

Theorem 5. There exists a constant C independent of S such that

(7.12) \m

holds.

We put (Φ(ε)) (x) = £,(*) (ψ(«) (*). Then, (P.-λ(e)) Φ(e) = (P,-λ(e))
(f8 'ψ'(f)) on Ωβ. Fix σ-e[0, 1). Then, there exists a constant C independent of
S such that

(7.13) IKP.-λ(e)) Φ(e)ll,..

where

8. On T(e)

We want to get an upper bound for T(έ). We have

where

T1=G(ί-ξt)φJ(x)

on Ωe, since λ(£) (1—?,) -ψ (£)=0 on ίl e.
We have
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| |Γ3+Γ5+Γ6+Γ7 | |2tt

= 0(|*(β) log ε\+g(εf+\g(ε)h(ε)\ |iog e |).

We get

for aayp>l.
Also,

forp>ί. Notice that

Then,

Therefore, 11 Γ2| | 2 > t=0(£ (ε) Ŝ * | log ε |) for any ̂ >> 1. We have

«oike \\G(i-ζ.) φj\\~g(ε)

<cε«>g(ε)ε\logε\,

for any/>>l.
We take^><l as close as 1 to get Theorem 6.
Summing up these facts we get the following.

Theorem 6. The estimate

holds.

9. Proof of Theorem 1 for σ>0

We recall the fact (6.1). This is given by Theorems 2, 3, 4. To prove The-

orem 2 we used the fact that <τG(0, 1). Now, we know by (7.13), Theorem

6 that there exists at least one eigenvalue H(£) of P β satisfying

\H(S)-\(ε)\£S(6)+Ca2"29.

Here we used the fact that | |Φ(£)| | 2 f fe(l/2, 2) for small ε. Since H(ε) tends
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to μj1 as £->0, it must be the j-th eigenvalue of P 8 . Combine with Theorem
2 and the above fact. Then we get

>μj*φ{O>γ)\

Therefore, we have

I μ>j{£)~ι—{μ>7ι—{2πlk) μ>Ί2 £ι~* <Pj{®)2) I

using an explicit representation of λ(£).

10. Proof of Theorem 1 for σ=0

Under the same assumption as in Lemma 3.1 we have, ioτpe(ί, °°)

j | (P,-G,)/ | | ί t <Cεmax \M{Θ)\<C6max
θ * e 9 j 8

g

The right hand side of the above formula does not exceed

for any finite ρ>2(l—β)~1

9 /3e(0,1). Then, we can get the following using
duality and interpolation argment.

Theorem 7. Assume that σ = 0 . Fix /3e(0,1). Then, there exists a con-
stant C independent of S such that

holds.

Summing up the above facts we get the desired Theorem 1 for σ=0.

References

[1] C. Anne: Spectre du Laplacien et έcrasement d'ansens, Ann. Sci. Ecole Norm.
Sup. 20 (1987), 271-280.

[2] G. Besson: Comportement asymptotique des valeurs propres du laplacien dans un
domaine avec un trou, Bull. Soc. Math. France. 113 (1985), 211-239.

[3] I. Chavel: Eigenvalues in Riemannian geometry, Academic Press, 1984.
[4] I. Chavel, E.A. Feldman: The Lenz shift and Wiener sausage in insulated domains,

in "From local times to global geometry, control and physics", ed. by K.D.
Elworthy, Longman Scientific and Technical., 1984/85, 47-67.



850 S. OZAWA

[5] G. Courtois: Comportement du spectre d'une variete riemannienne compacts sous
perturbation topologique par excition d'un domaine, These de doctorat, 1987.

[6] S. Jimbo: The singularly perturbed domain and the characterization for the eigen-
functions with Neumann boundary condition, J. of Diff. Equations 77 (1989), 322—350.

[7] M. Kac: Probabilistic methods in some problems of scattering theory, Rocky Moun-
tain J. Math. 4 (1974), 511-538.

[8] S. Kaizu: The Robin problem on domains with tiny holes, Proc. Japan Acad. SecA
61 (1985), 141-143.

[9] S. Ozawa: Electrostatic capacity and eigenvalues of the Laplacian, J. Fac. Sci.
Univ. Tokyo Sec IA. 30 (1983), 53-62.

[10] S. Ozawa: Spectra of domains with small spherical Neumann boundary, Ibid. 30
(1983), 259-277.

[11] S. Ozawa: Asymptotic property of an eigenfunction of the Laplacian under singu-
lar variation of domains -the Neumann condition-, Osaka J. Math. 22 (1985), 639—
655.

[12] S. Ozawa: Fluctuation of spectra in random media. II. Ibid. 27 (1990), 17-66.
[13] S. Ozawa: Spectra of random media with many randomly distributed obstacles.

to appear in Osaka J. Math.
[14] J. Rauch, M. Taylor: Potential and scattering theory on wildly perturbed domains,

J. Funct. Anal. 18 (1975), 27-59.
[15] M.M. Schiffer, D.C. Spencer: Functional of finite Riemann surfaces, Princeton

Univ. Press, 1954.
[16] B. Simon: Functional integration and quantum physics. Academic Press, New

York, San Francisco, London, 1979.
[17] A.S. Sznitman: Some bounds and limiting results for the measure of Wiener sausage

of small radius associated to elliptic diffusions, Stochastic processes and their appli-
cations 25 (1987), 1-25.

Department of Mathematics
Faculty of Sciences
Tokyo Institute of Technology
O-okayama, Megro-ku
Tokyo 152
Japan




