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1. Introduction

1.1. Problem and Main Result. Let Q be a bounded domain in R”,
n=2, with C~-boundary I'=0Q. We consider the following mixed problem
of linear elastodynamics:

Problem (D). Find a vector function u=(u‘(¢, x)),<;<, satisfying
(D.1) (g%—}—/l(t))u: £ in Op=(0, THXQ, 0< T<oo,
(D2)  u©, ) =u,, g_‘:(o, V=u, in Q

with a time-dependent mixed boundary condition
u=0 on I'ppi= U {t} XTy(f),
(D,3) { teqo,r]

Bitlu=0 on f‘”'T:,E[%JT] {t} XTx(?)
for given uy=(ul(*))1g;<n U= (Ui(%))15i5 and F=(f(2, X)),5:5n-

Here A(t) and B(t) are differential systems operating on v=(v/(x));<;<,
for each t€[0, T'] defined by

(1) (A@wy = ——%(d””"(t, x)Z—ZZ) in Q,
(1.2) (B(t)v)' = v;(£)al*(t, x)%);‘b onI' forl=<i<n

where a**(¢, x) are real-valued C*=-functions on 5,- with symmetry relations
(1.3) alith(t, x) = at*ii(t, x)  for 1=i,j, k, h=nm,

and ¥(£)=(v;(£)),s,<» denotes the unit outer normal to T" at £&I". (Super- and
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subindices ¢, j, &, A, etc., take their values in the set {1, ---,n} and the summa-
tion convention is adopted concerning the repeated indices.) Moreover, for
each t€[0, T, T'5(¢) and T'y(¢) are nonempty open portions of I" such that I'=
Ty()UZ(2) UT,(¢) (disjoint union) with Z(¢) an (»—2)-dimensional compact
C~-submanifold of T'; the interface 3(¢) between I'5(¢) and I'y(t) changes smoothly
with time t, by which we mean as follows: [‘D o and I‘N ¢ are relatively Jopen
subsets of the lateral boundary I'; :=[0, T]X T such that their interface Spi=
U seto,73{#} X =(2) is a 1-codimensional C=-submanifold (with boundary Z(0)U
S(T)) of ' and intersects transversely with {t} X T for each t€[0, T7.

Problem (D) was posed by Duvaut & Lions: When 3(¢) is independent of
time, they solved it under hypothesis (H.1) stated below using the Faedo-Galerkin
method ([4; Théoréme 4.1, Chap. 3]), and proposed that ‘“L’abandon de cette
hypothése (3(¢) ne dépend pas du temps) semble conduire 4 des problémes ouvert
et fort interéssants” ([4; p. 106]). Subsequently, Inoue [13] studied the same
problem as ours for the wave equation case (u: scalar, A(t)=—A, B(t)=0/0¥) to
construct a unique weak solution assuming that “the speed of 3(#)” is smaller
than the propagation speed 1 of the wave governed by (9/0¢)>—A. See also
Cehlov [2], Eskin [5].

The purpose of this paper is to show the existence of a unique weak solution
u of (D) under the following two hypotheses:

(H.1) The quadratic form associated with A(f) is coercive on Vp(t):=
H(QUT y(2)) for each t [0, T] in the sense that there exist positive constants
¢; and ¢, such that

a(t; u, u)=c|lu|i—clu|l?  for all &[0, T] and ue Vj(¢)
where (and in what follows) we use the notation

a(t; v, w) = g aikh (g, x) g—w—dx for v=(v%), w=(w’).

This hypothesis is equivalent to the following: for each f, the differential sys-
tem A(t) is strongly elliptic on ) and the boundary-value problem {A4(¢), B(t)}
satisfies the strong complementing condition on T y(t) (see Simpson & Spector [21]
and Ito [16]).

(H.2) For each (¢, JZO)EﬁT, the trajectory on T" of the point of the inter-
section of 3(¢) with the normal plane to 3(#,) at #, moves through #, at time
ty at a speed smaller than the quantity cs(#,, %£,) defined in Subsection 2.4. (In
what follows, we will say simply “the speed of 3(2) at (¢, %,)” for the speed of
that trajectory at (%, %£,).) It is remarkable that the cs(t,, #,) is closely related
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to the speed of Rayleigh’s wave which travels over the traction-free boundary of
a homogeneous elastic body with the elasticity tensor (a’/¥%(t,, %,)) occupying a
half space whose boundary is the tangent hyperplane to T" at £,. For details,
see Appendix. '

DeriNiTiON 1.1, For given data {uy, u,, £} € V,(0) X L*(Q) X L*(Q;), a
vector function u=(u'(t, x)) is called a weak solution of (D) (for t<[0, T) if it
belongs to H’(QT) and satisfies u| =04, ,, #(0, -)=u, in O and

(1.4) —S:(%'ti %’:-)dt-{—S:a(t; u, n)dt = (u,, (0, -))+S:(f, n)dt

for all test functions qEHI(QT) satisfying n|3, ,=0 and #(7, -)=0.

For the notation we use, see Subsection 1.3. We note here that (1.4)
implies

62 ' . : ’ . -1 au ) — :
(W—I—A(t))u = in @0, T; B*@) (and %0, )= u,in o)
where we regard A(t) as belonging to L(V,(t), V5(t)) C-L(Vy(t), H (L)) for
each ¢ by

(1.5) a(t; v, w) = (A(t)v, w) for v, weVy1).

Thus, by Lemma 8.1 of Lions & Magenes [17; Chap. 3], we can show that a
weak solution of (D) belongs (after redefining on a set of measure 0 on [0, 7T']) to
Cu([0, TT; H(Q)NCW([0, T]; L*(Q)) where the subscript @ stands for the
weak topology. (If Z(¢) is independent of ¢, that is true in the strong sense by
Theorem 8.2 of [17; Chap. 3].)

Main Theorem. Under (H.1) and (H.2), there exists a unique weak solution
us H(Q,) of (D) for any given data {uy, u,, f} € V,(0) X LA(Q)x LX(Qy). More-
over, it satisfies the energy estimate

e -)n%+‘

20, ) Sl 10, )

for all t€[0, T where C(T)>0 is a constant independent of given data and time t.

RemARk 1.2. If 3(¢) (#¢) and A(¢) are independent of ¢, we can apply
the semi-group theory in the same way as in Hayashida [6] (see also Ibuki [7]).
Morevoer, if %(2) is empty, we may expect that (D) admits a unique strong solu-
tion; the case T'=T",(¢) is an exercise of the semi-group theory (see, e.g., Ikawa
[8], Tanabe [22; Chap. 4]) and the case T'=Ty(f) is included in a result of
Shibata [20].
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RemARk 1.3. In the usual linear elasticity theory, an elasticity tensor
(a¥**(t, x)) satisfies the symmetry relations

a""’"(t, x) — akln’j(t, x) — aiikh(t, x)
and the strong convexity condition

alih(t, X)siy8; ;= Co8y;8;;  for all (s;;) with s;; = s;,ER

ij=

where ¢,>0 is constant. However, (1.3) and (H.1), which are weaker conditions
than the above, are sufficient for our argument.

Exampre 1.4. (i) Let a'/*(¢, x)=_5"*8*, that is, A(t)=—A and B(¢)=0/dv,
where (and in what follows) 8 and also 8} denote the Kronecker delta. Then
(H.1) is fulfilled in advance and the cx(#, £) is equal to 1 for any (¢, )&, (cf.
Inoue [13]).

(i) In the isotropic elasticity, (a/**(t, x)) is represented by means of the
Lamé moduli \(t, x) and pu(t, x) as

a'th(t, x) = n(t, x)8 S u(t, x)(8* &+ 5% §7F) .

Then, as seen from Simpson & Spector [21] and Ito [15], hypothesis (H.1) is
equivalent to

u(t, %)>0, M2, £)4-2u(t, >0 on Oy, A(t, £+ u(t, £)>0 on T'yr,
and the strong convexity condition in Remark 1.3 is given by

wlt, ©>0, m(t, ©)+2u(t, ©)>0  on Q.

Moreover, the cx(t, £) in (H.2) is given by /pu(z, £) O(\(¢, %), u(t, £)) Where
O(\, p) is a unique root of the equation

(16)  Fo):= 03—802—1—8(3—— 7Lfrﬂzn)g_16(1—%;2”) —0

in the interval (0, 1). This value is nothing but “the speed of Rayleigh’s wave”
(see Proposition A.5).

1.2. Summary. In principle, our approach to Problem (D) is guided
by a plan proposed by Inoue [12], [13]. Let {a.(t, %)} >, be a family of smooth
functions on I'; which approximates as & —0 suitably the defining function of
T'y(2) for each ¢ (see Definition 2.1 and (2.1)), and let us call by (D,) the mixed

problem obtained from (D) by replacing (D.3) with a degenerate boundary con-
dition

1.7). at, )B(u+(1—ay(t, A))u=0 on Iy
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and {u,, u;, f} with smooth approximate data {u, u,, f.} satisfying a certain
compatibility condition. If (D,) admits a unique smooth solution u, for each &,
one hopes that a limit of {u.} ., as &0 will be a weak solution of (D): this was
the central idea in [13]. In the present case, however, it seems so difficult to
apply directly the method of Inoue [12] (or Ikawa [10]) in order to obtain a
smooth solution z, of (D.). Hence, we do not solve (D,) but modify the dis-
cussions in [12], [13] as follows:

We construct a weak solution of (D) by pasting time-local weak solutions,
which are obtained through superposition of weak solutions for locally-sup-
ported data. We get such a weak solution, which will be also locally-supported,
as a limit of smooth solutions {i,} s, to certain approximate problems governing
a propagation phenomenon with finite speed (independent of &). In order to
construct a weak solution for given data supported in a “‘small” neighborhood
of a point (f, %) E2;, we consider the mixed problem (De)to,5p given by re-
placing (1.7), in (D,) with

(1.8), adt, £)BE)+eXE)ut+(1—ayt, D)g=0 on I

where X(2) is a differential operator in such a form as
(1.9) Xt =% { i, )% iy b,
ot 0x’

(see Definition 2.3 and (4.4)); the initial time will be changed as occasion
demands. Our main efforts will be put into this problem with the boundary
condition which may change its order near (Z, %,) not only spatially but also
temporally.

In Section 2, we consider a level-preserving local transformation near
(%0 %) which makes the suitably-defined a,(¢, £) independent of ¢; thereby we will
transform (D), z, locally. Sections 3 is devoted to the study of an auxiliary
problem to (D), z,, Which is in such a general form that it includes the forms
obtained by local transformations given in Section 2 and is invariant locally
under Holmgren-like transformations. In treating the degenerate boundary
condition there, a result in Ito [16] will be necessary. In Section 4, using the
results of Section 3, we prove Main Theorem in such a way as mentioned above.
In Appendix, we present some properties of the cx(Z, £).

1.3. Notation. We express column vectors in boldface: u=(uf)=
4!, ---,u"), also various C"-valued function spaces. L?(Q)=L*(Q; C") (resp.
LAT)=LXT; C") is a Hilbert space with inner product (-, )=+, *)q (resp.
<+, +>=<+, *>r) and norm ||+||=||+[lq (resp. [-]=[-]r) given by

(w,v) = Lu-l’:dx = Snu";dx y el = (&, u)

for u=(u'), v = (v )eL}Q).
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(tesp. <¢,¢>=§r¢-$dx, [6F =<@, > for @ $IAT).)

We represent the point of & (resp. T') by x (resp. #) and the volume element
in Q (resp. on T') by dx (resp. d%). For an integer m=1, H"(Q)=H"(Q; C")
(resp. H™ V¥T')= H""Y*(T"; C")) is the usual C"-valued Sobolev space on Q of
order m (resp. on T" of order m—1/2) with norm denoted by [|+||,=Il*|lma (resp.
[']m—lﬂz['])m—llz,r‘)’ €.8-
el = vl = § (24 81 wi)ax for ueHY@).
o\ gx* Jux*
For each t, Vp(t)=H)QUT(f)) stands for the closure in H'(Q) of
SQUTY(@):={usC@); suppuc QU TTy(2)}, or equivalently V,(t)=
{ueH(Q); u|r,m=0}r. The dual of Vj(2) (resp. Hy(Q)) is denoted by Vi(2)
(resp. H'(Q2)); we have the inclusion relations

HY(Q)C V(1) CLAQ) = (LAQ)) C Vo) CH ().

Let X and Y be Banach spaces. For an integer m=0, C™([0, T']; X) re-
presents the space of X-valued functions of t€[0, T'] of class C". For simpli-
city, we often write “uc&r(X) (for t[0, T])” instead of “ucsC™([0, T']; X)”.
We denote by £(X,Y) the Banach space consisting of all bounded linear
operators on X into Y.

We can extend a/*(t, -), (), Ty(¢) and Z(f) in ¢ to R so as to be ¢-
independent on R\(—1, T41) and to preserve the properties stated before (H.1)
(and further hypotheses (H.1), (H.2) if they are satisfied for t&[0, T']). For
those extended, we set

I, = U {8 XT(2), 3 =, U {8 x2(0); O, 1, 1y similarly .

2. Local reduction to the case of time-independent 3(¢)

In this section, we reduce locally the equations (D.1) and (1.8) in (Dg)(s,30)
to the case where (¢) is independent of 2. 'We do not refer to the initial con-
dition (D.2) for the time being.

2.1. Definition of a,(t, x). Let Tx(S(t))*, (t, £)€Z, denote the normal
space at & in T3(T") to the submanifold 3(¢) of . Then,
EZ):= U TyZ(t)"(=R'x3)
«,Hez
is regarded as a C*=-subbundle of the restriction 7(I")| 3 to 3 of the tangent

bundle T(f‘). Since 2 intersects transversely with {t} XT" for each ¢, there
exists a unique C™-section Z of E(3) such that, when we consider that Z 3 &
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Ty(Z(2))- < TyT") for each (¢, i)eﬁ Z,» 1s a unit vector pointing to the side of
I‘D(t) The exponential mapping Exp defined in a neighborhood of the 0-section
1" in T(L") is well-defined also on E(£)={cZ; s =R} by

Exp oZy s = {t} X(exp 0Zyp) for ocER, (i, )€

where exp stands for the exponential mapping: T(I')—T. For §>0 small
enough, Exp gives a C=-diffeomorphism of an open subset {oZ; |o| <&}
(=2 (—&p &) X ﬁ) of E(ﬁ) onto a tubular neighborhood U,:= {(¢, i)ef‘;
disp(#, 3(£))<&} of £ in I" where disp(#, =(£)) denotes the geodesical distance on
I from £ to 3(f). Using its inverse, we can show that the Lipschitz function
o (t, £) on I defined by

o(t, £) = disp(%£, 2(2)) if 2€Tp(f), = —disp(£, 2(2)) if 2ETy(?)
is of class C~ in U.

DerFiNITION 2.1.  For each £€(0, &), we define a,(¢, £) by
alt, &) — S: p(s—&'a(t, B))ds  for (t, A)el
where p(s) is a C=-function on R given by
p(s) = [g VTN dr]test=b if 0<s<1, =0 otherwise.

It is easily seen that for each €€(0, &), a.(t, £) is a C=-function on f
which depends only on disp(£, 3(2)) and satisfies

at, £) =1 on f‘—N ,
(2.1) a.t, £) =0 on {(t, R)ely; disp(£, S()=¢&} ,
0<a(t, £)<1  on {( 2)el,; 0<disp(£, 3(f))<E} .

2.2. Local transformation. Let (¢, A‘:o)eﬁ. We can choose a rota-
tion R=(R})€ SO(n) of the x-coordinates so that, by the transformation: x —»%=
R(x—2,), the tangent hyperplane to I' (resp. hyperline to 3(t,)) at %, in R"
is mapped to {%=(&); ¥"=0} (resp. {%; 2" '=2%"=0}) and the outer unit
normal to T at %, to the vector (0, --+, 0, —1). Under the coordinates X¥=(%'),
(a'’** (¢, x)) and uw=(ui(t, x)) are represented, respectively, by

@imh(t, %) = a ¥ (t, x)Ri Ris Ry Rly, @'(t, %) = uk(t, x)R} .

Given data {u,, u,, f} are transformed in the same manner.

Taking the above into consideration, we may assume that (0, 0) is the general
point of 2 and that (i) Q (resp. T') is represented near 0 by x"> f(x") (resp. "=
f(x")) with f a C=-function of &'=(«", ---, ¥*) satisfying f(0)=0 and V., £(0)=0,
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(i) %, (resp. ) is represented near (0, 0) by x"~*>g(t, ) (resp. x""'=g(t, x”"))
and x"=f(x") with g a C~-function of (¢, x"")=(t, &', ---, ¥"~?) satisfying g(0, 0)=0
and V,~g(0,0)=0. Our argument in the rest of this section are under these
circumstances.

Proposition 2.2. There exist a neighborhood U of (0, 0)es in R} and a
level-preserving (i.e., t=s) diffeomorphism ® of U onto a neighborhood U:=a(U)
of (0, 0) in R}, such that

@) 2@NU)=1(s, y)=(s, ¥, - y"€T; y">0} [=(RxRY)NT],
oI'NU) = {5, y)el; y"=0} [=(RxOR:)NTT;
i) (LN U)=A{(s, 9)€T; y*'>y"=0},
DENU) = {5, y)eU; y" ' = y" = 0} ;
(i) 0y"[9t=0in U and the Jacobian matrix of ® at (0, 0) s

1 0 coerreeneene 0
0 1
a(s’yl’ ""y”) — O ! 0 >
6(t7 xl5 RS x") (¢, 2)=(0,0) 3
—9% (0, 0)
ot 0
0 1

(iv) For each €< (0, &), the function &,(y"):=oat(D (s, ¥)) s independent of s on
(RxOR%)N U where y'=(y*, -+, y*~Y).

Proof. Let us regard {x!, ---, "%} as a local coordinate system of I" near
0. We define a transformation W, which is expected to be the inverse of ®, of
a small neighborhood U, of (0, 0) in R}, by

t=s,
2.2) xt = [exp y* 1 Z 5] for 1=si=n—1
with § = (3", g(s, ), A", &(5, ")) »
& =y"+f(x)

where Z is the section of E(2) defined at the beginning, and [exp y*~'Z, 3],
1=<i{<n—1, stands for the i~th component of exp y*'Z, ;T with respect to
the above local coordinate system of I'. Then, W is a level-preserving C*-
mapping which satisfies
() Y(RxR)NTYcO, w(RxR)NT)CL;
@) w({(s )< Ul; y”‘1>y"=0})CIA‘D,

Y({(s, y)U; ' = y" = 0}) 3.
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Moreover, using the fact that Z 4= (8/0x"""), and fundamental properties of

the exponential mapping exp: T(I')—T, we calculate the Jacobian matrix of
W at (0, 0) to obtain

1 0 cereereeenns 0

0 1
ooy oy 10
(s, % =, ¥") s, 9=00,0 5 . ’
_g,(o, 0)
ot 0
0 1

Thus, by the inverse mapping theorem, there exists a neighborhood U of (0, 0)
in U, such that the restriction ¥y of ¥ to U is a C=-diffeomorphism of U
onto W(U). We see now from (2.2) that U::\I’(ﬁ) and ®@:=(¥|y)~" possess the
desired properties (i)— (iv). Q.E.D.

2.3. Change of variables. Now, we study how the equations (D.1) and
(1.8), of (De)cty,zp are transformed in U by ®. When we make the associated
change of variables, it is convenient to look at them from a geometric viewpoint
(see Inoue & Wakimoto [14; Appendix] and Marsden & Hughes [18; Section
2.4]). Regard U as a manifold with the coordinate system {¢, «', ---, "} and
equip with it the connection V which is the restriction to U of the trivial
connection associated with the vector space structure of R, X R Clearly, V
restricts to a connection V* on each U(t):={xER"; (¢, x) € U}, identified with
{t} X U(#); V* is the connection of the Euclidean metric §;,dx*dx* on U(t)C R}.
(U is a subset of the standard classical spacetime in the terminology of [18; p. 157].)
Taking that into consideration, we regard u=(u(t, x)) as a vector field (¢, x)3/0x
tangent to each U(z), (a”**(t, x)) as a 4th-order contravariant tensor field
alit(t, x)(8/0x°) R (0/0x")®(8/0x*)®(8/0x*), the unit outer normal v=(»,(x)) as a
1-form v,(%)dx’ (on each U(?)), etc. Then (D.1) and (1.8), are rewritten on each
U(t) as
(i

[Vo Vol — V(@ V1)) ——
Ox

— 2 i anuw,
oa'
2.3) ;
[ag(vja‘j”hV},uk—l-eXu‘)—i—(l—ae)u")]ﬁ =0 on TNU®{)

where V,:=Vap and V;:=Vyp, are the covariant derivatives, u,dx’ is the
1-form associated with u on each U(t) (hence u;=8§;;#/=u' in the present case)
and X=X(¢) will be clarified below.
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Since @ is level-preserving, ®(s, «)40(s, +)=(Dxv)(s, +) for any vector field
v on U tangnet to each U(f), and the connection V:=®,V on U:=a( U) also
restricts to a connection V*:=@(s, )4V’ on each U(s):=&®(U(s))={yeR";
(s, )€U}, identified with {s} x U(s); ¥* is the connection of the Riemannian
metric gu(s, -)dy'dy* on each U(s) induced by @(s, -) where (and in what fol-
lows)

. o < d ot =§l‘?2’f)
gtk(s) y) @Tayk an g (3, y) axj Gx’ .

We now define X in (2.3) by the following Definition 2.3, so that we have by
operating ®(s, ), to (2.3) with t=s

(v 9 o ) s.u.s~]_ i 0
[(Vo+ ot v.r)(vo‘f‘ ot Vi 4 —Vi(@*Via,) = f ay'
(2.4) in ®QNU(s),
[ (p; G V;’,ﬁ,,—}-evoﬁ‘)—}—(l—de)ﬂ‘]% =0
y‘
on ®(T'N U(s)),
where Vo:=Vy,, V,:=V,p, are the covariant derivatives on U and

~ii iR a 6"3”8
A y) = @, )ai* o7 o aﬁh”

#o ) = w9 g%, o) =@ g,
a(y') = at, x) (see Proposition 2.2 (iv));
F¥s, y) and @(s, y) are defined similarly. We note that

ay(s, y) = guls, Y)A (s, ¥), #(s, y) = g*(s, y)a(s, y) -

DepinitTioN 2.3, A differential operator X in U is given by

(o) = o5 ) < (st ) 2

We set |¥|2=p,p;, 5,=|¥|'p, for (9;)=(9(s, »")) and further

o s i 0y 0y"
2.5 Fikh(s, p) = Giikh (s, y)—git Yy oy
(2.5) @M (s, y) = a7, y)—g" - =

Since (¥, -+, #,)=(0, -+, 0, —1) as easily verified, it follows from Proposition
2.2 (iii) that

26 5= 5%

9y =0 on ®I'NU)CRxOR:.
ot ot




Mixep PROBLEM OF ELASTODYNAMICS 677

Hence the following proposition is derived from (2.4).

Proposition 2.4. With the above notation, the equations (D.1) and (1.8),
are transformed in U by P to the following form:

i i A2
%zzf -{—2%{i gvaz;f_%(&”“ 6uk)+(at most 1st order terms of (#'))' = f
s

in ®QNU)CRxXR:,
a,[ﬁ,ﬁ”’*"%—\-sl | -I%EJr(om order terms of () depending on s)"]
Yy s
+(1—a)|?| '@ =0 on ®I'NU)CRXIR:.

Here, (@'7*(s, v)) satisfies (1.3), and (%), -+, 9,)=(0, -+, 0, —1) is the unit outer
normal to {y; (s, y) €®({*N U)} COR" for each s with respect to the “flat’” metric
on Rj.

24. Speed limit of 3(f). In our argument later, it will be essential
that (@'7*(s, )) defined by (2.5) satisfies (H.1) near (0,0), whose condition we
present in Proposition 2.6 below. Before stating it, we define an important
quantity c5(0, 0). (An alternative definition of it will be given in Appendix).

DEerFINITION 2.5. We define ¢x(0, 0) by the supremum of /'« such that

0 k Bu’ 0 2 ”
6_;.8_;‘1. X — ke 65”_1 Rzgo for all weHY(R:).

2.7) SR" (0, 0)

We note that (H.1) guarantees the existence of ¢;>>0 such that
[ a0, 02 out 6“ S dvzellVally,  forall ueH'(RS).
Ry
Moreover it is easily seen that the value ¢5(0, 0) is independent of the choice

of a rotation R at the beginning of Subsection 2.2.

Proposition 2.6. Let U, ® be as in Proposition 2.2 and 3/* as given by
(2.5). If and only if the moving speed |8g/0t(0, 0)| of Z(t) at (0, 0) is smaller
than c5(0, 0), there exist an open neighborhood V of 0 in R and positive constants
S, c,, ¢s such that @ Y([—8, 8]x V)C U and

Sﬂ ar(s, y) gvh gv} dy=e,|[ll} gr —csllol 32

for all s&[—38, 8] and vE HY(R™) with support in RAN V.

Proof.‘ We have only to show that, if and only if [8g/82(0, 0)| <c3(0, 0),
there exists a constant ¢;>>0 such that
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2.8) SR @ (0, 0) 9% oot a; dyzcllVolF  forall veH(RY).

+

Since Proposition 2.2 (iii) indicates

ﬁijkh(o’ 0) — aijkh(O’ 0) 8”’3,’,_18"—1

we obtain by the definition of ¢5(0,0) that

the left-hand side of (2.8)
vk 6’0
dy* 8y’ i

z{1-[ %0, 0yia0, 0)] } Sm 0,0 5% g; dy,

=SR aiith(0, 0) 0

n=1

Rﬂ

where the constant in front of the last integral is best possible. From this fact,
the desired assertion follows immediately. Q.E.D.

3. Auxiliary problem

This section is self-contained by itself, while it will yield some results
essential for our constructing a weak solution of (D).
Let Q, T, O, etc., be as in Section 1 and let (ga(t, x)) be an nXn sym-

metric matrix of C=-functions g,;(£,x) on & such that
(3.1) ' I=(gu(t, x))<c,] inQ, ¢=1: const.
Using (g.(2, x)), we put at each tER

v, =gu(t, )t for v=(vi(x)).

Now, we define differential systems L(z) and B,(¢) operating on u=(u'(¢, x)) as
follows:

2
L(tu = [%—l—a,(t, x; D)z%—l—az(t, x; D)] u in O,

B(Ou — (%) (b(t, #; D)+o(t, %) —:t—)u—{—(l——a(a'c))m(t, A on I
which we supplement with

[ty 53 D)ol = 241, 2) 2ot o,

— 2di(z, x)%(g“(t, x)0')-ei(t, X)gu(t, x)0' ,
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[ay(t, ; D)o — —i[a‘f"”(t, %) %]erw(z, %) %y s, )0,
ox’ ox* ox’ ’

[b(t, %; DY} = ,(#)ai™(, &)%Jﬂfk(t, B,
[o(t, H)p) = o'*(t, ve, [l o) = o™, ¥)o, .

Here, all the coeflicients (including g,(i, x), a(x)) are real-valued C>-functions

on & or I (or T"), and D stands for the x-derivation.
In this section, we study a mixed problem

Leu=f inQ,, B (u=a)¢é only,
(32) U(O, ') =Uy, ’%l:_(o» ‘)=u, inQ,

under the following conditions:

(a) 0<a(x)=<1 on T, and the boundary of I',:= {x&T; a(x)>0} forms
a compact C=-submanifold of T' of codimension 1 or is empty;

(b) (a*(t, x)) satisfies (1.3) and (H.1) with T'y(¢) replaced by T',; under
(1.3) this condition is, by (3.1), equivalent to

[ @t ) 3% 2 gy cllolli—clloll, e, >0: const,
forall t€R, v= (v)EH(QUT,).

(c) (d™(t, x)) is symmetric with respect to ¢ and k on ;
(d) (w'*(t, %)) is symmetric and positive definite on I';
(e) there exists a constant ¢;>0 such that

(d™(t, $)v(#)+ (oMt &) Ze,]  on RxT,
where ai¥(¢, x)=(a**(¢, )+ (2, X))/2.

3.1. Function spaces. We treat (3.2) in the following form:
LU = AOUOHF@, VO = Uy,

BU(®) = a(®)(t, %)

Gl E R P
I M U] B P |

. 0 I
) = [—az(t, x; D) —ay(t, x; D) ] ’

where
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B(1t) = [a(@b(z, &3 D)+(1—a(®))o(t, ) a(F)o(t &]).

For simplicity, we write as U,= {u,, u,} instead of the above.
We introduce several function spaces which we utilize in this section. For
an integer m=1, we equip the Banach space H"(Q)XH" Q) with the norm

Il lllm given by
WUz = llellz+lolla-: for U= {u, v} eH(Q)XH" Q).

We denote by V() the completion of C7(Q2 UT,) with respect to the norm
Il 1lvata given by

N1 ae = uuu%+gml:az“7()”‘> (@) |2 di;

thanks to condition (a), V,(Q)={ucH(Q); ||u|ly @ <<oc}. For each ¢, J(2)
denotes the Hilbert space H'(Q)XxL*) equipped with the inner product
(+5*) ) and the associated norm ||+|| ) given by

(Fr U)j[(t) = a[t; f;bu]‘l“cocz(f, u)t—l_(g) v) t
for F={f, g}, U= {u, v} €H'(Q)XL Q).

Here, for convenience, we use the notation

(w, v); = S wodx = S W ohg (2, x)dx
Q Q

Buy 9o,

at; u, v] = gaa""’"(x, ?) or O

for u= (¥), v = (vY).

Remark that (3.1) and (b) guarantee the uniform equivalence in ¢ of the norms
[ll-1ll; and [[+]| gz on H YQ) X LA(). Moreover, CV,(f) stands for the Hilbert
space V,(Q)X L¥) equipped with the inner product (-, -)va(t) and the associ-
ated norm || '”CV.,(t) given by

(F, Uy = (F, U) gy +Sm 1;70;()5‘)@*(;, &)fiudi
for F= {f, g}, U= {u, v} €V, (Q)xX L Q);

by condition (d), ||+|lcy,¢ are equivalent norms of V,(Q)x L*€). Finally, we
define 9),(t) for each t by

D(t) = {USH Q)X V,(Q); B()U=0onT} .

3.2. Energy inequalities. This subsection corresponds to Inoue [12;
Section 3].
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Lemma 3.1. There exists a constant C >0 such that
Re (AU, U)cy, i =C(IU| lfg[(t)—i- [4]))
for all Ue H*(Q) X V,(Q) satisfying B, (t)U=a(x)¢ with = LXT).
Proof. Integrating by parts, we have for U= {u, v} € H (Q) X V,(Q)
Re(A(2) U, U) g1y
= Re {a[t; v, u]+t-cocy(v, u);—(ay(t, x; D)u+ay(¢, x; D)v, v),}
< Re Sm (B, &; Dyuy—d*iv,0,]odi+ ClU1%

where (8°(¢, x; D)u)'=v ;(x)a’’*(t, £)0u,/0x;,. On the other hand, since B,()U
=a(x)g, it follows that

S (b"(t,a'c;D)u)"zT,.da'c:SP (B2, &; Dyu)+o0,]— oo, —r*u} 0. di

T

1l ., — o e I
= S [.___ga,"'ukfoi—{—(j)‘vi—a'""vkvi——'r"‘ukv,- dx.
T (24

The combination of the above with the aid of (e) leads us to
Re (AOU, U)ayy < —c5* ol +CLe(g1+ )+ C 1 Uy
<C(I1U1Iy+18P) - QE.D.

Lemma 3.2. There exists a number N, such that, for any N>x,, N—JA(£)
is a bijection from 9,(t) onto U (t) for each t.

Proof. As easily seen, we have only to show that there exists a number
Mo such that, for any {f, g} € V,(Q)XL* L) and any A>\,, the boundary-
value problem

A\(t)u 1= (ay(t, x; D)+nay(t, x; D)+A)u = (ay(t, x; D)+A)f+g  in Q,
B, \(O)u := [a(%)(B(t, &; D)+no(t, %))+ (1—a(@)o(t, £)]u
= a(x)o(t,x)f on T

admits a solution € H*Q). Applying Theorem I’ of Ito [16] to the above
equations, regarded as, of (u;), we see that the mapping

(3.3)  {ALt), Ban(t)} : HY(Q)Du — {4)(t)u, B,\(tu} € LA(Q)X HEY(T)
is a Fredholm operator with index 0 for each A and ¢ where
HG(T) := {# = a(®¢+(1—a()po; pEH'(T), gHY(T)}

is a Banach space equipped with the norm [-],;,,, defined by
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[Bla: 12 = inf {{@ )it [Bolsres ¢ = (%)@ +(1—a(x))@o
for some @, €HYYT), p,=HY}T)} .

It is therefore sufficient to show that the kernel of (3.3) is a null space. Let
u< H*(Q) be in the kernel of (3.3), so that

Re (4,(t)u, u); =0 and B,,(Hlu=0.
Integrating by parts and using (b)—-(e), we have, when A >0,
alts u, u] N, u),< ‘Sr, {x(dfkfyj+a§k)u,,a;+1_;£ a)"”u,,u—,-}da'c
+C (2] [laal ] lael |+ e ?)
=&|lull4-(CE)+CN)||ul?

for any £>0 and some C(€)>0. This estimate with the aid of (b) implies that
u=0 for sufficiently large . Q.E.D.

Lemma 3.3. Let u, t be real parameters.
(i) If usH* Q) is a solution of the boundary-value problem

14 (aft, x; D)tplu=~F in Q,

(34) { (a(@)b(t, x; D)+(1—a(x))w(t, X))u = a(z)é on T
with given data £ € LX) and ¢ = H"*(T'), then we have the estimate
(3.5) llel 3= C(IFIP+ @13+ ul?),  C>0: const.

And, if p is sufficiently large, w is a unique solution, and the term ||ul||* in the right-
hand side of (3.5) can be eliminated.
(il) There exists a constant C>0 such that

WUE=C AR U gy 11U g+ 813 12)
for all U e H Q)X V(Q) satisfying B, (t)U=a(x)p with = HY(T).

Proof. (i) Similar argument to the proof of the preceding lemma shows
the existence of a number y, such that, for any u= p,, (3.4) has a unique solution
us H*(Q) with the estimate ||u|3<C(||F||*+[@]}2). It is now easy to get the
estimate (3.5) in the case <.

(if) An easy application of (i). Q.E.DI

Lemma 3.4. For each t, 9,(t) is dense in V (Q)X L¥Q).

Proof. Since CF(Q) (resp. C5(2UTY,)) is dense in LX) (resp. in V,(Q)),
it is sufficient to show that, for any ue C7(QUT,), there exists a sequence
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{uwu} 2.1 in H*(Q) such that
By (t)uu := a(x)b(t, x; D)up+(1—a(%)w(t, X)up =0 on T,
u.—>u in V(Q) as p— oo.
However, for the future use, we will construct one in C7(Q UT,).
If we put vu=u—uy, a sequence {vu}z., in C5(QUT,) satisfying
Bityou =By)lu on T, v,—0 in V,(Q) as p— oo
is required. 'Take a vector function v&C=(Q2) N H§(Q) such that

(3.6) (t, &; D)o = b(t, &; D)u+L‘(‘",—()x')m(t, #u(eC*T) on T
a(x

the existence of such v is verified by using the invertibility of [a"/*(t, £)v ,(&)v,(£)]; »
on T for each ¢ (by (H.1)) and the well-known fact that the mapping: C~(Q)>
w— {8w/0v, w} €C=(I") X C=(T") admits a continuous right inverse. And choose
a functions ¢, C=(Q) for each u (resp. CF(Q UT,)) so that
(3.7) 0<¢u=1, |Vtu|=2p on O; &u=00n Q\Qyu, =10n O

(resp. 0=7=1 on Q, =1 in a neighborhood of supp u)
where Q= {x=Q; dis (x, I')<8}. 1f we define vu={unv, the sequence {vu}p.,
in C37(QUT,) is a desired one. In fact, since Vo=0 on T'\supp u, we have by
(3.6) and (3.7)

Bi(t)un = Bi(t)v = a(%)b°(t, #; D)yv = By(t)u, vu=v=10 on T,
and furthermore

lorllva S CIVOIPS C [ 4198+ 1Val)l01+ Vol Fax

2/ W

gC”S |Vo|%dx — 0 as p—> oo
Qy/n

where the last inequality is due to a Poincaré-type inequality

S |w|2dxg92$n \Vw|dx  forall weHYQ), p=1,2, - QE.D.
W

Qy/m 2/

Using Lemmas 3.1-3.4 and the Hille-Yosida theorem, we have:

Lemma 3.5. Let F(£)EE(V (ty)) and U, D,(t,) for t,ER fixed. Then
there exists a unique solution U(t) of the evolution equation

71dT U(t) = At)U®)+F(E), U©0)=T,
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such that U(t) € D,(t,) for each t< [0, T'] and U(t) EEHVo(2,))-

Now we prove the following two energy inequalities, the latter of which
will play and important role in solving (3.2).

Proposition 3.6. Let ucE)(HA(Q)) NEHVL(Q)) N EHLAR)) satisfy
(3.8) Lpu=7f in &, B(u=a@¢ on ;.
() If FEEALH(Q)) and = EYLXT)), we have

llue(z, )7 g2yt

B, )n <c) i, )nw+“ ou o, )H

+[ e, IE+B P .
(i) If FeEHILA(Q)) and g€ (HYYT)) N EHLAT)), we have

2. 2
402, )H

2
va | Of

e, M-+t i+ 52 )

SO0, O, Moo+ 2 ) | Pe

2
IREARIE
Proof. (i) By a standard argument (see [10; Proof of Lemma 3.8]).

(ii) Defining us(?, ¥)=(us(t, x)) for small §>0 by
ui(t, x) = 87w (148, x)—ui(t, x)),

of

Gt(

IO, P+ sop (e, i

we have from the former of (3.8)
(39)  Lowuslt, x) = olt, )—(ault, % D)2 +an(t, 5 D) Ju(t+3, %)
where a,(t, x; D) is given by

(3.10)  (aw(t, x; DY) = [ng"”'(t, x)ij+egk(t, x)](g,,,(t+s, x)o")
+[2at, 2) 2ot ) [(guate, 20

for v=(2'(x)); Fa(t, x) and a,(t, x; D) are defined similarly. The latter of (3.8)
are rewritten as

{a(x)n'(t x)[b(t #; D)+a(t, &) ]+(1 a(x))I}u(t 7)
= a(¥)z(t,%)¢(t, ) on I
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where 7(t, #) denotes the inverse operator of w(2, x), that is,
(m(t, D) = g'(t, Dou(®, £)v*  for v=(v')
with (w;)=(0"*)""! and (g**)=(g,)"". Thus we have
G11)  Butun(s, ) = a(@){pult, 2-+olt, Hmilt, D48, 2)
—[ot, ymatt, #3008, # D)+o(t+5, £)-2-)
. o 0 .
+(b8(t, #; D)ot x)%T)] u(t 43, x)}

where by(t, &; D), oy(t, £) and z4(t, %) are defined in a similar manner to (3.10).
By applying (i) to (3.9) and (3.11) and then making § —0 there, we obtain for
te[0, T—3,] with §,>0 a small number

scen{ivoni | =20 o, 4z

. IZ)N—U(t) o e

V()

10, i (TE+ 2L (e, 41807 P+ L )] e}

where C(T') is independent of §,>0, so that (3.12) holds for all t &[0, T'].
Combining (i) above and Lemma 3.3 (ii) with (3.12) and using Gronwall’s
lemma, we get the desired inequality. Q.E.D.

3.3. Existence and regularity of the solution. This subsection cor-
responds to Inoue [12; Section 4].

Proposition 3.7. Let fe&}(L(Q)) and g=EHYT)NEILAT)). If
&0, £)=0, then the mixed problem

Lu=f in O, Btu=a*¢ o [,

3.13) u(0, -) = 2_':(0, )=0 in Q

has a unique solution us EYH*(Q)) N EX V(Q)) N EHLAL)).

Proof. Thanks to Proposition 3.6 (ii), it is sufficient to prove when
fEEI(HNN)) and g= & HHYYT)).

Let Au: O=t,<t,<--<tu=T, p=1, 2, ---, be the subdivision of [0, T']
into u equal parts. For A, we construct Cauchy’s polygonal line wuu(t, x),
te[0, T], by

wu(t, x) = wuy(2, x) if tefty, t,-)], 0=v=p—1,
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where uu,=uu,(t, x), tE[t,, t,4,], are determined inductively as follows: Let
Uuo=uy(t, x) for 1E[t,, ] be the solution of

L(tyuw, = f in (&, t,)XQ, B (to)uw, = a(X)é on [t, t,]XT,
u#o(to, ') = a—u@(to) ) =0 in Q;
ot
when 1=<v<p—1, let up,=uy(t, x) for tE[t,, t,,,] be the solution of
Lt)up, = in (%, L) XQ,

B(tJuw, — ()00, 2)

fhn—t : [B(t,)—o(ty, £)m(ty_1y £)B(ty-1)tpv-1(t %) 1=t

tV+] v
_t—t - E T—alty, Bty BB, x)} on [ty ] XT,
v+1
ou ou .
| ulw(tw ‘) = ulh,v—1(tw ') ’ a:” (tw ) = “ = (tm ‘) m Q.

For each 0=v=<u—1, since the compatibility condition of order 0 (see Defini-
tion 3.8) is satisfied at #z=¢#, inductively, we can show the existence of such
w, €EC(HA(Q)NEHV,L(Q))NEHLA(Q)) for te[t,y, tyy,] (see [12; Proof of
Proposition 4.3]). Moreover, as easily seen, u, is in the space E{(HAQ))N
ENVL) NH(Ly).

Our remaining task is to show that {u} .. converges in some sense to the
desired solution u of (3.13). This process is done in the same manner as in
[12; Proof of Lemma 4.5] (see also Ikawa [9; Section 4]) with some modifica-
tion. We only mention that, in proving what corresponds to Claim 2 of [12;
Proof of Lemma 4.5], we need a device used in Proof of Proposition 3.6 (ii).

Q.E.D.

With the aid of Proposition 3.6 (ii) and the preceding proposition, we ob-
tain a solution of (3.2). Before stating the result, we introduce the compatibility
condition.

DeriniTION 3.8. Let m be an integer=0. For given data {u,, u,} in Q,
fin O, and ¢ on I with suitable regularity, we say that they satisfy the com-
patlblhty condition to (3.2) of order m=0 at t=0 when the following relations
hold on T':

3 (2 MO0, £ Dty 0, £ty gl (1~ a0, £ty

= a(£)¢®(0, %) for 0=p=m,
Uiy € V(D)
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with u,=u,(x), 2< p<m-+1 (when m=1), defined successively by
(3.14) u, = —:2:(1’;2> {a$(0, x; D),y p+al?(0, x; D)ty_qu} +F (0, )
where we use the notation such as

)
t=0

#00, 1) = (-2) ptt, #

(3.15)

(0, % D)o = (L) Talt, = Dy for v = (%)) -

t=0

Theorem 3.5. For an integer m=0, let {uy, u} € H**(Q)x H"*'(Q),
fe:rj:é”,’(ﬂ'”"(ﬂ)) NEFIIXQ)) and ¢E’608?(H"‘“”“’2(1‘)) ner (IXT). If
these data satisfy the compatibility condition to (3.2) of order m at t=0, then the
mixed problem (3.2) admits a solution ue :rj:é’ 2H™ Q) N V(Q)) NEFTHLAL))
unique in E)(H*(Q)) N EHV(Q)) N EHLA(L)).

Proof. We show only the case m=0; the case m=1 is shown by the same

method as in Tkawa [9; Section 5].
We first take a sequence {uu}p., in H*(Q) such that

(3.16) {a(£)b(0, £; D)+ (1—a(%£))w(0, £)}uw = 0 on T,
up—u, in V,(Q) as y— oo

in the same way as in Proof of Lemma 3.4. By virtue of Lemma 3.3 (i), the
boundary-value problem

(a2(0, x; D)+ po)uge = (ax(0, ;3 D)+ o)y in Q,
(317)  { (@@, £ D)-+(1—a(@)w, )l
— a(®)p(0, £)—o(0, Huu] on T
with >0 large enough has a unique solution uy.&H*Q) for each p, and the
sequence {wgu}.; converges to u, in H*).
We next consider a mixed problem
L, =f—L)w. in O, Btwu=a(@)¢g. on I},

(3.18) v

vy.(o, ’) = g(o, ‘) =0 in Q

where

wu(t, x) = Ugpttu,



688 H. Ito
Dult, ) = —[b(t, £; D)—o (t, £)z(0, £)b(0, £;D)]wu(t, £)
—[o(t, £)—al(t, £)z(0, £)a(0, £)]uwtB(, £)—o(t, £)=(0, )0, £).

Applying Proposition 3.7 to (3.18), we obtain its unique solution v, €E(H*(2)) N
EHVL(Q)) N EHLAR)) for each p. Since (3.16) and (3.17) indicate that B,(0)ws
=a(%)¢(0, £) on 1", we have

B,(ywe = a(%)w(t, £)z(0, £)@(0, £)+[B,(t)—w(t, £)m(0, £)B(0)]wy
— a(2)(p—g)-
Thus uu:=vu+w, is a solution of the mixed problem
Ltw=f in O, B,(uu=a(f)p on Iy,
(0, ) = tgu , %‘(o, V=ue in Q.
Hence Proposition 3.6 (ii) shows that {u} ., converges to the unique solution u
of (3.2) in EY(HA(Q)) N ENV(Q)) N EHLHL)). Q.E.D.

3.4. Dependence domain. Denoting by A,(¢, x; &), 1< p=2n, the real
roots of the characteristic equation of L(t):

det [gik(t, x))»z—}—Zdi""(t, x)«fjx—*aijkh(t, x)Eth]i,k = O
for (¢, x) € and £=(£,) € R™ {0}, we define

xmax = sup;\ max Ikp(t, X5 E)l'

. 0HEQ 1<ps2n

1§1=1
We begin by studying how the equations
(3.19) Ltlu =0 in €@, B, ()lu=0 on I

are transformed by the change of variables
(3.20) s=¢(, x) and y=ux

where ¢(¢, x) is a C~-function in a neighborhood of O such that o(t, x)=t for
sufficiently large |#| and

(3.21) % >Nl V.t on 6.
Denoting
ﬂi(s’ .y) = ui(t’ .X') ’ dijkh(s’ y) = aijkh(t’ x) 1)
ay(s, ¥) = guls, Y)A'(s, y) = w2, %),
ay) =a*, &=Q, etc,
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we obtain from (3.19) for each 1<i<n

"tka uk { o it 535_ ihkj_|_ gyiikh 6¢} 0%y ijen 0°Th
FERl @+ )8x 858y’ ¢ dy’oy*

+(at most 1st order terms of (#*))) =0 in RXx,
i O ) é;, i é?j; 0y, | —in s
&{a.a”""——” [&‘k— D.a”""-_]—’i ”'u} 1—a)é™*i, =0
T K i+ R R
on RxT
where g*€C=(R x Q) are given by

A:kA g‘xk[ad)] +2j.k: 6¢ 8¢‘ —aiikh 64’ 6¢>
ox’ 0t ox' dxt’

(2*) is symmetric and positive definite by (3.21). With the notation

Aik 3

(&) =(&"7", wi=4a;,, w=_g"w =_g"q,
the above equations are rewritten as

62‘10~ A A [ é?ﬁ ] azwk A A & 6
i ) zdlm]  (Flhm] Flimh . om G lJmh
ogt | Eugim (@+a )a ilasayi &1& fay

+(at most 1st order terms of (w =0 in RxQ,

k
a {gféilgkdeJMhaih+é;1ékm[ fm ¢ +i3 Glimk 6(1) ]8w
Ay ax*1 s

-+ (0th order terms of (w,.)),.}+(1—ar)g‘,.,§,,,,,5'm w*=0 on RX[I.

We then realize that the transformation (3.20) leaves conditions (a)—(e) in-
variant by considering the following correspondence:

@t > dy = g1 b [szj%,%(dzhmj+ dumh)%{k] ’

o
‘k R A A ~I
0O by = gy GmO",

: s 0% - 1w 09
ot by = gilglm[a'lm a—f‘i‘g'{a” k b—i)h] .
Now, using Holmgren’s transformation in a neighborhood U of (0, x,) € R**!
with x,&€Q (that is, ¢(¢, ¥) =1+ |x—x,|? in U), we have the local uniqueness
near (0, x,) (see, e.g., Inoue [11; Section 5]). Furthermore, the wellknown
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method of sweeping out shows that the mixed problem (3.2) has a finite pro-
pagation speed.
Theorem 3.10. For (t,, xo)EET, we denote
Alty, %) = {(2, x); |x—20| <Amax(to—12), £ =0} .
Suppose that uc C’(ET N A(ty, xo)) satisfies
Lou=0 in O.NA(ty, %), BJtlu=0 on LrNA(t, x),

u(0, -) = %:—(0’ N)=0 in {x€Q; (0, ¥)EA(t, %)}
Then u is identically zero in Q.n A(ty, x,)-

4. Proof of Main Theorem

Now we come back to the original problem. All our argument in this
section is under hypotheses (H.1) and (H.2).

4.1. Weak solution for locally-supported data. This subsection is
devoted to proving the following local version of Main Theorem.

Theorem 4.1. For any (t,, %)EQ,, there exist a constant >0 and a
neighborhood W C[t,—8§, t,+ 8] X R" of (t,, x,) which satisfy the following: For
any t,E(t,—$, t,+8) and any given data {u,, u,, f} € Vp(t,) X L}(Q) X L¥((t,, t,+8)
X Q) satisfying

(4.1)  (supp u,) U(supp u,)CONWAt,), supp FC([t, t+8]1XQ)NW
with W(t,)= {x; (¢, x)& W}, the mixed problem

9 .
(——w—i—A(t)) w=F in (t, tobO)XQ,

o’
=0 t} X T'y(2),
(4_.2) .4 B(t)u on t,gtg:0+s{} X N( )
u=20 on U {t} xTp(?),

8 St<tg+d

u(ty )=, Si(t,)=w i Q

admits a weak solution uc H'((t,, ty+8) X Q) such that
(i) suppuC([t, t,+-8]xXD)NW;

@) Nty N+ 2L, ) < COluolf+ P+, lr, -)Fan)

Jor all te(t,, t,+8) where C >0 is independent of t, and given data.
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The case (&, x)€%;. We may assume that (0, %0)=(0, 0) and that Q,
T, I' and £ are represented near there as mentioned at the beginning of Sub-
section 2.2. Let U and @ (resp. V and 8) be as in Proposition 2.2 (resp.
Proposition 2.6). And W is given as follows: choose open balls V,, ¥, in R" with
the common center at 0 such that V,&eV,=V, and define A\, after shrinking
U if necessary, by

Mmax = SUp_ max |R,(s, y; £)| <-oo
(s, NEU) 1Sp<2n
l£l=1

where A,(s, ¥; £), 1< p=2n, are the real roots of the characteristic equation of
L(s) (defined in (4.5),):

det [ g5, y7+2g5, 9) 22 (w5, MEA—T6, D)ER] = 0.

ik
Then, by replacing §>0 with a smaller value if necessary, we have
[—8, 8]X Vo W := {(s, y)E[—8, §]XR"; | y| <Mmax(s+8)} .

We define an neighborhood W of (0, 0) by W=¥(W) where ¥=&.
We want to construct a weak solution of (4.2) by approximating with a
solution of the following mixed problem with €€(0, &)):

(ai;+A(t))u=f, in (4 8)xQ,
43) 1 adt, DBO+EXOu+(1—adt, e =0 on (4, XT,

ou .
u(tl, ') = UWoeer — (tl) ') = U in Q
ot
where & and a,(¢, £) are as in Subsection 2.1, {u,, u,,, £} converge to {u,, u,, f}

as €—0 (see Lemma 4.2) and X(¢) is a C~-extension outside U of the X(z)
given in Definition 2.3 in the form that

(4.4) X(tu =2 Lyit, )% for (1, x)e[—8, §]x 0.
ot ox’

According to Proposition 2.4, (4.3), is transformed in U by & as

2

L(s)v := <§_s2 “+ay(s, y; D) »(;?S—Jr a (s, ¥; D)) v=g,
in O, )XW NU)C(t, S)XR",
5] 2,186, 53 D)Fan(s, ) L) v+(1—-a(yNals, 3)v = 0

on &(([t, 8]xT)ynU)cC(t, 8] xR,

oty +) = e g:’—(tl, Y=v, in B(({t} XN U)C {t} X R"

N
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where
v=(v") with o' =a'= a;#(‘I'(S, Y (s, )
0xk
g.=(g)) with gi=7fi,
R ¥
P v,,,:uo,:a%(‘lf(tx, (Tt 3))

1 : i e j i
b= (ol with of, = af,—CFL(w(n, )

62¢x’ 6\[/‘j -
+orae Lt ) 2y (b ¥)kse

with the notation as in Subsection 2.3 and
¥ =it x) for (s, y) = D(t, x), *' =Pi(s,y) for (£ x) = ¥(s, y);
the last of (4.6) is due to the formula
0 = (G + W) 2 (O 0y 08B 0w\ 0
P (V°“ axf) = (%' + ot Vit >6y‘ - ( os o 0y 0tox’ ﬁy”u 0y’

Moreover, with the notation at each s

w, = gals, Yok for w= (@ (),

the operators a,, a,, b,, o, and w are in the following forms:

(@'(s, y; D)yw)' = 2g'* %’J g—;ﬂj—"—{—(Oth order terms of (%)),

(ay(s, y; D)w)' = —f—;( aiieh g—qf)—{—(at most 1st order terms of (@/))’,
Yy y

(be(s, ¥'; D)w)' = 5,;a'* %—}—(Oth order terms of (w’) depending on &)*,
y

(o, YY)’ = 17| 7 g% s, (w(s, y)w)' = |¥] 7 g%, .

In order to apply the results in the preceding section, we consider the fol-
lowing mixed problem modified from (4.5),, 0<<€<&,:

a4 —(62 . D)2 . D))o = in (2, 8
Y = -a?—l—a,(S,y, )E—*—%(s’y’ )v=9g. in (4 8)Xow,

B(s)v := &(ﬁ)(be(& ¥; D)touls, ’5)%>v

+(1—I§e(j’))w(31 j)v =0 on [tv S]X'Y ’
Wty ) = Uy —gf—(t,, V=v, in o.

(4.7),
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Here  is a bounded subdomain of ¥ with C~-boundary =08 chosen so that
R NV,cocR:NV and v is represented by y"=0 near V,. Choose a C=-
submanifold o, diffeomorphic to an (z—2)-dimensional sphere, of ¢ of codi-
mension 1 so that cC {y€ V,; y"*<y"=0} and is represented by y"'=y"=0
near V,. Then v is divided by o into two open subsets; the one including
{ye V,; y"'<y"=0} is referred to as y and the other as y,: y=yyUa U7,
(disjoint union). Making & >0 smaller if necessary, we define B,(¥)C>(y),
0<<E<E,, in the same way as a.(¢, £) with T" and 3(z) replaced by ¢ and o,
so that B,(§)=a.(y’) on yN V,. Further, an appropriate extension of [¥|™
outside [—8, 8§]x (y N V) (resp. (7,) outside ¥ N V) makes o, and o, (resp. b,) to
be forms to which we can apply the results of the preceding section. Finally,
the data {vy,, v, ge} are given in the following lemma. The meaning of “the
compatibility condition to (4.5),”” appearing below will be understood from Defini-
tion 3.8.

Lemma 4.2. Let t,(—8§,8) and let {u, u, f} €Vy(t) X L*(Q) X
L*((t, 8)xQ) satisfy (4.1). For any integer m=0, there exists a family
{Uoer Vs e} o<e<e, i1 C7(@) X C=(@) X C=(([¢,, 8] X ®) such that

(i) (Supp eo) U (supp vy) U (supp gi(ts, +)) (w0 Uyy) NW(2),
supp g.C([t,, 8] X@) N W
where W(t)={yER"; (t, y)EW};
(i)  {ves Vses G} — {0, Uy, g} as €0 in H'(w) X LH(w) X L¥((#,, 8) X »)
where {v,, v,, g} are obtained by (4.6) from the given data {u,, u,, f};

(ii1) {voe, Use, e} satisfy the compatibility condition to (4.5), of order m at

s=t,.

Proof. We construct a desired family by induction with respect to m. The
case m=0 is easy (see Proof of Lemma 3.4). We show the validity for the case
m=1 assuming that for m—1. Define v,,€ C(®), 2= p=m-+1, from {v,,, vy, g.}
by (3.14) and choose w, € Hj(w) N C=(w) so that ||w||;=<&, supp w,C(wUyy)N
W(t,) and

bt ' Do, = 33 (7 )00 35 Dot 00, Yo
(see Proof of Lemma 3.4) where b’ and ¢! are defined as in (3.15). Then the
family {vov U{e: g:}0<e<eo defined by

vi.=v,.—w,, g =g.—a(,y; Dw, if m=1,

m=2
V=104, g=0e— ((t 11)2)‘ [I‘f —h dl(t y; D)] if m=2

satisfies (i)-(iii) by inductive assumption. Q.E.D.
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Proposition 4.3. When mg[%]—l—l, for the {vy, vy, g} given in Lemma

4.2 with small £>0, say 0<EXE,, (4.7), admits a unique solution v, C*([t,, 8] X @),
which is supported in ([t,, 8] X@)NW.

Proof. For each 6€(0, &] with &>0 small enough, (4.7), fulfills conditions
(a)—(e) given at the beginning of Section 3 under the appropriate correspon-
dence. By virtue of Lemma 4.2 and Theorem 3.9, (4.7), has a unique solution
v.€C%([t,, 8] X w) for each €€(0, &]. Applying Theorem 3.10 to this solution
and using the property (i) in Lemma 4.2 of {vy,, vy, g.}, We have

v, =0 in ([t, 81x®)NA(Sy, y5) for any y,Ea\W(8)
where A(8, yo)={(s, ¥); |¥—Yol <Amax(8—5), s=2;}. Consequently, since the
definition of W implies

([tw 81x@\ U A3, yo) = ([tn S]x@)N W,

FoEO\W(S)
the support of v, is included in ([¢,, 8] X&) N W, as desired. Q.E.D.

Let {uqe, u,, fo} be the data of (4.3), which are obtained, using (4.6) and
0O-extension, from the {vy, v, g given in Lemma 4.2 with mg[%]-g- 1,

£€(0, &]. Then, a C?-solution u, of (4.3), is obtained similarly from the above
U,.

Corollary 4.4. Under the above circumstances, the mixed problem (4.3),
adimits a solution u,& C¥([t,, 8] X Q) with support in ([t,, §]x Q)N W ([t,, §]x Q)
nu.

Before constructing a weak solution as a limit of the sequence {u.}o<.<e,
obtained above, we examine some properties of X{(2).

Lemma 4.5. The operator X(t) of (4.4) satisfies the following:
() »,(®)7E £)=0 on ['NU;
(i) If V and § are sufficiently small, there exist positive comstants &, c, C

such that
2
(+8) alt; v, 0)—(1+8)|7(t, -) 22| 2ellili—CllolF
for all te[—8§, 8] and ve H\Q) with support in {xEQ; (v, x)€W(V) for some
re[-3, 8]}.

Proof. (i) Since vi(t, x)—_—%l’_’@(z, %)) in U, we have by (2.6)

s
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v (R)yi(t, £) = —v,(@(t, £) 2L (2, ) =0 f
&)Y, %) = —p( (2, ))W(t’ )= on I'NU.

(if) By the definition of ¢5(0, 0) and the fact that

i ov g ov HYR
J 0, 0 e 0, 0 fi ! ,"* *
L4 )ax’ ot ( )6x”‘1 or veH(R)
we deduce the desired result (see Proof of Proposition 2.6). Q.E.D.

We may assume that ¥ and § are, in advance, chosen so that (4.8) is satis-
fied. Now we present an energy inequality for u,.

Proposition 4.6. The C*-solution u, of (4.3),, 0<EXE,, obtained in Corol-
lary 4.4 satisfies the energy estimate

(4.9) (2, I+

2 t
B, ) SCUlt+ 4§ 1, i)

for all t<[t,, 8] where C>0 is independent of t, and &.

Proof. The proof is similar to Inoue [13; Proof of Theorem 3.5]. By
integrating by parts after taking the scalar product of ((3/0t)’+ A(t))u,=f, with
X (t)u,, and by using Lemma 4.5 (i), the fact that supp u,C([t,, 8] xQ)N U and
the inequality for v CY([¢,, 8] X )

2
+|[v||? at each te[t, 8],

4 |]p|[ =2 Re (@, v)g v
dt ot ot

we obtain

ou, ; %)]_R B
o v P e {B(t)u,, X(t)u,y

S CK)(lleeellz ey 11l 7)

#10) 2L [jmlper 2 Re(
where ||+||z is given at each tE[t,, 8] by
2
ol = |52+t 0, o) £ Klel? for v Ctn, 0)xD)
with K>0 so large that there exists a constant ¢>0 satisfying
a(t; v, v)c|[v||i—K||v|[? for all t€[—8, 8], vEH(QUT,(t)).

The integration of (4.10) over (t,, t) gives

(+.11) Tllut, Mier—Re | B, X(rupd
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+Re(Ze(t, ), () P, ) )
=C [”uz(tb ')”E(ll)’l'"gt (”ue”i‘(f)_!—”fellz)d'r] .

Using the facts that supp u,C([¢,, 8] X Q)N U and that supp (@ |r) CTx(2,), we
have by the change of variables by ®(r, -) for each 7

B ¢ tl—a,
Re S;l By, X(vuddr=Re S (o Xy, P

¢ k A2.h o
= RCS' dss 1— a'g,ku [au +6i ' ﬂi]\/lgldy’
1

Te ds  0x* 850y’
:%S;ds Sfe{i[l !& '“eg.n/rgl] laf‘" a2 (g,k\/|g|)}
+Re S:,dSL,laf‘”ué Tea 2 22 VTaidy
=2 ; <1 S rem S <1 ~ u“">p )

where Ty(t)={#E€T'; a,(t, £)>0}, I'\={y'€0R%; y*"'<&} and |g|=det (&:)-
Therefore, (4.11) yields

O G A R R

<t i (=, o)
(5 )

Using (4.8) and Gronwall’s lemma and taking a larger value of K if necessary, we
arrive at the desired inequality (4.9). Q.E.D.

We finish the proof of Theorem 4.1 for the present case. Since {#e}o<ese,
is bounded in H'((t,, 8)X Q) by (4.9), we can select a subsequence, denoted by
{u,,} -1 with €, | 0, having a weak limit & in H'((t,, ) X£). On the other hand,
taking the scalar product of ((8/0t)*+A(¢))g.=F. with any neCF([t, §)x Q)
such that n(¢, x)=0 near T',(¢) for each ¢ and integrating by parts, we have

(4.12) —S (3;‘; g;' )dt+gza(t; u,, m)dt

= (e 2t N+ (P mitte | <X, mpat
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In order to pass to the limit, we need to estimate the last integral
8 ou
S‘ <X(t)ue$ 1’>dt = —<u02) "(tv ')>+S [<7 -27 "> < ay ’— ]
1

Since 7;:=e;—v,¥ is tangential to I" for each j where ej=(8}),-, we have by
Lemma 4.5 (i)

I<’Y’6"F,n>] <0, ey w1 S Clllae(t, I+l -IB)

from which it follows that

|, < mie = C {lult+ sup Q-+l

)

o

Therefore, by letting g —oc in (4.12) with €=&,, we obtain

’ 5
*S (au )df+s a(t; u, m)dt = (u;, n(t,, - -‘))+s (f, n)dt .
n\0t Ot "
By the density argument, we have (1.4) for this .
Since usp|<t,,a)xr—>u|(:,,a)xr in L*(#, 8)XT), we have ul¢,nxr=0 on
U s{t} XTp(f). Moreover, u(t, «)=1u, since u,,(t, -)—>u(t, -) in L*(Q).
hsts

Hence u is a weak solution of (4.3),.
That the u satisfies (1) and (ii) of Theorem 4.1 is due to the fact that, for
each £€(0, &]], u, does satisfy them (see Corollary 4.4 and (4.9)).

The other cases. In the case (%, xo)ef‘N,T, we consider the approximate
problem modified from (4.3),, for small €>0, by replacing Z(¢) (resp. T'y(t)) with
{ZET; disp(xo, £)=E" (resp. disp(x, £)<E)}, a,(t, £) accordingly and X(#) with
8/0t where £°>0 is sufficiently small. In the case (%, xo)EﬂT\I‘N,T, we have
only to take T'y(£)=T, so a.(t, £)=0, in (4.3),. In both cases, we can apply
the results of Section 3 directly to the approximate problems thus obtained, and
the remainder processes of the proof are similar to but much easier than the
preceding case.

4.2, Proof of Main Theorem. Before proceeding with the proof of Main
Theorem, we prepare the following simple lemma, whose proof we leave to the
reader.

Lemma 4.7. Let {u, u,, £} € V,(0)x LX(Q)X LX(Q;). When 0<t,<
t,= T, we assume the following:
(1) (D) admits a weak solution v=uv(t, x) for tE[0, t,);

(ii) With the initial data {v(tl, 2, %(tl, -)}EVD(tI)XLZ(Q) at t—=t,, (D)
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has a weak solution w=uw(t, x) for tE[t,, t,). Then the vector function u=u(t, x)
defined by

u(t, x)=uv(t,x) for t€[0,t), =w(t, x) for tE[t,t,)
is a weak solution of (D) for t&|0, t,).

Proof of Main Theorem. There exist a finite number of points (¢, x,)E

:6,, leL, such that { W,} tez is an open covering of 6, where W, denotes the
interior of W given in Theorem 4.1 with respect to (#;, x;). Moreover, as well-
known, there exists a number >0 such that the 7-neighborhood B,(z, x) of any

(, x)eﬂr is included in W,o for some [ycL. We now choose a finite number
of points x,, mEM, so that QX[0, 7,]C U nep B,(0, x,,) with 7, fixed in (0, 7),
and further a partition of unity {¢,}mey CCGF(R"*") subordinate to an open
covering {B,(0, x,)} men of [0, 7] X Q, that is,

supp ¢,<B,(0, x,,), 0=¢,<1 for all meM,; Ea,“qsm:l on [0, ]xQ.

Then, by virtue of Theorem 4.1, the mixed problem

(%—}—A(t))u:cp,,f in Qx(0,7),

B(flu=0 on ostth {t} XT'x(t), =0 on oggr {t} XT'p(?),
(0, +) = (0, *)ato, g—’;(o, )=¢u0, Yz, in Q

admits a weak solution u,, for each meM. Obviously, v:=3,cy u,, is a weak
solution of (D) for t&[0, 7,).
By the same method as above, we can construct a weak solution w of (D)

for t&[r,, 2r,) with the initial data {v(rl, Y, %(rl, .)} € V,(r) X L(Q) at 1=,

Thus, by Lemma 4.7, a weak solution of (D) for t&[0, 2r,) is obtained. Repeat-
ing the same argument ([T}/r,]+1) times, we arrive at a weak solution€ H l(ﬁT)
of (D) for t€[0, T).

For uniqueness, see Duvaut & Lions [4; p. 130] and Inoue [13; Section
5]. The energy inequality is easily obtained from Theorem 4.1 and the con-
struction of the weak solution. Q.E.D.

Let A,(t, x; E), 1I=p=<mn, be the positive roots of the characteristic
equation det [§*\*—a"/¥(¢, x)E;E,);,=0 of (8/0t)’+A(¢). Putting Ap.=

sup max M\(¢, x; &), we have the following.
t.neb, 1SS
181=1

Corollary to Main Theorem. For (£°, x°)€R,. X R", we set
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A, )= {(¢, x); |x—*°] <Amax(t’—1), £=0}
If given data {uy, u,, £} € V(0) X LA(Q) x LX(Qy) satisfy
uy=u,=0 in xQ; (0, x)A, )}, F=0 in QNAL 29,
then the weak solution ue H'(Q7) of (D) vanishes in O N A(£, 2°).

ReEMARK 4.8. Let Q be an interior or exterior domain of a compact C>-
hypersurface T in R". Consider the following mixed problem of linear elasto-
dynamics in a more general form than (D):

(p(z %) +A(t))u_ in O,
(4.13) B(tyu = on Iyr, u=¢ on I,.,
u(0, ) = u, g—'t‘(o, J=u, in O

where p(¢, x) is a positive C*-function on Q.. For simplicity, we assume that
a'’* (¢, x) and p(t, x) are constant in x outside some bounded set in Q for each ¢.
If we redefine cs(2, %), (t, £)E2y, by replacing a'¥(t, £) with a'/*(t, £)/p(t, £)
in Definition 2.5, we can show the followmg under hypotheses (H.1) and (H.2):

Let {u,, u,, £} € H(Q)x L{Q)x L*(;), and let ¢ and ¢ are vector func-
tions on Iy such that uy(£)=g¢(0, x) on T'x(0) and B(tlv=¢, v= ¢ on 1, for
some vEH 2(ﬁT) Then (4.13) admits uniquely a weak solution uc H ( 7)) 1€,y
u=¢ on I‘D 7, u(0, +)=u, in Q and

(5 o)

= @ 90, )0, N+ 4, m)+<B, mopar

for all test function 7 as in Definition 1.1 (cf. Duvaut & Lions [4; Théoréme 4.1,
Chap. 3]).

Appendix. Some properties of csx(, x)

Our argment given below is under (H.1) and the same circumstances as in
the latter half of Section 2. Let us write a'*=4"#(0, 0) and c5=c5(0, 0) for
short, and let 4 and B be those of (1.1) and (1.2) associated with these a'/** and
Q=R}, I'=0R.

A.l. An alternative definition of ¢;. We present another algebraic de-
finition of ¢y than Definition 2.5. The idea here is much the same as in Ito [15;
Section 4].
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First of all, we note that (2.7) implies the coercivity on H(R") of the quadra-
tic form assoicated with A,:=A-«(8/8x""*)?, whose symbol is denoted by a,()
=a(E)—«kEi_1 I with a(§)=(a'E;E,), , the symbol of A. Since 4 is strongly
elliptic, its symbol a(£), which is real symmetric matrix-valued and homogeneous
in E€R" of degree 2, is positive definite for all €& R"\ {0}. Defining c,>0 by

c& = sup {x; a(£)=0 for all €0}
= min {x; deta(§) =0 for some £30},

we see that 4, is strongly elliptic if and only if x<c%, and that (2.7) holds for all
ucs Hi(R%) if and only if #=cj.
Let k<<c}. Since 4, is strongly elliptic, the Dirichlet problem

(A.1) Au=0 in R}, ulyy =geCs(R™)

admits a unique bounded solution u,&C=<(R%), where we define a mapping
P.: C3(R*)—>C=(R") by u,=P.¢. This is carried out as follows: By the
Fourier transformation, (A.1) is reduced to a system of ordinary differential
equations in x” >0 with a parameter y=/(x,, ***, 7,-,) ER* "\ {0}

(A2) ay(n, Doy, ") =0 for x">0, iy, 0) = d(x)

where D,=—+/—10/0x" and * denotes the Fourier transform with respect to
x'=(x", -+, 2" ): for example,

it(y, ") = (2m)" 7V S eV (!, &")dx'

Rn—l
It is well-known that (A.2) has a unique solution i[5, x") which dies down
exponentially as x"—>+oo; its inverse Fourier transform u,(x) is the desired
solution of (A.1) and satisfies the estimates

( 6 )a} 2
— ) u,
0x R
We next define a mapping 7T,: C5(R*")— C~(R*") by T,¢=DBu,=BP,¢;
T, is a formally self-adjoint classical pseudo-differential operator on R" '=~9R",

of order 1. Its symbol (), which is Hermitian matrix-valued and homogeneous
in neR* "\ {0} of degree 1, is calculated from the formula

(A4) t(n)@(n) = b(m, D,Yis(p, )| yrcg

where b(E) is the symbol of B. We note that the strong complementing con-
dition of {4, B} is equivalent to the positive definiteness of #,_4(») for all &
R\ {0}

(A.3)

l®t=m

SClem) | ol g iy, m=0,1,2,

Proposition A.l. The c¢3>0 in Definition 2.5 is given also by
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(A.5) ¢ = sup {«k<ci; t(n)=0 for all =0}
= min[{x<<c}; det£,(n) = 0 for some =0} U {ci}].

Proof. Denoting the sesquilinear form associated with 4, by

»0ut @dx_,c(au 9y >,

= o e

R ox* 0x’
we have Green’s formula for A4,:
(A.6) (A.u,v)=au, v)—<Bu,v> for ucsHR:), veH(R}).

What we have to do is to show that the supremum of « such that (2.7) holds
is given by the right-hand sides of (A.5).

The first equality. Let n=3. Given any ucCy(R%), we set d=ulopn €
C;(R"), v=P.p=C~(R%) and w=u—veC=(R%); by (A.3), vEH*(R") and
weHy(RY)NHYR:). Using (A.6), we have

a(u) = ax(v+w) = an(v)+an(w) = <Tx¢) ¢>+(Axwa w)
= (L)), By +H(@EVB(E), W(E))mz

where a,(u)=a,(u, u), w(€) denotes the Fourier transform with respect to x of the
0-extension of w outside R%. Since a, (&) is positive definite for any £40 and
x<ch, the assertion follows immediately. In the case n=2, the above discussion
is valid if we replace Cg(R?2) with the following dense subspace of H'(R3):

e C (B NHY(RY); i = #logs, ES(RY; € and {15174 "dn<oo};

see Ito [15; Proof of Theorem 4.6].
The second equality. We have only to show that, if the minimum eigenvalue
of #,(n,) is zero for some x,&(0, ¢%) and n,&R" "\ {0}, then #,(x,) has a negative

eigenvalue for any xE(k,, ¢4). Using p(n)€Cs(R"™") such that S p(n)dn=1,

define g, = S(R*™; C") for £>>0 by @,(7)=E""Y2p((5—,)/€)p With an eigenvec-
tor p=0 associated with the eigenvalue 0 of ¢, (7). Then, v,:=P, 9, satisfies

v,

a’\'?”_l

= () Peln)s Pe(n)y

R%

(A7) ay,(ve) = ax_o(Ve)— Ko

= SR”_‘P(U)ztxo(ﬂo‘l‘e’?)P‘ pdn—t(n)p-Pp=0  (€—0).
Moreover, if £>0 is sufficiently small, by (A.7) and the fact that

ax=0(vs)g(f~=0("7)¢:(77)’ ¢Ae(77))R3'1"')tx=0(710)p'ﬁ>0 (€— O) ’
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there exists a constant C;>0, independent of small &, such that ||0v,/ ax"-1||§,»+ =C,.
We therefore obtain for any « & («,, ¢4)

dxo(ve) - Cl(’c - "o) = ax(vz)

> (t(n)Pe(n)s Be(n))mz-1 = t(m)p- B as €0,
which yields £(xo)p+ P<0. Q.E.D.

RemARK A.2. To tell the truth, t(y) is well-defined for x<c} with
¢,>0 the so-called Limiting speed (see [1], [3]) defined by

¢ = sup {x; a(n, 0)=0 for all e R*\ {0}}
= min {¢; det a,(y, 0) = 0 for some nR" "\ {0}}.

Moreover, by putting «=(7/5,-,)? in t(5), we get the Lopatinski matrix L(t, )
in an elliptic region {(r, ) ER X R"'; 0< || <<cy|na_,|} for the mixed problem
{(8/0t*+ A4, B} with 7 the dual variable of ¢.

A.2. Relation between ¢ and ¢;. Regard R% as an homogeneous
elastic body with the elasticity tensor (a'**) (with unit mass density). We
consider subsonic waves (i.e., with propagation speed <¢,) which propagate in the
direction x"~! along the traction-free boundary 9R% of R% with body force
absent, do not vary with x”’=(«", ---. x"~%) and decay exponentially as x"——4-co;
such a wave classically called a Rayleigh wave. (For the Rayleigh wave as a
propagation of singularity phenomenon, see Taylor [23], Yamamoto [24], Naka-
mura [19].) Let us examine one with propagation speed ¢>0 (independent of
the form of motion) in the following form:

(A.8) u(t, x) = e ~KE""=ehgh (")
where u is a solution of the equations
(A.9) (@/ot+Au =0 in RxR:,, Bu=0 on RXORY,

K >0 is a wave number and ¢(x")=C=(R.,) decays exponentially as x"—>} oo.
When n=3 (or 2) and (4'/**) has the properties in Remark 1.3, Barnett & Lothe
gave a necessary and sufficient condition on (a*/**) for the existence of a Rayleigh
wave and showed that its speed, called a Rayleigh speed, is at most unique (see
Chadwick & Smith [3], Barnett & Lothe [1], Nakamura [19; Appendix]). Since
there may be more than one Rayleigh speed in the other cases, we define c>0
by the slowest if there exist.

Proposition A.3. Assume that there exists a Rayleigh wave propagating
along OR% in the direction x"~', that is, (A.9) has a solution w in the form (A.8).
If cp<cy, the cx>0 is given by



Mixep PROBLEM OF ELASTODYNAMICS 703
(A.10) ¢k = min {x<<c}; det t(e,_,) = O}

where e, ,=(0, ---,0, 1)eR""". Therefore, 0<<cs=cy in general, and cs=cy if
n=2 and c,=c,.

Proof. If we set v(x)=e" "K' 'g(x"), then (A.9) with (A.8) can be re-
written, by the change of variable: x*™'—ct—x""!, as

Awv=0 in R%, Bv=0 on 0R"

where we assume x:=c*<c5; remark that u of (A.8) depends only on x" and
x*1—ct. Since v(x’, 0)=¢""K""'@ with F,=e(0), the first equation of (A.9)
gives v="P,(e"7%*""'@), from which it follows

Bo = T (""" " gp) = F¥[t(m)F[e” 75" Bo](n)](x")

where & (resp. &*) denotes the Fourier (resp. the inverse Fourier) transforma-
tion. Denoting by 8(+) the Dirac delta, we have

Fle” """ ge(n) = (2) " "28() +++ 8(u-2)(nr—K ) o »
so that
Bv = (27’)1-”Kev:-lmn-ltn(en—1)¢o .

Hence we obtain det #(e,_,)=0. Conversely, if this equation in « admits a root
#, (0, ¢), we can construct a Rayleigh wave in the form (A.8) with speed /¥,
by taking an eigenvector @,+0 corresponding to the eigenvalue 0 of 7, (e,-,)-
Thus we have (A.10). The last claims follow immediately from Proposition A.1.
(We finally remark that, as a matter of fact, the ¢ is smaller than ¢, and is given
by (A.10) with c, replaced by ¢, ; see Remark A.2.) Q.E.D.

In the isotropic case, the elasticity tensor (a/**) are, as stated in Example
1.4 (ii), expressed by the Lamé moduli A, nER as

atith = 2\ akh_}_,u(sik aih_l_ Sit b‘ik);

remark that, in this case, (a”**) is invariant under translation and rotation of
the x-coordinates. Hypothesis (H.1) implies that A and p satisfy x>0 and
A+ u>0 (see Example 1.4 (ii)).

Proposition A.4. In the isotropic case, we have cy=cs=+/0,u where 6,
is a unique root of equation (1.6) in the interval (0, 1).

Proof. The eigenvalues of the symbol (&) of A,:
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plEPHNA+p)Ei—rEiy (ZM+w)E &, e A+ n)&&n

_ | A mEE L
0= ; . . A+ w)Ea &
(NAp)EE, e A p)éaciEn plEIPHONFp)Ei—KEi

are given by

plEP—rEiy, o, plEIP—rEioy, (NH2p)E1P—rEio,

n—1

from which we obtain ¢,(=c¢;)=v1 .
If k<uw, the decaying solution #(y, x") of (A.2) for g=S(R"™; C") is
calculated as

A "o T - ;IP°¢(77) I~ -ps" ;’P.¢(77) 5 o5
o %) [¢(?7) |77|2~P(lm]e +|nlz—que

where p, g, 1,, 1, are given by

P:vl”)lz—%.’]ﬁ—ly q:/\/l”lz_ﬁle;ni—l7
;’ﬁ = t(’?) \/_—T_P) ’ ;’q = ‘(7/» V-1 9) .
Using (A.4), we obtain from the above

P_l..r,ﬁ ;:,71,72 .. ........... ”’%77" _\/f_—l(l_rp)‘m
" :
w=d e :
rm 7:1”-1 '.fm-z,,_l ) prrgia =V ZI(1—1P)n.n
V=11 =1p)yy weeereeeeee V—1(1=7p)n,-y  p(1-+7p)

where r=(q—p)/(|n|*—pq), its eigenvalues are calculated as

©b, '",ZMP, wp +% wlr (19124 ) £V ([ 2+ +4(1—2rp) [ 7]% .
e

These calculations are similar to those in Ito [15; Section 4]. We note here
that, even when «=0 or 5,_,=0, the above expressions are valid in the limiting
sense. Thus det #(»)=0 reduces to

2p+r(Inl*+p%) = VP ([ * 40V +4(1=21p) [ ]*,

which is equivalent to (|75|24p%)?=4pq|n|? or F<£ (nﬂ_l/lq|)2>=0. We note
72
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that, since F(0)<<0, F(1)>0 and F"(6)<0 on [0, 1], F() has exactly one zero
0, in (0,1). Hence we have by Proposition A.1

3= f:.‘if,‘ Oon(I9l[9a-r)’ = O (<m),

where the minimum in the middle is attained by n=e,_,. Therefore, by the
definition of ¢s, we arrive at the desired result. Q.E.D.

A3. Charaterization of ¢, and ¢; by wave speeds. We only state
the results, which will be verified by paying attention to the discussion of the
preceding subsections in Appendix.

Regard R"® and R% as elastic bodies with constant elasticity tensor (a’/**)
(with unit mass density) as before. We denote by ¢,(£”, £,; ¢) the speed of the
slowest body wave propagating in R" in the direction (£” sin ¢, cos ¢, £, sin ¢)
where £/=(&,, -+, E,_5), |E” 1%+ |E,1’=1and 0=¢p<z[2,i.e. /(" E,; D)’ is the
minimum eigenvalue of a(£” sin ¢, cos ¢, &,sin¢p). Then ¢,>0 is characterized
as

ca= inf ¢ (&, &3 P)sech. [cf.cp = inf ¢, (87, 0; ¢)secd].
1§12+ Enl2=1 1¢71=1
0s$<n/2 0g<n/2
We next consider a Rayleigh wave propagating on the boundary 9R% of R in
the direction (" sin @, cos 8, 0) where 5'=(n,, ***, 74-2), |7'|=1 and 0=0<m/2.
Denote by cg(5"; 0) the slowest Rayleigh speed in this direction. Then, the ¢3 is
characterized as

¢, if the cp smaller than ¢, does not exist ,
€y = inf cp(n'; 0) sec @ otherwise
mi1=1
o0s%<0/2

with the infimum taken over all (3; 6), |»'|=1 and 0=<60<=/2, such that
cx(n'; 0) exists.
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