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Intrecduction

In this thesis, I will make a study on operators of class
C.o on a Hilbert space. When a bounded operator T on a Hilbert
space satisfies i{TI!; 1 and T*%> 0 strongly as n»» , T
is said to belong to class C.o . This particular class contains
many non-normal operators. In particular, the unilateral shift
S on the Hardy class H® on the unit disc D in the complex
plane belongs to it. In [3] Beurling showed that the invariant
subspaces for S are precisely those of the form yH?> , where
Yy is an inner function. For a Hilbert space E, we dencte the
E~valued Hardy class by "® (E). Lax [19] and Halmos [17] showed
that the invariant subspaces for the unilateral shift S on
H® (E) are precisely those of the form © H? (F) , where F is a
Hilbert space with dim F < dim E and ©(\) is an arbitrary
B(F,E)-valued inner function defined on D. In this case, if we
set

H(0)= B> (E) £ 68%(F) and S(0) slu(e),
& |

= Pu(o)
then S{0) belongs to C.g, .

In [25] Rota showed that a contraction with norm < 1 1is
unitarily equivalent to S(0) for a suitable inner function O (X1).
Let T be a contraction on a Hilbert space H. Then Sz.-Nagy
and Foias defined the characteristic function @T(K) of T by
-1

Op (M) ={-T + AD, (I - AT¥) D} | DH for A€D,

where DT=(I—T*T}1/2 and DT*=(“_F~-'I“I‘*)1/:2 . And they showed

that T belongs to C., 1if and only if @T(A) is inner. They also

-1-



showed that in this case T is unitarily equivalent to S(@T)
(c£.[28]). Thus the theory of spaces of analytic functions
(cf.[18]) and the corona theorem (16],[24]) have come to play
important roles in the study of C.o .

A subspace of H is called hyper-invariant for an operator
T on H if it is invariant for every bounded operator which
commutes with T. In [20] Lomonosov proved a famcus theorem :
Every compact operator has a hyper-invariant subspace. The
invariant subspace problem is an important subject in the actual
study of operators.

Now ,I will give a few accounts of the contents of this
thesis. e

In chapter I,we will characterize the hyper-invariant
subspaces for a éontraction T which belongs to C.p; and satisfies
dim D,TH<oo . Here the techniques introduced by Nordgren[22] is
useful.

Chapter II is a study on the operators of the form ¢ (S({)}).
o (S(¥)) is the general Tceplitz operator PT¢]H(w). ( For precise
definitions, cf. the first few lines of Chapter II . These operators
are considered to extend Toepiitz cperators.) In [26],Sarason
showed that , for ¢ in H  and a scalar inner function U, {S{Y))
is compact if and only if U¢ belongs to H + C,where C is the
Banach algebra of all continuous functions on the unit circle.
In the first section of this chapter we will show that,for ¢ in

(o0}

H + ¢ ,this result is still true.



We then proceed to establish some results on the double
commutant of the operator S(0). It is well-known that the
double commutant of an arbitrary unilateral shift consists of
multiplications by bounded scalar analytic functions. We extend
this result to a wider class of operators of the form S(9).
Indeed, we will show that the double commutant consists of
$(S(0)),¢€H .

Chapter 111 contains the main results of this thesig. A
contraction T is called a weak contraction if I-T*T has a finite
trace , and o(T)¥D . Weak contractions have nice properties
and there are a good deal of studies (cf.[28]). My study concerns
on the operators outside of this operator’class. We will consider
a contraction T which has following properties:

T belongs to C.y ,

I-T*T has a finite trace,

o(T)=D and GP{T)%D .
Every unilateral shift has these properties, and we will call
such an operator a guasi unilateral shift. One of the B.D.F.
theorems{4] implies that T=S+compact ,where S is a unilateral
shift with index 5 =index T . My contribution here is to show
that there is an intertwining operator between T and S. This
stronger result will make easier the analysis of the operators

of this kind.



Chapter I. Hyperinvariant subspaces

1.1. Cg (n)-contractions.

Let T be a ccntraction on H belonging to C.y . Then it

necessarily follows that

SRS

8, = dim Dj,H > dim D H = 8.

Suppose 6,=6 = n< » , Then T is said to belong to C,(n) .Simply,
we denote the characteristic function of T by ©(A) .In this case,
we may regard O(A) as an nxn matrix over B” . Since B()) is inner

lt) i nitary

W
o

, that is, O(e'") is isometry for almost all t, O(e

for ailmost all t. And T on H is unitarily equivalent to S{Q)
v 2 42 3 2 2 n

on H(09)= Hn@@}in , Where H_ denotes H®(C').

i

« . . - . 0 . "
Definition 1.1. A normal nxXn matrix ¢ over H is of the

“ . .
form 9y 01 , where ,for each i, ¢, is a scalar
.

0 ¢

i
i
I
§
n_

inner function and a divisor cf ¢i+l . The operator

8(9) = S(¢,) @ ... E}S(¢n) induced by ¢ 1is called a Jordan

operator.

By the Sz.-Nagy and Foias theorem [29],every contracticn

in Cy(n) is quasi-similar +o a Jordan operator.

Theoreml.2. Let © be an nXn inner matrix over " and ¢
an nXn normal one . If S(O) and S(¢®) are quasi similar ,then

there exist quasi-affinities X from H(©) to H(®) and Y from



H(®) to H(®) and Y from H(®) to H(O) such that

(1) X S(0) = S(%) X and S(8)Y = Y s(9),

(ii ) the correspondence tT: L » XL and T*:M -~ YN establish
an isomorphism from the latticeg}b of hyperinvariant subspaces

-1
for S{(©) onto the lattice g}% for S(¢), and its inverse,t* =1 .

Proof. The hypothesis of gquasi-similarity implies for Léé%
(1.1) T(L) = Y {zL; 2 s(8) = s(%) 2}
belongs todcb (c.£.[23]). By one of the Moore-Nordgren theorems
([211,122]) the gquasi-similarity of S(0) and S(®) implies that
there exist matrices A, A',A and A" each of whose determinants
is relatively prime to the determinants of © and ¢ , and such
that
(1.2) A® =3¢ Aand © A" = A" O .
Define the operator X from H(0) to H(®) and Y from H($) to H{O)
by

(1.3) Xh = P A'g for g in H(9).

H(®) PH (o)

Relation (1.2) guarantees condition (i), and X,Y are quasi-

Ah for h in H(8), Yg =

affinities. Take an arbitrary L in the lattice(}@ and let
L'=1(L). By a well-known theorem[28] the (hyper-)invariance

of L and L' implies the existence of inner matrices @,;,0,,9;

oo

and ¢ over H satisfying
(1.4) G = 92@1 and ¢ = @2@1 ’
and

(1.5) L =0, ( H;@E)IH; ) and L' = &, ( H;@CIMH; ).



By the definition({(l.l) of 1(L) we have XL ¢t(L) = L' . on the
other hand, since YZ commutes with S(0) for every Z occuring

in (1.1),hyper-invariance of I for S(0) implies YZL g L, and
therefore YL' = Y1 (L) € L. Now the inclusions .EE'S L' and

YL' € L, and relations (1.2)-(1.5) imply A0,H) € @ H. and
A'QZH; g@zH; : whence we deduce the existence of matrices A and
B over H  such that

(1.6) A Op= &, A and ATd,= 0O, B.

Thus it follows that @,AB =A A'®, ,and hence,

(1.7) det A-det B = detA . det A' .

Since detA - det A' is relatively prime to det® , (1.7) implies

that det A is relatively prime to detd , hence to deté; . To
prove L' = XL suppose that f € i° © XL . Then ,again using
(1.2)-(1.5), we see that f is orthogonal to AOZH; , and hence

to @zAH;, by (1.6). Morecver, (1.5) implies £ = ¢,g for some

2 2 I 2
g€ Hn )] <I>1Hn . Then for every he& Hn

0 = (£,A006,h) = (92 g,%,Ah)=(g, Ah).

Since detA 1is relatively prime to detd,, AH; and ®1H; span

implies g=0, hence £f=0, proving L' = XI .

n

the whole H? . Thi
1
The relation I = YL' = YXL is proved in a similar way. This

completes the proof.

Theorem 1.3. Let & be an nxn normal matrix over H .A
subspace L of H(®) is hyper-invariant for S(¢) if and only if

there are nxn normal matrices ¢,;, ¢, satisfying



L=T]
N
=2

(1.8) ¢ = and L =9 (H] @®1H§1> .

Proof. By the lifting theorem ([28] p.258), for every
operator X on H(®) commuting with S(®), there is a matrix A
over H satisfying

(1.9) Xh = h  (h€H(®)) -and A® HZ C ¢H .

PH(Q)A
The latter condition is equivalent to the existence of a matrix
A over H satisfying
(1.10) Ad=90 A .

Suppose that L is of the form (1.8), and that
¢ = diag (¢1,..., ¢n). To prove the hyper-invariance of L for
S(®), it suffices to show the invariance of I for the operator
X defined by (1.9). The existence of A satisfying (1.10)
im@lies that if i>3j, then the inner function ¢i/bj is a divisor
of the Aij,that is, the (i,j)~th entry of A . Since &, and 9,
are normal matrices with ¢ = ¢, ¢, , for i>j the inner function
ui/uj is a divisor of ¢iz/¢j , where u, is the (i,i)-th entry
of ¢, hence a divisor of Aii' This guarantees the existence
of a matrix A' over H satisfying
(1.11) A O = &, A',
and consequently the invariance of L for X.

Suppose conversely that L is hyper-invariant for S(¢).
Let Pi be the orthocgonal Projection from H(¢) onto the i-th
component space . Since P, commutes with S(¢), the hyper-

invariance of L implies that

L=PI&...[ 0P L



and each PiL is an invariant subspace for S(¢i). By the
Beurling theorem there are inner divisors u. and vy of b5
satisfying

(1.12) ¢.= u.v

i iV PiL ui(H © v, H ).

i
Set ¢»= diag {(Ui;..., un) and ©®;= diag ( v1,...,vn), then
¢, and ®; satisfy (1.8). It remains to prove the normality of
$» and $; . To this end , take the matrix A over H whose
(i,j)—-th entry Aij is defined by

Aij =1 (i<3) and A4 = ¢i/bj ( i>3).
Clearly there exists a matrix A over B satisfying (1.10).
The hyper-invariance of I implies the existence of a matrix A’
satisfying (1.11). This means if i<j , then us is a divisor
of uj and uj/ui is a divisor of ¢j/bi . The former condition

guarantees the normality of ¢; , while the latter dces the

normality of ¢&; . This completes the proof.

Since every Cjp(n)-contraction is quasi-similar to its
Jordan operator ,by above theorems, we can characterize the

hyper—-invariant subspaces for it.

When ¢ is a scalar inner function, for the operator S{¢)
the invariance of a subspace is equivalent to its hyper-invariance
. The latticegﬁg of all (hyper-)invariant subspaces is totally
ordered if and only if ¢ is of the form

&

(1.13) ((r=0) /(1 -aA))™  (Jal< 1,n a positive integer)



or of the form

exp (s(M+a)/(A-a) ) (lal=1,s>0),

i

(1.14) eS(X)
according as dim E(¢)=n or dim H(¢) = » (cf.[28] p.1l36).

This can be generarized to the case of inner matrices.

Theorem 1.4. Let ® be an nXn normal matrix over H and
dim H(®) = =, The lattice L}% of hyper-invariant subspaces for
S(®) is totally ordered if and only if ¢n is of the form {1.14)
and each ¢i coincides with either 1 or ¢n ;Where ¢i is the

(i,i)-th entry of ¢ .

Proof. By theorem 1.3 +the total orderdness of the lattice
\}g is equivalent to the condition that if normal matrices o>

and @' are left diviscrs of ¢ such that &2 o and

-1

¢t O are normal too, then cone of ¢ and &' is a left

divisor of the other. Suppose that Lﬁg is totally ordered. Take

arbitrary inner divisors u and v of ¢n ,and set u, = u/\cbi

and V= vA¢i ( ahﬂb denotes the gratest common inner divisor

of a and b). Then the normal matrices ¢, and ®, ' defined
by

¢; = diag(ul,uz,...,un_l,u) and ®z'=diag(vl,vz,...,vn_l,v)

are left divisor of ¢ and ®2_l® and %'_16 are normal

matrices over H . The divisibility of ¢2 by o2 or %' by
&
¢, implies that one of u and v is a divisor of the other. The

arbitrariness of u and v implies that ¢n is of the form (1.14)
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because dim H(®)= « implies dim H(¢n) = o _, There exists an
¢i such that ¢i/%i—l = e (1< i <n). If fact if any ¢i/¢i—l
is not equal to e, then there exists i and j such that

1 i <jg n, ¢i/¢i—l = e, (s>a>0), ¢j/¢j_l=eb {s>b>0) and a+b<s.

Now set ¢ and d so that O<c§ a, O<d§ b and c¢<d. Consider the
normal matrices ;3 and & defined by
. (i) - (3)
7 = dlag(l,..,l,ec,...,ec) and = dlag(l,..,l,ed,..,ed)

. Clearly Q. is a left divisor of ¢ and Qi—lé is a normal

matrix. By Theorem 1.3, the subspaces
2 2 2 2
Qi H. ©0H, and G H (D) °H)
are hyper-invariant for S5(¢), but any one of them is not included
in the other, a contadiction. Consequently ¢ =diag(l,..,l,es,..,es)
. The "only if" part is trivial. Therefore we omit the proof

(see[33]1).

1.2. C.; - contractions.

In this section, we consideria contraction T in C.y; such
that m=¢% < ¢§,=n<e , Firstly we decide the lattice of hyper-
invariant subspaces for a Jordan operator in class C., . Next
we establish a canonical isomorphism between the lattice of
hyper-invariant subspaces for T and that for the Jordan model

of T. Since 6= m, §, =n, the characteristic function ©(A) of
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T is regarded as an nxm matrix over H® . Let d, be the largest

k
common inner divisor of all the minors of order k (lékém). And
set wk= dk/ak_l (dy=1l). Then wk is a scalar inner function
and a divisor of its succesor. In this case, an nxm matrix;
IP1 0 T
Y2,

-

¢ = 0 'wm
Lo ... 0

is called normal, and a corresponding operator;

S(0)=5(¥1) @ ... ®sW,)® s,
where S8 is the unilateral shift with index S = n-m,1s called
Jordan model of T. Nordgren [22] has shown that there are pairs

of matrices Ai,Ai and Ai' . Ai' (i=1,2) satisfying

(2.1) Ai@ = & Ai ’

(2.1)° ] Ai'= Ai‘© r

(2.2) (det A,) (det A, ") Ad = 1,

(2.3) (det Ap) (det A;')£(det Ay) (det A ') = 1,
(2.3)" (det A;) (det Al')A(det Ay) (det Ay ') = 1.
Setting

(2.4) X, = P¢ Ai, H(O) and

(2.4)" Y, = Py Ayt H(Q) for i=1,2,
where P® simply denotes PH(@) '

{X;, X2} and {Y,,Y,} are injective families satisfying the
following relations:

(2.5) X. S(0)

S(e)X, .

(2.6)

)]
@
o
,—J-
I

Y. s(a),
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(2.7) X, H(O) VX, H(O) = H(®) ,
(2.8) Y, H(9) VY, H(®) = H(O) .
This implies S(0)%%s(8) [30].

Now set ¥ = diag (Y1,...,¥ m), that is, ¢ = [g] . Then

S{(®) on H(®) are identified with

S(¥) ®s on H(‘P)@Hn_m .

Let /N be a hyper-invariant subspace for S(¢). Then it is
clear that # 1is decomposed to the direct sum, ¥V = Nl() Ny

where Nl is a subspace of H(Y), hyper-invariant for S(V¥),and

N 5 1s a subspace of Hn

we have the following lemma.

—m hyper—-invariant for S. In this case

Lemma 2.1. In order that N = Nl @)Nz is hyper-invariant
for S(®), it is necessary and sufficient that N2={O} or

there exists an inner function ¢ such that N2= ¢H;_m and

Nl'Q d(S(¥Y))r(Y) .
PY11 Yo

commutes
Y, Yzz}

Proof. Simply set k=n-m. An operator le

with S(¢), if and only if Yij satisfy the following conditions:

Y;:S(¥) = S(¥) Y1, Y28 = S(¥) Y2,

Y, 18{(¥) = S Y,; , Y¥Y,,8S = 8§ Y, .
Since S(\P)n -~ 0 as n »0 and S is isometry, we have Y, ;= 0 .
Thus if &, ={0}, then it follows that XN C N for every X

commuting S(¢). By the lifting theorem ([26],[28]), a bounded
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operator Yi2 from Hi to H(Y¥) intertwines S and S(vy),if and
only if there is an mXk matrix Q over H® such that Y,,= PWQ .
Thus,if N2 = ¢Hi and N,2 ¢(S(¥))H(¥) for some inner function
¢ , then we have

XV = (Yi10:1+ Y2 CbHi:) @Yzzd)H]z{

2 2
(N + Pyl ¢oH ) @Cka

N

T

(W3 + Py ¢HZ ) @ ¢HY

it

Ny + ¢(S(¥))EY) ) @ ¢H

2
Nl@ d)Hk =N 4

iy

where o (S(Y))h= PW¢h for h€H(Y). Thus ¥ is hyper-invariant
for 5(9).

Conversely suppose N = N;® VN, is hyper-invariant for S(9)
, 'and N>={0}. Then by [10], there is an inner function ¢ such
that N»= ¢Hi . Let Qi (i=1,2,..,m) be the mx {n-m) matrix
such that the (i,1l)-th entry of Qi is 1 and the other entry

is 0 . Setting

0 Y.
X, = 1 and Y. = P.Q. ,
1 [5 0] i v

each Xi commutes with S(®), hence we have

n

Ni= %, ¥ $HE = Py ¢H§n =¢ (S(Y))IH(Y).

1 k

This completes the proof.

Theorem 2.2. In order that a factorization &= ¢,%; of
¢ into the product of an nx1l inner matrix ¢, and an lxm inner

matrix ®; (n > 1 > m) corresponds to a hyper-invariant subspace
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NV for S(%) ,it is necessary and sufficient that ¢;and ¢, are
normal matrices satisfying (i) or (ii):
(i) 1=m,

(ii) l=n and ¥, has the form

Proof. First, assume that 1l=m, and both ¢;and & are normal

¥
inner matrices. Then,setting @2=[32J ,it follows that
P2H(®,)=¥Y2"' H(®;) is hyper-invariant for S(¥) (see Sec.l.1l).
Therefore , by TLemma 2.1, it is hyper-invariant for S(¢).
Next, assume that ¢;and % are normal matrices satisfying

(ii). Set ©; = [WJ . Then we have
10

N =, { H‘; @@11&; } = Y, H(Y,) @¢H§< .

Normality of ¥; and ¥, implies that V¥,H(¥;) is hyper-invariant
for S(¥). On the other hand ,normality of ¢, implies ¥,HZD ¢H?
, and hence we have

2 2
LEL© YEL 2 9(S(¥))H(Y) .

Thus ,from Lemma 2.1, we deduce that ¥ is hyper-invarinat for
S(d).

Conversely,first assume that ¥ =¥; @ {0} is hyper-invariant
for 5(%), and ¢=%,%; is the factorization corresponding to V.
Since S(®)|N= S(¥)]|N,is of class Cy , S({ is of class Cy
(about notation C;, see [28]). This implies that ¢;is an mXm
inner matrix, that is , l=m. Setting ¢, =[¥ﬂ , wWhere ¥, is

an mxm matrix and I an kxm matrix (k=n-m), we have
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¥ = ¥, &; , Ny =¥ H(®;) and T len ={0} .

Since T = 0 and 9, is inner, also V¥, is inner. Thus the
hyper-invariance of ©N; corresponding to Y = ¥,90, implies
that Y, and ¢, are mXm normal matrices. Next assume that

¥ =N, @ ¢H_ and Ny 2 ¢(S(¥))H(Y) .

Clearly we have

N 4
PA S(2) |NL= Pyl S(Y¥) |y ®S(¢Ik) .

Since the right hand operator is of class Cy , S(9,) is of class
Co . This implies & is an nxn matrix; i.e.,l=n. To the

hyper-invariant subspace N; for S(¥) there corresponds a

factorization Y = ¥, ¥, ,where V¥; and ¥, are mxm normal
matrices . Thus setting 3, '= {Wz 0 ! and o, = 1 ,
L0 oIy | 0

it is clear that

¢ ="' ¢;' and N =o' {E Qo' H 1 .

From the unigueness of the factorization of ¢ into product of

two inner matrices corresponding to invariant subspace ¥V ,

only this factorization ¢ =9, '®d;' corresponds to ¥ , that
is, Oy = @5 ! and $,= &;' . Since
Y H(¥1) = N1 D¢ (S(¥))H(Y) = Py¢H

we have WZH; 2 ¢H; ; this implies that every entry of Y, is

a divisor of ¢ . Therefore ¢ 1is an nXn normal matrix. Hence

®; and ¢; are normal matrices satisfying (ii). ~ Q.E.D.



-16-

Set (L) = \Z/{ZL: 28(0)=s5(%)z}
and (W) = Viwn: Ws(e)=s(e)W)
for each subspace I and ¥ hyper-invariant for S(0) and S(9),

respectively. Since s(0)%% S(%), it is clear that 7T(L) is the

nontrivial hyper-invariant subspace for S(®), if L is non-trivial.

Lemma 2.3. If ©=0,0; is the factorization corresponding
to a non -trivial hyper-invariant subspace L for S(0), then

®; is an mxm inner matrix, or €, is an nxXn inner matrix.

T, * S, *
Proof. Let S({B) = 0 T and S(®) = 0 SzJ be the

triangulations corresponding to

i L
H(G)= L & L and H(®) = 1(L) @ t(L) ,respectively.
Theorem 2.2. implies that S;or S, is in Co . First, suppose

u({S;)=0 for some u in H . For the bounded operator X; given
by (2.4) and every f in L , in virtue of (2.1), it follows

that X, u(T;)f= Xu(s(e))f= PQAlP_uf= P

0 A1Uf = PQUA1f=

®
=u(S(®))X,f =0.

Since X; 1is an injection, we have u{(T;)f=0,which implies that

T, belongs to Cy , that is, ©; is an mxm inner matrix. Next

suppose S, belong to Cy, , hence so does S, *. For Yi given by

(2.4)' and every Z such that ZS(0)=S(¢)Z, in virtue of (2.6),

YiZ commutes with S(0), this implies YiZL €L and hence

L 1 A
YiT(L) € L. Thus we have Yi*Lg 7(L) . From this and (2.6},
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for each h in L , it follows that

Yi*Tg* h = 8% Yi* h for 1i=1,2.

From this , we can deduce that

Yi* u(T, *)h= u(Sg*)Yi* h for every u in H

Since Y ;H(®)}/ Y,H(%) = H(0), we have u(T,*)=0 for u satisfying
u(S; *)=0. Therefore 0,is an nXn inner matrix . This completes

the proof.

A following theorem implies that the mapping T is
isomorphism from the lattice\j% onto the lattice J% , and its

inverse is given by T¥*.

Theorem 2.4. For Xi and Y. given by (2.4),(2.4)",
(2.9) T{(L) = XL V‘ %5 L and T* (7t (L))=L,
(2.9)" t*(N)= Y, 0 ¥ F and T(T*(¥))=N ,

where LGJ% and NGJ% .

Proof. Let B= 0,0; and 9=9%, 9, be the factorizations
of © and ¢ corresponding to I and t(L) ,respectively. Then
the proof of Lemma 2.3 implies that both 0;and ¢, are 1lxm
matrices and both 6, and ¢, are nx1 matrices, where 1l=n or

l=m. Since XiL Ct(L) and YiT(L)g L, it clearly follows that

12 o~ 2 1 2 2
Aiez I‘.ll é ®2Hl and ‘ Al ¢, Hl g GzHl ’

which guarantee the existence of 1x1 matrices A, and B. over

o]

H satisfying
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(2.10) Ai®2= @2 Al and Al ®2=@2 Bl -

This and (2.1) implies that

(2.10)' Ai@1= ®1Ai and Biq)l'—‘ GlAi' .
By (2.10) we have

(2.11) Ai'Aiez = @gBiAi ’

and by (2.10)°'

(2.11) BiAi@l =0A," A

Thus if 1=n, then det Ai is a divisor of det Ai-det Ai' , and
if 1=m then det Ai is a divisor of det Ai~det Ai‘ . To prove
the first relation of (2.9) suppose that
F€T(L) © {X1LV X L1}.
Then f is orthogonal to AIGQHiVAZGQHi . On the other hand
f€ 1(L) implies the existence of g belonging to H%S ®1H; such
that f= ®,g . Thus for every h in H; ,we have
O=(f,Aiezh)=(®2g,®2Aih)=(g,Aih)’ (i=1,2)
Thus if l=n, then , by (2.3) and Beurling's theorem

A.H2 D (det A.)H?2 D (det A.) (det A.')H?
1 n = 1 n = i 1 n

induce A1H2M’A2HZ= i and hence g=0.
n n n
If 1=m, then, by (2.3)' and Beurling's theorem

2 At 2
JE2 D (deth;) (det A, ') H

induce AIH;\/ AZH; = H; and hence g=0. Thus we showed
1

T(L)=X1ZVX, L . The rest is proved in a similar way. Q.E.D.
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Chapter II . Commutants and double commutants
2.1. Generalized Toeplitz operator.

Let L’be the Hilbert space of all sguare Lebesgue integr-
able functions defined on the unit circle, and L” the Banach
algebra of all essentially bounded functions defined on the
unit circle. Given ¢ in L ;, M(¢) denotes the multiplication
of ¢ on L? . Let P' be the projection from L2 onto H? . Then
s is defined by T, = P'M(¢)] B .

Let ¥ be a scalar inner function. Then ,for ¢ in L , we define

a Toeplitz operator T

the general Toeplitz operator ¢(S(¢y)) in the sense of [7] by
¢(s(y)) =P T¢|H(¢), where P=Pw.We denote the inner products in
H(Y), B and 1® by (., ),(, )*" and ( , )", respectvely, and
the identical operators in them by I, I' and I".

Lemma 1.1. For ¢ in g o+ ¢, {(I"-P')M(¢)P' is a compact
operator on 1.2 ;where (¢ is a space of all continuous functions

on the unit circle.
Proof. Let ¢ = ¢;+ ¢2 be a decomposition of ¢ such that

¢, is in 5 and $2 in C. Then it follows that
(I"-P")M(¢)P'= (I"-P")M(¢2)P".
Take trigonometric polynomials gn(n=l,2,..)whose seguence uni-
formly converges to ¢, . Then,since
(T -P Mg )P' = (I - PM(¢2)P"|[ 2]l M(g ) - M(¢2) |

;I[gn - ¢2]l, =0 as n>o» ,

finiteness of the rank of (I" - P')M(gn)P' implies that
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(I" - P')M(92)P' is compact.

Lemma 1.2. For ¢ in H + c, PT¢(I‘—P) is compact.

Proof. This lemma follows from Lemmal.l and next relations:

PT (I'-P) = P P'M($) (I'-P)=P P'M($)M(Y)M(Y) (I'-P)

¢
=PP'M(Y)M ()M (V) (I'-P)=PP'M(Y) (I"- P')M(¢)PﬂM(@)(I'-P).

oo
Lemma 1.3. If ¢ is in H + C, then there exists a compact
operator K from H® to H ,2which is the conjugate space of H% ,

such that

1 2

= 0“¢m fdt = (RKf1, f2)" + (6(S(V))PE;, P'YUE,;)

for every £ in Hi , £1 in ¥’ and f, in H3 such that f=f,f> .

Proof. yf, is orthogonal to yH?®, and - . P'yf, Dbelongs

to H(Y) . Therefore we have

1 (2™ 47 £ at = (6F1,0F)" = (P'6PE;,UE )" +

—

2T <40

A(P'O(I'-P)F1,UF2 )" 4+ ((I"-P')of,,YE)"

= (P'¢Pf,,P'VF2 )"+ (U PP'G(I'-P)f1,F2)" +(P(I"-P")of,,E2)"

(¢ (S(V))PEy,P'UEs) + <wpf¢<x'—P>f1, B)" o+
(O (x"-P")M($)E:,E2 )" .

Thus K= M(J)PT, (I'-P) + M(J) (I"-P')M(¢) |H* satisfies the cond-

¢

itions of this lemma.

The proof of the next theorem deeply depends on [26].

Proposition 1.4. Let ¢ be a function in H + C.Then ¢ (S(y))
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is compact if and only if $¢ belongs to H + C.

Proof. "Only if " part is obvious. Suppose ¢ (S(¥)) be
compact. We wish to show that the kernel of functional of
76 + H on H} is sequentially weak star closed. Let £ be a

sequence in its kernel and converge weak star to f. Let fn=f1nf2n
be the factorization of fn such that fln and fzn belong to H?

and H; ,respectively, and Ifn| =|f1nﬁ=|f2nlz.

Then, since {fln} and {fzn} are bounded in 1% we may assume that

they converge weakly to f; and f, in L?,respectively, and f=f;f,.
It is clear that f; is in H, and f, is in H® . From Lemmal.3,

there is a compact operator K such that

2m
2), oUE At = (k£ , B )" + (6(S(¥))PE P UE )
and
= (27 6T at = (k£ E) "+ (9(5W)IPE, BUUE) .

0

Since both K and ¢(S(y)) are compact, it follows that

(RE: » B2 )" » (REy, £2)" (0> =)
and
(6(S(W))PE ,P'YE2 ) ~ ($(S(¥)IPEL,P'YE)  (no=).
27
Thus we have z%_j o7 £ dt = 0.
0

The proof is complete.



-22-

Theorem 1.5. If ¢ is in H ,then next conditions are
equivalent;
(a) ¢(s(¥)) is a Fredholm operator ,
(b) there are €>0 and 1>8 > 0 such that
o (M) | +]w(x)]2e for 1>]A] 26,

(c) ¢(H°°+ c) + w(Hw+ c) = H°° + C .

Proof. First assume (a). Then there is é factorization
¢= ¢1¢2 ,where ¢;(S(¥P)) is invertible and ¢21is a finite Blashke
function. By [12] and [13], there is an €;>0 such that
61 V)| + v [> & for [A]< 1 .
Since ¢2°is a finite Blashke function, we can easily show (b).
Next assume (b). Setting n= ¢AY , there is an € >0

such that In(A)|> e for 1>[x]|> 6.

Consequently 1/n belongs to i o+ C [8]. Set ¢'=¢/nn and
Y' =¥ /n. Then it is clear that there is an € > 0 such that
o | + [y )] 2 e for [A] <1.

(o)

Hence ,by corona theorem [6] [24], we have d)'HOo + w'Hw= H ,

which vyields (c). It is clear that (c) implies (&). Thus the

theorem 1s established.
2.2. Double commutants.

When T is a special C.p-contraction, the AT and {T}" were

investigated by several authors’ (for unilateral shift see



~23-—

[5],for C,-contraction [1],[31] and [40]), where AT is a weakly

closed algebra generated by T and I. In place of C.g-contraction
T with 8=m, §,=n (necessarily n > m) we may consider S(0),
where 0 ()) is the characteristic function of T, nXm matrix of

H and |pP(\) |k 1 for every A in D. In this section we assume

©> n >m. In this case there is an nxm normal matrix;

.WI_ 0
o= |0 "Pm‘
O.JAOJ,

and injective families {X, X'} and {Y ,Y'} such that
XS(0)= S(®)X , S(0)¥Y=YS(9),
X'S(@)= S(9)X"' ,S(0)Y'=Y'S(®),
XY=n (5(2)), ¥YX=n(S(0))

X'Y'=n'(S(®)), Y'X'=n'(S(2)),

and n'AnewF=l ([211,1[227,10271). Next two lemmas are
obvious.
Lemma 2.1. ¢(S(0)) is injective if and only if ¢Awm=l,

and ¢ (5(0))H(Q) is dense in H(O) if and only if ¢ is outer.

Lemma 2.2. {S(@)}" ={¢(S(d)):6&H }.

For a bounded operator T , we denote the lattice of invariant

subspaces for T by Lat T

Lemma 2.3. {A: Lat A D Lat S(8)} ={¢(S(8)):6€H } .
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Proof. Suppose Lat A 2 Lat S(?2). Since each component space
of H(?%) reduces S(9),it also reduce A,that is, A has the form

n
_ ® . . ; 2
A=.L, @2, . Y., N.€EH dmplies that H(y,)C H(Y, ,)CH". Let

P. be the projection from H(9) onto i-th component space. Then
A

fll

Lij {(Pix @Pj X :X€ H } 1is invariant for S(o). If i,3> m+l

, then A Lij g’Li implies ¢i =¢ .

. If i<m< j ,then AL,..CL,.
J = ij3=

J ij
implies that for every x in H(¥,) there is a y in H®> such that

Alx@q)szpl Y®y v

which implies Ai =¢j(S(wi)) and hence A=¢(5(9)) for some ¢

[s¢]
in H . The converse assertion is trivial.

Lemma 2.4. {S(8)}" = {N :n(S(0))N=¢(S(0)) for some ¢ in H ).

Proof. For each N in {s(@)1}" and each B in {S(®¢)}', set
K=XNYB - BXNY. Then , since YBX €{S(©)}' and XY &€{S(®)}",
it follows that YK=YXNYB-YBXNY=NYXYB-NYBXY=0,which implies K=0.
Consequently, from Lemma 2.2, there is a ¢ in Hoo such that
XNY=¢{(S(®?)). Since ¥X =n(S(€)) is injective, from
YXN (S (0) ) N=YXNn (S (0))=YXNYX=Y¢ (S (%) )X=YXd (S(0)), we have

Nn{S{€))N=0(S{(0)). The converse assertion is trivial.

Lemma 2.5. If XNY=¢(S(®)) and X'NY'=¢'(S(®9)) for ¢,¢' in

H ,then N belongs to {5(0)}".

Proof. Clearly we have
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Nn(S(0))=¢(S(0)) and Nn'(S(0))=0'(S5(0)).
Hence,for each M in {S(0)}',we have
NMn (S(0))= Nn(S(0))}M =¢(S(0))M= M$(S(0))=MNn(S(0)),
and similarly NMn'(S(®))= MNn'(S(®)). Since nAn' =1, the
ranges of n(S(9)) and n'(S(O)) span a dense set in H(O). Thus

we have NM=MN.

Theorem 2.6. If N belongs to {S(0)}", then there is a

unique ¢ in H  such that N=¢(S(0)). In this case IN=1] ¢|L -

Proof. Let N belong to {S(@)}" . Then from Lemma 2.5 and
Lemma 2.1  we have $1(S(0)) N =¢2 (s(0)) , where ¢1=ﬂ/hA¢

and ¢2=¢//nA¢ . Thus from the lifting theorem, there are an

nxn bounded matrix T = (Yij') over H ,and an mxn bounded
matrix Q = (wij) over H  such that
(2.1) ro ang mrj’-n , N= P@T!Eﬂ@).!l Ni| = [[Tllzsue [T )],
A
and
(2.2) $2 In - ¢, = 08
Since © is inner , l=det(0*(e*Hyo(elt))= z det | g(elt)lz,where

Ga denotes an mXxm submatrix. Therefore there is a @a such
that det@a=0. We may assume that the first minor is not 0.

Let 6.. and

3] .y. be the (i,j)-th component of © and ©_,
ij a(i)j a

respectively. Let @a'=(e'a(i)j) be the classical adjoint matrix
of @a . Then,for k(a)Z%a(i) (1gi < m), by the same technique

as the proof of Theorem 1 of [35], from(2.2), we have
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[Ya(1)k(a)] Y1k (a)
—¢1®a' : = det0d - ’
_Ya(m)k(a) a wmk(a)
and hence Ya(l)k(a)

yo_ ! : =det0®
a

=91 O gy % (2’ Ca (b2 =01Yy (5yk1a)}
Ya(m)k (a)

Thus ,by simple calculations , we have

a1 fain Yak(a)

- :Cbz det ©
a(m)m Ya(m)k(a) a
k(a)m 'k(a)k(a)

b4

(2.3) ¢, det {ea(m)l..

8
| 8% (a)1 " ©

This implies that the inner factor of ¢;is a divisor of Qdet@a

which is equal to Vo ([211,1[27]1). Thus ¢1/\wm = 1 deduce that

¢; 1is outer. For a submatrix Ga satisfying 1lga(l)<--<a(m)<m+1,

there is a unique k{a) such that l<k{(a)<m+l and k(a)za(i).

C-nversely , for every lgk<m+l, there is a unigue @a such that

léa(l)<.,,<a(m)§m+1 and k{a)=k. Thus setting

Ek(a)(x) = det @a(K) ,from (2.3), we have
er- 8 vy
62 (OF £, (1) |2=]¢1 (W) |2 |det| Jml" "~ dnm m k| |2

m+11l  “m+lm+l Tm+lk

for every k; 1l<kgm+l . Hence it follows that

7Y (A)re ey ) Jre, )
mel 11 'm+11 :l

24l : 2
b2 (M2 2. &, (W) [2=]e 0] . e
> WL T P=la Iy L o] E g (M) |

t m+1
Slor F I Ty OVII2 Gyl &) 2 )
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where T m+l(}\) is the first submatrix of T'()) of order m+l,and

t

r (A) is the transposed matrix of T (A). Since by the

m+1 m+1

assumption £m+l(k)%0, it follows that
l62 (0 12 glor ) P50 0 1%en 0 21T TIL?E

Thus there is a ¢ in " such that ¢, =0¢; and

Holl < Il Tl AIN]l  (c£.[8]). Hence we have N=¢(S(0)).Since
| NJl <]l ¢]l, is clear , we have || N|| ={[¢||_ . Assume that
6 (S(0))=¥(S(0)) for ¢ and ¥ in H .From X S(0) = S(2) X

and X' 8(Q) = S(9)X' , we have

U(S(®))X and ¢(S(2))X'= Y(S(2))X"' .

]

$(S(2))X
By X H{(O) VX' H(Q) = H(®), we deduce

$(S{®))=v(S(®)), from which ¢ =¢ follows

Theorem 2.7. AS,@)={ N: Lat N D Lat S(0)} = {s(@)}"
( =

{6(S(0)):0€H 1} .

Proof. From Theorem 2.6, it follows that

{8(0) 1" ={0(5(0)) :¢€H }C 4 ) € {N: Lat N 2 Lat S(9)} .

Therefore we must only show that if Lat N 2 Lat S(©) , then N
belongs to {S(0)}". Let L be an arbitrary subspace in Lat S(9)

. Then ,since YL is in Lat s5(0),

XNYL € XNYL € XYL € XYL = n(S(9))L €L .
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From Lemma 2.3, we have XNY=¢(S(0¢)) for some ¢ in H .
Similarly we have X'NY'=¢'(S(®)). Thus by Lemma 2.5,we can

conclude the theocrem .



~-29 -~

Chapter III. C,; - contraction

We determine C;. ,Ci1o and C;; by

{T: T™x >0 as n- © for all x } ,

C;.
Cio = C1.nC.o and
Cyy ={T: TeC;. , T*EC,;. } .
It is well-known that there is a Cy- C; ;decomposition for a
weak contraction. Therefore we can easily show that if T is of

class C;¢ and I-T*T € (Tt,c) , where (1,c) denotes the trace class

, then UP(T*) =D and op(T)/\D =¢ .

In this chapter , we shall investigate a contraction T such
that I-T*T € (t,c) and o(T) = D . The main tool is the theory

of infinite determinant [15]. About C;; see [11],[14] and {[41}].

3.1. Operator valued functions.

For T€I + {(1,c),Bercovici and Voiculescu defined the

. e . a P . . .
algebraic adjoint T, which satisfies

81 = 779 = det T .
They showed that if ©()A) is a contractive holomorphic function
and if ©9(A)€I + (t,c) for every A&D, then @(A)a is a contra-
ctive holomorphic function. In this case , if det @(eit)%o a.e.

, then e(elt) is invertible and its inverse is

G(elt)a,//dete(elt) a.e. .
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Theoremll. Let ©(A) be an inner function (that is, ©(X)
is a contractive holomorphic function defined on D and @(eit)
is isometric a.e.) with values in L(E,E'),where E,E' are sepa-
rable Hilbert space. If there is an isometry V in L(E,E') such
that for every AEPD
(1.1) Iz - v*e (A) € (1,C),

(1.2) det V*@ () £ 0,
then there is a bounded holomorphic function A(}) with values
in L(E',F) for = su;table Hilbert space F such that
(1.3) otz @ A+ (e*)F = E* a.e..
Proof. If V is a unitary, then O(eit) is invertible a.e..

Hence we may assume that V is not a unitary. Set F = E' © VE.

Let Eo = E® F be the direct summation of E and F. For A€D,

define ©'(A)EL(E¢,E') by

e'(dj|p =6 and O' ()| = IL.
For simplicity, set d{iA) = det V*O(\) and A(A) = (V*O(r))2.
Determine A(A)E€L(E',F) by
{1.4) AA)= =~ PLOMAMNVE + d(N)P,
and A'{AEL{E',Is) by

AT(A) = A(A)V* + A(X).
Then we have

ATV (A)@T(A) = ATV (A)B(X) = A(X)V*O(X) + A(X)O(X)

E
= d(M)Igp = PLON)AM)Ig + dMPO(A) = dA)Is.
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A'(A)e'(,\)lF = A)VFIZ +A(M)I = (M) I,

and :
e'(A)A"(A) = (A)A(A)V* + A(l)=(I—PF)@(X)A(A)V* + d(A)IF
= VV*S (A)A(A)V* + d(A)IF =V d(A)V* + d(l)IF= d(k)IE,.

Thus we have
A'(A)e*{(A) = d(A)IEo , DT (N)AY(A) = d(k)IE, .

Since the inverse of @'(eit) is A'(eit)//d(eit) a.e., the

it

orthogonal complement of ©(e™ ")E =‘@'(elt)E is

*Aiig**l——(E;)C)E) = A it)*
d(e

It is clear that A()) is a bounded holcmorphic function. Q.E.D.

Cambern showed that the orthogonal complement of a finite
dimensional holomeorphic range function is conjugate holomorphic

(c.f. p.94 cf[1g). Now, we can show this result as a corollary.

Corcllary 12. Let €{A) be an inner function with values in
L(E,E'). Suppose dim E = m<= . Then there is an bounded

holomorphic function A()) satisfying (1.3).

Proof. We may assume that ECE' and @(elt) is a matrix.

. . . . 2
Since 1 = det(e* (e Ho(e*H)) = z ]det@c(elt){,a.e.,where

. s . it .
g is taken over all mxm submatrices of 9{(e” "), there is at

r4

least one ¢ such that det@d(elt) # 0 a.e.. Thus there is

an 1isometry V such that
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‘det V*G(elt) = det @G(elt) # 0 a.e. (see[30]).

Hence V and ©(A) satisfy (1.1),(1.2). Q.E.D.

3.2.Quasi unilateral shifts.

We begin with a short re&iew about the canonical model
theory of Sz,Nagy and C.Foiéf. Let T be a contraction of class
C.o on a separable Hilbert space H. Set D = (T —T*T)%é,and
let E and E' be the closures of D H and Dy Hy respectively.
Then the characteristic function ©0(A) of T determined by
(2.1) o) = {- 7T + ADT*(I—AT*Yﬂ%DT}IE for A€D
is an inner function with values in'L(E,E‘). Therefore

dim E £ dim E'.
Moreover T is unitarily equivalent to S(0) on H(@) defined by
(2.2) H(G) = B*(E') ©OH?*(E), S(6)*h = Xh for h in H(O).
T is of class C;. if and only if ©(A)*H? (E') is dense in H? (E)
(that is,® is x-outer).

In this thesis,for simplicity, we call T a quasi unilateral

shift if T is a contraction of class C., such that

I - T*T € (1,C), kK(T) ={0} and kK(T*) # {0}.

Theorem2.d.If T is a guasi unilateral shift on H, then

there is a bounded operator X with dense range satisfying
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(2.3) XT=S8X,
where S is a unilateral shift satisfying

0 > index S8 = index T > - = .

Proof. We may assume I-T*T #0. From T(I-T*T)=(I-TT*)T,it
follows that TECE', T(H © E)=H E)E',where E and E' are the
spaces defined above. Thus we have
(2.4) HQOTH = E' © TE #{0}.

Let{e;,e,,...,e ,...} be the C.0.N.B. of E such that

.
(I-T*T)e =u_ e, u, 20. Then £ =(1-u_) 2Ten (n=1,2,...)is a

n
C.0.N.B. cf TE and T*fn=(l--un);'2en (see [?8]). Setting
Ven=—fn(n=l,2,...),v is an isometry from E to E', and

(2.5) vV + TIE € (t,C) (seel2]) .

Setting F=E' @ VE, from(2.4),it follows that

(2.6) dim F = - index T.

I-T*T€(1,C) implies DTE(G,C) which denotes the Hilbert Schmidt

class. Since (I-TT%) is unitarily equivalent to I-T*T, we
TE Y &d

have DT*[TEE-(G,C). Thus
AV* Dy (I-AT*) 7'Dp= AV* (D] ) (T-AT*)? D, (A€ D)
belongs to {(t,C). Thus ,from (2.1),(2.5),we have
I- v*¢()X) € (1,C). for each A.
Since
|det (v*0(0)) |*= det(0(0FVV*0(0)) = det(T*VV*T|.)

= det(T*TlE) =0,
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We have | det V*©(A)#£ 0. Thus V and ©()X) satisfy the conditions
of Theorem 1.1 .Hence A(A) defined by (1.4) satisfy (1.3).
Since A(A)OQ(A) = 0, setting
(2.7) Xo h=Ah for h in H(O),
we have X,&€L(H{0),H® (F)) and X,S(0) = S¢Xo ,where S, is the
unilateral shift on H? (F). Since |

E (F)D XoH(0) = AH? (E')DAH? (F)=(det V*0()))H? (F),

it follows that S =S| "is unitarily equivalent to S, .

X H(@)
Thus, from (2.6), we have

index S = index Sy = - dim F = index T.
Consequently an operator X from H(O) to X H(0) defined by
(2.8) . Xh =% h for h in H(8)

satisfy (2.3). | Q.E.D.

Corollary 2.2.Let T be a contraction of class Cy,4 such that
I-T*T and I-TT* belong to (t,C). Then ,for aeD,X(T-al)={0}if

and only if X(T*-aI)={0} .

Proof. Set T = (T-aI) (1-aT)* and A =(l—|a]2)}é(l—ETY4.
¢ - E — * -kt — * = T * *
Then we have I Ta Ta A* (I-T*T)Aa , I TaTa A(I-TT*)A*,
and T_ is of class Cy (see p.240 and P.257 of [28]).
Suppose X (T-aI) ={0} and X(T* - aI) # {0} .Then T; is a

quasi unilateral shift. Therefore, there is an X satisfying
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XT, = S X, which implies that T, is not of class Coo .
This is a contradiction. Thus X (T-al) ={0} implies K (T*-aI)={0}

. Similarly we can proove the converse assertion. Q.E.D.

For a contraction T on H, we have

(2.9) HI—T*T[lp + dim X (T*)= HI~TT*[[p + dim X (T),
where || IE denotes the p-Schatten norm.
Indeed, from T(I-T*T) = (I-TT*)T, (I—T*T)]é*H and

(I_TT*)IEE are unitarily equivalent. (I-T*T)IK(T)= Ty (ry and

(I-TT*)[K(T*)= I'K(T*) imply that
!];~T*T]]p = || (I—T*'I_')[—,i,—,;ﬁ ]{p + dim X (T),
!iI“TT*[]p = || (T-TT*) |55 Ilp + dim K (T*).
Thus we have (2.9). Similarly we have
(2.9) " rank (I-T*T) + dim X(T*) = rank (I-TT*)+ dim X (T).

Proposition2.3.Let T be a Fredholm quasi unilateral shift.
Suppose X with dense range satisfies XT = SX,where S is a
unilateral shift with index § = index T. Then T‘K(X) is of
class Cq .

Ty Ti2

Proof. Let T = [Q T, } be a decomposition of T

corresponding to H= X (X) C)K(Xf' . Then T; is injective and

;from (2.3),alsc T, is injective. From the assumption and
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(2.9), it follows that I-T*T &€ (1,C) and I-TT* € (t,C),which

imply

(2.10) I- T+ T €(1,C),

(2.11) I - (T Tv* + T12T12% ) €(1,C),
(2.12). I - (Ti2* T2 +T*D)E(r,C),
(2.13) I - T Tb*&e(t,C).

From K(T, *)C XK(T*), it follows that
index T = -dim X(T*)< - dim X(T*) < - dimX (S*)= index T,
which implies index T = index T, . From (2.9) and (2.13) ,we
have I-T, *T; €(7,C), which,by (2.12),implies T,;;€(¢,C).
Therefore, from (2.10) and (2.11), T, is a Fredholm opefator.
Since |
index T = index[él 0] = index T; + index T, ,

0 T

0. Thus T; 4is invertible. Hence T; is a

we have index T,
weak contracticn of class C.y . Consequently T; 1is of class

Cao . Q.E.D.

Corollary 24.Let T be a Fredholm guasi unilateral 'shift

of class Cig9 . Then ,if AT=TA and K(a*)={0},k(a) ={0} (c.f.[42]).

Proof. For X defined in Theorem 2.1, we have _(XA)T = S(XAa)

. From Proposition23,we have K(XA)= {0} . Q.E.D.
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Proposition 2.5.Let T be of class C., . Then T is of

class Ci19 if and only if

(2.14) ® T2 (E)N\HE* (E') = OH? (E).

Proof. Since

27 . . .
(@M *h (M), £0)) 2 ()= 37 fo (0(e™*Fry*n(e™™), £(e)) Lat
-2 . A .
= LJ Tloceit)s nieTit), re7)  at
2wJ0 E

2T . .. s
%,—J; ety * ne™t% ,£(e™h)) at

E
LT . . . . .
— %F . (e( *t)* e—_t h(e_lt), e—lt f(e—lt))E ac
= (©@M)* Tn(®) , XEM)z (gy-

e(X)* B2 (E') is dense in H? (E) if and only if
Q(A)* (HZ(E'))-L is dense in (HZ(E))+, where 1 denotes

the orthogonal complement. We have always

6 L2{E)N B (E')D 9K (E).
At first, assume that T is of class Cio . Suppose

g€ {0 L2 (E)n H* (E')} © oH? (E) .
Then Og€&H? (E') and g H® (E),because @ is an isometry from
12 (E) to I? (E'). Thus g, O* (H (E')) and ge (&2 (E),)"L . Since @(})
is =x-outer, we have g= 0. Consequently (2.14) follows.

Conversely assume (2.14). Suppose f_L@(A)*(HZ(E')f'and
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fE(m (B)Y" . Then Of€H (E') and OfLl OH? (E). Thus from (2.14)

, we have €f = 0 and hence £=0. Consegquently ©(A) is *-outer

Q.E.D.

Theorem 2.6. Let T be a gquasi unilateral shift. Then

T<S (that is, there is an X such that X (X)= K(X*)={0},XT=SX),

where S is a unilateral shift with index S = index T, if and

only if T is of class Ci;g3 .

Procf. Assume that T is of class C;4 . Then ,from Theorem 2.1,
 there is an X with dense range satisfying (2.3). If Xh=0
for h in H(®), then ,from (2.7) and (2.8),A(e S n(et®)=0 a.e..
Thus ,from (1.3), h&€06L% (E), so that , from (2.14),h€oH? (E).

Consequently h=0. Thus we have T< S.

Conversely , assume XT=8X and X(X)= K(X*)={0} . From XT =S'X

(n=1,2,...) it follows that T is of class C;q . Q.E.D.

Remark 1. If T is a Fredholm operator , then ,from Theorem 2.1

and Propositicon2.3,it is clear that < S if T is of class Cio -

Remark 2. Theorem?2.6.implies that the Jordan model of a

quasi unilateral shift of class C;y is a unilateral shift.
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Corollary 2.7.Let T be a quasi unilateral shift of class

Cio . Then T* has a cyclic vector.

Proof. T« S imlies that S*< T* . Since S* has a cyclic

vector,also T* does. : Q.E.D.

Proposition 28.Let T be a quasi unilateral shift. Then
there is an injection Y such that
(2.15) YS=TY,

where S is a unilateral shift such that index S = index T.

Proof. Consider S(€) defined by (2.2) instead of T. Let
V be an isometry defined in the proof of Theorem 21, Then
E'=VE @ F and det v*e(e'®) % 0 a.e..

Define an operator Y from H® (F) to H(@) by

) — ;G } > 2
Y h = PH(G}h for h in H® (F).
Then we have
YS h = PH(@)S h = PH(@)S PH(@)h = §(0)Y ’
which implies (2.15). Suppose Yh=0. Then h=0f for some f € H? (E)
. Thus 0 = v*h(e' %) = vxa(e?Hyr(e®®)  a.e.. since v*o(el®)

is invertible a.e. , f(elt)=0 a.e.. Consequently Y is injective

Q.E.D.
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Proposition 2.9.Let T be a quasi unilateral shift of class

Ci¢ . Then, if T< S',where S' is a unilateral shift,then

index S' = index T.

Proof. From S'*< T*, dim X(S'*) < dim X (T*).Above
proposition implies that there is an injection Y' such that
Y' S =S Y’, index S = index T, |
which implies that 0> index S > index S' (c.f. [30]). -
we have
index T = index S > index S' > index T,

E.D.

from which index T = index S' follows. Q

Remark 3. In [42 ], P.Y.Wu showed that if I-T*T is alfinite
rank operator ,and if T<S', then
rank (I-TT*)-rank (I-T*T)=-index S'.

From (2.9)' , our proposition is a extension of this result.

3.3.Cyclic vector.
In this section , we consider a quasi unilateral shift
of class Ci;o9 which has a cyclic vector. Next proposition is
a partial extension of Proposition 2 of [30] and Theorem 3.1

of [41].
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Proposition3d. Let T be a quasi unilateral shift of class
Cis . Then next conditions are equivalent:
(a) T has a cyclic vector ;

(b) there is a bounded operator Y satisfying

(3.1) Y Si=TY , Xk(¥*) = {0} ,
where S; is a unilateral shift with index S; = -1;
() s1<T;

(@) s:<T and T< S1 ;

(e) || T-TT*|h - |] I-T*T|h- =1, and there is a holomorphic
function T from H (€) to H® (E') satisfying
(3.2) I Tt g S1la.e.,
(3.3) I @ (¢c)Yor? (E) = B (E'),

where © is a characteristic function of T defined by (2.1).

Proof. (a) - (e). From Theorem 2.6,for a unilateral shift S
with index § = indexT, we have T‘< S. That T has a cyclic
vector implies that also S does. Thus index S = -1l.Consequently
[from (2.9), we have

[| z-1T*[h .~ || T-T*T|k = 1.
We can construct a function T in the same way as [30].

(e) = (b). A contraction Y defined by Yh = PH(Q)Fh

for h in H? (C) satisfies (3.1).
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(b) + (c). Suppose X(Y) # {0}.Since S:1X(Y)C K(Y),there
is a scalar inner function ¥ such that KX (¥)= yH? (€).Thus

k(¥)" = H@) (= B (€) © vE2 (C)),

Ylggy SO =T Ylgy

where S(y) = P Since S(y) is of class Cy ,T must

S .

H(y) | H(y)

be of class Cy . This is a contradiction. Consequently X (Y)={0}.
(c) = (d). $1< T implies T*< S;*, from which it follows

that dim X (T*) £ dim X(S;:*)=1.That T is of class Cio implies

index T <0. Thus index T =-1. By theorem 2.6,we have TLS,

(d) - (a). This is obvious. "Q.E.D.

(3.3) implies that [T,0] is an outer function from
H? (C) C)ffiuz) to H (E'). Generally [T,8] is not contractive.
Therefore d(l)=det{F(K),@(k)]€ff’and d(A) <1 are not
obvious. We shall show these results.

ILet A€L{(E,E') be a contraction and VEL(E,E') an isometry
with index V= -1. Let ’{el,ez ,...,en,..} be a C.0.N.B.in E.
Then , setting dn=Ven(n=l,2,...), {do,dl,...,dn,...} is a
C.O0.N.B. in E', where do is a unit vector in K(V*). For i=1,2,..
,define an isometry ViE.E(E,E') by

Viey=dg r-eer Vie5=ds 00Vi00015%5417V3%5427 400000 -

Let aijz(Aej,di) (i>0,3j>1). Then ,by base {el,ez,...},we have
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ay_q qre--r 851 e

841 170 Figl g7

(i=1,2,...)

b,

Let E; = C @ E be a direct sum of € and E, and e,

in €. Let x_{(n=0,1,2,...) be a scalar number such that

a unit vector

nzolxnlz é 1. Let BéiL(EO,Ej);be”an_operator defined by
(Bey,d;)=x; , (Bej,di)= a; 5 (i20,32>1) .
Determine a unitary UE?L(EO,E') by Uei=di (i>0) . Then by base

{eo,el,..,ei,...} of E. we have

0

XO'aOl""’an""

* = |
U* B Xl’all""’alj""

i3

X.ea; Y- I A
3¢5y’ ’ ’

-

- * s * — *
Let IE V*A & (1,C). Then,since (Vi Ae.,ek) (v Aej,ek) for

J

j20 and k>i+l, I —Vi*AGE(T,C) for every 1i.

’ TE
T — 1% - — 7% 7
,PE(¢EO U B)lE I~ V*A
implies IE -U*B € {1,C).
0

Lemma 3.2.Let IE—V*A &(t,C). Set VO=V. Then

* - R — i *
det U*B ié xi.( 1) det(Vi A),

0
and

© _ i %
iZ Ix5. (1) Tget(vi*a)| <1 .

Proof. For simplicity, let [A]n denote the first nxn
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submatrix of A, and A the AJED where E =<e;,...,e ). For
any k and n as n > k, we have

k - .

- * 2 * = 3 *
(3.4) iil |det[v, *A] [|* < det(a *A )= det[A*a] < 1,

because A is a contraction. Since for each 1

de}t{:[vi*A]n — det(vi*A) (n— ),

we have % |det(Vv,*a)|* < 1, which implies

. i =

i=0
(3.5) L |det(vi*a)|® <1

i=0
© _ i *

Consequently iZo 1%5-(-1)7det (v, Ayl < 1.

For any € >0, take an m such that

(3.6) S P LR

Since det[U*B] - det(U*B),and det[V, *a] — det(V,*a) as
n > , we can take an N such that
(3.7) n 2 N — [det[U*B]_ - det(U*B)|<¢,

and o
* —_ * 2
(3.8) nz2 N = .3, |det [V *A] - det (V. *a)[*<é .
Fix a k as k > N+1 and k > m+l .Then it follows that
- ‘1‘ 7 %
x;.(-1)"det (V, a)]

|get (u*B) - &,

m .
* - * - 1) T *
<|det (U*B) - det[U*Bly | + |det[U*B], - ,Z, X..(-1) det[V ,*A], ,

m .
-1yt 7% - *
+ |Zy %, (-1)7 {det[V,*Al, _; - det(V ,*a)}|
@ _ i *
+ [ 24 Xg-(Fl)Tdet (v *A) |
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From (3.7)

B

1

|det (U*B) - det[U*B]k[<€ , and from (3.8)

e~ 8

i
x; . (-1)7 {det[V,*A], ; - det(Vi*A)}]

m L
hS (iéo lx,12)*

L
i

* - * 232
( .Zoldet[v. A]] 1 det (V. A)I 1°<e |,
(3.5) and (3.6) implies that

lizm+l xi.(—l)idet(vi*A)|<€

By the finite matrix theory
m . '
- -1+ *
[det[U*B] ;Lo %5 - (F1)7@et (v *al, 4|
k-1

- i *
|21 ¥4 (F1) " detlvy Al _;l<e

begause the last inequality follows from (3.4), (3.6) .Consequ-

ently, for anye >0 we have

£ (U*B) -~ .% -1 * '
|det (U*B) - L, x,.(-1) det(V ,*a)]< 4e .Q.E.D.

In (e) of Propesition 3.1,set (F(A)eo, di)= hi(X) for i;O.
Then we have:

Proposition3.3. [det(U*[T(}),0(\)1) <1 , and

(3.9) det(U*[T (1) ,0 M) 1= .§

Orhi(k}x(—l)ldet(vi*@(K))
is holomorphic on D.

Proof. From(3.2), we have iiolhi(k)[?él. Since V. *O(A) -

is a contractive holomorphic function, det(Vi*é(X))eH@
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Since ©(A) is a contraction for every A€D,it follows that

Eolns 0D iaerw o0 | < 1,

which implies izo hy (A) 4 (—l)ldet(Vi*G)()\)) is holomorphic.

Eguality (3.9) follows from Lemma. Q.E.D.

Problem. Is det(U*[T()),0())]) outer?
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