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1. Introduction

In this paper the author considers the following problem.

Let Q be a bounded domain in R? with smooth boundary 8Q. Let @ be a
fixed point in Q. Let B(&, @) be the ball of radius &€ with the center @. We put
Q,=O\B(&, @) Consider the following eigenvalue problem

(1.1) —A u(x) = £ u(x) xEQ,
u(x)=0 xE0Q
w(x) -k e"é@’i (x)=0 xc0B,.
v‘

Here k denotes the positive constant. And o is a non negative constant. Here

denotes the derivative along the exterior normal direction with respect to

yz
Q,.
Let 1;(€)>0 be the j-th eigenvalue of (1.1). Let u; be the j-th eigenvalue
of the problem

(1.2) —A u(x) = A u(x) 2=
u(x) =0 xXE0Q .
Let G(x, y) be the Green function of the Laplacian in Q with the Dirichlet
boundary condition on 8Q satisfying — AG(x, y)=358(x—y).
Main aim of this paper is to show the following Theorem 1. Let @ ()
be the L? normalized eigenfunction associated with ;.

Theorem 1. Fix o €(0,1). Fix j. Assume that p; is a simple eigenvalue.
Then,

(1.3) ui&)—py = 2w k1 87 g ()
+0(&*(log &) .
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when =0, we have
(1.3)"® the remainder of (1.3)=0(&*P)

for any (0, 1).

RemARK. The related topics are discussed in Ozawa [9], [10], [11], Besson
[2], Courtois [5], Chavel-Feldman [3] and the references in the above papers.
It should be noticed that the difference between p;(€) and y; is of order &7
(when ¢ >0) which is quite different from the case of eigenvalue problem on Q,
under the Neumann condition on 9B,. In the Neumann case, & is the order of
the difference between p;(€) and p;.

The other case o €R\[0, 1) will be treated in part II of the present paper,
since we need some change of our method of proof.

Let us notice the related papers on eigenvalues with many small ran-
domly distributed Dirichlet holes. See Ozawa [12], [13], Kac [7], Rauch-
Taylor [14], Simon [16], Sznitman [17] and the references of the above papers.
It is very interesitng for the author to consider eigenvalue problem of the Lapla-
cian in Q\many holes under the Robin condition on the boundaries of holes.
Problem of the solution of the Poisson operator with periodically distributed
small holes with the Robin condition is discussed in Kaizu [8]. We want to
consider statistical problem of eigenvalues of the Laplacian in a domain with
randomly distributed Robin holes in the future. In my opinion this paper can
be a step for the above problem.

For other related problems on singular variation of domains the readers
may be referred to Anné [1], Jimbo [6].

Here the author expresses his hearty thanks to Professor M. M. Schiffer,
since my idea of proof of this paper using the Green function was influenced by
the fine book Schiffer-Spencer [15]. And the author expresses his sincere
thanks to Mr. Roppongi who read this manuscript and gave valuable comments.

2. Outline of proof of Theorem 1
We introduce the following kernel pg(x, y).

(2.1) De(%, y) = G(x, y)+28(€) G(x, @) G(@, y)
+h(€) <V, G(x, W), V, G(@, y)>,
where <V, u(@), V, v(@))>= ,é 667“ 86:; | w=3, when w=(w,, w,) is an orthonomal
frame of R?. Here g(&), h(&) are d’eter;nined so that
22) s Hee Dpny) xeannon

is small in some sense.
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If we put
(23) 8(&) = —(v—(2x)" log §+k(2z)™ &)
and
(24) WE) (2n &)+ 2a) k&) =k €

the above aim for (2.2) to be small is attained. Here
v = lim (G (x, @)+ (2z) " log [x—®@]).
2w
Let G,(x,y) be the Green function of the Laplacian in ), associated with

the boundary condition (1.1).
We put

@H@=| cwnfma

@N) @) ={_ Gz ) dy
and
(PS) @) = | 2u)f3) dy .

Let T and T, be operators on £ and Q,, respectively. Then, ||T'||,, || T/,
denotes the operator norm on L?(Q), L?(Q,), respectively. Let f and g, be func-
tions on Q and Q,, respectively. Then, ||f||, ||gell,e denotes the norm on
Lr(Q), L*(Q,), respectively.

A crucial part of our proof of Theorem 1 is the following.

Theorem 2. Fix o <(0, 1), g>20"1. Then, there exists a constant C such
that

(2.5) [1Py— G|, <C &7
holds.

The case =0 is treated in Theorem 7.

By the duality argument we get ||[P,—G,||,/.<C &7 for ¢’ satisfying
(1/9)+(1/q")=1. By the Riesz-Thorin interpolation theorem we have the fol-
lowing.

Theorem 2. Under the same assumption as in Theorem 2, we have
”Pl_'GaIlz,sSC &,

We put
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B, y) = G(x, y)+g (&) G(x, @) G(w, y)
+h(€) E(x) <V, G(x, @), V,, G(@, y)> Ex()

for the characteristic function &,(x) of Q,.
And we put

P = B0y

It should be noticed that the characteristic function &, appears in f,(x, ¥).

We compare P, with P, and we can get an information of P, from P,, be-
cause the difference between P, and P, is small in some sense. Since G, is
approximated by P,, we know that everything reduces to our investigation of
the perturbative analysis of G—P,. This is our outline of our proof of Theo-
rem 1.

3. Preliminary Lemmas
Fix 0<o<1. We write B(w; §)=2B,.
Lemma 3.1. Fix MeC>=(0B,). Then, the solution of

(3.1) Aux)=0 xcQ\B,
ux)=0 x€3Q

() e":—;‘; (%) = M(6) x = (D€ cos 0, W, +€sin §)
satisfies
(3:2) lu(x)| <C Max|M(0)|(¢=" k7 |log 7| +-R(¢, o, 7)),
where
R(&,0,7) = (S} kr2j-2 s piyis,
Proof. We put
#(x) = a, log r+ jf‘, (b; sin j8+-c; cos j8) (—j)~ -

Then, it satisfies Ad(x)=0 for y&R?\B,. We see that

0

#(x)+k & aﬁ (%) | sc08, = M(6)
vx

= 5o+ jé (s; sin j@-+t; cos j6)

implies
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aylog E—k &™) =35,
b, e (—(1)j)—ke N =5,
¢, & N—()—ke N =1,
forj>1. Thus,
(33) &) <Islogr|/|k & i+log ]
(3377 8 rH(—(1f) R &)X (S ().
Since o<1, the right hand side of (3.3) does not exceed
C Max | M(8) (=" log 7| [R)+(&™="[k) ( 2~ & r-¥y")
from
oo 2‘
i+ S =<C | Moy ao
<C’" Max M(6)3.
Thus, #(x) satisfies the first and the third conditions of (3.1). We see that
~ . 1-0"
max |4(x)] = 0(£-).

We can get the solution #(x) of (3.1) by the same repeating construction of the
functions v{" in Proposition 1 of Ozawa [10]. That solution satisfies (3.2).

Lemma 3.2. Fix q=(1, o). Under the same assumption as in Lemma 3.1
we have

llzellg, <C (€7 Max | M (6)]).
Proof. The second term in the right hand side of (3.2) is a bounded func-
tion for r >&. Therefore, we get the desired result.

4. Proof of Theorem 2

We recall that w=(w,, w,). Assume that w=(0, 0).
We put

S(x,y) = G(x, y)+(1/2z) log |x—y]| .

Then, S(x, y)eC=(Q2X Q). We have the following formulas (4.1), (4.2) in p.
263 of Ozawa [10].

(4.1) v, G(x, @), V, G(w, y)>
— 2z &)™ 6% G(, y)+<{V. S(%, @), V, G(®,)>
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for x=(§, 0), =0,
42) 2 <V, G W), V. G@,y)> = -2 <V, S(x, @), V. G(@, )
ox, 0x,
—2n)1 622 G(w, )
ow,

for x=(§, 0), w=0.
We put p,(x, y) as before. Then, we have

0
(4.3) Pe(%,¥)—k & o Pe(® ¥) | s=e,00
X1
10
= 2L
where
Ll == G(x, y)

L, = —(1/27) (log €) g(€) G (@, y)
Ly = g(&) S(x, @) G(@, y)

L, = h(&) 2r &) -2 G(®, )| voi
0w,

LS = h(&) <Vw S(x! IT)), Vu G(ﬁ'), y)>
Li= —k& 2 G® )| sme

0x,
L,= k& g(e) (27) G(w, )
Ly= k& 8(5 @) | -0 G (@) £(6)

1

Ly= —k & h(e) (—(2z)' &~ 5%; G(®@, y))

Ly = —Fk & h(€) Glx <V, S(x, @), V., G(@, y)> .
1

Let S(@, w)=v. Then S(x, w)—S(w, W)=0(&) as €—0.
We put

(44)  8(6) (—(2n)7" log &47+0(&)+(k/27) €7-'+0 (€7|log €])) = —1.
Then, Ly+L,+ L3+ L,+Lg is equal to
(+5) G 5)—G(®,3).
Here 0(€), 0(&” |log &|) arises from L;, Lg, respectively.
We put
(4.6) h(E) (2 &) '+k(2r) 12 =k &
Then,
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(47) LitLy=ke 2 Gw,y)]oz.
0w,
Therefore, (4.3) is equal to

G () =G (@, )+ (0 G (w, ) oz~ G (x, )

w, 0x,
+Ls+Ly

for x=(&, 0).

Let G, denote the operator v(x)—(G v) (@). And G(-,w) denotes the mul-
tiplication operator u(x)—G(x, w) u(x).
Using the above facts we get (4.8) for f which is zero on B,.

(48) P @)~k 2 (Pf) (9] emten
= (6f) () —(GF) (@)
+k 8’%% (&) (“’"a% (GF) (x))
+h(E) <V, S(x, @), V(G /)
—k & h(8) 6% (Va S(x, @), V(G F)>
We know that

2(6) = —(2z/k) 8-°+0(6** |log &])
() = 27z &+0(8),

We want to estimate (4.8). It is easy to show that

|Gf(%)—Gf(@)] m(e. S CE |GF llctcar
<C’ellfllpe

for p>2. We see that the sum of the third and the fourth term in the right
hand side of (4.8) does not exceed

Ck &+ (|G llct+7a <C'Re™" || fll 0

for p>2 (1—7)~'. The fifth term and the sixth term in the right hand side of
(4.8) does not exceed Ck(€) || f1,.. Ck & h(€) || F || ..» respectively, for p>2.

We put (P,—@,) f=v. Then, v satisfies (3.1) and M(0)=(4.8), because
G, f satisfies the given Robin condition on 8B,. By Lemma 3.2 we have

10llg,e <C &-7(6+E7) I Fllq,e
for ¢>2 (1—7)", 7&(0,1). Therefore,
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lle'—Gz”q.eSC(ez—c"}—el-‘-T)
We take 0<7<(1 so that 14+-7=2—o. Then, we get Theorem 2 for g>2o"".

5. Estimate of the difference between P, and P,
We want to estimate
(51) ”Ee i’e ge_ﬁe“p'

It does not exceed ||(1—§&,) B, o+ l]ls,(l—f,)llp. We want to estimate the first
term of the above sum.

Fix f € LA(Q).
(5.2) l(1—&.) P, & 11|, <C(|B.|"* max | G,(£,f)]

x
EB!

+2() ([, Gl @y &9 |GEN))

for p>1 observing the fact that (1—§&,) =0 in A(&)-term. Therefore, we
get

(5.2) <C(&¥+g(e) e¥¥(log &) |Ifll,
<crer|ifll,

for p>1. Then, for any p>1,
(53) “(I_Ez) ﬁz Ee”ﬁsc, 82/’ .

Moreover, ||(1—,) P,||, has the same bound in (5.3).
We have the duality

(1—&) P)* = P(1—£&).
Therefore,
(54 IP(1—Elly<C" & .
As a corollary of the above facts we get the following.
Theorem 3. There exists a constant C independent of & such that
(5.5) |1P—£, P EJl,<CE.
We here want to prove the following.

Theorem 4. There exists a constant C such that

l1P,—Gl,<C(1g(&)|+ log & |A(&) )
<C|g(®)]
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holds.

Proof of Theorem 4.
We put

Ay f(x) = G (%, @) G, f
Az f(%) = Eo(x) <V G (%, D), Vo Gul(Ee /) -

Then, P,=G,+g(&) A,+h(€) A,.

We have the following.
(5.6) 14:ll,<C
for any pe(1, o0). And
(.7) 14l <C |log €] .
This is observed by

14, fIL=([_ 1V, G(x, @)1 ) |V, GulE ).
Now we get the desired result.

6. Convergence of eigenvalues

Notice that the j-th eigenvalue of P, is equal to the j-th eigenvalue of
X I;, X,. By virtue of Theorems 2,3, 4 we see that there exists a constnat C
independent of j such that

(6.1) (720 ey |
<C(&"+&+g(8) |+ log €] [R(E)])
<ce-°

holds.

We need more precise estimate for the left hand side of (6.1) to get The-
orem 1. By (6.1) we know that the multiplicity of p,(€) is one for small & when
the multiplicity of u, is one.

7. Perturbation theory for P,

In this section we consider the behaviour of eigenvalues of P, as & tends
to 0. We set 4,=@ and A4,, A, as mentioned before.

For the present we discuss a formal treatment of perturbation theory for
eigenvalues. We put

A(E) = Agt+g(€) A1+h(8) 4,
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)\,(E) = 7»,,—|—g(8) 7\,1—|—h(8) Az
Y (8) = Yo +£(€) ¥uth(E) ¥,

so that A\(€) and (&) is an approximate eigenvalue of 4(&) and an approximate
eigenfunction of A(E), respectively. We consider the following equations:

(7.1) (A(8)—n(8) ¥ (&) = o (small term) ,
where the meaning of o(small term) is not specified here. We set

”11/‘0”2 =1, (‘\I"o: ‘\!"j) =0 (] =1,2),

where (, ) denotes the inner porduct on L¥Q). Here &—->\(&) is thought as
a perturbation family. To get (7.1) we examine the folloiwng equations:

(7.2) (Ag—no) Yo =0
(7.3) (A—=20) Y1 = (Mm—4y) Vo
(7-4') (Ao—xo) Yy = (Xz*Az) \1’0‘1‘(7\1“141) Yy -

By the Fredholm alternative theory we see that
M(E) = (A1 Vros Vo)
AA(E) = (A2 Yoy Vo) + (A1 Y1, o)

is the conditions to solve (7.2), (7.3), (7.4) when , has multiplicity one.
We see that

(7.5) (A(E)—n(8) ¥ (&)
= (2(8)*—h(8)) (A1—N1) Y t+h(E) (A2—Np) Y,
+£(8) 7(€) (Ar—N1) Yot (A=) Yra) -

From now on we give a rigorous treatment of perturbation theory for eigen-

value of P,. Let pj and @; be as in Theorem 1. Thus, p; is a simple eigen-
value. We see that

(7.6) M(E) = |Gy Yn|? = pi? @ (W)
and

(7-7) 7\'2(8) =<V, GW(E, \//‘0)’ Vo G,,(E, \1"0)> lw_w+Gp ‘\1"1'Gw Yo -
Then,

(7.8) In(8)| <C llog &].
By the Fredholm theory we see that

(7.9) [Nl < C HI(v— Az [l < C”
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and

(7.10) (ol e < C [{(Ae—Al2 Irollz+C |(M— A2 [l
<C(1+|log €]).

Summing up (7.5), (7.8), (7.9) and (7.10) we have the following inequality.
(7.11) 1(7.5) | SC'(g(ey-+h(e)) (log &) = S(¢) -

Therefore, we have the following.

Theorem 5. There exists a constant C independent of & such that
(7.12) I(Pe—2(€)) ¥ (&)l < S (&)
holds.

We put (D(€)) (*) = £x(*) (¥(£)) (¥).  Then, (P,—(€)) ®(€) = (P,—1(8))
(E¢ ¥(€)) on Q,. Fix ¢€[0,1). Then, there exists a constant C independent of
& such that

(7.13) [|(Pe—n(E)) @(El5,e <S(E)HT(E)l2,e »
where

T (&) = (P—2(€)) (1—E) ¥ (2) -

8. On T(e)
We want to get an upper bound for T(§). We have

T(&) = 3 i,

where

Ty=G(1-&) ¢j(x)
T,=g(&) G(1—E&) ¥
Ts= h(&) G(1—E&;) Y,
T,=g(&) A(1—-&,) @;

Ts = g(8)* A((1—&,) ¥

Ts =g (&) h(8) Ax(1—E&0)
T; = h(€) A,(1—E&,) ¥(8)

on £, since A\(E) (1—&,) Y«(€)=0 on Q,.
We have
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1T+ Ts+Te+ Tl
= 0(]%(€) log | +g(€)*+ 1 £(€) h(€) | |log 1)

We get
1Tl e < 1212 (| Tllo,e <C [[(1—E¢) @;ll5,e
<C &
for any p>1.
Also,

1 T5lz,e <Cg (€) |Illzocae
for p>1. Notice that

Yy = (—A) " (M—4D) Yo—AgYn) .
Then,

[IWrallz2caey < C (IWroll L 2cs ey 11A1 Yrol | 2cae)+ 1o Yrall L2c5e)
SC(e’”’—}-(gB G (x, w)? dx)¥?)
<C(e |log &]) .

Therefore, || Tll;,e=0(g(€) € |log &|) for any p>1. We have

Tz, e <IG(+, w)ll,e IG(1—E,) 2,1l (€)
<C & g(e) gllog €],

for any p>1.
We take p<<1 as close as 1 to get Theorem 6.
Summing up these facts we get the following.

Theorem 6. The estimate
NT(E)llz,e = 0(8*%)
holds.

9. Proof of Theorem 1 for ¢>0

We recall the fact (6.1). This is given by Theorems 2,3,4. 'To prove The-

orem 2 we used the fact that (0, 1). Now, we know by (7.13), Theorem
6 that there exists at least one eigenvalue H(&) of P, satisfying

|H(&)—A(E)|<S(e)+C & .

Here we used the fact that [|®(€)||;.E(1/2, 2) for small & Since H(E) tends
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to u;! as &0, it must be the j-th eigenvalue of P,. Combine with Theorem
2 and the above fact. Then we get

| (8) 7 —(n7'+g (&) p7i® @;(W)?)|
<C(S(8)+&™).

Therefore, we have

| ()7 —(u7'—(2x[k) u7* €7 @ (W))]
<C &% |log €|2.

using an explicit representation of A(€).

10. Proof of Theorem 1 for ¢=0

Under the same assumption as in Lemma 3.1 we have, for p&(1, o)
(P—G2) Fl,.s<C £max | M(6)| <C e max | (43)].
The right hand side of the above formula does not exceed

C (€ |1G fllckay+E P IIG Fllcr+ea)
+14(&)| || Fll,.0)

for any finite p>2(1—B)7%, B<(0,1). Then, we can get the following using
duality and interpolation argment.

Theorem 7. Assume that 0=0. Fix 8<(0,1). Then, there exists a con-
stant C independent of & such that

HP-—G.Hz,. SC 81+B
holds.

Summing up the above facts we get the desired Theorem 1 for o=0.
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