

Title	C.o - CONTRACTIONS
Author(s)	内山, 充
Citation	大阪大学, 1982, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/72
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

C.₀ - CONTRACTIONS

MITSURU UCHIYAMA

1982

Dedication

To Toshiko ,Shinichi,Nami and Takashi

Acknowledgements

I wish to express my gratitude to Professor Tuyoshi Ando, my super-visor at post graduate course in Hokkaido University, for his guidance and helpful discussions.

I am very grateful to Professor Sumiyuki Koizumi for introducing me to the operator theory.

I would like to thank Professor Osamu Takenouchi for his warm encouragement and support.

Table of contents

	page
Introduction	. 1
Chapter I. Hyper-invariant subspaces	. 4
1.1. $C_0(n)$ -contractions	. 4
1.2. C.0 - contractions	.10
Chapter IL Commutants and double commutants	.19
2.1. Generalized Toeplitz operators	.19
2.2. Double commutants	.22
Chapetr $\text{HI.}\ C_{10}$ -contractions	.29
3.1. Operator valued functions .	.29
3.2. Quasi-unilateral shifts	.32
Bibliography	. 47

Introduction

In this thesis, I will make a study on operators of class C.0 on a Hilbert space. When a bounded operator T on a Hilbert space satisfies $||T|| \leq 1$ and $T^{*\, n} \to 0$ strongly as $n \to \infty$, T is said to belong to class C.0. This particular class contains many non-normal operators. In particular, the unilateral shift S on the Hardy class H^2 on the unit disc D in the complex plane belongs to it. In [3] Beurling showed that the invariant subspaces for S are precisely those of the form ψH^2 , where ψ is an inner function. For a Hilbert space E, we denote the E-valued Hardy class by H^2 (E). Lax [19] and Halmos [17] showed that the invariant subspaces for the unilateral shift S on H^2 (E) are precisely those of the form θ H^2 (F), where F is a Hilbert space with dim F \leq dim E and $\theta(\lambda)$ is an arbitrary B(F,E)-valued inner function defined on D. In this case, if we set

 $H\left(\Theta\right)=\ H^{2}\left(E\right)\ \bigoplus\Theta H^{2}\left(F\right)\quad\text{and}\quad S\left(\Theta\right)\ =\ P_{H\left(\Theta\right)}S\left|H\left(\Theta\right)\right,$ then $S\left(\Theta\right)$ belongs to $C._{0}$.

In [25] Rota showed that a contraction with norm < 1 is unitarily equivalent to $S(\theta)$ for a suitable inner function $\theta(\lambda)$.

Let T be a contraction on a Hilbert space H. Then Sz.-Nagy and Foias defined the characteristic function $\,\theta_{\rm T}(\lambda)$ of T by

$$\Theta_{\mathbf{T}}(\lambda) = \{-\mathbf{T} + \lambda \mathbf{D}_{\mathbf{T}^*} (\mathbf{I} - \lambda \mathbf{T}^*)^{-1} \mathbf{D}_{\mathbf{T}}\} \mid \mathbf{D}_{\mathbf{T}} \mathbf{H} \quad \text{for } \lambda \in \mathbf{D},$$

where D $_{\rm T}$ = (I-T*T) $^{1/2}$ and D $_{\rm T*}$ = (I-TT*) $^{1/2}$. And they showed that T belongs to C. $_0$ if and only if $\Theta_{\rm T}(\lambda)$ is inner. They also

showed that in this case T is unitarily equivalent to $S(\Theta_T)$ (cf.[28]). Thus the theory of spaces of analytic functions (cf.[18]) and the corona theorem ([6],[24]) have come to play important roles in the study of C.0.

A subspace of H is called hyper-invariant for an operator T on H if it is invariant for every bounded operator which commutes with T. In [20] Lomonosov proved a famous theorem: Every compact operator has a hyper-invariant subspace. The invariant subspace problem is an important subject in the actual study of operators.

Now ,I will give a few accounts of the contents of this thesis.

In chapter I,we will characterize the hyper-invariant subspaces for a contraction T which belongs to C. $_0$ and satisfies dim $D_{\rm T}H^{<\infty}$. Here the techniques introduced by Nordgren[22] is useful.

Chapter II is a study on the operators of the form $\phi(S(\psi))$. $\phi(S(\psi))$ is the general Toeplitz operator $\operatorname{PT}_{\phi}|H(\psi)$. (For precise definitions, cf. the first few lines of Chapter II. These operators are considered to extend Toeplitz operators.) In [26], Sarason showed that , for ϕ in H^{∞} and a scalar inner function ψ , $\phi(S(\psi))$ is compact if and only if $\overline{\psi}\phi$ belongs to $H^{\infty}+\mathcal{C}$, where \mathcal{C} is the Banach algebra of all continuous functions on the unit circle. In the first section of this chapter we will show that, for ϕ in $H^{\infty}+\mathcal{C}$, this result is still true.

We then proceed to establish some results on the double commutant of the operator $S(\theta)$. It is well-known that the double commutant of an arbitrary unilateral shift consists of multiplications by bounded scalar analytic functions. We extend this result to a wider class of operators of the form $S(\theta)$. Indeed, we will show that the double commutant consists of $\phi(S(\theta)), \phi \in H^{\infty}$.

Chapter m contains the main results of this thesis. A contraction T is called a weak contraction if I-T*T has a finite trace, and $\sigma(T) \neq D$. Weak contractions have nice properties and there are a good deal of studies (cf.[28]). My study concerns on the operators outside of this operator class. We will consider a contraction T which has following properties:

T belongs to C.o ,

I-T*T has a finite trace,

 $\sigma(T) = D$ and $\sigma_{p}(T) \neq D$.

Every unilateral shift has these properties, and we will call such an operator a quasi unilateral shift. One of the B.D.F. theorems[4] implies that T=S+compact ,where S is a unilateral shift with index S =index T . My contribution here is to show that there is an intertwining operator between T and S. This stronger result will make easier the analysis of the operators of this kind.

Chapter I. Hyperinvariant subspaces

1.1. $C_0(n)$ -contractions.

Let T be a contraction on H belonging to C._{0} . Then it necessarily follows that

$$\delta_{\star} = \dim \overline{D_{T^{\star}H}} \ge \dim \overline{D_{T^{H}}} = \delta.$$

Suppose $\delta_{\star}=\delta=n<\infty$, Then T is said to belong to $C_0(n)$. Simply, we denote the characteristic function of T by $\Theta(\lambda)$. In this case, we may regard $\Theta(\lambda)$ as an $n\times n$ matrix over H^{∞} . Since $\Theta(\lambda)$ is inner, that is, $\Theta(e^{it})$ is isometry for almost all t, $\Theta(e^{it})$ is unitary for almost all t. And T on H is unitarily equivalent to $S(\Theta)$ on $H(\Theta)=H_n^2 \bigodot \Theta H_n^2$, Where H_n^2 denotes $H^2(\mathfrak{C}^n)$.

Definition 1.1. A normal n×n matrix Φ over H^{∞} is of the form $\Phi = \left[\begin{array}{ccc} \phi_1 & 0 \\ \vdots & \ddots & \vdots \\ 0 & \phi_n \end{array} \right] \quad \text{, where ,for each i, } \phi_i \text{ is a scalar}$

inner function and a divisor of ϕ_{i+1} . The operator $S(\Phi) = S(\phi_1) \oplus \ldots \oplus S(\phi_n) \text{ induced by } \Phi \text{ is called a } \textit{Jordan}$ operator.

By the Sz.-Nagy and Foias theorem [29], every contraction in $C_0\left(n\right)$ is quasi-similar to a Jordan operator.

Theorem1.2. Let Θ be an $n \times n$ inner matrix over H^{∞} and Φ an $n \times n$ normal one . If $S(\Theta)$ and $S(\Phi)$ are quasi-similar ,then there exist quasi-affinities X from $H(\Theta)$ to $H(\Phi)$ and Y from

- $H(\Theta)$ to $H(\Phi)$ and Y from $H(\Phi)$ to $H(\Theta)$ such that
- (i) $X S(\Theta) = S(\Phi) X \text{ and } S(\Theta)Y = Y S(\Phi)$,
- (ii) the correspondence $\tau\colon\thinspace L\to \overline{\mathsf{X}L}$ and $\tau^*\colon M\to \overline{\mathsf{Y}M}$ establish an isomorphism from the lattice \mathcal{J}_Θ of hyperinvariant subspaces for $\mathsf{S}(\Theta)$ onto the lattice \mathcal{J}_Φ for $\mathsf{S}(\Phi)$, and its inverse, $\tau^*=\tau^{-1}$.

Proof. The hypothesis of quasi-similarity implies for $L \in \mathcal{G}_{\Theta}$ (1.1) $\tau(L) = \frac{V}{Z} \{ ZL; \ Z \ S(\Theta) = S(\Phi) \ Z \}$

belongs to \mathcal{O}_Φ (c.f.[23]). By one of the Moore-Nordgren theorems ([21],[22]) the quasi-similarity of $S(\theta)$ and $S(\Phi)$ implies that there exist matrices Δ , Δ' , Λ and Λ' each of whose determinants is relatively prime to the determinants of θ and Φ , and such that

$$(1.2) \qquad \Delta \Theta = \Phi \Lambda \text{ and } \Theta \Lambda' = \Delta' \Phi .$$

Define the operator X from $H(\Theta)$ to $H(\Phi)$ and Y from $H(\Phi)$ to $H(\Theta)$ by

- (1.3) $Xh = P_{H(\Phi)} \Delta h$ for h in $H(\Theta)$, $Yg = P_{H(\Theta)} \Delta g$ for g in $H(\Phi)$. Relation (1.2) guarantees condition (i), and X,Y are quasiaffinities. Take an arbitrary L in the lattice \mathcal{O}_{Θ} and let $L'=\tau(L)$. By a well-known theorem[28] the (hyper-)invariance of L and L' implies the existence of inner matrices Θ_1,Θ_2,Φ_1 and Φ_2 over H^{∞} satisfying
- (1.4) $\Theta = \Theta_2 \, \Theta_1 \qquad \text{and} \qquad \Phi = \Phi_2 \, \Phi_1 \quad ,$ and
- (1.5) $L = \Theta_2$ ($H_n^2 \ominus \Theta_1 H_n^2$) and $L' = \Phi_2$ ($H_n^2 \ominus \Phi_1 H_n^2$).

By the definition (1.1) of $\tau(L)$ we have $XL \subseteq \tau(L) = L'$ on the other hand, since YZ commutes with $S(\theta)$ for every Z occuring in (1.1), hyper-invariance of L for $S(\theta)$ implies $YZL \subseteq L$, and therefore $YL' = Y\tau(L) \subseteq L$. Now the inclusions $XL \subseteq L'$ and $\overline{YL'} \subseteq L$, and relations (1.2)-(1.5) imply $\Delta\theta_2 H_n^2 \subseteq \Phi_2 H_n^2$ and $\Delta'\Phi_2 H_n^2 \subseteq \Theta_2 H_n^2$; whence we deduce the existence of matrices A and B over H^∞ such that

- (1.6) $\Delta \Theta_2 = \Phi_2 A \text{ and } \Delta' \Phi_2 = \Theta_2 B.$
- Thus it follows that $\Phi_2 AB = \Delta \Delta' \Phi_2$, and hence,
- (1.7) det $A \cdot \det B = \det \Delta \cdot \det \Delta'$.

Since $\det \Delta \cdot \det \Delta'$ is relatively prime to $\det \Phi$, (1.7) implies that $\det A$ is relatively prime to $\det \Phi$, hence to $\det \Phi_1$. To prove $L' = \overline{XL}$ suppose that $f \in L' \ominus \overline{XL}$. Then ,again using (1.2)-(1.5), we see that f is orthogonal to $\Delta \Theta_2 \operatorname{H}^2_n$, and hence to $\Phi_2 \operatorname{AH}^2_n$, by (1.6). Moreover, (1.5) implies $f = \Phi_2 g$ for some $g \in \operatorname{H}^2_n \ominus \Phi_1 \operatorname{H}^2_n$. Then for every $h \in \operatorname{H}^2_n$

 $0 = (f, \Delta\Theta_2 h) = (\Phi_2 g, \Phi_2 Ah) = (g, Ah).$

Since detA is relatively prime to $\det\Phi_1$, AH_n^2 and $\Phi_1H_n^2$ span the whole H_n^2 . This implies g=0, hence f=0, proving $L'=\overline{XL}$. The relation $L=\overline{YL'}=\overline{YXL}$ is proved in a similar way. This completes the proof.

Theorem 1.3. Let Φ be an n×n normal matrix over $\operatorname{H}^{\infty}$.A subspace L of $\operatorname{H}(\Phi)$ is hyper-invariant for $\operatorname{S}(\Phi)$ if and only if there are n×n normal matrices Φ_1 , Φ_2 satisfying

(1.8)
$$\Phi = \Phi_2 \Phi_1$$
 and $L = \Phi_2 (H_n^2 \bigoplus \Phi_1 H_n^2)$.

Proof. By the lifting theorem ([28] p.258), for every operator X on $H(\Phi)$ commuting with $S(\Phi)$, there is a matrix Δ over H^∞ satisfying

(1.9) $\text{Xh} = P_{H\left(\Phi\right)} \Delta h \quad (h \in H\left(\Phi\right)) \text{ and } \Delta \Phi \ H_n^2 \subseteq \Phi H_n^2 \ .$ The latter condition is equivalent to the existence of a matrix Λ over H^∞ satisfying

$$(1.10) \qquad \qquad \triangle \ \Phi = \Phi \ \Lambda \quad .$$

Suppose that L is of the form (1.8), and that $\Phi = \operatorname{diag} \ (\phi_1, \ldots, \phi_n)$. To prove the hyper-invariance of L for $S(\Phi)$, it suffices to show the invariance of L for the operator X defined by (1.9). The existence of Λ satisfying (1.10) implies that if i>j, then the inner function ϕ_i/ϕ_j is a divisor of the Λ_{ij} , that is, the (i,j)-th entry of Λ . Since Φ_2 and Φ_1 are normal matrices with $\Phi = \Phi_2 \Phi_1$, for i>j the inner function u_i/u_j is a divisor of ϕ_i/ϕ_j , where u_i is the (i,i)-th entry of Φ_2 , hence a divisor of Λ_{ij} . This guarantees the existence of a matrix Λ' over H^∞ satisfying

$$(1.11) \qquad \Delta \ \hat{\Phi}_2 = \Phi_2 \ \Lambda' \ ,$$

and consequently the invariance of L for X.

Suppose conversely that L is hyper-invariant for $S(\Phi)$. Let P_i be the orthogonal Projection from $H(\Phi)$ onto the i-th component space . Since P_i commutes with $S(\Phi)$, the hyper-invariance of L implies that

$$L = P_1 L \oplus \dots \oplus P_n L$$

and each P_iL is an invariant subspace for $S(\phi_i)$. By the Beurling theorem there are inner divisors u_i and v_i of ϕ_i satisfying

(1.12)
$$\phi_i = u_i v_i$$
, $P_i L = u_i (H^2 \ominus v_i H^2)$.

Set $\Phi_2=$ diag (u_1,\ldots,u_n) and $\Phi_1=$ diag (v_1,\ldots,v_n) , then Φ_2 and Φ_1 satisfy (1.8). It remains to prove the normality of Φ_2 and Φ_1 . To this end , take the matrix Δ over H^∞ whose (i,j)-th entry Δ_{ij} is defined by

$$\Delta_{ij} = 1$$
 ($i \leq j$) and $\Delta_{ij} = \phi_i/\phi_j$ ($i > j$).

Clearly there exists a matrix Λ over $\operatorname{H}^{\infty}$ satisfying (1.10). The hyper-invariance of L implies the existence of a matrix Λ ' satisfying (1.11). This means if i<j, then u_i is a divisor of u_j and u_j/u_i is a divisor of ϕ_j/ϕ_i . The former condition guarantees the normality of Φ_2 , while the latter does the normality of Φ_1 . This completes the proof.

Since every $C_0\left(n\right)$ -contraction is quasi-similar to its Jordan operator ,by above theorems, we can characterize the hyper-invariant subspaces for it.

When φ is a scalar inner function, for the operator $S(\varphi)$ the invariance of a subspace is equivalent to its hyper-invariance . The lattice \mathcal{O}_{φ} of all (hyper-)invariant subspaces is totally ordered if and only if φ is of the form $((\lambda-\alpha)/(1-\overline{\alpha}\lambda))^n \quad (|\alpha|<1,n \text{ a positive integer})$

or of the form

(1.14) $e_S(\lambda) \equiv \exp (s(\lambda+\alpha)/(\lambda-\alpha)) \qquad (|\alpha|=1,s>0),$ according as dim $H(\phi)=n$ or dim $H(\phi)=\infty$ (cf.[28] p.136). This can be generarized to the case of inner matrices.

Theorem 1.4. Let Φ be an n×n normal matrix over H^{∞} and dim $H(\Phi) = \infty$. The lattice \mathcal{O}_{Φ} of hyper-invariant subspaces for $S(\Phi)$ is totally ordered if and only if Φ_n is of the form (1.14) and each Φ_i coincides with either 1 or Φ_n , where Φ_i is the (i,i)-th entry of Φ .

Proof. By theorem 1.3 the total orderdness of the lattice \mathcal{J}_{Φ} is equivalent to the condition that if normal matrices Φ_2 and Φ_2 ' are left divisors of Φ such that $\Phi_2^{-1}\Phi$ and $\Phi_2^{-1}\Phi$ are normal too, then one of Φ_2 and Φ_2 ' is a left divisor of the other. Suppose that \mathcal{J}_{Φ} is totally ordered. Take arbitrary inner divisors u and v of Φ_n , and set $\Psi_1 = \Psi \wedge \Phi_1$ and $\Psi_2 = \Psi \wedge \Phi_1$ (a $\Psi_1 = \Psi \wedge \Phi_2$) defined by

 Φ_2 = diag(u₁,u₂,...,u_{n-1},u) and Φ_2 '=diag(v₁,v₂,...,v_{n-1},v) are left divisor of Φ , and Φ_2 - Φ and Φ_2 - Φ are normal matrices over Φ . The divisibility of Φ_2 by Φ_2 ' or Φ_2 ' by Φ_2 implies that one of u and v is a divisor of the other. The arbitrariness of u and v implies that Φ is of the form (1.14)

because $\dim H(\Phi) = \infty$ implies $\dim H(\phi_n) = \infty$. There exists an ϕ_i such that $\phi_i/\phi_{i-1} = e_s$ ($1 \le i \le n$). If fact if any ϕ_i/ϕ_{i-1} is not equal to e_s , then there exists i and j such that $1 \le i < j \le n$, $\phi_i/\phi_{i-1} = e_a$ (s > a > 0), $\phi_j/\phi_{j-1} = e_b$ (s > b > 0) and $a + b \le s$.

Now set c and d so that $0< c \le a$, $0< d \le b$ and c< d. Consider the normal matrices Ω_1 and Ω_2 defined by

 $\Omega_1 = \operatorname{diag}(1,...,1,\stackrel{(i)}{e_c},...,e_c) \text{ and } \Omega_2 = \operatorname{diag}(1,...,1,e_d,...,e_d)$. Clearly Ω_i is a left divisor of Φ and $\Omega_i^{-1}\Phi$ is a normal matrix. By Theorem 1.3, the subspaces

$$\Omega_1 H_n^2 \bigcirc \Phi H_n^2$$
 and $\Omega_2 H_n^2 \bigcirc \Phi H_n^2$

are hyper-invariant for $S(\Phi)$, but any one of them is not included in the other, a contadiction. Consequently $\Phi = \text{diag}(1,...,1,e_s,...,e_s)$. The "only if" part is trivial. Therefore we omit the proof (see[33]).

1.2. C_{0} - contractions.

In this section, we consider a contraction T in C.0 such that $m=\delta < \delta_\star = n < \infty$. Firstly we decide the lattice of hyperinvariant subspaces for a Jordan operator in class C.0. Next we establish a canonical isomorphism between the lattice of hyper-invariant subspaces for T and that for the Jordan model of T. Since $\delta = m$, $\delta_\star = n$, the characteristic function $\Theta(\lambda)$ of

T is regarded as an n×m matrix over H $^{\infty}$. Let d_k be the largest common inner divisor of all the minors of order k $(1 \le k \le m)$. And set $\psi_k = d_k/d_{k-1}$ $(d_0=1)$. Then ψ_k is a scalar inner function and a divisor of its succesor. In this case, an n×m matrix;

$$\Phi = \begin{bmatrix} \psi_1 & 0 \\ \psi_2 & \ddots & \vdots \\ 0 & \ddots & \psi_m \\ 0 & \dots & 0 \end{bmatrix}$$

is called normal, and a corresponding operator;

$$S(\Phi)=S(\psi_1) \oplus \ldots \oplus S(\psi_m) \oplus S$$
,

where S is the unilateral shift with index S = n-m, is called $Jordan\ model$ of T. Nordgren [22] has shown that there are pairs of matrices Δ_i , Λ_i and Δ_i , Λ_i , (i=1,2) satisfying

$$(2.1) \qquad \qquad \Delta_{\mathbf{i}} \Theta = \Phi \Lambda_{\mathbf{i}} ,$$

(2.1)'
$$\Theta \Lambda_i = \Lambda_i' \Phi$$
,

(2.2)
$$(\det \Lambda_i)(\det \Lambda_i') \wedge d_m = 1$$
,

(2.3)
$$(\det \Delta_1)(\det \Delta_1') \wedge (\det \Delta_2)(\det \Delta_2') = 1,$$

(2.3)'
$$(\det \Lambda_1)(\det \Lambda_1') \bigwedge (\det \Lambda_2)(\det \Lambda_2') = 1.$$

Setting

(2.4)
$$X_i = P_{\Phi} \Delta_i \mid H(\Theta)$$
 and

(2.4)'
$$Y_{i} = P_{\Theta} \Delta_{i}' | H(\Phi)$$
 for i=1,2,

where P_{Φ} simply denotes $P_{H(\Phi)}$,

 $\{X_1, X_2\}$ and $\{Y_1, Y_2\}$ are injective families satisfying the following relations:

$$(2.5) Xi S(\Theta) = S(\Phi)Xi ,$$

(2.6)
$$S(\Theta) Y_{i} = Y_{i} S(\Phi),$$

$$(2.7) X_1 H(\Theta) \bigvee X_2 H(\Theta) = H(\Phi) ,$$

(2.8)
$$Y_1 H(\Phi) \bigvee Y_2 H(\Phi) = H(\Theta)$$
.

This implies $S(\theta)^{\text{ci}}S(\Phi)$ [30].

Now set Ψ = diag (ψ_1,\ldots,ψ_m) , that is, $\Phi=\begin{bmatrix} \Psi\\0 \end{bmatrix}$. Then $S(\Phi)$ on $H(\Phi)$ are identified with

$$S(\Psi) \oplus S$$
 on $H(\Psi) \oplus H_{n-m}$.

Let N be a hyper-invariant subspace for $S(\Phi)$. Then it is clear that N is decomposed to the direct sum, $N=N_1\oplus N_2$, where N_1 is a subspace of $H(\Psi)$, hyper-invariant for $S(\Psi)$, and N $_2$ is a subspace of H_{n-m} , hyper-invariant for S. In this case we have the following lemma.

Lemma 2.1. In order that $N=N_1 \oplus N_2$ is hyper-invariant for $S(\Phi)$, it is necessary and sufficient that $N_2=\{0\}$ or there exists an inner function Φ such that $N_2=\Phi H_{n-m}^2$ and $N_1 \supseteq \Phi(S(\Psi))H(\Psi)$.

Proof. Simply set k=n-m. An operator $X = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$ commutes

with $S(\Phi)$, if and only if Y_{ij} satisfy the following conditions:

$$Y_{11}S(\Psi) = S(\Psi) Y_{11}, Y_{12}S = S(\Psi) Y_{12},$$

$$Y_{2}_{1}S(\Psi) = S Y_{2}_{1}$$
, $Y_{2}_{2}S = S Y_{2}_{2}$.

Since $S(\Psi)^n \to 0$ as $n \to 0$ and S is isometry, we have $Y_{2:1} = 0$. Thus if $N_2 = \{0\}$, then it follows that $XN \subseteq N$ for every X commuting $S(\Phi)$. By the lifting theorem ([26],[28]), a bounded operator Y₁₂ from H_k² to H(Ψ) intertwines S and S(Ψ),if and only if there is an m×k matrix Ω over H^{∞} such that Y₁₂ = P_Ψ Ω . Thus,if N₂ = ϕ H_k² and N₁ \supseteq ϕ (S(Ψ))H(Ψ) for some inner function ϕ , then we have

where $\phi(S(\Psi))h=P_{\Psi}\phi h$ for $h\in H(\Psi)$. Thus N is hyper-invariant for $S(\Phi)$.

Conversely suppose $N=N_1 \oplus N_2$ is hyper-invariant for $S(\Phi)$, and $N_2=\{0\}$. Then by [10], there is an inner function Φ such that $N_2=\Phi H_{\bf k}^2$. Let $\Omega_{\bf i}$ (i=1,2,..,m) be the m×(n-m) matrix such that the (i,1)-th entry of $\Omega_{\bf i}$ is 1 and the other entry is 0. Setting

$$X_{i} = \begin{bmatrix} 0 & Y_{i} \\ 0 & 0 \end{bmatrix}$$
 and $Y_{i} = P_{\psi}\Omega_{i}$,

each X_{i} commutes with $S(\Phi)$, hence we have

$$N_1 = \sum_{i=1}^{n} Y_i \phi H_k^2 = P_{\psi} \phi H_m^2 = \phi (S(\Psi)) H(\Psi).$$

This completes the proof.

Theorem 2.2. In order that a factorization $\Phi = \Phi_2 \Phi_1$ of Φ into the product of an n×l inner matrix Φ_2 and an l×m inner matrix Φ_1 (n \geq l \geq m) corresponds to a hyper-invariant subspace

N for $S(\Phi)$,it is necessary and sufficient that Φ_1 and Φ_2 are normal matrices satisfying (i) or (ii):

(i) l=m,

(ii) l=n and
$$\Phi_2$$
 has the form $\begin{bmatrix} \Psi_2 & 0 \\ 0 & \phi \mathbf{I}_{\mathbf{k}} \end{bmatrix}$.

Proof. First, assume that l=m, and both Φ_1 and Φ_2 are normal inner matrices. Then, setting $\Phi_2=\begin{bmatrix} \Psi_2'\\0 \end{bmatrix}$,it follows that

 Φ_2 H(Φ_1)= Ψ_2 ' H(Φ_1) is hyper-invariant for S(Ψ) (see Sec.1.1). Therefore , by Lemma 2.1, it is hyper-invariant for S(Φ).

Next, assume that Φ_1 and Φ_2 are normal matrices satisfying (ii). Set Φ_1 = $\begin{bmatrix} \Psi_1 \\ 0 \end{bmatrix}$. Then we have

$${\mathbb N} \ = \! \Phi_2 \ \{ \ H_n^2 \ \bigoplus \ \Phi_1 H_m^2 \ \} \ = \ \Psi_2 \ H \ (\Psi_1) \ \bigoplus \ \varphi H_k^2 \ .$$

Normality of Ψ_1 and Ψ_2 implies that $\Psi_2 \, H(\Psi_1)$ is hyper-invariant for $S(\Psi)$. On the other hand ,normality of Φ_2 implies $\Psi_2 \, H_m^2 \!\!\!\! = \!\!\!\! \varphi \, H_m^2$, and hence we have

$$\Psi_2 H_m^2 \Theta \Psi H_m^2 \supseteq \phi(S(\Psi))H(\Psi)$$
.

Thus ,from Lemma 2.1, we deduce that N is hyper-invarinat for $S(\Phi)$.

Conversely, first assume that $N=N_1\bigoplus\{0\}$ is hyper-invariant for $S(\Phi)$, and $\Phi=\Phi_2\Phi_1$ is the factorization corresponding to N. Since $S(\Phi)\mid N=S(\Psi)\mid N_1$ is of class C_0 , S(is of class C_0 (about notation C_0 see [28]). This implies that Φ_1 is an m×m inner matrix, that is , l=m. Setting $\Phi_2=\begin{bmatrix} \Psi_2 \\ \Gamma \end{bmatrix}$, where Ψ_2 is an m×m matrix and Γ an k×m matrix (k=n-m), we have

$$\Psi=\Psi_2$$
 Φ_1 , $N_1=\Psi_2$ $H(\Phi_1)$ and Γ $H_m^2=\{0\}$.

Since $\Gamma=0$ and Φ_2 is inner, also Ψ_2 is inner. Thus the hyper-invariance of N_1 corresponding to $\Psi=\Psi_2\Phi_1$ implies that Ψ_2 and Φ_1 are m×m normal matrices. Next assume that $N=N_1\oplus \varphi H_k^2$ and $N_1\supseteq \varphi(S(\Psi))H(\Psi)$.

Clearly we have

$$P_{N}^{\perp}$$
 $S(\Phi) |_{N}^{\perp} = P_{N_{1}}^{\perp} S(\Psi) |_{N_{1}}^{\perp} \bigoplus S(\Phi I_{k}).$

Since the right hand operator is of class C_0 , $S(\Phi_2)$ is of class C_0 . This implies Φ_2 is an n×n matrix; i.e.,l=n. To the hyper-invariant subspace N_1 for $S(\Psi)$ there corresponds a factorization $\Psi=\Psi_2\Psi_1$, where Ψ_1 and Ψ_2 are m×m normal matrices. Thus setting Φ_2 '= $\begin{bmatrix} \Psi_2 & 0 \\ 0 & \phi I_k \end{bmatrix}$ and Φ_1 ' = $\begin{bmatrix} \Psi_1 \\ 0 \end{bmatrix}$,

it is clear that

$$\Phi = \Phi_2 \cdot \Phi_1 \cdot \text{ and } N = \Phi_2 \cdot \{H_n^2 \ominus \Phi_1 \cdot H_m^2\}$$
.

From the uniqueness of the factorization of Φ into product of two inner matrices corresponding to invariant subspace N , only this factorization $\Phi=\Phi_2$ ' Φ_1 ' corresponds to N , that is, $\Phi_2=\Phi_2$ ' and $\Phi_1=\Phi_1$ '. Since $\Psi_2\,H(\Psi_1)\,=\,N_1\, \ \supseteq \, \varphi\,(S(\Psi))\,H(\Psi)\,=\,P_\Psi\varphi\,H_m^2$,

we have $\Psi_2 H_{m}^2 \supseteq \phi H_{m}^2$; this implies that every entry of Ψ_2 is a divisor of ϕ . Therefore Φ_2 is an $n \times n$ normal matrix. Hence Φ_1 and Φ_2 are normal matrices satisfying (ii). Q.E.D.

$$\text{Set} \qquad \tau\left(L\right) \; = \; \bigvee_{Z} \{\; ZL \colon \; ZS\left(\Theta\right) = S\left(\Phi\right) Z\; \}$$
 and
$$\tau \star (N) \; = \; \bigvee_{W} \{\, WN \colon \; WS\left(\Phi\right) = S\left(\Theta\right) W\, \}$$

for each subspace L and N hyper-invariant for $S(\Theta)$ and $S(\Phi)$, respectively. Since $S(\Theta)^{\mbox{ci}}$ $S(\Phi)$, it is clear that $\tau(L)$ is the nontrivial hyper-invariant subspace for $S(\Phi)$, if L is non-trivial.

Lemma 2.3. If $\Theta=\Theta_2\,\Theta_1$ is the factorization corresponding to a non-trivial hyper-invariant subspace L for $S(\Theta)$, then Θ_1 is an m×m inner matrix, or Θ_2 is an n×n inner matrix.

Proof. Let
$$S(\theta) = \begin{bmatrix} T_1 & * \\ 0 & T_2 \end{bmatrix}$$
 and $S(\Phi) = \begin{bmatrix} S_1 & * \\ 0 & S_2 \end{bmatrix}$ be the

triangulations corresponding to

 $H(\Theta) = L \bigoplus L \ \ \text{and} \ \ H(\Phi) = \tau(L) \bigoplus \tau(L) \ \ \text{,respectively.}$ Theorem 2.2. implies that $S_1 \text{ or } S_2$ is in C_0 . First, suppose $u(S_1) = 0$ for some u in H^∞ . For the bounded operator X_1 given by (2.4) and every f in L, in virtue of (2.1), it follows that $X_1 \ u(T_1)f = X_1u(S(\Theta))f = P_{\Phi} \Delta_1 P_{\Theta} uf = P_{\Phi} \Delta_1 uf = P_{\Phi} u \Delta_1 f = u(S(\Phi))X_1f = 0.$

Since X_1 is an injection, we have $u(T_1)f=0$, which implies that T_1 belongs to C_0 , that is, θ_1 is an $m\times m$ inner matrix. Next suppose S_2 belong to C_0 , hence so does $S_2 \times .$ For Y_1 given by (2.4)' and every Z such that $ZS(\theta)=S(\Phi)Z$, in virtue of (2.6), Y_1Z commutes with $S(\theta)$, this implies $Y_1ZL\subseteq L$ and hence $Y_1T(L)\subseteq L$. Thus we have $Y_1\star L\subseteq T(L)$. From this and (2.6),

for each h in L , it follows that

$$Y_{i}^{*}T_{2}^{*}h = S_{2}^{*}Y_{i}^{*}h$$
 for i=1,2.

From this , we can deduce that

$$Y_i^* u(T_2^*)h = u(S_2^*)Y_i^* h$$
 for every u in H^{\infty}.

Since $Y_1H(\Phi)\bigvee Y_2H(\Phi)=H(\Theta)$, we have $u(T_2*)=0$ for u satisfying $u(S_2*)=0$. Therefore Θ_2 is an $n\times n$ inner matrix. This completes the proof.

A following theorem implies that the mapping τ is isomorphism from the lattice \mathcal{J}_{Θ} onto the lattice \mathcal{J}_{Φ} , and its inverse is given by τ^* .

Theorem 2.4. For X_1 and Y_2 given by (2.4),(2.4), (2.9), (2.9) $\tau(L) = X_1 L \bigvee X_2 L$ and $\tau^*(\tau(L)) = L$, (2.9), $\tau^*(N) = Y_1 N \bigvee Y_2 N$ and $\tau(\tau^*(N)) = N$, where $L \in \mathcal{J}_{\Theta}$ and $N \in \mathcal{J}_{\Phi}$.

Proof. Let $\Theta=\Theta_2\Theta_1$ and $\Phi=\Phi_2\Phi_1$ be the factorizations of Θ and Φ corresponding to L and Φ and Φ are lemma 2.3 implies that both Φ and Φ are lemma 1.3 implies that both Φ and Φ are lemma 2.4 matrices and both Φ and Φ are n×1 matrices, where len or lem. Since Φ and Φ and Φ are lemma 2.5 ince Φ and Φ are lemma 2.6 include Φ and Φ are lemma 2.7 include Φ and Φ are lemma 2.8 ince Φ and Φ are lemma 3.1 include Φ and Φ are lemma 4.2 include Φ and Φ are lemma 4.3 include Φ and Φ are lemma 4.3 include Φ and Φ are lemma 4.4 include Φ and Φ are lemma 4.5 include Φ and Φ are lemma 4.5 include Φ and Φ are lemma 4.5 include Φ are le

(2.10)
$$\Delta_i \Theta_2 = \Phi_2 A_i$$
 and $\Delta_i' \Phi_2 = \Theta_2 B_i$.

This and (2.1) implies that

(2.10)'
$$A_{i}\Theta_{1} = \Phi_{1}\Lambda_{i}$$
 and $B_{i}\Phi_{1} = \Theta_{1}\Lambda_{i}$ '.

By (2.10) we have

$$(2.11) \qquad \Delta_{\mathbf{i}} \Delta_{\mathbf{i}} \Theta_{\mathbf{i}} = \Theta_{\mathbf{i}} \Delta_{\mathbf{i}} \quad ,$$

and by (2.10)'

(2.11)'
$$B_{i}A_{i}\Theta_{1} = \Theta_{1}\Lambda_{i}'\Lambda_{i}$$
.

Thus if l=n, then det A_i is a divisor of det Δ_i det Δ_i , and if l=m then det A_i is a divisor of det Δ_i det Δ_i . To prove the first relation of (2.9) suppose that

$$f \in \tau(L) \Theta \{X_1 L V X_2 L\}.$$

Then f is orthogonal to $\Delta_1\,\Theta_2\,H_1^2V\Delta_2\,\Theta_2\,H_1^2$. On the other hand $f\in\tau(L) \text{ implies the existence of g belonging to } H_1^2\Theta\,\Phi_1\,H_m^2 \quad \text{such that } f=\,\Phi_2\,g$. Thus for every h in H_k^2 , we have

$$0 = (f, \Delta_{i} \Theta_{2} h) = (\Phi_{2} g, \Phi_{2} A_{i} h) = (g, A_{i} h)$$
 (i=1,2)

Thus if l=n, then , by (2.3) and Beurling's theorem

$$A_{i}H_{n}^{2} \supseteq (\det A_{i})H_{n}^{2} \supseteq (\det \Delta_{i})(\det \Delta_{i}')H_{n}^{2}$$

induce $A_1 H_n^2 \bigvee A_2 H_n^2 = H_n^2$ and hence g=0.

If 1=m, then, by (2.3)' and Beurling's theorem

$$A_i H_m^2 \supseteq (det A_i) H_m^2 \supseteq (det A_i) (det A_i') H_m^2$$

induce $A_1 H_m^2 \bigvee A_2 H_m^2 = H_m^2$ and hence g=0. Thus we showed $\tau(L) = X_1 L \bigvee X_2 L$. The rest is proved in a similar way. Q.E.D.

Chapter II. Commutants and double commutants

2.1. Generalized Toeplitz operator.

Let L^2 be the Hilbert space of all square Lebesgue integrable functions defined on the unit circle, and L^∞ the Banach algebra of all essentially bounded functions defined on the unit circle. Given ϕ in L^∞ , $M(\phi)$ denotes the multiplication of ϕ on L^2 . Let P' be the projection from L^2 onto H^2 . Then a Toeplitz operator T_ϕ is defined by $T_\phi = P'M(\phi) \mid H^2$. Let ψ be a scalar inner function. Then, for ϕ in L^∞ , we define the general Toeplitz operator $\phi(S(\psi))$ in the sense of [7] by $\phi(S(\psi)) = P T_\phi \mid H(\psi)$, where $P = P_\psi$. We denote the inner products in $H(\psi)$, H^2 and L^2 by (,),(,)' and (,)", respectively, and the identical operators in them by I, I' and I".

Lemma 1.1. For ϕ in H^{∞} + C, $(I"-P')M(\phi)P'$ is a compact operator on L^2 ,where C is a space of all continuous functions on the unit circle.

Proof. Let $\phi=\phi_1+\phi_2$ be a decomposition of ϕ such that ϕ_1 is in H and ϕ_2 in C. Then it follows that

$$(I"-P')M(\phi)P' = (I"-P')M(\phi_2)P'$$
.

Take trigonometric polynomials g_n (n=1,2,..)whose sequence uniformly converges to ϕ_2 . Then, since

$$\begin{split} & \left| \left| \left(\text{I"-P'} \right) \text{M} \left(g_n \right) \text{P'} - \left(\text{I"} - \text{P'} \right) \text{M} \left(\phi_2 \right) \text{P'} \right| \right| \leq \left| \left| \text{M} \left(g_n \right) - \text{M} \left(\phi_2 \right) \right| \right| \\ & \leq \left| \left| g_n - \phi_2 \right| \right|_{\infty} \to 0 \quad \text{as } n \to \infty \quad , \end{split}$$

finiteness of the rank of $(I" - P')M(g_n)P'$ implies that

 $(I" - P')M(\phi_2)P'$ is compact.

Lemma 1.2. For ϕ in $H^{\infty}+C$, $PT_{\phi}(I'-P)$ is compact.

Proof. This lemma follows from Lemmal.l and next relations; $PT_{\varphi}\left(\text{I'-P}\right) = P \ P'M(\varphi) \left(\text{I'-P}\right) = P \ P'M(\varphi)M(\psi)M(\overline{\psi}) \left(\text{I'-P}\right) \\ = PP'M(\psi)M(\varphi)M(\overline{\psi}) \left(\text{I'-P}\right) = PP'M(\psi) \left(\text{I''-P'}\right)M(\varphi)P'M(\overline{\psi}) \left(\text{I'-P'}\right).$

Lemma 1.3. If φ is in $H^\infty\!\!\!+\!\,{\cal C}$, then there exists a compact operator K from H^2 to $\overline H^2_0$,which is the conjugate space of H^2_0 , such that

$$\frac{1}{2\pi} \int_{0}^{2\pi} \phi \overline{\psi} \, f \, dt = (Kf_1, f_2)" + (\phi(S(\psi))Pf_1, P'\psi \overline{f}_2)$$

for every f in H_0^1 , f_1 in H^2 and f_2 in H_0^2 such that $f=f_1f_2$.

Proof. $\psi \bar{f}_2$ is orthogonal to ψH^{2} , and $P' \psi \bar{f}_2$ belongs to $H(\psi)$. Therefore we have

$$\frac{1}{2\pi} \int_0^{2\pi} \phi \overline{\psi} f dt = (\phi f_1, \psi \overline{f}_2)'' = (P' \phi P f_1, \psi \overline{f}_2)'' +$$

$$-+(P'\phi(I'-P)f_1,\psi\bar{f}_2)"+((I"-P')\phi f_1,\psi\bar{f}_2)"$$

$$= (P' \phi P f_1, P' \psi \overline{f}_2)" + (\overline{\psi} P P' \phi (I' - P) f_1, \overline{f}_2)" + (\overline{\psi} (I" - P') \phi f_1, \overline{f}_2)"$$

$$= (\phi(S(\psi))Pf_1,P'\psi\bar{f}_2) + (\bar{\psi}PT_{\phi}(I'-P)f_1,\bar{f}_2)" + (\bar{\psi}(I''-P')M(\phi)f_1,\bar{f}_2)".$$

Thus K= $M(\overline{\psi})PT_{\varphi}(I'-P)$ + $M(\overline{\psi})(I''-P')M(\varphi)|H^2$ satisfies the conditions of this lemma.

The proof of the next theorem deeply depends on [26].

Proposition 1.4. Let ϕ be a function in $H^{\infty} + C$. Then $\phi(S(\psi))$

is compact if and only if $\bar{\psi}\phi$ belongs to $\text{H}^\infty\!+\,\mathcal{C}$.

Proof. "Only if " part is obvious. Suppose $\phi(S(\psi))$ be compact. We wish to show that the kernel of functional of $\bar{\psi}\phi + H^{\infty}$ on H_0^1 is sequentially weak star closed. Let f_n be a sequence in its kernel and converge weak star to f. Let $f_n = f_1 f_2 f_1 f_2$

Then, since $\{f_1_n\}$ and $\{f_2_n\}$ are bounded in L^2 , we may assume that they converge weakly to f_1 and f_2 in L^2 , respectively, and $f=f_1f_2$. It is clear that f_1 is in H^2 and f_2 is in H^2 . From Lemmal.3, there is a compact operator K such that

$$\frac{1}{2\pi} \int_{0}^{2\pi} \phi \overline{\psi} f_{n} dt = (Kf_{1_{n}}, \overline{f}_{2_{n}}) + (\phi(S(\psi))Pf_{1_{n}}, P'\psi \overline{f}_{2_{n}})$$

and

$$\frac{1}{2\pi} \int_0^{2\pi} \phi \overline{\psi} f dt = (Kf_1, \overline{f}_2)" + (\phi(S(\psi))Pf_1, P'\psi \overline{f}_2).$$

Since both K and $\phi(S(\psi))$ are compact, it follows that

$$(Kf_{1n}, \overline{f}_{2n})$$
" \rightarrow $(Kf_{1}, \overline{f}_{2})$ " $(n \rightarrow \infty)$

and

$$(\phi(S(\psi))Pf_{1n}, P'\psi\overline{f}_{2n}) \rightarrow (\phi(S(\psi))Pf_{1}, P'\psi\overline{f}_{2}) \quad (n\to\infty).$$

Thus we have
$$\frac{1}{2\pi} \int_0^{2\pi} \phi \overline{\psi} \ \text{f dt} = 0.$$

The proof is complete.

Theorem 1.5. If ϕ is in H^{∞} ,then next conditions are equivalent;

- (a) $\phi(S(\psi))$ is a Fredholm operator ,
- (b) there are $\epsilon>0$ and $1>\delta \geq 0$ such that $|\phi(\lambda)| + |\psi(\lambda)| \geq \epsilon \quad \text{for} \quad 1>|\lambda| \geq \delta \ ,$
- (c) $\phi(H^{\infty} + C) + \psi(H^{\infty} + C) = H^{\infty} + C$.

Proof. First assume (a). Then there is a factorization $\phi = \ \phi_1 \phi_2 \ \text{,where} \ \phi_1 \left(S(\psi) \right) \ \text{is invertible and} \ \phi_2 \ \text{is a finite Blashke}$ function. By [12] and [13], there is an $\epsilon_1 > 0$ such that $|\phi_1 \left(\lambda \right)| \ + \ |\psi \left(\lambda \right)| \ge \ \epsilon_1 \ \text{for} \ |\lambda| < 1 \ .$

Since ϕ_2 is a finite Blashke function, we can easily show (b).

Next assume (b). Setting $\eta=\phi \Lambda \psi$, there is an $\epsilon_1>0$ such that $|\eta(\lambda)|\geq \epsilon_1$ for $1>|\lambda|\geq \delta$.

Consequently $1/\eta$ belongs to $H^{\infty}+\mathcal{C}$ [8]. Set $\phi'=\phi/\eta$ and $\psi'=\psi/\eta$. Then it is clear that there is an $\varepsilon_2>0$ such that $|\phi'(\lambda)|+|\psi'(\lambda)|\geq\varepsilon_2$ for $|\lambda|<1$.

Hence ,by corona theorem [6] [24], we have $\phi'H^{\infty} + \psi'H^{\infty} = H^{\infty}$, which yields (c). It is clear that (c) implies (a). Thus the theorem is established.

2.2. Double commutants.

When T is a special $C._0$ -contraction, the $A_{\overline{T}}$ and $\{T\}$ " were investigated by several authors (for unilateral shift see

[5], for C_0 -contraction [1], [31] and [40]), where A_T is a weakly closed algebra generated by T and I. In place of C_0 -contraction T with $\delta=m$, $\delta_*=n$ (necessarily $n\geq m$) we may consider $S(\theta)$, where $\theta(\lambda)$ is the characteristic function of T, $n\times m$ matrix of H^∞ and $|\theta(\lambda)| \leq 1$ for every λ in D. In this section we assume $\infty \geq n > m$. In this case there is an $n\times m$ normal matrix;

$$\Phi = \begin{bmatrix} \psi_1 & 0 \\ 0 & \psi_m \\ 0 & 0 \end{bmatrix},$$

and injective families {X, X'} and {Y, Y'} such that

 $XS(\Theta) = S(\Phi)X$, $S(\Theta)Y = YS(\Phi)$,

 $X'S(\Theta) = S(\Phi)X'$, $S(\Theta)Y'=Y'S(\Phi)$,

 $XY=\eta (S(\Phi)), YX=\eta (S(\Theta))$

 $X'Y'=\eta'(S(\Phi)), Y'X'=\eta'(S(\Phi)),$

and $\eta ' / \eta \cdot \psi_m = 1$ ([21],[22],[27]). Next two lemmas are obvious.

Lemma 2.1. $\phi(S(\Theta))$ is injective if and only if $\phi/\psi_m=1$, and $\phi(S(\Theta))H(\Theta)$ is dense in $H(\Theta)$ if and only if ϕ is outer.

Lemma 2.2. $\{S(\Phi)\}^{"} = \{\phi(S(\Phi)): \phi \in H^{\infty}\}.$

For a bounded operator ${\tt T}$, we denote the lattice of invariant subspaces for ${\tt T}$ by Lat ${\tt T}$.

Lemma 2.3. {A: Lat $A \supseteq Lat S(\Phi)$ } = { $\phi(S(\Phi)): \phi \in H^{\infty}$ }.

Proof. Suppose Lat A \supseteq Lat S(Φ). Since each component space of H(Φ) reduces S(Φ), it also reduce A, that is, A has the form $A = \sum_{i=1}^{n} \bigoplus A_i \cdot \psi_{i+1} / \psi_i \in H^{\infty}$ implies that $H(\psi_i) \subseteq H(\psi_{i+1}) \subseteq H^2$. Let P_i be the projection from $H(\Phi)$ onto i-th component space. Then $L_{ij} \equiv \{(P_i x \bigoplus P_j \ x \ : x \in H^{\infty}\}$ is invariant for S(Φ). If i, $j \ge m+1$, then A $L_{ij} \subseteq L_{ij}$ implies $\Phi_i = \Phi_j$. If $i \le m < j$, then AL $_{ij} \subseteq L_{ij}$ implies that for every x in $H(\psi_i)$ there is a y in H^2 such that $A_i x \bigoplus \Phi_j x = P_i \ y \bigoplus y$,

which implies $A_i = \phi_j(S(\psi_i))$ and hence $A = \phi(S(\Phi))$ for some ϕ in H^∞ . The converse assertion is trivial.

Lemma 2.4. $\{S(\Theta)\}$ " = $\{N : \eta(S(\Theta)) N = \phi(S(\Theta)) \text{ for some } \phi \text{ in } H^{\infty}\}$.

Proof. For each N in $\{S(\Theta)\}$ " and each B in $\{S(\Phi)\}$ ', set K=XNYB - BXNY. Then , since YBX $\in \{S(\Theta)\}$ ' and XY $\in \{S(\Phi)\}$ ", it follows that YK=YXNYB-YBXNY=NYXYB-NYBXY=0,which implies K=0. Consequently, from Lemma 2.2, there is a ϕ in H $^{\infty}$ such that XNY= ϕ (S(Φ)). Since YX = η (S(Θ)) is injective, from YX η (S(Θ))N=YXN η (S(Θ))=YXNYX=Y ϕ (S(Φ))X=YX ϕ (S(Θ)), we have η (S(Θ))N= ϕ (S(Θ)). The converse assertion is trivial.

Lemma 2.5. If XNY= ϕ (S(Φ)) and X'NY'= ϕ '(S(Φ)) for ϕ , ϕ ' in H ,then N belongs to {S(Θ)}".

Proof. Clearly we have

 $N\eta(S(\Theta)) = \phi(S(\Theta))$ and $N\eta'(S(\Theta)) = \phi'(S(\Theta))$.

Hence, for each M in $\{S(\theta)\}$ ', we have

 $NM\eta\left(S\left(\Theta\right)\right)=N\eta\left(S\left(\Theta\right)\right)M=\varphi\left(S\left(\Theta\right)\right)M=M\varphi\left(S\left(\Theta\right)\right)=MN\eta\left(S\left(\Theta\right)\right),$ and similarly $NM\eta'\left(S\left(\Theta\right)\right)=MN\eta'\left(S\left(\Theta\right)\right). \ Since \ \eta \bigwedge \eta'=1, the$ ranges of $\eta\left(S\left(\Theta\right)\right)$ and $\eta'\left(S\left(\Theta\right)\right)$ span a dense set in $H\left(\Theta\right)$. Thus we have NM=MN.

Theorem 2.6. If N belongs to $\{S(\theta)\}$ ", then there is a unique ϕ in H^{∞} such that $N=\phi(S(\theta))$. In this case $||N||=||\phi||_{\infty}$.

Proof. Let N belong to $\{S(\theta)\}$ ". Then from Lemma 2.5 and Lemma 2.1 we have $\phi_1(S(\theta))$ N = $\phi_2(S(\theta))$, where $\phi_1=\eta/\eta \Lambda \phi$ and $\phi_2=\phi/\eta \Lambda \phi$. Thus from the lifting theorem, there are an n×n bounded matrix $\Gamma=(\gamma_{\mbox{ij}}')$ over \mbox{H}^∞ , and an m×n bounded matrix $\Omega=(\omega_{\mbox{ij}})$ over \mbox{H}^∞ such that

- (2.1) $\Gamma\Theta \ H_m^2 \subseteq \Theta H_m^2 \ , \ N= \ P_{\Theta} \Gamma \left| H\left(\Theta\right) , \left| \right| \ N \right| = \ \left| \right| \Gamma \left| \right|_{\infty} \sup_{\lambda} \ \left| \right| \Gamma \left(\lambda\right) \left| \right| \ ,$ and
- $(2.2) \phi_2 I_n \phi_1 \Gamma = \Theta \Omega .$

Since θ is inner, $1=\det(\theta^*(e^{it})\theta(e^{it}))=\sum_a \det(\theta^*(e^{it}))^2$, where θ_a denotes an m×m submatrix. Therefore there is a θ_a such that $\det\theta_a=0$. We may assume that the first minor is not 0. Let θ_{ij} and $\theta_{a(i)j}$ be the (i,j)-th component of θ and θ_a , respectively. Let $\theta_a'=(\theta'_{a(i)j})$ be the classical adjoint matrix of θ_a . Then, for k(a) + a(i) $(1 \le i \le m)$, by the same technique as the proof of Theorem 1 of [35], from(2.2), we have

$$\begin{aligned} &-\phi_1\theta_a'\begin{bmatrix} \gamma_a(1)k(a)\\ \vdots\\ \gamma_a(m)k(a) \end{bmatrix} = \det\theta_a\begin{bmatrix} \omega_1k(a)\\ \vdots\\ \omega_{mk}(a) \end{bmatrix} \;, \\ &\text{and hence} \\ &-\phi_1(\theta_k(a)1'\cdots\theta_k(a)m')\theta_a'\begin{bmatrix} \gamma_a(1)k(a)\\ \vdots\\ \gamma_{a(m)k(a)} \end{bmatrix} = \det\theta_a(\phi_2-\phi_1\gamma_k(a)k(a)) \end{aligned}$$

Thus ,by simple calculations , we have

(2.3)
$$\phi_1 \det \begin{bmatrix} \theta_a(1)1 & \theta_a(1)m & \gamma_a(1)k(a) \\ \vdots & \vdots & \vdots & \vdots \\ \theta_a(m)1 & \theta_a(m)m & \gamma_a(m)k(a) \\ \theta_k(a)1 & \theta_k(a)m & \gamma_k(a)k(a) \end{bmatrix} = \phi_2 \det \theta_a$$

This implies that the inner factor of ϕ_1 is a divisor of $\bigwedge det \Theta_a$ which is equal to ψ_m ([21],[27]). Thus $\phi_1 \bigwedge \psi_m = 1$ deduce that ϕ_1 is outer. For a submatrix Θ_a satisfying $1 \leq a(1) < \cdots < a(m) \leq m+1$, there is a unique k(a) such that $1 \leq k(a) \leq m+1$ and $k(a) \neq a(i)$. Conversely, for every $1 \leq k \leq m+1$, there is a unique Θ_a such that $1 \leq a(1) < \cdots < a(m) \leq m+1$ and k(a) = k. Thus setting

 $\xi_{k(a)}(\lambda) = \det \Theta_{a}(\lambda)$, from (2.3), we have

$$|\phi_{2}(\lambda)|^{2} |\xi_{k}(\lambda)|^{2} = |\phi_{1}(\lambda)|^{2} |\det\begin{bmatrix} \theta_{1}, \dots, \theta_{1}, m, & \gamma_{1}, k \\ \vdots & \vdots & \vdots \\ \theta_{m+1}, \dots, \theta_{m+1}, & \gamma_{m}, k \\ \theta_{m+1}, \dots, & \theta_{m+1}, & \gamma_{m+1}, k \end{bmatrix} |^{2}$$

for every k; $1 \le k \le m+1$. Hence it follows that

$$\begin{split} |\phi_{2}(\lambda)|^{2} \sum_{k=1}^{m+1} |\xi_{k}(\lambda)|^{2} &= |\phi_{1}(\lambda)|^{2} \left\| \begin{bmatrix} \gamma_{1} & 1 & (\lambda) & \cdots & \gamma_{m+1} & (\lambda) \\ \vdots & & \vdots & & \vdots \\ \gamma_{1m+1}(\lambda) & \cdots & \gamma_{m+1m+1}(\lambda) \end{bmatrix} \begin{bmatrix} \xi_{1}(\lambda) \\ \vdots & m_{\xi_{m+1}(\lambda)} \end{bmatrix} \right\|^{2} \\ &\leq |\phi_{1}(\lambda)|^{2} \left\| \Gamma_{m+1}(\lambda) \right\|^{2} \left\| \chi_{m+1}(\lambda) \right\|^{2} \left\| \chi_{m+1}(\lambda) \right\|^{2} \\ &\leq |\phi_{1}(\lambda)|^{2} \left\| \Gamma_{m+1}(\lambda) \right\|^{2} \left\| \chi_{m+1}(\lambda) \right\|^{2} \\ &\leq |\phi_{1}(\lambda)|^{2} \left\| \Gamma_{m+1}(\lambda) \right\|^{2} \left\| \chi_{m+1}(\lambda) \right\|^{2} \\ &\leq |\phi_{1}(\lambda)|^{2} \\ &\leq |\phi_{1}(\lambda$$

where $\Gamma_{m+1}(\lambda)$ is the first submatrix of $\Gamma(\lambda)$ of order m+1,and ${}^t\Gamma_{m+1}(\lambda) \text{ is the transposed matrix of } \Gamma_{m+1}(\lambda). \text{ Since by the assumption } \xi_{m+1}(\lambda)\neq 0, \text{ it follows that}$

 $|\phi_{2}(\lambda)|^{2} \leq |\phi_{1}(\lambda)|^{2}||^{t}\Gamma_{m+1}(\lambda)||^{2} \leq |\phi_{1}(\lambda)|^{2}||\Gamma||_{\infty}^{2}.$

Thus there is a ϕ in H^{∞} such that $\phi_2 = \phi \phi_1$ and $\| \phi \|_{\infty} \le \| \Gamma \|_{\infty} = \| N \|$ (cf.[8]). Hence we have $N = \phi(S(\Theta))$. Since $\| N \|_{\infty} \le \| \phi \|_{\infty}$ is clear , we have $\| N \|_{\infty} = \| \phi \|_{\infty}$. Assume that $\phi(S(\Theta)) = \Psi(S(\Theta))$ for ϕ and ψ in H^{∞} . From $X(S(\Theta)) = S(\Phi)(X)$ and $X'(S(\Theta)) = S(\Phi)(X')$, we have $\phi(S(\Phi))X = \psi(S(\Phi))X \text{ and } \phi(S(\Phi))X' = \psi(S(\Phi))X'$. By $X(H(\Theta)) = H(\Phi)$, we deduce $\phi(S(\Phi)) = \psi(S(\Phi))$, from which $\phi = \psi$ follows.

Theorem 2.7. $A_{S(\Theta)} = \{ N: \text{ Lat } N \supseteq \text{ Lat } S(\Theta) \} = \{ S(\Theta) \} " = \{ \phi(S(\Theta)) : \phi \in H^{\infty} \}$.

Proof. From Theorem 2.6, it follows that $\{S(\Theta)\}" = \{\phi(S(\Theta)) : \phi \in H^{\infty}\} \subseteq A_{S(\Theta)} \subseteq \{N: \text{ Lat } N \supseteq \text{ Lat } S(\Theta)\} \ .$

Therefore we must only show that if Lat N \supseteq Lat S(Θ) , then N belongs to $\{S(\Theta)\}$ ". Let L be an arbitrary subspace in Lat S(Φ). Then ,since \overline{YL} is in Lat S(Θ),

 $\mathtt{XNY}^L \subseteq \mathtt{XN}\overline{\mathtt{Y}^L} \subseteq \mathtt{X}\overline{\mathtt{Y}^L} \subseteq \overline{\mathtt{X}}\overline{\mathtt{Y}^L} = \overline{\eta\left(\mathtt{S}\left(\Phi\right)\right)L} \subseteq L \quad .$

From Lemma 2.3, we have XNY= $\varphi(S(\Phi))$ for some φ in H^{∞} . Similarly we have X'NY'= $\varphi'(S(\Phi))$. Thus by Lemma 2.5,we can conclude the theorem .

Chapter III. C10- contraction

We determine C_1 , C_{10} and C_{11} by $C_1 \cdot = \{T: T^n x \to 0 \text{ as } n \to \infty \text{ for all } x \},$ $C_{10} = C_1 \cdot \bigwedge C_{10} \text{ and }$ $C_{11} = \{T: T \in C_1, T^* \in C_1, \}.$

It is well-known that there is a $C_0 C_{1\,1}decomposition$ for a weak contraction. Therefore we can easily show that if T is of class $C_{1\,0}$ and $I-T^*T\in(\tau,c)$, where (τ,c) denotes the trace class , then $\sigma_p\left(T^*\right)=D$ and $\sigma_p\left(T\right) \bigwedge D=\varphi$.

In this chapter , we shall investigate a contraction T such that $I-T^*T\in (\tau,c)$ and $\sigma(T)=\overline{D}$. The main tool is the theory of infinite determinant [15]. About $C_{1\,0}$ see [11],[14] and [41].

3.1. Operator valued functions.

For $T \in I + (\tau, c)$, Bercovici and Voiculescu defined the algebraic adjoint T^a , which satisfies

$$T^aT = TT^a = det T$$

They showed that if $\theta(\lambda)$ is a contractive holomorphic function and if $\theta(\lambda) \in I + (\tau,c)$ for every $\lambda \in D$, then $\theta(\lambda)^a$ is a contractive holomorphic function. In this case, if $\det \theta(e^{it}) \neq 0$ a.e., then $\theta(e^{it})$ is invertible and its inverse is $\theta(e^{it})^a / \det \theta(e^{it})$ a.e..

Theorem1.1. Let $\theta(\lambda)$ be an inner function (that is, $\theta(\lambda)$ is a contractive holomorphic function defined on D and $\theta(e^{it})$ is isometric a.e.) with values in L(E,E'), where E,E' are separable Hilbert space. If there is an isometry V in L(E,E') such that for every $\lambda \in D$

(1.1)
$$I_{E} - V^{*\Theta}(\lambda) \in (\tau, C),$$

(1.2)
$$\det V^*\theta(\lambda) \neq 0,$$

then there is a bounded holomorphic function $\Delta(\lambda)$ with values in L(E',F) for a suitable Hilbert space F such that

(1.3)
$$\theta(e^{it})E \oplus \Delta^*(e^{it})F = E' \text{ a.e.}.$$

Proof. If V is a unitary, then $\theta(e^{it})$ is invertible a.e.. Hence we may assume that V is not a unitary. Set $F = E' \ominus VE$. Let $E_0 = E \oplus F$ be the direct summation of E and F. For $\lambda \in D$, define $\theta'(\lambda) \in L(E_0, E')$ by

$$\theta'(\lambda)|_{E} = \theta(\lambda) \text{ and } \theta'(\lambda)|_{F} = I_{F}.$$

For simplicity, set $d(\lambda) = \det V * \Theta(\lambda)$ and $A(\lambda) = (V * \Theta(\lambda))^a$. Determine $\Delta(\lambda) \in L(E^i, F)$ by

(1.4)
$$\Delta(\lambda) = - P_{F}\Theta(\lambda)A(\lambda)V^{*} + d(\lambda)P_{F}$$

and $\Delta'(\lambda) \in L(E', E_0)$ by

$$\Delta'(\lambda) = A(\lambda)V^* + \Delta(\lambda)$$
.

Then we have

$$\begin{split} &\Delta'(\lambda)\Theta'(\lambda)\big|_{E} = \Delta'(\lambda)\Theta(\lambda) = A(\lambda)V^{*}\Theta(\lambda) + \Delta(\lambda)\Theta(\lambda) \\ &= d(\lambda)I_{E} - P_{F}\Theta(\lambda)d(\lambda)I_{E} + d(\lambda)P_{F}\Theta(\lambda) = d(\lambda)I_{E} \end{split}$$

$$\Delta'(\lambda) \Theta'(\lambda) \big|_{F} = A(\lambda) V^{*}I_{F} + \Delta(\lambda) I_{F} = d(\lambda) I_{F},$$
 and
$$\Theta'(\lambda) \Delta'(\lambda) = \Theta(\lambda) A(\lambda) V^{*} + \Delta(\lambda) = (I - P_{F}) \Theta(\lambda) A(\lambda) V^{*} + d(\lambda) I_{F}$$
$$= VV^{*}\Theta(\lambda) A(\lambda) V^{*} + d(\lambda) I_{F} = V d(\lambda) V^{*} + d(\lambda) I_{F} = d(\lambda) I_{F}.$$

Thus we have

 $\Delta'(\lambda)\theta'(\lambda) = d(\lambda)I_{E_0} , \theta'(\lambda)\Delta'(\lambda) = d(\lambda)I_{E_1}.$ Since the inverse of $\theta'(e^{it})$ is $\Delta'(e^{it}) \Big/ d(e^{it})$ a.e., the orthogonal complement of $\theta(e^{it})E = \theta'(e^{it})E$ is

$$\frac{\Delta'(e^{it})*}{d(e^{it})} (E_0 \ominus E) = \Delta(e^{it})*F.$$

It is clear that $\Delta(\lambda)$ is a bounded holomorphic function. Q.E.D.

Cambern showed that the orthogonal complement of a finite dimensional holomorphic range function is conjugate holomorphic (c.f. p.94 of[16]). Now, we can show this result as a corollary.

Corollary 12. Let $\Theta(\lambda)$ be an inner function with values in L(E,E'). Suppose dim $E=m<\infty$. Then there is an bounded holomorphic function $\Delta(\lambda)$ satisfying (1.3).

Proof. We may assume that $E \subset E'$ and $\theta(e^{it})$ is a matrix. Since $1 = \det(\theta^*(e^{it})\theta(e^{it})) = \sum_{\sigma} |\det\theta_{\sigma}(e^{it})|^2$, a.e., where \sum_{σ} is taken over all m×m submatrices of $\theta(e^{it})$, there is at least one σ such that $\det\theta_{\sigma}(e^{it}) \neq 0$ a.e.. Thus there is an isometry V such that

3.2.Quasi unilateral shifts.

We begin with a short review about the canonical model theory of Sz,Nagy and C.Foias. Let T be a contraction of class C.0 on a separable Hilbert space H. Set $D_T = (I - T*T)^{\frac{1}{2}}$, and let E and E' be the closures of D_T^H and D_{T*}^H , respectively. Then the characteristic function $\Theta(\lambda)$ of T determined by $\Theta(\lambda) = \{-T + \lambda D_{T*}(I - \lambda T*)^{-1} D_T\}|_E \text{ for } \lambda \in D$ is an inner function with values in L(E,E'). Therefore dim $E \leq \dim E'$.

Moreover T is unitarily equivalent to $S(\theta)$ on $H(\theta)$ defined by (2.2) $H(\theta) = H^2(E') \bigcirc \theta H^2(E)$, $S(\theta)*h = \overline{\lambda}h$ for h in $H(\theta)$. T is of class C_1 . if and only if $\theta(\overline{\lambda})*H^2(E')$ is dense in $H^2(E)$ (that is, θ is *-outer).

In this thesis, for simplicity, we call T a quasi unilateral shift if T is a contraction of class $C._0$ such that $I - T*T \in (\tau,C), K(T) = \{0\} \text{ and } K(T*) \neq \{0\}.$

Theorem 2.1. If T is a quasi unilateral shift on H, then there is a bounded operator X with dense range satisfying

$$(2.3) X T = S X,$$

where S is a unilateral shift satisfying

$$0 > index S = index T \ge - \infty$$
.

Proof. We may assume $I-T^*T \neq 0$. From $T(I-T^*T)=(I-TT^*)T$, it follows that TECE', $T(H \ominus E)=H \ominus E'$, where E and E' are the spaces defined above. Thus we have

$$(2.4) H \ominus TH = E' \ominus TE \neq \{0\}.$$

Let{e₁,e₂,...,e_n,...} be the C.O.N.B. of E such that $(I-T^*T)e_n = \mu_n e_n, \ \mu_n \ge 0. \ \text{Then } f_n = (1-\mu_n)^{\frac{1}{2}} Te_n \quad (n=1,2,...) \text{ is a }$ C.O.N.B. of TE and $T^*f_n = (1-\mu_n)^{\frac{1}{2}} e_n \quad (\text{see } [28])$. Setting $Ve_n = -f_n \quad (n=1,2,...), V \text{ is an isometry from E to E', and }$ (2.5) $V + T|_F \in (\tau,C) \quad (\text{see}[2]) .$

Setting $F=E' \ominus VE$, from (2.4), it follows that

$$(2.6) dim F = - index T.$$

I-T*T \in (\tau,C) implies $D_T \in$ (\sigma,C) which denotes the Hilbert Schmidt class. Since (I-TT*) $|_{TE}$ is unitarily equivalent to I-T*T, we have $D_{T*}|_{TE} \in$ (\sigma,C). Thus

$$\lambda V^* D_{T^*} (I - \lambda T^*)^{-1} D_{T} = \lambda V^* (D_{T^*} |_{TE}) (I - \lambda T^*)^{-1} D_{T}$$
 ($\lambda \in D$)

belongs to (τ,C) . Thus ,from (2.1), (2.5), we have

I-
$$V^*\theta(\lambda) \in (\tau,C)$$
 for each λ .

Since

$$\begin{aligned} &\left|\det\left(V^{*}\Theta\left(0\right)\right)\right|^{2}=\det\left(\Theta\left(0\right)^{*}VV^{*}\Theta\left(0\right)\right)=\det\left(T^{*}VV^{*}T\right|_{E})\\ &=\det\left(T^{*}T\right|_{E})=0 \ , \end{aligned}$$

We have $\det V^*\theta(\lambda) \not\equiv 0$. Thus V and $\theta(\lambda)$ satisfy the conditions of Theorem 1.1.Hence $\Delta(\lambda)$ defined by (1.4) satisfy (1.3). Since $\Delta(\lambda)\theta(\lambda) = 0$, setting

(2.7) $X_0 h = \Delta h \text{ for } h \text{ in } H(\Theta),$

we have $X_0 \in L(H(\Theta), H^2(F))$ and $X_0 S(\Theta) = S_0 X_0$, where S_0 is the unilateral shift on $H^2(F)$. Since

 $H^2 \ (F) \supset X_0 \, H \ (\Theta) \ = \ \Delta H^2 \ (E') \supset \Delta H^2 \ (F) = (\det \ V^*\Theta \ (\lambda)) \, H^2 \ (F) \, ,$ it follows that $S = S_0 \, \big|_{\overline{X_0 \, H \ (\Theta)}}$ is unitarily equivalent to S_0 . Thus, from (2.6), we have

index $S = index S_0 = -dim F = index T$. Consequently an operator X from $H(\theta)$ to $\overline{X_0H(\theta)}$ defined by (2.8) $X \ h = X_0 \ h \ for \ h \ in \ H(\theta)$ satisfy (2.3). Q.E.D.

Corollary 2.2.Let T be a contraction of class $C_{0\,0}$ such that I-T*T and I-TT* belong to (τ,C) . Then ,for $a\in D, K(T-aI)=\{0\}$ if and only if $K(T^*-aI)=\{0\}$.

Proof. Set $T_a = (T-aI)(1-\overline{a}T)^{-1}$ and $A = (1-|a|^2)^{\frac{1}{2}}(1-\overline{a}T)^{-1}$. Then we have $I-T_a*T_a = A*(I-T*T)A$, $I-T_aT_a* = A(I-TT*)A*$, and T_a is of class C_{00} (see p.240 and P.257 of [28]). Suppose $K(T-aI) = \{0\}$ and $K(T* - \overline{a}I) \neq \{0\}$. Then T_a is a quasi unilateral shift. Therefore, there is an X satisfying

X $T_a = S$ X, which implies that T_a is not of class C_{00} . This is a contradiction. Thus $K(T-aI) = \{0\}$ implies $K(T^*-\overline{a}I) = \{0\}$. Similarly we can proove the converse assertion. Q.E.D.

For a contraction T on H, we have

(2.9)
$$||I-T*T||_p + \dim K(T*) = ||I-TT*||_p + \dim K(T),$$
 where $|| \cdot ||_p$ denotes the p-Schatten norm.

Indeed, from T(I-T*T) = (I-TT*)T, $(I-T*T) |_{\overline{T*H}}$ and $(I-TT*)|_{\overline{TH}}$ are unitarily equivalent. $(I-T*T)|_{K(T)} = I_{K(T)}$ and $(I-TT*)|_{K(T*)} = I_{K(T*)}$ imply that

$$||I-T*T||_{p} = ||(I-T*T)|_{\overline{T*H}}||_{p} + \dim K(T),$$

 $||I-TT*||_{p} = ||(I-TT*)|_{\overline{TH}}||_{p} + \dim K(T*).$

Thus we have (2.9). Similarly we have

(2.9)'
$$\operatorname{rank}(I-T^*T) + \operatorname{dim} K(T^*) = \operatorname{rank}(I-TT^*) + \operatorname{dim} K(T)$$
.

Proposition 2.3.Let T be a Fredholm quasi unilateral shift. Suppose X with dense range satisfies XT = SX,where S is a unilateral shift with index S = index T. Then $T|_{K(X)}$ is of class C_0 .

Proof. Let $T=\begin{bmatrix}T_1&T_{12}\\0&T_2\end{bmatrix}$ be a decomposition of T corresponding to $H=\ \textit{K}(X)\ \oplus\ \textit{K}(X)^{\perp}$. Then T_1 is injective and ,from (2.3),also T_2 is injective. From the assumption and

(2.9), it follows that $I-T^*T \in (\tau,C)$ and $I-TT^* \in (\tau,C)$, which imply

(2.10)
$$I - T_1 * T_1 \in (\tau, C)$$
,

$$(2.11) I - (T_1 T_1* + T_{12} T_{12}*) \in (\tau,C),$$

$$(2.12) I - (T12 * T12 + T2 * T2) ∈ (τ,C),$$

(2.13)
$$I - T_2 T_2 * \in (\tau, C)$$
.

From $K(T_2^*) \subset K(T^*)$, it follows that

index $T = -\text{dim } K(T^*) \leq -\text{dim } K(T_2^*) \leq -\text{dim} K(S^*) = \text{index } T$, which implies index $T = \text{index } T_2$. From (2.9) and (2.13),we have $I-T_2^*T_2 \in (\tau,C)$, which,by (2.12),implies $T_{12} \in (\sigma,C)$. Therefore, from (2.10) and (2.11), T_1 is a Fredholm operator. Since

 $index \ T = index \begin{bmatrix} T_1 & 0 \\ 0 & T_2 \end{bmatrix} = index \ T_1 + index \ T_2 \ ,$ we have index $T_1 = 0$. Thus T_1 is invertible. Hence T_1 is a weak contraction of class $C_{\cdot 0}$. Consequently T_1 is of class $C_{\cdot 0}$.

Corollary 2.4. Let T be a Fredholm quasi unilateral shift of class C_{10} . Then ,if AT=TA and $K(A^*)=\{0\}, K(A)=\{0\}$ (c.f.[42]).

Proof. For X defined in Theorem 2.1, we have (XA)T = S(XA). From Proposition 2.3, we have $K(XA) = \{0\}$. Q.E.D.

Proposition 2.5.Let T be of class $C._0$. Then T is of class C_{10} if and only if $\theta \ L^2 (E) \cap H^2 (E') = \theta H^2 (E).$

Proof. Since

$$(\Theta(\overline{\lambda}) * h(\lambda), f(\lambda))_{H^{2}(E)} = \frac{1}{2\pi} \int_{0}^{2\pi} (\Theta(e^{-it}) * h(e^{it}), f(e^{it}))_{E} dt$$

$$= -\frac{1}{2\pi} \int_{0}^{-2\pi} (\Theta(e^{it}) * h(e^{-it}), f(e^{-it}))_{E} dt$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} (\Theta(e^{it}) * h(e^{-it}), f(e^{-it}))_{E} dt$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} (\Theta(e^{it}) * e^{-it} h(e^{-it}), e^{-it} f(e^{-it}))_{E} dt$$

$$= (\Theta(\lambda) * \overline{\lambda}h(\overline{\lambda}), \overline{\lambda}f(\overline{\lambda}))_{L^{2}(E)}'$$

 $\theta(\overline{\lambda}) * H^2(E')$ is dense in $H^2(E)$ if and only if

 $\theta(\lambda)$ * $(H^2(E'))^{\perp}$ is dense in $(H^2(E))^{\perp}$, where \perp denotes the orthogonal complement. We have always

$$\Theta$$
 L² (E) \cap H² (E') \supset Θ H² (E).

At first, assume that T is of class C_{10} . Suppose

$$\Theta g \in \{\Theta \ L^2 \ (E) \cap H^2 \ (E')\} \Theta \Theta H^2 \ (E)$$
.

Then $\theta g \in H^2$ (E') and $g \perp H^2$ (E), because θ is an isometry from L^2 (E) to L^2 (E'). Thus $g \perp \theta^* (H^2$ (E')) and $g \in (H^2$ (E)). Since θ (λ) is *-outer, we have g = 0. Consequently (2.14) follows. Conversely assume (2.14). Suppose $f \perp \theta (\lambda)^* (H^2$ (E')) and

 $f \in (H^2(E))^{\perp}$. Then $\Theta f \in H^2(E')$ and $\Theta f \perp \Theta H^2(E)$. Thus from (2.14), we have $\Theta f = 0$ and hence f = 0. Consequently $\Theta(\lambda)$ is *-outer Q.E.D.

Theorem 2.6. Let T be a quasi unilateral shift. Then $T \leq S$ (that is, there is an X such that $K(X) = K(X^*) = \{0\}, XT = SX\}$, where S is a unilateral shift with index S = index T, if and only if T is of class $C_{1,0}$.

Proof. Assume that T is of class C_{10} . Then ,from Theorem 2.1, , there is an X with dense range satisfying (2.3). If Xh=0 for h in H(0), then ,from (2.7) and (2.8), $\Delta(e^{it})h(e^{it})=0$ a.e.. Thus ,from (1.3), $h\in \Theta L^2$ (E), so that , from (2.14), $h\in \Theta H^2$ (E). Consequently h=0. Thus we have T < S. Conversely , assume XT=SX and $K(X)=K(X^*)=\{0\}$. From XT^N=S^NX (n=1,2,...) it follows that T is of class C_{10} . Q.E.D.

Remark 1. If T is a Fredholm operator , then ,from Theorem 2.1 and Proposition 2.3, it is clear that T \lt S if T is of class C_{10} .

Remark 2. Theorem 2.6. implies that the Jordan model of a quasi unilateral shift of class $C_{1\,0}$ is a unilateral shift.

Corollary 2.7.Let T be a quasi unilateral shift of class $C_{1\,0}$. Then T* has a cyclic vector.

Proof. $T \prec S$ imlies that $S* \prec T*$. Since S* has a cyclic vector, also T* does. Q.E.D.

Proposition 2.8.Let T be a quasi unilateral shift. Then there is an injection Y such that

$$(2.15)$$
 $Y S = T Y,$

where S is a unilateral shift such that index S = index T.

Proof. Consider $S(\theta)$ defined by (2.2) instead of T. Let V be an isometry defined in the proof of Theorem 2.1, Then

E' = V E
$$(+)$$
 F and det $V*\Theta(e^{it}) \neq 0$ a.e..

Define an operator Y from H^2 (F) to $H(\theta)$ by

$$Y h = P_{H(\Theta)} h$$
 for h in $H^2(F)$.

Then we have

 $\text{YS h} = P_{\text{H}(\Theta)} \text{S h} = P_{\text{H}(\Theta)} \text{S P}_{\text{H}(\Theta)} \text{h} = \text{S}(\Theta) \text{Y h ,}$ which implies (2.15). Suppose Yh=0. Then h=0f for some $f \in \text{H}^2$ (E) . Thus $0 = \text{V*h}(e^{\text{i}t}) = \text{V*O}(e^{\text{i}t}) \text{f}(e^{\text{i}t})$ a.e.. Since V*O(e^{it}) is invertible a.e. , $f(e^{\text{i}t}) = 0$ a.e.. Consequently Y is injective Q.E.D.

Proposition 2.9.Let T be a quasi unilateral shift of class C_{10} . Then, if T \langle S', where S' is a unilateral shift, then index S' = index T.

Proof. From S'* \prec T*, dim $K(S'*) \leq \dim K(T*)$. Above proposition implies that there is an injection Y' such that

Y' S = S' Y', index S = index T,

which implies that $0 > index S \ge index S'$ (c.f. [30]). We have

index $T = index S \ge index S' \ge index T$, from which index T = index S' follows. Q:E.D.

Remark 3. In [42], P.Y.Wu showed that if I-T*T is a finite rank operator ,and if $T \leq S'$, then

rank(I-TT*)-rank(I-T*T)=-index S'.

From (2.9)', our proposition is a extension of this result.

3.3. Cyclic vector.

In this section , we consider a quasi unilateral shift of class $C_{1\,0}$ which has a cyclic vector. Next proposition is a partial extension of Proposition 2 of [30] and Theorem 3.1 of [41].

Proposition 31. Let T be a quasi unilateral shift of class $C_{1\,0}$. Then next conditions are equivalent:

- (a) T has a cyclic vector;
- (b) there is a bounded operator Y satisfying

$$(3.1) Y S_1 = T Y , K(Y^*) = \{0\},$$

where S_1 is a unilateral shift with index $S_1 = -1$;

- (c) $S_1 \prec T$;
- (d) $S_1 \prec T$ and $T \prec S_1$;
- (e) $||I-TT^*||_1 ||I-T^*T||_1 = 1$, and there is a holomorphic function Γ from H^2 (C) to H^2 (E') satisfying

(3.2)
$$\| \Gamma(e^{it}) \|_{E_{i}} \le 1 \text{ a.e. },$$

(3.3)
$$\Gamma H^2(\mathbb{C}) \bigvee \Theta H^2(\mathbb{E}) = H^2(\mathbb{E}^1),$$

where θ is a characteristic function of T defined by (2.1).

Proof. (a) \rightarrow (e). From Theorem 2.6, for a unilateral shift S with index S = indexT, we have T \prec S. That T has a cyclic vector implies that also S does. Thus index S = -1. Consequently, from (2.9), we have

$$|| I-TT^*||_1 - || I-T^*T||_1 = 1.$$

We can construct a function Γ in the same way as [30].

(e) \rightarrow (b). A contraction Y defined by Yh = $P_{H(\Theta)}\Gamma h$ for h in $H^2(C)$ satisfies (3.1).

(b) \rightarrow (c). Suppose $K(Y) \neq \{0\}$. Since $S_1K(Y) \subset K(Y)$, there is a scalar inner function ψ such that $K(Y) = \psi H^2(\mathbb{C})$. Thus $K(Y)^{\perp} = H(\psi) \ (= H^2(\mathbb{C}) \ \Theta \ \psi H^2(\mathbb{C})),$ $Y|_{H(\psi)} S(\psi) = T \ Y|_{H(\psi)},$

where $S(\psi) = P_{H(\psi)} S|_{H(\psi)}$. Since $S(\psi)$ is of class C_0 ,T must be of class C_0 . This is a contradiction. Consequently $K(Y) = \{0\}$.

- (c) \rightarrow (d). $S_1 \prec T$ implies $T^* \prec S_1^*$, from which it follows that $\dim K(T^*) \leq \dim K(S_1^*) = 1$. That T is of class C_{10} implies index T <0. Thus index T =-1. By theorem 2.6, we have $T \prec S_1$
 - (d) \rightarrow (a). This is obvious. Q.E.D.
- (3.3) implies that $[\Gamma, \theta]$ is an outer function from $H^2(\mathbb{C}) \bigoplus H^2(\mathbb{E})$ to $H^2(\mathbb{E}')$. Generally $[\Gamma, \theta]$ is not contractive. Therefore $d(\lambda) = \det[\Gamma(\lambda), \theta(\lambda)] \in H^\infty$ and $d(\lambda) \leq 1$ are not obvious. We shall show these results.

Let $A \in L(E,E')$ be a contraction and $V \in L(E,E')$ an isometry with index V = -1. Let $\{e_1,e_2,\ldots,e_n,\ldots\}$ be a C.O.N.B.in E. Then , setting $d_n = Ve_n(n=1,2,\ldots)$, $\{d_0,d_1,\ldots,d_n,\ldots\}$ is a C.O.N.B. in E', where d_0 is a unit vector in $K(V^*)$. For $i=1,2,\ldots$, define an isometry $V_i \in L(E,E')$ by

$$V_{i}^{*} A = \begin{bmatrix} a_{01} & \cdots & a_{0j} & \cdots \\ a_{i-1} & 1 & \cdots & a_{i-1} & j & \cdots \\ a_{i+1} & 1 & \cdots & a_{i+1} & j & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$
 (i=1,2,...)

Let $E_0 = \mathbb{C} \oplus E$ be a direct sum of \mathbb{C} and E, and e_0 a unit vector in \mathbb{C} . Let \mathbf{x}_n (n=0,1,2,...) be a scalar number such that $\sum_{n=0}^{\infty} |\mathbf{x}_n|^2 \leq 1.$ Let $\mathbf{B} \in L(E_0, E_1')$ be an operator defined by $(\mathbf{B} e_0, \mathbf{d}_i) = \mathbf{x}_i \quad (\mathbf{B} e_i, \mathbf{d}_i) = \mathbf{a}_{ii} \quad (i \geq 0, j \geq 1).$

Determine a unitary $U \in L(E_0,E')$ by $Ue_i=d_i$ $(i \ge 0)$. Then by base $\{e_0,e_1,\ldots,e_i,\ldots\}$ of E_0 we have

$$U^* B = \begin{bmatrix} x_0, a_{01}, \dots, a_{0j}, \dots \\ x_1, a_{11}, \dots, a_{1j}, \dots \\ \vdots & \vdots & \vdots \end{bmatrix}$$

Let $I_E - V*A \in (\tau,C)$. Then, since $(V_i*Ae_j,e_k) = (V*Ae_j,e_k)$ for $j \ge 0$ and $k \ge i+1$, $I_E - V_i*A \in (\tau,C)$ for every i.

$$P_{E}(I_{E_{0}} - U^{*}B) \big|_{E} = I_{E} - V^{*}A$$
 implies
$$I_{E_{0}} - U^{*}B \in (\tau, C).$$

Lemma 3.2.Let $I_E^{-V*A} \in (\tau,C)$. Set $V_0^{=V}$. Then $\det U*B = \sum_{i=0}^{\infty} x_i \cdot (-1)^i \det(V_i*A),$

and

$$\sum_{i=0}^{\infty} |x_i.(-1)^i \det(V_i^*A)| \leq 1.$$

Proof. For simplicity, let $[A]_n$ denote the first $n \times n$

submatrix of A, and A_n the $A|_{E_n}$, where $E_n = \langle e_1, \ldots, e_n \rangle$. For any k and n as $n \ge k$, we have

(3.4)
$$\sum_{i=1}^{K} |\det[V_i^*A]_n|^2 \leq \det(A_n^*A_n) = \det[A^*A]_n \leq 1,$$

because A is a contraction. Since for each i

(3.5)
$$\sum_{i=0}^{\infty} |\det(V_i^*A)|^2 \leq 1$$

Consequently
$$\sum_{i=0}^{\infty} |x_i.(-1)^i \det(V_i^*A)| \leq 1.$$

For any $\epsilon > 0$, take an m such that

$$(3.6) \qquad \qquad \underset{i=m+1}{\overset{\infty}{=}} |x_i|^2 < \varepsilon^2.$$

Since $\det[U^*B]_n \to \det(U^*B)$, and $\det[V_i^*A]_n \to \det(V_i^*A)$ as $n \to \infty$, we can take an N such that

(3.7)
$$n \ge N \rightarrow |det[U*B]_n - det(U*B)| < \varepsilon$$
,

and

we have

(3.8)
$$n \ge N \rightarrow \sum_{i=0}^{m} |\det[V_i * A]_n - \det(V_i * A)|^2 < \varepsilon^2$$
.

Fix a k as k \geq N+l and k \geq m+l .Then it follows that

$$|\det(U^*B) - \sum_{i=0}^{\infty} x_i \cdot (-1)^i \det(V_i^*A)|$$

$$\leq |\det(U^*B) - \det[U^*B]_k| + |\det[U^*B]_k - \sum_{i=0}^m \underbrace{x_i \cdot (-1)^i \det[V_i^*A]_{k-1}}_{i=0} + |\underbrace{\sum_{i=0}^m x_i \cdot (-1)^i \left\{ \det[V_i^*A]_{k-1} - \det(V_i^*A) \right\}}_{k=0} |$$

$$+ |\underbrace{\sum_{i=0}^m x_i \cdot (-1)^i \det(V_i^*A)}_{k=0}| \cdot |$$

From (3.7)
$$|\det(U^*B) - \det[U^*B]_k| < \epsilon$$
, and from (3.8)
$$|\sum_{i=0}^{m} x_i \cdot (-1)^i \left\{ \det[V_i^*A]_{k-1} - \det(V_i^*A) \right\}|$$

$$\leq (\sum_{i=0}^{m} |x_i|^2)^2 \left(\sum_{i=0}^{m} |\det[V_i^*A]_{k-1} - \det(V_i^*A)|^2 \right)^2 < \epsilon.$$

(3.5) and (3.6) implies that

$$\left|\sum_{i=m+1}^{\infty} x_{i} \cdot (-1)^{i} \det(V_{i}^{*}A)\right| < \varepsilon$$

By the finite matrix theory

$$|\det[U^*B]_k - \sum_{i=0}^{m} x_i \cdot (-1)^i \det[V_i^*A]_{k-1}|$$

$$= |\sum_{i=m+1}^{k-1} x_i \cdot (-1)^i \det[V_i^*A]_{k-1}| < \epsilon ,$$

begause the last inequality follows from (3.4), (3.6). Consequently, for any $\epsilon > 0$ we have

$$|\det(U^*B) - \sum_{i=0}^{\infty} x_i \cdot (-1)^i \det(V_i^*A)| < 4 \epsilon \cdot Q.E.D.$$

In (e) of Proposition 3.1, set $(\Gamma(\lambda)e_0, d_i) = h_i(\lambda)$ for $i \ge 0$. Then we have:

Proposition 3.3. $\left|\det\left(U^{*}\left[\Gamma\left(\lambda\right),\Theta\left(\lambda\right)\right]\right)\right| \leq 1$, and (3.9) $\det\left(U^{*}\left[\Gamma\left(\lambda\right),\Theta\left(\lambda\right)\right]\right) = \sum_{i=0}^{\infty} h_{i}(\lambda) \cdot (-1)^{i} \det\left(V_{i}^{*}\Theta\left(\lambda\right)\right)$ is holomorphic on D.

Proof. From(3.2), we have $\sum_{i=0}^{\infty} |h_i(\lambda)|^2 \le 1$. Since $V_i * \Theta(\lambda)$ is a contractive holomorphic function, $\det(V_i * \Theta(\lambda)) \in H^{\infty}$.

Since $\Theta(\lambda)$ is a contraction for every $\lambda \in D$, it follows that $\underset{i}{\overset{\infty}{\sqsubseteq}}_{0} \left| h_{i}(\lambda) \cdot (-1)^{i} \det(V_{i} * \Theta(\lambda)) \right| \leq 1,$

which implies $\sum_{i=0}^{\infty} h_i(\lambda) \cdot (-1)^i \det(V_i * \Theta(\lambda))$ is holomorphic. Equality (3.9) follows from Lemma. Q.E.D.

Problem. Is $det(U^*[\Gamma(\lambda), \Theta(\lambda)])$ outer?

BIBLIOGRAPHY

- H.Bercovici, C.Foias and B.Sz.-Nagy, Complements a letude des operateurs de class C₀ .III, Acta Sci.Math.37(1975),313-322.
- 2. H.Bercovici and D.Voiculescu, Tensor operations on charact-eristic functions of C_0 contractions, ibidem, 39 (1977), 205-231.
- 3. A.Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math., 81(1949), 239-255.
- 4. L.A.Brown, R.G.Douglas and P.Fillmore, Unitary equivalence module the compact operators and extensions of C*-algebras, Proc.Conference on Operator theory, Springer, (1973).
- 5. L.A.Brown and P.R.Halmos, Algebraic properties of Toeplitz operators, J.Reine Angew.Math., 213(1964), 89-102.
- 6. L.Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. of Math., 76(1962), 547-559.
- 7. A.Devinatz and M.Shinbrot, General Wiener-Hopf operators, Trans.

 Amer.Math.Soc., 149 (1969), 467-494.
- 8. R.G.Douglas, Banach algebra techniques in operator theory, Academic press, New York, (1972).
- 9. ______,On the hyperinvariant subspaces for isometries , Math.Z.,107(1968),297-300.
- 10.R.G.Douglas and C.Peacy, On a topology for invariant subspaces ,J.Func.Anal., 2(1968), 323-341.
- 11.G.Eckstein,On the spectrum of contractions of class C.₁,
 Acta Sci.Math.,39(1977),251-254.

- 12. P.A.Fuhrmann, On the corona theorem and its application to spectral problems in Hilbert space, Trans. Amer. Math. Soc., 132 (1968), 55-66.
- 13. _____, Linear systems and operators in Hilbert space, Mcgraw-Hill, New York, 1981.
- 14. F.Gilfeather, Weighted bilateral shifts of class C₀₁,Acta Sci.Math.,32(1971),251-254.
- 15. I.Gohberg and M.G.Krein, Introduction to the theory of linear non-selfadjoint operators, Nauka, Moskwa, (1965).
- 16. H. Helson, Lectures on invariant subspaces, New York, (1964).
- 17. P.R.Halmos, Shifts on Hilbert spaces, J.reine angew.Math., 208(1961),102-112.
- 18. K.Hoffman, Banach spaces of analytic functions, Englewood Cliffs, N.J., 1962.
- 19. P.Lax, Translaton invariant spaces, Acta Math., 101(1959), 163-178.
- 20. V.Lomonosov, Invariant subspaces for operators commuting with compact operators, Func.Anal.and its appl. (1973), 55-56.
- 21. B.Moore and E.A.Nordgren, On quasi-equivalence and quasi-similarity, Acta Sci.Math., 34(1973), 311-316.
- 22. E.A.Nordgren, On quasi-equivalence of matrices over H^{∞} , ibidem, 34(1973), 301-310.
- 23. H.Radjavi and P.Rosenthal, Invariant subspaces, Springer, Berlin, 1973.

- 24. M.Rosenblum, A corona theorem for countably many functions, Integral Equations and Operator theory, 3(1980), 125-137.
- 25. G.C.Rota, On models for linear operators, Comm. Pure Appl, Math. 13(1960), 468-472.
- 26. D.Sarason, Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc., 127 (1967), 179-203.
- 27. B.Sz.-Nagy, Diagonalization of matrices over H^{∞} ,Acta Sci. Math.,38(1976),223-238.
- 28. B.Sz-Nagy and C.Foias, Harmonic analysis of operators on Hilber space, Academiai Kiado, Budapest, 1970.
- 29. ———, Modele de Jordan pour une classe d'operateurs de l'espace de Hilbert , Acta Sci.Math.61(1970),91-115.
- 30. ______, Jordan model for contractions of class C_0 , ibidem, 36(1974),305-322.
- 31. , Commutants and bicommutants of class C_0 , ibidem, 38(1976),311-315.
- 32. ———, On injections, intertwining operators of class Co ,ibidem, 40(1978),163-167.
- 33. M.Uchiyama, Hyperinvariant subspaces of operators of class $C_0(N)$, ibidem, 39(1977),179-184.
- 34. ______, Hyperinvariant subspaces for contractions of class C., Hokkaido M.J.,6(1977),260-272.
- 35. ______, Double commutants of C.0 contractions, Proc. A.M.S.,69(1978),283-288.
- 36. , Double commutants of C.₀ contractions. Π , ibidem, 74(1979),271-277.

- 37. M.Uchiyama, Some generalized Toeplitz operators, Bull.Fukuoka Univ. of Education, 28(1979),29-34.
- 38. ______, Quasi-similarity of restricted C₀ contractions, Acta Sci.Math. 41(1979),429-433.
- 40. P.Y.Wu, Commutants of $C_0(N)$ contractions, Acta Sci.Math.38 (1976),1973-202.
- 41. , On contractions of class C_1 . , ibidem, 42(1980), 205-210.
- 42. , On the quasi-similarity of hyponormal contractions, Illinois J.M. to appear.