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1. Introduction

l l Problem and Main Result. Let Ω be a bounded domain in Rn,
w^>2, with C°°-boundary Γ=9Ω. We consider the following mixed problem
of linear elastodynamics:

Problem (D). Find a vector function u=(ui(t, x))^^ satisfying

(D.I) (ξ-+A(t)y=f in άΓ: = (0, Γ)χΩ, 0<Γ<oo,

(D.2) «(0, ) = «oι | τ ( 0 , ) = «i in a
ot

with a time-dependent mixed boundary condition

= 0 on £DtT:= U ίt}xTD(t),
(D.3) \

B(t)u = 0 on tNT:= U ίt}xTN{t)

forgiven wo=(ttί(Λ?))uδ«ll> »i=(«i(«)) t f«. «ki f={f% *)
Here ^l(ί) and JS(ί) are differential systems operating on ^=(^ l(^)

for each ίe[0, T] defined by

(1.1) (i4(ί)r)' = -£j(*ilk% ^)~) in Ω,

(1.2) (B(t)vY = vj(*)a'ikh(t, x)—h on Γ for ί^i^n

ox

where aiikh(t, x) are real-valued O°°-functions on ύτ with symmetry relations

(1.3) «"**(*, Λ?) = akhiJ(t, x) for 1 ̂ ί , j , ft, Λ^w ,

and ^(i)=(vy(i))i^^« denotes the unit outer normal to Γ at i e Γ . (Super- and
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subindices i,j> k, h, etc., take their values in the set {1, •••, n} and the summa-
tion convention is adopted concerning the repeated indices.) Moreover, for
each ίe[0, T]y TD(t) and TN(t) are nonempty open portions of Γ such that Γ =
TN(t)\JX(t)\JTD(t) (disjoint union) with 2(0 an (n—2)-dimensional compact
C°°-submanifold of Γ; the interface 2(0 between TD(t) and TN(t) changes smoothly
with time ty by which we mean as follows: ΓDtT and TNtT are relatively open
subsets of the lateral boundary t*τ : = [0, T ] x Γ such that their interface 2 Γ : =
U /e[0)r]{ί} X 2(0 is a 1-codimensional C°°-submanifold (with boundary 2(0) U
2(Γ)) of Γτ and intersects transversely with \t} XΓ for each *e[0, T].

Problem (D) was posed by Duvaut & Lions: When 2(0 is independent of
time, they solved it under hypothesis (H.I) stated below using the Faedo-Galerkin
method ([4; Thάortaie 4.1, Chap. 3]), and proposed that "L'abandon de cette
hypothέse (2(0 ne dόpend pas du temps) semble conduire a des problέmes ouvert
et fort interόssants" ([4; p. 106]). Subsequently, Inoue [13] studied the same
problem as ours for the wave equation case (u: scalar, A(t)= — Δ, B(t)=djdv) to
construct a unique weak solution assuming that "the speed of 2(0' ' is smaller
than the propagation speed 1 of the wave governed by (8/9ί)2—Δ. See also
Cehlov [2], Eskin [5].

The purpose of this paper is to show the existence of a unique weak solution
u of (D) under the following two hypotheses:

(H.1) The quadratic form associated with A(t) is coercive on VD(t):=
Hl(Ω U Γ#(0) for each t e [0, T] in the sense that there exist positive constants
cx and c2 such that

a(t; u, K ^ N I Ϊ - ^ I M I 2 for all f e=[0, T] and nG VD(t)

where (and in what follows) we use the notation

a(t; v, w) = ( aiikh(t, x) ̂  ®Kdx for v=(v% w=(to*).
JQ OX OX3

This hypothesis is equivalent to the following: for each ty the differential sys-
tem A(t) is strongly elliptic on Π and the boundary-value problem {A(t)y B(t)}
satisfies the strong complementing condition on TN(t) (see Simpson & Spector [21]
and Ito [16]).

(H.2) For each (tQ, . ί o )e2 Γ , the trajectory on Γ of the point of the inter-

section of 2(0 with the normal plane to 2(*0) at i 0 moves through i 0 at time

tQ at a speed smaller than the quantity c^(tOy i 0) defined in Subsection 2.4. (In

what follows, we will say simply "the speed of 2(0 at (/0, i 0 ) " for the speed of

that trajectory at (tOy i0).) It is remarkable that the c^(tOy x0) is closely related
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to the speed of Rayleίgh's wave which travels over the traction-free boundary of

a homogeneous elastic body with the elasticity tensor (aiikh(tOy x0)) occupying a

half space whose boundary is the tangent hyperplane to Γ at i 0 . For details,

see Appendix.

DEFINITION 1.1. For given data {u0) uλ, f} e VD(0)xL2(Ω) xL2(άτ), a

vector function u=(ui(t, x)) is called a weak solution of (D) (for /e[0, T)) if it

belongs to H\Ω>T) and satisfies u\ =0^n>τ, M(0, •)—u0 in Ω and

(L4)
 " J K I Γ ' Ί r ) Λ + ί o Γ β ( ί ; " η)dt=κ η{0' ' ) ) + So ( f > n)dt

for all test functions *i^H\&T) satisfying η\^ΌT=0 and η(T, )=0.

For the notation we use, see Subsection 1.3. We note here that (1.4)

implies

^-2 + A{t))u = f in iZ)'(0, Γ; J T ^ ) ) (and ^ ( 0 , .) = uλ in Ω

where we regard ^ί(f) as belonging to X(VD(t), V'D(t))(ZX{VD{t\ H'\Ω)) for

each t by

(1.5) a(t\v9w) = (A(t)Ό,w) for ι

Thus, by Lemma 8.1 of Lions & Magenes [17; Chap. 3], we can show that a

weak solution of (D) belongs (after redefining on a set of measure 0 on [0, T]) to

C°([0, TyyH\n))Γ\Cl{[0y T]\ Z,2(Ω)) where the subscript to stands for the

weak topology. (If Σ(ί) is independent of £, that is true in the strong sense by

Theorem 8.2 of [17; Chap. 3].)

Main Theorem. Under (H.I) and (H.2), there exists a unique weak solution

u<=HX&τ) of (D) for any given data iu09ulif}^VD{0)xL2(Ω)χL\άτ). More-

over, it satisfies the energy estimate

\\u(t,
2

dt

for all ί e [0 , T] where C(T)>0 is a constant independent of given data and time t.

REMARK 1.2. If 2(0 (Φφ) and A(t) are independent of t, we can apply

the semi-group theory in the same way as in Hayashida [6] (see also Ibuki [7]).

Morevoer, if 2(0 is empty, we may expect that (D) admits a unique strong solu-

tion] the case T = TD(t) is an exercise of the semi-group theory (see, e.g., Ikawa

[8], Tanabe [22; Chap. 4]) and the case T = TN(t) is included in a result of

Shibata [20].
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REMARK 1.3. In the usual linear elasticity theory, an elasticity tensor
(aiikh(t, x)) satisfies the symmetry relations

aiik% x) = akhi% x) = aiik% x)

and the strong convexity condition

aiik% x)skhsij'^cQsijsij for all (su) with su = s^R

where co>O is constant. However, (1.3) and (H.I), which are weaker conditions
than the above, are sufficient for our argument.

EXAMPLE 1.4. (i) Let aiik% x)=δikδih

9 that is, A(t)=-A and B(ί)=8/8^f

where (and in what follows) δ<7 and also δj denote the Kronecker delta. Then
(H.I) is fulfilled in advance and the £2(£, x) is equal to 1 for any (t, x)&%τ (cf.
Inoue [13]).

(ii) In the isotropic elasticity, (aiikh(ty x)) is represented by means of the
Lamέ moduli X(t> x) and μ(t, x) as

aiik\t9 x) - λ(f, x)δijδkh+μ(t, x)(δikδih+δihδik).

Then, as seen from Simpson & Spector [21] and Ito [15], hypothesis (H.I) is
equivalent to

μ(t, x)>0, λ(ί, x)+2μ(t9 x)>0 on άT9 λ(ί, i)+μ(t, x)>0 on tNtT9

and the strong convexity condition in Remark 1.3 is given by

μ(t9 x)>0 , n\(t9 x)+2μ(t9 x)>0 on άτ .

Moreover, the Cj,(t9 X) in (H.2) is given by Vμ(t9 i) θ(\(t9 i ) , μ(t9 i)) where
^ ( , μ) is a unique root of the equation

(1.6) F{θ) : = 03_802+8(3 h^λθ-lβίl f*—) = 0
V X-\-2μ' \ λ+2/

in the interval (0, 1). This value is nothing but "the speed of Rayleigh's wave"
(see Proposition A.5).

1.2. Summary. In principle, our approach to Problem (D) is guided
by a plan proposed by Inoue [12], [13]. Let {aζ(t, i ) } ε > 0 be a family of smooth
functions on ΓΓ which approximates as £-+0 suitably the defining function of
TN(t) for each t (see Definition 2.1 and (2.1)), and let us call by (Dg) the mixed
problem obtained from (D) by replacing (D.3) with a degenerate boundary con-
dition

(1.7). at(t,*)B(t)u+(\-at(t,X))u = 0 on tτ
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and {κ0, ul9 f} with smooth approximate data {uOζ, wlε, fe} satisfying a certain
compatibility condition. If (Dε) admits a unique smooth solution uz for each £,
one hopes that a limit of {M8}8>0 as £-*0 will be a weak solution of (D): this was
the central idea in [13]. In the present case, however, it seems so difficult to
apply directly the method of Inoue [12] (or Ikawa [10]) in order to obtain a
smooth solution u2 of (Dε). Hence, we do not solve (Dε) but modify the dis-
cussions in [12], [13] as follows:

We construct a weak solution of (D) by pasting time-local weak solutions,
which are obtained through superposition of weak solutions for locally-sup-
ported data. We get such a weak solution, which will be also locally-supported,
as a limit of smooth solutions {uζ} ε > 0 to certain approximate problems governing
a propagation phenomenon with finite speed (independent of £). In order to
construct a weak solution for given data supported in a "small" neighborhood
of a point (t0, ^ 0 ) e 2 Γ , we consider the mixed problem (Dt)(to,χ'o) given by re-
placing (1.7)ε in (Dε) with

(1.8), α,(*, x)(B(t)+eX(t))u+(l-az{t, i))α = 0 on ΓΓ

where X(i) is a differential operator in such a form as

(1.9) *(*)„ = | L + y i ( ί > Λ , ) J « i n ά
τ

(see Definition 2.3 and (4.4)); the initial time will be changed as occasion
demands. Our main efforts will be put into this problem with the boundary
condition which may change its order near (ί0, £0) not only spatially but also
temporally.

In Section 2, we consider a level-preserving local transformation near
(tOi i 0) which makes the suitably-defined a2(t, £) independent of t thereby we will
transform (Dε)(ίo^o) locally. Sections 3 is devoted to the study of an auxiliary
problem to (Dε)(,0>j0), which is in such a general form that it includes the forms
obtained by local transformations given in Section 2 and is invariant locally
under Holmgren-like transformations. In treating the degenerate boundary
condition there, a result in Ito [16] will be necessary. In Section 4, using the
results of Section 3, we prove Main Theorem in such a way as mentioned above.
In Appendix, we present some properties of the cs(£, x).

1.3. Notation. We express column vectors in boldface: u = (ui) =

'(i*1, •• ,wn), also various CΛ-valued function spaces. L2(Ω,) = L2(Ω,; Cn) (resp.

Z,2(Γ)=L2(Γ; Cn)) is a Hubert space with inner product ( , •)—(*> )Q

< , •>=<•> >r) and norm || || = IHIα (resp. [ ] = [ ]r) given by

(uy v) = \ u vdx=\ u^υ^dx, \\u\\2 = (M, U)
J Ω JΩ

for u = (u{), v =
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(resp. <φ, ψ> = \ φ-φdi , [φf = <φ, φ> for φ, Φ<=L\T).)

We represent the point of Ω (resp. Γ) by x (resp. i ) and the volume element
in Ω (resp. on Γ) by dx (resp. di). For an integer m ^ l , JJl"(Ω)==iϊl"(Ω; Cn)
(resp. Hm-1/2(r) = Hm~1/2(Γ; Cn)) is the usual Cw-valued Sobolev space on Ω of
order m (resp. on Γ of order m—1/2) with norm denoted by | | * I L = I I ' I L , Q ( resp

\\u\\l = l|Vι*||2+INI2 = ( (~ψ-Λu^)dx for ueH\O).
jQ\dxk dxk I

For each t, VD(t) = Hl(Ω\JΓN(t)) stands for the closure in H\Ω) of
C o (Ω U TN (t)) : = {u<= C°°(Π) supp u C Ω (J Γ^ (ί)}, or equivalently Fjp (t) =
{u e JΪ^Ω) M I Γ i > α ) = 0}. The dual of VD{t) (resp. JEΓj(Ω)) is denoted by V'D(t)
(resp. Jff'^Ω)); we have the inclusion relations

£Γί(Ω)c VD(t)<zL2(Ω) = ( L W c n W c f f - ^ ) .

Let J ί and F be Banach spaces. For an integer m^O, Cm([0, ϊ 1 ] ; Jϊ) re-
presents the space of X-valued functions of f e[0, Γ] of class Cm. For simpli-
city, we often write i{u^ε?(X) (for ίe[0 f T])" instead of " « G C M ( [ 0 , Γ];-X)".
We denote by X(Xy Y) the Banach space consisting of all bounded linear
operators on X into Y.

We can extend aiikh(ty •), ΓD(t), ΓN(t) and 2(0 in t to R so as to be t-
independent on R\(—1, Γ + l ) and to preserve the properties stated before (H.I)
(and further hypotheses (H.I), (H.2) if they are satisfied for fe[0, Γ]). For
those extended, we set

tD = U {ί} X Γj,(f), 5 = U {t} X Σ(0 4 f\ f1^ similarly .

2. Local reduction to the case of time-independent

In this section, we reduce locally the equations (D.I) and (1.8)ε in (Dg)(/θ)5o)

to the case where 2(ί) is independent of t. We do not refer to the initial con-
dition (D.2) for the time being.

2.1. Definition of α,(f, jc). Let 7χΣ(f))"\ (*> * ) ^ i , denote the normal
space at £ in 2i(Γ) to the submanifold 2(ί) of Γ. Then,

£($):= U

is regarded as a C^-subbundle of the restriction T(Γ)| £ to 2 of the tangent
bundle T(t). Since 2 intersects transversely with {/}xΓ for each t> there
exists a unique C°°-section Z of E(Σ) such that, when we consider that Z(tt-x)^



MIXED PROBLEM OF ELASTODYNAMICS 673

jΓj(Σ(ί))xcΓ|(Γ) for each (t, i ) G 2 , Z(tS) is a unit vector pointing to the side of
TD(t). The exponential mapping Exp defined in a neighborhood of the 0-section
Γ in T(t) is well-defined also on E(t)= {σZ\ σEΛ} by

Exp σZ(tJ) = {*} X(exp σZ(tJ)) for σGΛ, (ί, £ ) e Σ

where exp stands for the exponential mapping: Γ(Γ)—>Γ. For £ 0>0 small
enough, Exp gives a C°°-diffeomorρhism of an open subset {σZ; \<r\<£0}
(<=*(—£0, £0) X 2) of E(t) onto a tubular neighborhood Uo:= {(ί, i ) G ϊ 1 ;
disΓ(ί, 2(0) <£o} of 2 in Γ where disΓ(ί, 2(0) denotes the geodesical distance on
Γ from & to 2(0 Using its inverse, we can show that the Lipschitz function
σ(t, £) on £ defined by

σ(f, i ) - disτ(£, 2(0) if *€=iyf), = -d i s Γ ( i , 2(0) if

is of class C°° in U.

DEFINITION 2.1. For each £e(0, £0), we define αε(ί, i) by

αβ(ί, i ) = Γ p{s-S-ισ(t, i))ds for (ί, i je f 1

Jo

where p(ί) is a C°°-function on Λ given by

p(s) - [ (l^(r-Drfτ-|-iβv.c.-i) i f O < J < 1 , = 0 otherwise .
Jo

It is easily seen that for each £e(0, £0), αβ(ί, £) is a C°°-function on t
which depends only on disΓ(£, 2(0) a n d satisfies

on

= 0 on {(f, ijef^,; disΓ(£,

on {(ί, i ) ^ ^ ; 0<dis Γ (i,

(2.1)

2.2. Local transformation. Let (̂ 0) i o )GΣ. We can choose a rota-
tion R=(Rij)^SO(ή) of the ^-coordinates so that, by the transformation: x-*%=
R(x—£0), the tangent hyperplane to Γ (resp. hyperline to Σ(̂ o)) a t ^o i n -B*
is mapped to {£ = (££); ^n = 0> (resp. {X; %n~1 = ̂ n = 0}) and the outer unit
normal to Γ at x0 to the vector (0, •••, 0, — 1). Under the coordinates %=(%'),
(atJkh(t, x)) and M=(M'(/, X)) are represented, respectively, by

3"**(i, *) = α' ' Λ ' "( ί , *)/ϊi/Λί/ΛM?ί/, β'(ί, *) = u% x)R'k.

Given data {u0, uv f} are transformed in the same manner.
Taking the above into consideration, we may assume that (0, 0) is the general

point of i; and that (i) Ω (resp. Γ) is represented near 0 by xn>f(x') (resp. xn=
/(*')) with/a C~-function of x'=(x\ •••, x"'1) satisfying/(0)=0 and V,//(0)=0,
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(ii) tD (resp. ί) is represented near (0, 0) by xn'ι>g(ty x") (resp. xn-λ=g(ty x"))
and xn=f(x') with g a C~-function of (ί, *")=(*> x\ ••, ΛJM~2) satisfying#(0, 0)=0
and V>>£(0, 0)=0. Our argument in the rest of this section are under these
circumstances.

Proposition 2.2. There exist a neighborhood U of (0, 0 ) e Σ in Rftl) and a
level-preserving (i.e., t—s) diffeomorphism Φ of U onto a neighborhood U:=Φ(U)
of (0, 0) in R\t?y) such that

(i) Φ(άnU)=i(syy)=(s,y\ yy
n)tΞU;yn>0} [=

φφf]U)= i(syy)^U;yn = 0} [=(RxdR%)f]U];
(ii) Φ(tDf] U)={(s,y)(ΞU;y»-ι>yn=0}y

Φ(£n U) = i(s, y)(=U; y"'1 =yn = 0};
(iii) dyn/dt=O in U and the Jacobian matrix of Φ at (0, 0) is

d(s,y\-,yn)

1

0

ό

- £ < " •
0

0)

0

1
1

0

0

• 0

1

(iv) For each £e(0, £0), the function dts(yf):=as{Φ'\sy y)) is independent of s on
(RχdRn

+)Γ\U wherey'=(y\ •• ,vw"1).

Proof. Let us regard {Λ:1, •••, xn~1} as a local coordinate system of Γ near
0. We define a transformation Ψ, which is expected to be the inverse of Φ, of
a small neighborhood Uλ of (0, 0) in R\t^y) by

(2.2)
with i = (/', g(s, y"), f{y", g(s, y"))),

where Z is the section of E(Σ) defined at the beginning, and [txp yn~1Z(Sf'y)]i

y

l<^i^n—ly stands for the i-th component of expy*'1 Z(St y)&Γ with respect to
the above local coordinate system of Γ. Then, Ψ is a level-preserving C°°-
mapping which satisfies
(i)' Ψ((RxRn

+)
(ii)' ψ{{(s,y)<=t

Jl y*-1 J / = 0})cί
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Moreover, using the fact that Z(OfO)==(d/dxn~1)o and fundamental properties of
the exponential mapping exp: Γ(Γ)-*Γ, we calculate the Jacobian matrix of
Ψ at (0, 0) to obtain

dg

dt

1

0

ό

(0,

0

0)

0

1
1

0

0

• 0

1

Thus, by the inverse mapping theorem, there exists a neighborhood U of (0, 0)
in Ux such that the restriction Ψ\ΰ of Ψ to U is a C~-diffeomorphism of 0
onto Ψ(U). We see now from (2.2) that U:=Ψ(U) and Φ : - ( Ψ | u)'1 possess the
desired properties (i)—(iv). Q.E.D.

2.3. Change of variables. Nowτ, we study how the equations (D.I) and
(1.8)8 of (Dg)(/ojjo) are transformed in U by Φ. When we make the associated
change of variables, it is convenient to look at them from a geometric viewpoint
(see Inoue & Wakimoto [14; Appendix] and Marsden & Hughes [18; Section
2.4]). Regard U as a manifold with the coordinate system {t, xι

y •••, xn} and
equip with it the connection V which is the restriction to U of the trivial
connection associated with the vector space structure of RtxR". Clearly, V
restricts to a connection V' on each U(t):={x^Rn; (t, x)^U}, identified with
{ΐ} X U(t); V' is the connection of the Euclidean metric hikdxidxft on U(t)dRχ.
(U is a subset of the standard classical spacetime in the terminology of [18; p. 157].)
Taking that into consideration, we regard u=(ui(t, x)) as a vector field w'(ί, x)djdxt

tangent to each U(t), (ai3kh(t, x)) as a 4th-order contravariant tensor field
aijkh(t, x)(dldxi)®(dldxi)®(dldxk)®(dldxh)) the unit outer normal u=(vi(x)) as a
1-form vi(x)dxi (on each U(t)), etc. Then (D.I) and (1.8)ε are rewritten on each
C/(ί)as

(2.3)

in

[aJiyJa^hVίuk+6Xui)+(l--a9)ui)]^Ί - 0 on Γf]U(t)
ox*

where V0;=T7Vdt and V; :=Vθ/θ^ are the covariant derivatives, ufixf is the
1-form associated with u on each U(t) (hence tt.=δfVtty=«l in the present case)
and X=X(t) will be clarified below.
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Since Φ is level-preserving, Φ(sy •)*#(£, )=(Φ*v)(s, •) for any vector field
v on £/tangnet to each U(ΐ)y and the connection Ϋ:=Φ^V on U:=Φ(U) also

restricts to a connection ^s:~Φ(sy )^VS on each U(s):=Φ(U(s))={y^Rn;
(s, y)^0}y identified with {s} X U(s) V5 is the connection of the Riemannian
metric gik($, )dyιdyk on each U(s) induced by Φ(sy •) where (and in what fol-
lows)

**>>-££ (-«•"•»-!$£)•
We now define X in (2.3) by the following Definition 2.3, so that we have by
operating Φ(s, •)* to (2.3) with t=s

(2.4)

where t^0:=t^
9/9s, t ? ) ' =

in Φ(Ω Π U(s)),

on Φ(Γnt/(ί)),

are the covariant derivatives on ί7 and

a(s,y) = u(t,x)&, Vi(s,y) = vl(i)^;,

ct2(y') = az(ty x) (see Proposition 2.2 (iv));

f\sy y) and wΛ(ί, 3>) are defined similarly. We note that

M*> y) = gik(s, y)u\sy y), β'(j, y) = ^*(ί, y)βA(ί, y) .

DEDINITION 2.3. A differential operator X in Z7 is given by

We set I v 12==P, P, , ? , = | v \ ~% for (J>,)=(£>,-($, j ' ) ) and further

(2.5)
Ot

Since (vly •• ,0Λ)=(O, - ' ,0, —1) as easily verified, it follows from Proposition
2.2 (iii) that

(2.6) p . ^ on Φ(£nU)(ZRxdRl.
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Hence the following proposition is derived from (2.4).

Proposition 2.4. With the above notation, the equations (D.I) and (1.8)e

are transformed in Uby Φ to the following form:

l+2 9/ 9 ^ K(nijkh^)+{at most 1st order terms of (uj)Y = f
dt fafrv> dvΛ avv v J \ )) J9^ dt

in Φ(άnU)(ZRxRn

+,

- 1 — + ( 0 * λ order terms of (uj) depending on 6)' I

+(lae)\9\-1Ui = 0 on

Here, (aijkh(sy y)) satisfies (1.3), and (vv •• ,?«)=(0, —, 0, —1) is the unit outer
normal to {y\ ( ί j )EΦ(Γf l U)} ddR+for each s with respect to the "flat" metric
on Rny.

2.4. Speed limit of Σ(t). In our argument later, it will be essential
that (Siikh(sy y)) defined by (2.5) satisfies (H.I) near (0,0), whose condition we
present in Proposition 2.6 below. Before stating it, we define an important
quantity £s(0, 0). (An alternative definition of it will be given in Appendix).

DEFINITION 2.5. We define c2(0, 0) by the supremum of y/Ίc such that

2du ;0 for all
dxn~ι

We note that (H.I) guarantees the existence of c3>0 such that

Vielli for all

Moreover it is easily seen that the value cs(0, 0) is independent of the choice
of a rotation R at the beginning of Subsection 2.2.

Proposition 2.6. Let U, Φ be as in Proposition 2.2 and Uijkh as given by
(2.5). If and only if the moving speed |9^/9ί(0, 0)| of Σ(t) at (0, 0) is smaller
than cs(0, 0), there exist an open neighborhood VofO in Rn

y and positive constants
δ, cA, c5 such that φ-\[—δ, 8]xV)dU and

J*ί v ' " y 9 / 9 y

for all ί G [ - δ , δ] and v(=H\Rl) with support in ~R\ Π V.

Proof. We have only to show that, if and only if \dg/dt(Oy 0)| <c2(0, 0),
there exists a constant c6>0 such that
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(2.8)

Since Proposition 2.2 (iii) indicates

niikk(0, 0) = aiikh(0, 0 ) -

we obtain by the definition of £s(0,0) that

the left-hand side of (2.8)

for all

-^-(0, 0)

-§L(0, 0) dv
,»-idy

where the constant in front of the last integral is best possible. From this fact,
the desired assertion follows immediately. Q.E.D.

3. Auxiliary problem

This section is self-contained by itself, while it will yield some results
essential for our constructing a weak solution of (D).

Let Ω, Γ, ώ, etc., be as in Section 1 and let (gik(t, x)) be an nXn sym-

metric matrix of C°°-functions gik(t,x) on ύ such that

(3.1) co'l^igikit, x))^col in O, co^U const.

Using (gik(t, x)), we put at each t^R

v, = gik(t, -)vk for v = (v^x)).

Now, we define differential systems L(t) and BJt) operating on i£=(ttf'(ί, x)) as
follows:

L(t)u = [~^+*i(t, x; D)^+a2(t9 x; D)] u in

o n

which we supplement with

ψj+e'"(t, x)vkόxJ
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[a2(t, χ; D)vY = —[*"»«, x) J^\+biki(t, x) | ^

[b(ty χ; | £

Here, all the coefficients (including gik(i, x), a(x)) are real-valued C°°-functions

on ύ or f1 (or Γ), and D stands for the ^-derivation.

In this section, we study a mixed problem

L(t)u = f in Δ Γ , -BΛ(ί)ιι = α(ά?)^ on

(3.2)

under the following conditions:
(a) 0^a(x)^l on Γ, and the boundary of Γ Λ : = {iGΓ; a(x)>0} forms

a compact C°°-submanifold of Γ of codimension 1 or is empty;
(b) (aijkh(t, x)) satisfies (1.3) and (H.I) with ΓN(t) replaced by Γrt; under

(1.3) this condition is, by (3.1), equivalent to

^ll?-^ll^ll2, cl9 c2>0: const,

for all ttΞR, v = (Ό*)eJIJ(Ω U ΓΛ) .

(c) (diki(t, x)) is symmetric with respect to i and k on
(d) (ωik(t> x)) is symmetric and positive definite on Γ;
(e) there exists a constant £3>0 such that

(diki(ty i)vj{x))+(σik(t, x))^c3l on RxF.

where σ[% x)=(σik{t, x)+σki(t, x))β.

3.1. Function spaces. We treat (3.2) in the following form:

d U(t) - Jl(t)U(t)+F(t), U(0) = t/0,
dt

= a(a)0(i, x)

where

[»(t,x)l Γ 0 1 Γuo(x)l
= \du(t,x)\, F(i) = \ \, £ / „ = ,

= L -β^ί, * ; D)
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a(x))ω(t, x) a{x)σ{t,

For simplicity, we write as UQ— {uOy uλ} instead of the above.

We introduce several function spaces which we utilize in this section. For

an integer m ^ l , we equip the Banach space Hm(fl)xHm~1(Ωl) with the norm

lll lllm given by

We denote by VJΩ) the completion of Co(Ω U ΓΛ) with respect to the norm
lk»(Ω) given by

i a(x)

thanks to condition (a), VΛ(Ω) = \u^H\Ω); \\U\\VΛ(Q)<OO}. For each t, Jί(t)
denotes the Hubert space H\Ω) x L2(Ω) equipped with the inner product
( , )jζit\ and the associated norm || |l,#(/) given by

(F, U)M{f) = φ ; f ( t t ] + ί 0 ^ w)f+(flr, v) t

for F = {Λfir>, t / = {«, }̂ e ^ ( Ω ) x L \ C Ϊ ) .

Here, for convenience, we use the notation

(α, v)t = \ u^idx = \ uivkgik(t, x)dx ,

β[ί; M, i?] = I aiJkh(xy t) —^ -^rdx for iί = («•'), i? = (©').

Remark that (3.1) and (b) guarantee the uniform equivalence in t of the norms

HI-Hd and ll l l j ^ o n H\Ω)χL2(Ω). Moreover, <VJt) stands for the Hubert

space Va(Ω)χL2(Ω) equipped with the inner product ( , Λ)φj^\ and the associ-

ated norm || |lcτ/ (t) given by

for F={f,g}, U= {u, v} e yΛ(Ω)χ£2(Ω);

by condition (d), IMIq/^/) a r e equivalent norms of FΛ(Ω)xZ<2(Ω). Finally, we
define 3)J(t) for each t by

^ ( ί ) - {C7eJJ2(Ω)χ Vjμ); &m(t)U=0 on Γ} .

3.2. Energy inequalities. This subsection corresponds to Inoue [12;
Section 3].
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Lemma 3.1. There exists a constant 0 0 such that

for all UEΞH2(Ω)X VJΩ) satisfying &Jt)U=a(x)φ with φ(ΞL2(Γ).

Proof. Integrating by parts, we have for U= {u> v} eϋΓ2(Ω)χ

Re(J[(ί) U, U)m

= Re {a[t\ v, U]+C0C2(Ό, u)t-(a2(t> x; D^+afo x; D)v, v)t}

where (i°(ί, x; D)uy=Vj(x)aiik% x)dukjdxh. On the other hand, since BΛ{t)U
=a(x)φ, it follows that

[ , x; D)u)i+σikvk]-σikvk-τikuk}^idx

ka

The combination of the above with the aid of (e) leads us to

Lemma 3.2. TA^β ^mίί α number λ0 ίz/cA that, for any λ > λ 0 , \I—Jl{t)
is a bijection from 3)Λ(f) onto ttyjfyfor each t.

Proof. As easily seen, we have only to show that there exists a number
λ0 such that, for any {/\ fir} e VΛ(Ω) X L\Ω) and any λ > λ 0 , the boundary-
value problem

Aλ(t)u : = (^(ί, Λ:; D)+λ^(ί, Λ; D)+λ2)i£ = (ax{t, x; D)+\)f+g in Ω,

= α(i)σ(ί, x)f on Γ

admits a solution MG/JΓ2(Ω). Applying Theorem Γ of Ito [16] to the above
equations, regarded as, of (ί/, ), we see that the mapping

(3.3) {AJfy, BΛJt)}: H\Λ)3u - {Aλ(t)u, BaΛ(t)u}

is a Fredholm operator with index 0 for each λ and t where

is a Banach space equipped with the norm [ ]β;i/2 defined by
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- inf ίίΦ^+lΦolnl Φ = α(*)Λ+(l-α(i)
for some φx^Hι/\T), φo^H3/2(T)} .

It is therefore sufficient to show that the kernel of (3.3) is a null space. Let
be in the kernel of (3.3), so that

Re (Aλ(t)u, u)t = 0 and BatX(t)u = 0 .

Integrating by parts and using (b)-(e), we have, when λ > 0 ,

a[t; uy u]+\\uf u)t£-
cί

for any £>0 and some C(£)>0. This estimate with the aid of (b) implies that
u=Q for sufficiently large λ. Q.E.D.

Lemma 3.3. Let μ, t be real parameters.

(i) If u^H2(p) is a solution of the boundary-value problem

(a2(tiX;D)+μ)u = f in Ω,
( ' ] 1 (α(κ)δ(ί, x; D)+(l-a(x))ω(ty x))u = a(x)φ on Γ

with given data f Gi 2(Ω) and j5eJff1/2(Γ), then we have the estimate

(3.5) \\u\\l^C{\\f\\2+[φ]\μ+\\u\\2), C > 0 : const.

And, if μis sufficiently large, u is a unique solution, and the term \\u\\2 in the right-
hand side of (3.5) can be eliminated.

(ii) There exists a constant C>0 such that

for all U(ΞH2(Ω,)χ VJO) satisfying $Λ{t)U=a(x)φ with φEΞH1/2(Γ).

Proof, (i) Similar argument to the proof of the preceding lemma shows
the existence of a number μ0 such that, for any μ^μ0, (3.4) has a unique solution
u^H2(£l) with the estimate | | t t | | i^C(| |/Ί | 2 +[0]i / 2 ). It is now easy to get the
estimate (3.5) in the case μ<μ0.

(ii) An easy application of (i). Q.E.D1

Lemma 3.4. For each t, Φjj) is dense in VΛ(CL)xL\CΪ).

Proof. Since Co(Ω) (resp. CT(Ω U Γ,)) is dense in L\Ω) (resp. in VJΩ)),
it is sufficient to show that, for any U^CQ(Ω[JΓΛ)} there exists a sequence
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=i in £Γ2(Ω) such that

Bl(t)uμ := a(x)b(t, x; D)uμ+(l-a(x))ω(t, x)uμ = 0 on Γ ,

Uμ.-> u in FΛ(Ω) as μ -> oo .

However, for the future use, we will construct one in CSΓ(Ω U ΓΛ).
If we put Vμ—u—Uμy a sequence {ιv}£~i in C!Γ(Ω U ΓΛ) satisfying

-B«(*K = Blif)u on Γ , ι;μ -» 0 in VJΩ) as μ -> oo

is required. Take a vector function ι;GC°°(Π) Π ̂ Γί(Ω) such that

(3.6) b% χ; D)v = δ(f, ά; Z ) ) i ι + t = ^ ω ( ί , i)«(eC-(Γ)) on Γ;
cc(x)

the existence of such υ is verified by using the invertibility of [aiikh(t, fyv^fyvt^X)^ k

on Γ for each t (by (H.I)) and the well-known fact that the mapping: C°°(Π)3
w-> {dwjdv, w} GC°°(Γ) X C°°(Γ) admits a continuous right inverse. And choose
a functions ξVeC°°(Π) for each μ (resp. η^Co(Ω\JΓa)) so that

(3.7) O^f r^ l , I V^l ^ 2 μ on Ω; fμ = 0 on Ω\Ω2/fA, = 1 on Ω^

(resp. Oίg^^l on Ω, 77=1 in a neighborhood of supp #)

where Ωδ=: {x^Ω\ dis(^, Γ)<δ}. If we define Vμ.^ξμ.ηv, the sequence {ι?μ}>=i
in CJ(Ω U Γ J is a desired one. In fact, since Vι?=0 on Γ\suρp u, we have by
(3.6) and (3.7)

vμ = v = 0 on Γ,

and furthermore

as

where the last inequality is due to a Poincar6-tyρe inequality

( \w\2dx£—A \Vw\2dx for all weJJj(Ω), ^ = 1 , 2 , - Q.E.D.
jQ 2 / μ /^ J Ω 2 / ^

Using Lemmas 3.1-3.4 and the Hille-Yosida theorem, we have:

Lemma 3.5. Let F^^β)^^)) and UQ<=ΦΛ{tQ)for to^R fixed. Then
there exists a unique solution U(t) of the evolution equation

-f- U(t) = JL(to)U(t)+F(t), E/(0) = Uoat
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such that U{t)<=£)a{tt)for each ίe[0, T] and U(t)G<5)(<Va(t0)),

Now we prove the following two energy inequalities, the latter of which
will play and important role in solving (3.2).

Proposition 3.6. Let κ(=£?(JΪ2(Ω)) fl€)(VJΩ)) ΠS2(L2(D,)) satisfy

(3.8) L{t)u = f in άτ, BJt)u = a{x)φ on t τ .

(i) // fee°,(L\Cl)) and φ<=e°t(L2(Γ)), we have

\u(t,
dt

8B

dt

\\\\f(r, -)\\2+[φ(r,

(ii) Iff^e){L\O))and

\\u{t, .)iι§+ιι«(f, •:

{L\T)), we have

du / 2

ι2 4- 9 M r
Λ(Ω 1 9ί

32it/

2

vβ<a)

2

3 2 κ f .

8 ί 2 ( l > J

Proof, (i) By a standard argument (see [10; Proof of Lemma 3.8]).
(ii) Defining us(t, x)=(ui(t, x)) for small δ > 0 by

uί(t, x) = S-\u'(t+B, x)-u'(t, x)),

we have from the former of (3.8)

(3.9) L(t)us(t, x) = f,(t, x)-(ajt, x; D)-^+a2S(t, x; Z)))«(ί+δ, *)

where alt(t, x; D) is given by

(3.10) (alS{t, x; D)o)' = \uίk% x)A,+el\t, x)](gkl(t+8, x)v>)

^(t, *)](ft,.,(ί, x)v')(ί, χ)Λ-

for v—ζv'ίx)); fs(t, x) and a2S(t, x; D) are defined similarly. The latter of (3.8)
are rewritten as

[a{x)π(t, x)[b(t, x; D)+σ(t, *)-^-]+(l-α(i))/}iι(ί, x)

= a(x)π(t}x)φ(t, x) on t τ
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where π(t, x) denotes the inverse operator of ω(t, x), that is,

Or(f, x)vY = g'% i)ωjk(t, x)vk for v = (v{)

with (ωl *)=(ωί*)-1 and (gik)=(gik)-\ Thus we have

(3.11) BJt)uB(t9 x) = a(i){φfa i)+ω(t9 i)*β(f, £)φ(t+8y x)

~[ω(t, ±)π,(t, *)(b(t+δ, X; D)+σ(t+δ, x)^)

+(bδ(t, X; D)+<rδ(t, i)-A.)] u(t+8, i)}

where b8(t, x; D), σ8(t, x) and πs(t, x) are defined in a similar manner to (3.10).
By applying (i) to (3.9) and (3.11) and then making δ-»0 there, we obtain for
fe[0, T— δo] with δo>O a small number

-^(0, i) di

\\f(o,

where C(Γ) is independent of δo>O, so that (3.12) holds for all ί6 [0 , T].
Combining (i) above and Lemma 3.3 (ii) with (3.12) and using GronwalΓs
lemma, we get the desired inequality. Q.E.D.

3.3. Existence and regularity of the solution. This subsection cor-
responds to Inoue [12; Section 4].

Proposition 3.7. Let f^β]{L\a)) and φ^ε0t(H1/2(T))r\ε]{L2(Γ)). If
, ^ = 0 , then the mixed problem

L(t)u = f in άτ , BΛ(t)u = a(dt)φ on i γ ,

i n a

has a unique solution u^Sl{H\d)) Πβ){Va{0)) ΠS2

t(L2(Ω)).

Proof. Thanks to Proposition 3.6 (ii), it is sufficient to prove when
f &8]{Hl{d)) and 0e£J( t f^(Γ)) .

Let Aμ: O=to<t1< - <tμ.=T, μ=l, 2, •••, be the subdivision of [0, Γ]

into μ equal parts. For Δ^, we construct Cauchy's polygonal line uμ(t, x),

if ίe[ί»,ίv_J, 0^»^/t-l,
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where uμ^=uμ^(ty x), t^[tv, ί v + j , are determined inductively as follows: Let

uμo=uμo(t, x) for t^[to> tλ] be the solution of

( L(to)uμo = f in (ί0, tJ X Ω , BΛ(to)uμo = a(£)φ on [t0, £J X Γ ,

9£

when l^z/^/z,— 1, let uμv=uμv(t, x) for £^[£v> *v+J D e t n e solution of

)Uμ^ = f in (ίv, ί v + 1 ) X ί l ,

x Γ

Ω .

For each 0:^i/^μ--l, since the compatibility condition of order 0 (see Defini-
tion 3.8) is satisfied at ΐ=tv inductively, we can show the existence of such
uμ^ε0

t{H2(ίϊ))f]ε]{VΛ{n))f]ε2

t(L2{n)) for fe[fv, fv+j (see [12; Proof of
Proposition 4.3]). Moreover, as easily seen, Uμ. is in the space β°t(H2(Ω,)) Π

Our remaining task is to show that {uμ}^^\ converges in some sense to the
desired solution u of (3.13). This process is done in the same manner as in
[12; Proof of Lemma 4.5] (see also Ikawa [9; Section 4]) with some modifica-
tion. We only mention that, in proving what corresponds to Claim 2 of [12;
Proof of Lemma 4.5], we need a device used in Proof of Proposition 3.6 (ii).

Q.E.D.

With the aid of Proposition 3.6 (ii) and the preceding proposition, we ob-
tain a solution of (3.2). Before stating the result, we introduce the compatibility
condition.

DEFINITION 3.8. Let m be an integer^:0. For given data {M0, uλ} in Ω,
f in ΩΓ and φ on Pτ with suitable regularity, we say that they satisfy the com-
patibility condition to (3.2) of order m^O at £=0 when the following relations
hold on Γ:

0, x; ) p q \ p

= a(£)φ(p\0, i) for
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with Up=up(x), 2<^p^m+l (when m ^ l ) , defined successively by

where we use the notation such as

(3.14) «, = - £ ! ( * )»*)

(3.15)

, x; D)v = (-^-) W . * for I? =

Theorem 3.9. For an integer m^0,let {u0> u} <=Hm+2(Ω)χ Hm+1(Ω)>

εp

t(Hm-ρ(a))r\εv\L\Ω)) and φGnερ

t(Hm-p+1'2(r))f)ε?+1(L2{τ)). if
ί=0 p=0

these data satisfy the compatibility condition to (3.2) of order m at t=0, then the

mixed problem (3.2) admits a solution MG n ^ f f " ' - ^ ^ ) Π VJΩ)) Γ\εT+2(L2(Ω))

unique in £?(U2(Ω)) Πe)(VJΩ)) Πε2

t{L\Ω)).
Proof. We show only the case m=0; the case m^Λ. is shown by the same

method as in Ikawa [9; Section 5].
We first take a sequence {uiμ};Li in H2(fΐ) such that

0 on Γ ,(3.16) {α(*)δ(0, i ; Z))+(l-α(i))ω(0,
Miμ -> Mi in F Λ (Ω) as ^ -» co

in the same way as in Proof of Lemma 3.4. By virtue of Lemma 3.3 (i), the
boundary-value problem

(3.17)

(Λ2(0, X; D)+μo)uoμ. = (Λ2(0, X\ D)+μQ)u0 in

[a(x)b(0y x; , x)]uoμ

with μ,0>0 large enough has a unique solution
sequence {MO/J>=I converges to M0 in H2(Ω).

We next consider a mixed problem

.] on Γ

for each μ, and the

L(t)vμ = f—L(t)wμ in on

in n

where

υ>μ.(t, x) = uoμ.+tuiμ,,
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ψ,(t, *) = -W, Λ; D)-ω(t, i)π(0, i)δ(0, i;D)]wμ{t, t)

Applying Proposition 3.7 to (3.18), we obtain its unique solution ι;μe<??(£Γ2(Ω)) Π
β](Va(Ω,)) Π£?(£2(Ω)) for each μ. Since (3.16) and (3.17) indicate that δΛ(0)uv
=α(i)j5(0, i ) on tτ, we have

Thus Mμ:=ι?μ+ιι?μ is a solution of the mixed problem

L{t)uμ = f in ώ n BJίήuμ = α(i)jί on fΓ ,

Hence Proposition 3.6 (ii) shows that {uμ}^i converges to the unique solution u

of (3.2) in ε°t(H\ίi)) n e)(vΛ(Ω)) n ε2

t{L\a)). Q.E.D.

3.4. Dependence domain. Denoting by \p(t, x; ξ), l^p^ln, the real
roots of the characteristic equation of L(t):

det [gik(t, x)X2+2dikj(t, χ)ξjχ-ai^\t, x)ξiξh]itk = 0

for (ί, Λi)eώ and f=(?,•)eJRn\{0}, we define

λ m a x = supA max \Λp(t,x;ξ)\.

We begin by studying how the equations

(3.19) L(t)u =0 in ώ, BJt)u = 0 on t

are transformed by the change of variables

(3.20) j = φ(t, x) and y = x

where φ(ί, Λ;) is a C"-function in a neighborhood of ώ such that φ(ί, x) = t for
sufficiently large 11 \ and

(3.21) - ^ > X m a x | V ^ | on δ.

ot

Denoting

β'(ί, y) = u% x), άiik\s, y) = a^% x),

#k(s> y) = Sik(Sy y)ui(s, y) = tιA(ί, Λ?) ,

a(x)y n = n, etc.
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we obtain from (3.19) for each l^i^n

d2 I 8 v
ds2 I 8ί v ; 9* A J9*9/ 9/9/

+(at most 1st order terms of (uk)Y = 0 in 22 X θ ,

on Λ x Γ

where gik<ΞC~(Rx&) are given by

23 ά
8; J ^ 9^' 8ί 8** 9Λ:A>

(^'*) is symmetric and positive definite by (3.21). With the notation

( i t *) = ( i ' V > »i = «o w* = ^w,. = i ^ β , ,

the above equations are rewritten as

+(at most 1st order terms of (wy))f = 0 in RxΩ,,

+(Oth order terms of (Wj))\+(l— d)gngkmωlm wk = 0 on

We then realize that the transformation (3.20) leaves conditions (a)-(e) in-

variant by considering the following correspondence:

Now, using Holmgren's transformation in a neighborhood f/ of (0, xo

with JC O GΩ (that is, φ(ΐ, x) = t+ \x—xo\
2 in C7), we have the local uniqueness

near (0, Λ0) (see, e.g., Inoue [11; Section 5]). Furthermore, the wellknown



690 H. Iτo

method of sweeping out shows that the mixed problem (3.2) has a finite pro-

pagation speed.

Theorem 3.10. For (tOy ^ 0 ) G ^ Γ , we denote

on Π Λ(ί0,

Suppose that u^C2{βτ ΠΛ(£o, x0)) satisfies

' L(t)u = 0 in Δ Γ Π Λ(ί0, XQ) , 1

M(0, 0 = -^-(0, 0 = 0 in {JCGΩ; (0, x)

Then u is identically zero in ύτ f] A(tOy x0).

4. Proof of Main Theorem

Now we come back to the original problem. All our argument in this
section is under hypotheses (H.I) and (H.2).

4.1. Weak solution for locally-supported data. This subsection is
devoted to proving the following local version of Main Theorem.

Theorem 4.1. For any (tOy xo)^ύTy there exist a constant δ > 0 and a
neighborhood Wd[t0— δ, to+8]xRn of (tQy xj which satisfy the following: For
any ^ ( f o — δ , to+8) and any given data {κ0, uv f} e VD{t^) X L2(Ω) X L2((tv to+8)
X Ω) satisfying

(4.2)

(4.1) (supp u0)U(supp α J c Π Π W(t^), supp fd([tly to-\-8]xΠ)(Ί W

with W(t1)={x; (tly x)^W}y the mixed problem

ι = f in (tly

B(t)u = 0 on U {t}xTN(t)y

M = 0 m • U W x Γ ^ ί ) ,

"K i> Wo , 9 ί I v Uγ

admits a weak solution uG.H\(tv to+8)χΩ) such that

(i) supp ud([tly to+8]xΠ) Π ίV;

(ϋ) Hiί(ί, OH?

i n

, -)\\*dτ)

for all t^(tly ί o+δ) where C > 0 is independent of tx and given data.
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The case (£0> JC0)e2Γ. We may assume that (tOί xo)=(Oy 0) and that Ω,
Γ, TD and 2 are represented near there as mentioned at the beginning of Sub-
section 2.2. Let U and Φ (resp. V and δ) be as in Proposition 2.2 (resp.
Proposition 2.6). And WΊs given as follows: choose open balls VOi Ϋλ in Rn with
the common center at 0 such that V^V^Ϋy and define λmax, after shrinking
U if necessary, by

L x = sup max \%p(s, y; ξ) |
Csyχ=ΦCir) l^P^Zn

where \p(s, y\ ξ), l^p^2n, are the real roots of the characteristic equation of
L(s) (defined in (4.5),):

det | > ( , , y)\2+2g^sy y)^(Ψ(s9 y))ζjX.-V'»(s,

Then, by replacing δ>0 with a smaller value if necessary, we have

[-S, S\XΫQ-DW:= {(s,y)tΞ[-δ, S]xRn; \y

We define an neighborhood W of (0, 0) by W=Ψ(W) where Ψ ^ Φ " 1 .
We want to construct a weak solution of (4.2) by approximating with a

solution of the following mixed problem with £^(0, £0):

(4.3)

= ft in ( ί l f 8)χΩ,

ajt, X)(B(t)+εX(t))u+(l-<x<(t, *))» = 0 on (tυ δ)xΓ ,

«(ί l f ) = «o., |^(*i> ) = «i. i n Ω

Ot

where £0 and as(t, i) are as in Subsection 2.1, {iιOε, uu, fg} converge to {uOy uv f}
as £-»0 (see Lemma 4.2) and X(t) is a C°°-extension outside U of the X(t)
given in Definition 2.3 in the form that

(4.4) X(t)u =-^+7\t, x)^L for (ί, * ) e [ - δ , δ ] x Π .

According to Proposition 2.4, (4.3)8 is transformed in U by Φ as

(4-5),

L(s)v := (-J£ +(φ, y; D) 9

βs

in Φ(((f„ δ) X Ω) Π U) C (*,, δ) X Λ"+ ,

Z,(v')(* (ί. y'\ D)+σt(s, y') —) »+(l-δ,(/))a(j, y')υ = 0

on Φ(([ί,, δ] X Γ) (Ί U) c [ί,, δ] X dR

c
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(4 6)

with Ό* = a* =
ox*

, y)W(Φ(s, y)),

*„ =

with g't = f',,

w i t h i ^ ^

with < = β { t _ ^

with the notation as in Subsection 2.3 and

y = φ'(f, x) for (*, j>) = Φ(f, x), *< = ψ '(ί, y) for (ί, *) - Ψ(J, y);

the last of (4.6) is due to the formula

Moreover, with the notation at each s

wi = gik(*> )wk for w = (w^y)),

the operators a19 a2, bζ9 σe and ω are in the following forms:

(α1^, y D)α?)'' - 2^* - ^ ^ + ( O t h order terms of (to*))',
9ί 9y;

iikh most 1st order terms of(Λ2(J, y\ D)wY = ^-:( aii

9y \
(6,(ί, / D)^)1" = Sy2

ίΛ* ^ + ( O t h order terms of (^) depending on 6)1',
dy

Ms,y')u>y = εiei-y*w*, (»(*,y')»)' = I?i"y*w».

In order to apply the results in the preceding section, we consider the fol-
lowing mixed problem modified from (4.5)β, 0 < £ < £ 0 :

(4.7).

i n

+(1 -βj(fi))ω(s, f)v =

( t ) v

on fc, δ] X y ,

in ω.
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Here ω is a bounded subdomain of Ϋ with C°°-boundary y—dω chosen so that
Rtt+f] ViClωClRl Π Ϋ and y is represented by yn=0 near Vv Choose a C°°-
submanifold σ, diffeomorphic to an (n—2)-dimensional sphere, of y of codi-
mension 1 so that σ(Z{yEΞ V1', y

tt~1^ytl=0} and is represented by ytι~1=yn=Q
near Vo. Then y is divided by σ into two open subsets; the one including
{yG Ϋo; y

n~1<yn=0} is referred to as γ^ and the other as yD: T^TivUσU'/z)
(disjoint union). Making £ 0 > 0 smaller if necessary, we define βi(y)^Coo(y)y

0<£<£ 0 , in the same way as az(t, i) with Γ and Σ(£) replaced by y and σ,
so that Bz{y)—^z{yr) on γfl Vo. Further, an appropriate extension of l^l"1

outside [—δ, δ]x(γΠ Ϋλ) (resp. (pj) outside yΠ Fj) makes σε and ωε (resp. b2) to
be forms to which we can apply the results of the preceding section. Finally,
the data {ι?Oε, vlζ, g£} are given in the following lemma. The meaning of "the
compatibility condition to (4.5)/' appearing below will be understood from Defini-
tion 3.8.

Lemma 4.2. Let ί x e ( — δ , δ) and let {u0, uv f} e VD{t^ X L2(Ω) X
L2((tv δ) X Ω) satisfy (4.1). For any integer m^>0, there exists a family

fro., Vi*> 0.}o<«<«o ώ C » X C > ) X C ° ° ( ( [ ^ δ]Xω) 5IM:
(i) (supp vξ0) U (supp υιt) U (supp firβ(ί,, )) c (ω U yN)

supper,c([^, δ]Xω)Πl^

(ϋ) {ι;Oβ, vlζ1 gz} -* fro, 0i, ^} <w £ -> 0 in H\ω) X Z,2(ω) X L2((tv S) X ω)
{v0, v19 g} are obtained by (4.6) from the given data {u0, uv f}

(iii) {ι;Oε, i;lβJ flrε} satisfy the compatibility condition to (4.5)ε of order m at
s=tv

Proof. We construct a desired family by induction with respect to m. The
case m=0 is easy (see Proof of Lemma 3.4). We show the validity for the case
m^ 1 assuming that for m— 1. Define vpζ^Coo(w)) 2^p^m+l, from {ι;Oε, vlt9 ge}
by (3.14) and choose w,,<=Hl(a>) Π C°°(ω) so that IliflJIx^ε, supp wzc(ω U yN) Π
^ ( 0 and

bfa, y'\ D)w, =

(see Proof of Lemma 3.4) where ftjί) and σ^ } are defined as in (3.15). Then the

family frOβ, υ{99 firε}0<ε<ε0 defined by

v u = v l s - w s , g[ = g t — a x ( t v y ; D ) w , i f m = ί y

[ ^ ] ίf

satisfies (i)-(iii) by inductive assumption. Q.E.D.
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Proposition 4.3. When m ^ I — 1 + 1 , for the {vot, vlty gξ} given in Lemma

4.2 with small £>0, say 0 < £ ^ £ v (4.7)β admits a unique solution ι?8eC2(ft, 8] Xα>),

which is supported in (ft, δ] X ω) Π W.

Proof. For each £e(0, £ j with £λ>0 small enough, (4.7)ε fulfills conditions
(a)—(e) given at the beginning of Section 3 under the appropriate correspon-
dence. By virtue of Lemma 4.2 and Theorem 3.9, (4.7)e has a unique solution
ι;εeC2(ft, δ]Xω) for each £e(0, £ j . Applying Theorem 3.10 to this solution
and using the property (i) in Lemma 4.2 of {vOsy vliy gζ}, we have

ϋ, = 0 in (ft, δ] X ω) Π A(δ0, y0) for any y0e ω\W(S)

where A(δ, yo)=i(s, y)\ \y— Jol<^maχ(δ—s), s^tx}. Consequently, since the
definition of W implies

tu δ] X ω)\ U Λ(δ, y0) = (ft, δ] X ω) fl ^ ,

the support of pβ is included in (ft, δ] X ω) Π 1^, as desired. Q.E.D.

Let {iιOg, iι18, /̂ ε} be the data of (4.3)8 which are obtained, using (4.6) and

0-extension, from the {vOzy υιt> gζ} given in Lemma 4.2 with m^ — 1+1,
L Z, J

£e(0, βj]. Then, a C2-solution MS of (4.3)f is obtained similarly from the above

Corollary 4.4. Under the above circumstancesy the mixed problem (4.3)e

adimits a solution u gGC 2(ft, δ] xΩ) with support in (ft, δ] xΩ) Π Wd{[tly δ] xΠ)

Before constructing a weak solution as a limit of the sequence {u
obtained above, we examine some properties of X(t).

Lemma 4.5. The operator X{t) of (4.4) satisfies the following:
(i) z (̂£)γ;'(£, i )=0 on tf]U\

(ii) If V and 8 are sufficiently small, there exist positive constants δ0, c, C
such that

(4.8) a(t; v, v)-

for all t<=[—S, δ] and veH\Ω,) with support in {xeΩ; (T, X)GΨ(Ϋ) for some
τe[-δ,S]} .

Proof, (i) Since y(ί, *)=^fcl(Φ(ί, *)) in E/, we have by (2.6)
9 Ϊ
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i) = -P,(Φ(f, *)) | f (f, i) = 0 on
ot

(ii) By the definition of £2(0, 0) and the fact that

we deduce the desired result (see Proof of Proposition 2.6). Q.E.D.

We may assume that Fand δ are, in advance, chosen so that (4.8) is satis-
fied. Now we present an energy inequality for ut.

Proposition 4.6. The C2-solution uz of (4.3)ε, 0<S^6ly obtained in Corol-
lary 4.4 satisfies the energy estimate

(4.9) \\ue(t, )||ϊ
dt s(τ, )\\>dτ)

for all t^[tly δ] where C>0 is independent of tx and 6.

Proof. The proof is similar to Inoue [13; Proof of Theorem 3.5]. By
integrating by parts after taking the scalar product of ((9/9ί)2+i4(ί))ng=fe with
X(t)uSf and by using Lemma 4.5 (i), the fact that supp usd([tly δ] xΩ) Π U and
the inequality for v(=C\[tly δ]xΠ)

-jL|W|» = 2 Re ( | ^ , r at each fc, δ],

we obtain

(4.10) 1 ^ - [ | | M 8 |

where || |Uω is given at each t^[tv δ] by

>
+a(t; v, v)+K\\v\\2 for v^CXfa, δ]xΠ)

with K>0 so large that there exists a constant c>0 satisfying

a(t; vy v)^c\\v\\l-K\\v\\2 for all *GΞ[-δ, δ], v^Hl(ίlUΓ8l(ί))

The integration of (4.10) over (tly t) gives

(4.11) )us) X{τ)ut>dτ
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Using the facts that supp ιι 8c([^, δ]xΠ) Π U and that supp
have by the change of variables by Φ(τ, ) for each τ

- R e

we

-1 !> kίifif a W

2

where Γ«(ί)={*eΓ; at(t, i)>0}, £e={y'(=dR»+; y"-ι<ε} and \g\=tet{gtj).
Therefore, (4.11) yields

α ε

 κ rβ(τ)/ )

Using (4.8) and GronwalΓs lemma and taking a larger value of K if necessary, we
arrive at the desired inequality (4.9). Q.E.D.

We finish the proof of Theorem 4.1 for the present case. Since l

is bounded in H\(tly S)xΩ) by (4.9), we can select a subsequence, denoted by
{M2jJμ«i with £μ I 0, having a weak limit u in H\(tl9 S)χΩ). On the other hand,
taking the scalar product of ((d/dt)2+A(t))gz=fi with any tι&Co([tly δ)xΩ)
such that fj(ty x)=0 near TD(t) for each t and integrating by parts, we have

(4 1 2»

(Λ.
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In order to pass to the limit, we need to estimate the last integral

)«,, n>dt = -

Since τj:=ej—vj> is tangential to Γ for each j where ey=(δj)f , we have by
Lemma 4.5 (i)

from which it follows that

Therefore, by letting μ,-^oo in (4.12) with 6=6^ we obtain

By the density argument, we have (1.4) for this u.

Since n β μ | ^ . a x r - ^ l <M)XΓ in L\(tly δ)xΓ), we have i ί | ( / l i β ) X Γ =0 on
U § x Γ D ( ί ) . Moreover, u(tl9 -) = u0 since MSμ(^, -)-*u(tly,-) in i 2 (Ω).

Hence u is a weak solution of (4.3)ε.
That the u satisfies (i) and (ii) of Theorem 4.1 is due to the fact that, for

each 6^(0, £j , uz does satisfy them (see Corollary 4.4 and (4.9)).

The other cases. In the case (£0, xo)&f%

NtTy we consider the approximate
problem modified from (4.3)e, for small £>0, by replacing S(ί) (resp. TN(t)) with

; disΓ(x0, i ) = ε ° (resp. disΓ(x0) i)<€°)}> αβ(^ ^) accordingly and X(£) with

where £°>0 is sufficiently small. In the case (ί0, XO)&&TX^N,T9
 w e have

only to take ΓZ)(ί)=Γ, so αβ(ί, i ) = 0, in (4.3)8. In both cases, we can apply
the results of Section 3 directly to the approximate problems thus obtained, and
the remainder processes of the proof are similar to but much easier than the
preceding case.

4.2. Proof of Main Theorem. Before proceeding with the proof of Main
Theorem, we prepare the following simple lemma, whose proof we leave to the
reader.

Lemma 4.7. Let {u0) uλ, f} e VDφ)xL2{Ω)xL2{άτ). When 0<t,<
t2^ T, we assume the following:

(i) (D) admits a weak solution v=v(t, x)for £e[0, ί2);

(ii) With the initial data \v(tv •), — (*i, ' l l e F ^ x L ^ ) at t=t19 (D)
I dt )
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has a weak solution w=w(t} x)for t^[tv t2). Then the vector function u~u(t, x)
defined by

u(ty x) = v(t, x) for *e[0, tx), =w(t,x) for tSΞ[tvt2)

is a weak solution of (D) for ίe[0, t2).

Proof of Main Theorem. There exist a finite number of points (th #/)e

U,T) l^L, such that iW}ιGL is an open covering of ώ τ where Wt denotes the
interior of W given in Theorem 4.1 with respect to (th #,). Moreover, as well-
known, there exists a number r > 0 such that the r-neighborhood Br(t, x) of any

(£, X ) G Ω Γ is included in Wlo for some / oeL. We now choose a finite number
of points xm, m&M, so that Ωx[0, r j c UweM-Br(O, xm) with rx fixed in (0, r),
and further a partition of unity {φm}weIcCΓ(Λ"+1) subordinate to an open
covering {Br(0, xm)}meM of [0, r J x Π , that is,

supp ^ C B ^ O , xm), O ^ φ ^ ^ l for all mtΞM\ Σ ψ » = l o n [0, r J x Π .

Then, by virtue of Theorem 4.1, the mixed problem

= φmf in

= 0 on U {ί}xΓw(ί), « = 0 on U {t}xTD(t),

•) = φ.(0, )«o, |τ-(0, •) = Φ.(0, )«i ώ Ω

admits a weak solution i£w for each /nGilί. Obviously, ι?:=2weMMOT is a weak
solution of (D) for ίe[0, r^.

By the same method as above, we can construct a weak solution w of (D)

for ^ [ ^ , 2 ^ ) with the initial data iv(rv .), | ^ K ) } e ^ W x i 2 ( Ω ) at ί=r x .

Thus, by Lemma 4.7, a weak solution of (D) for *e[0, 2rx) is obtained. Repeat-
ing the same argument ([Γ/rJ + 1) times, we arrive at a weak solution^H\ΩT)
of(D)forfe[0, T).

For uniqueness, see Duvaut & Lions [4; p. 130] and Inoue [13; Section
5]. The energy inequality is easily obtained from Theorem 4.1 and the con-
struction of the weak solution. Q.E.D.

Let \p(t, x\ ξ)y l^p^ny be the positive roots of the characteristic
equation det [8ik\2-aiik% x)ξjξh]itk = 0 of {djdt)2+A{t). Putting λm a x =

sup max Xk(ty x\ ξ), we have the following.

Corollary to Main Theorem. For (ί°, x°)^R+xRn, we set
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Λ(Λ χ°)= {(*, χ)\ \χ-χ

If given data \uOy ul9 f} e VD(0) X Z,2(Ω) X L2(άτ) satisfy

u0 = uλ = 0 m {^GΩ; (0, *)eΛ(f°, a0)} , f = 0 in άτ f] Λ(ί°, x°) ,

then the weak solution u^Hιφ>τ) of (D) vanishes in άτΠ A(ί°, *°).

REMARK 4.8. Let Ω be an interior or exterior domain of a compact C°°-
hypersurface Γ in Rn. Consider the following mixed problem of linear elasto-
dynamics in a more general form than (D):

(4.13)

in ώ
τ ,

B(i)u = φ on TNtτ > u — φ on • D,T l

i n

where p(ί, x) is a positive C°°-function on OΓ. For simplicity, we assume that
aijkh(t, x) and p(£, Λ?) are constant in x outside some bounded set in Ω for each t.
If we redefine cs(ί, i ) , (ί, i ) e t Γ , by replacing Λ/Λ*(ί, x) with β ί W(ί, i)/ρ(ί, i )
in Definition 2.5, we can show the following under hypotheses (H.I) and (H.2):

Let {u0, iij, f} G f f ^ X l ^ x L 2 ^ ) , and let φ and φ are vector func-
tions on fv such that Wo^^^O, x) on 1^(0) and B(t)v=φy v=φ on f"Γ for
some v^H2φ>τ). Then (4.13) admits uniquely a weak solution M G J Ϊ ^ Δ J , ) , i.e.,
M=$£ on Γ^Γ, M(0, •)=M0 in Ω and

:

o
{(f,

for all test function η as in Definition 1.1 (cf. Duvaut & Lions [4; Thόorέme 4.1,
Chap. 3]).

Appendix. Some properties of c2(ί, x)

Our argment given below is under (H.I) and the same circumstances as in
the latter half of Section 2. Let us write aiikh=aijkh(0, 0) and c s =c 2 (0, 0) for
short, and let A and B be those of (1.1) and (1.2) associated with these aijkh and
Cϊ=Rl, Γ=dR%.

A.l. An alternative definition of c5. We present another algebraic de-
finition of £2 than Definition 2.5. The idea here is much the same as in Ito [15;
Section 4].
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First of all, we note that (2.7) implies the coercivity on H\R\) of the quadra-

tic form assoicated with Aκ\^=A+κ{Qldxn~ιf, whose symbol is denoted by aκ(ξ)

=a(ξ)—κξ2

n_1I with a(ξ)=(aijkhξjξh)ifk the symbol of A Since A is strongly

elliptic, its symbol a(ξ), which is real symmetric matrix-valued and homogeneous

in ξ^Rtt of degree 2, is positive definite for all ξ^Rn\{0}. Defining cA>0 by

c\ = sup {*; aκ(ξ)^0 for all £4=0}

= min {κ; det aκ(ξ) = 0 for some έ φO} ,

we see that Aκ is strongly elliptic if and only if κ<c2

A, and that (2.7) holds for all

u<ΞHl(RV) if and only if κ^c\.

Let κ<cA. Since Aκ is strongly elliptic, the Dirichlet problem

(A.1) AKu = 0 in Rl, κ | θ Λ . = φ^C^{Rn~ι)

admits a unique bounded solution uκ^C°°{Rn+)> where we define a mapping

Pκ\ C*(R*-ι)^C~{Ri) by uκ=Pκφ. This is carried out as follows: By the

Fourier transformation, (A.I) is reduced to a system of ordinary differential

equations in xn^0 with a parameter η=(ηly •••, ^

(A.2) *.(?, Dn)ύ(v, xn) = 0 for xn>0 , Δ^, 0) =

where D Λ = — \Z^Λd/dxn and Λ denotes the Fourier transform with respect to
#'—(tf1, ..., .χ:"-1 ): for example,

&(η, χn) = (2τr)-( w-1 ) j

It is well-known that (A.2) has a unique solution ύκ{η, xn) which dies down

exponentially as #w->-|-oo; its inverse Fourier transform uκ(x) is the desired

solution of (A.I) and satisfies the estimates

(A.3)

We next define a mapping Tκ: CoiR^-^C^R*1'1) by Tκφ=Buκ=BPκφ;

Tκ is a formally self-adjoint classical pseudo-differential operator on Rn~1^dRn+

of order 1. Its symbol tκ(η), which is Hermitian matrix-valued and homogeneous

in η^Rn~\{0} of degree 1, is calculated from the formula

(A.4) tκ{rj)φ{rj) = b(v, Dn)ύ(V> x") I , - . ,

where b(ξ) is the symbol of B. We note that the strong complementing con-

dition of {Ay B} is equivalent to the positive definiteness of tκ=Q(η) for all η e

Proposition A.l. The ^ 2 > 0 in Definition 2.5 is given also by
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(A.5) 4 = sup {κ<c2

A tκ(η)^O for all ηφθ}

= min[{fc<c2

A det tκ(η) = 0 /or some 77 Φθ} U

Proof. Denoting the sesquilinear form associated with Aκ by

««(«, v) =
"+ dxh dx>

we have Green's formula for .4,:

(A.6) (A.U, v)=aju, v)-<Bu, v> for «e£r2(Λϊ),

What we have to do is to show that the supremum of K such that (2.7) holds
is given by the right-hand sides of (A.5).

The first equality. Let n ^ 3 . Given any αeCίf (/?+), we set 0 = « | 8 κ ^ e

CZiR"-1), v=Pκφ(ΞC°°(RΪ) and I P = B — ι ? e C " ( Λ | ) ; by (A.3), pεif !(lί"+) and

u;(ΞHl{Rl) Π J5Γ(Λ:). Using (A.6), we have

ajμ) =

where aκ(u)=aκ(u, u), w{ξ) denotes the Fourier transform with respect to x of the

0-extension of w outside R\. Since aκ(ξ) is positive definite for any ξφO and

κ<c2

A, the assertion follows immediately. In the case w=2, the above discussion

is valid if we replace CQ(R\) with the following dense subspace of H\R\)\

{u^C-(Rl)nH\Rl); φ: = ul^^SiR1; C2)

see Ito [15; Proof of Theorem 4.6].
The second equality. We have only to show that, if the minimum eigenvalue

of tκ(η0) is zero for some tf0e(0, cA) and ηo^Rn~\{O}y then tκ(η0) has a negative

eigenvalue for any ΛG(« 0 , cj). Using p(η)^Cΐ(Rn~1) such that \ ρ(η)2dη = ίy

define jif e^Λ 1 1 " 1 ; CM) for £>0 by φζ{v)=S{n'l)/2ρ({η-vo)l^)P with an eigenvec-
tor pφO associated with the eigenvalue 0 of tKQ(η0). Then, vς:=PKoφζ satisfies

(A.7) aKΰ{vt) = aUv*)-

Ϊ = o (e - 0).

Moreover, if £>0 is sufficiently small, by (A.7) and the fact that

A ^ (e - 0),
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there exists a constant C x >0, independent of small £, such that

We therefore obtain for any /eG(/ί0, c\)

aKQ(v,) -O^it- K0) ^ aκ(v2)

a s

which yields i(C(^o)P#P<O. Q.E.D.

REMARK A.2. TO tell the truth, tκ(η) is well-defined for Λ;<C| with

cL>0 the so-called limiting speed (see [1], [3]) defined by

c\ = sup {*; aK(Vy 0 ) ^ 0 for all

= min {*; det 0,(17, 0) = 0 for some

Moreover, by putting κ=(τlηn.1)
2 in tκ{η), we get the Lopatinski matrix L(τ, η)

in an elliptic region {(T, η)^RxRn~λ 0 < | T | < C L | ηn_1 \} for the mixed problem

{{djdtf+A, B} with T the dual variable of t.

A.2. Relation between cR and cx. Regard R\ as an homogeneous

elastic body with the elasticity tensor (aijkh) (with unit mass density). We

consider subsonic waves (i.e., with propagation speed <.cL) which propagate in the

direction xn~ι along the traction-free boundary dR\ of Rn

+ with body force

absent, do not vary with x//=(x1, ••-. xn~2) and decay exponentially as #n->-foo

such a wave classically called a Rayleigh wave. (For the Rayleigh wave as a

propagation of singularity phenomenon, see Taylor [23], Yamamoto [24], Naka-

mura [19].) Let us examine one with propagation speed c>0 (independent of

the form of motion) in the following form:

(A.8) u(t, x) = e

where u is a solution of the equations

(A.9) ((dldt)2+A)u = 0 in RXRn

+ , Bu = 0 on RχdR\ ,

K>0 is a wave number and $5(#Λ)^C°°(/?+) decays exponentially as #*->+°°.

When n=3 (or 2) and (αί;*A) has the properties in Remark 1.3, Barnett & Lothe

gave a necessary and sufficient condition on (aiikh) for the existence of a Rayleigh

wave and showed that its speed, called a Rayleigh speed, is at most unique (see

Chadwick & Smith [3], Barnett & Lothe [1], Nakamura [19; Appendix]). Since

there may be more than one Rayleigh speed in the other cases, we define ^ > 0

by the slowest if there exist.

Proposition A.3. Assume that there exists a Rayleigh wave propagating

along dRl in the direction xn~ι

i that is, (A.9) has a solution u in the form (A.8).

If CR<CA> the £*>() is given by
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(A.10) c\ = min {κ<c2

A det *κ(eM_i) = 0}

where ̂ JI_1=(0, •••, 0, \)^Rn~ι. Therefore, 0<c^cR in general, and c^ = cR if
n=2 and cR^cA.

Proof. If we set Ό(x)=exrr^^'1φ(x% then (A.9) with (A.8) can be re-
written, by the change of variable: xn~1—ct-+xn~1, as

AKv = 0 in R% , Bv = 0 on dR\

where we assume κ:=c2<c2

A; remark that u of (A.8) depends only on xn and
xn~λ-ct. Since v(x', 0)=eΛ/~ιKχtι~1φ0 with φo=φ(O)9 the first equation of (A.9)
gives v=Pκ(e^'=:ϊs:3^~1φ0)i from which it follows

Bo = TK(e^-^'-^0)
 1

where £F (resp. £?*) denotes the Fourier (resp. the inverse Fourier) transforma-
tion. Denoting by δ( ) the Dirac delta, we have

so that

Bo = (2x)ι-'Ke*=v"-1tlt(e.-Jφ0.

Hence we obtain det tκ(en_1)=O. Conversely, if this equation in tt admits a root

^ £ ( 0 , cA), we can construct a Rayleigh wave in the form (A.8) with speed \/Έx

by taking an eigenvector 0OΦO corresponding to the eigenvalue 0 of tKl(en_^).

Thus we have (A. 10). The last claims follow immediately from Proposition A.I.

(We finally remark that, as a matter of fact, the cR is smaller than cL and is given

by (A.10) with cA replaced by cL\ see Remark A.2.) Q.E.D.

In the isotropic case, the elasticity tensor (aijkh) are, as stated in Example

1.4 (ii), expressed by the Lame moduli λ, μ^R as

aϋkh = x δ ^ s ^ + ^ δ ^ δ ^ + δ ^ δ ^ ) ;

remark that, in this case, (aijkh) is invariant under translation and rotation of
the ^-coordinates. Hypothesis (H.I) implies that λ and μ satisfy μ > 0 and
λ + μ > 0 (see Example 1.4 (ϋ)).

Proposition A.4. In the isotropic case, we have cR=cΊl=y/^jJj where ΘQ

is a unique root of equation (1.6) in the interval (0, 1).

Proof. The eigenvalues of the symbol aκ(ξ) of Aκ:
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{ (\+μ)ξ1ξn

are given by

(\+2μ) \ ξ | 2 - K ^ _ ! ,

from which we obtain cA(=cL)=\/~μ.
If κ<μ, the decaying solution ύ(τj, x") of (A.2) for φ^S{Rn~1; C) is

calculated as

where py q, ήp, ήq are given by

Using (A.4), we obtain from the above

rVιV2 rVιVn

rVlVn-l'~

where r—(q—p)l(\η\2— pq), its eigenvalues are calculated as

1
,'~,μp, μp+^μir(\y\2+p2)±VrX\v\

2+p2)2+4(l-2rp)\v\
2} .

n-2

These calculations are similar to those in Ito [15; Section 4]. We note here
that, even when Λ;—0 or ηn_1=0, the above expressions are valid in the limiting
sense. Thus det tκ(η)=O reduces to

2p+r( I v 12+p2) =

which is equivalent to (\v\2+pΎ=4pq\v\2, or F(—(Vn.J\v\)2)=0. We note
\μ I
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that, since F(0)<0y F(ί)>0 and F'\θ)<0 on [0, 1], F(θ) has exactly one zero
ΘQ in (0,1). Hence we have by Proposition A.I

where the minimum in the middle is attained by η=en_v Therefore, by the
definition of £2, we arrive at the desired result. Q.E.D.

A.3. Charaterization of cA and c a by wave speeds. We only state
the results, which will be verified by paying attention to the discussion of the
preceding subsections in Appendix.

Regard Rn and R% as elastic bodies with constant elasticity tensor (aiJkh)
(with unit mass density) as before. We denote by £/(£", ξn; φ) the speed of the
slowest body wave propagating in Rn in the direction (ξ" sin φ, cos φ, ξn sin φ)
where ξ"=(ξυ -, ξn_2), |ξ" | 2 + | f , | 2 = 1 and 0£φ<*/2, i.e. ctf', ξn; φ)2 is the
minimum eigenvalue of a(ξ" sin φ, cos φ, ξn sin φ). Then cA>0 is characterized
as

cA= inf c,(ξ",ξu;φ)secφ. [cf.cL= inf Cl(ξ", 0; φ)secφ].

We next consider a Rayleigh wave propagating on the boundary 9JB+ of R + in

the direction (η sin 0, cos 0, 0) where ηf=(ηl9 •••, T7Λ_2), 107' I = 1 and 0^θ<πβ.

Denote by cR(η'; θ) the slowest Rayleigh speed in this direction. Then, the c s is

characterized as

cA if the cR smaller than cA does not exist,

inf cR(η'; 0)sec0 otherwise

with the infimum taken over all (ηf; θ), \η'\=l and O^0<τr/2, such that

CRW\ θ) exists.
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