Osaka University Knowledge Archive

Title	C．o－CONTRACTIONS
Author（s）	内山，充
Citation	大阪大学，1982，博士論文
Version Type	VoR
URL	https：／／hdl．handle．net／11094／72
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．library．osaka－u．ac．jp／
Osaka University
C. O - CONTRACTIONS

MITSURU UCHIYAMA

Dedication

To Toshiko , Shinichi,Nami ana Takashi

Acknowledgements

I wish to express my gratitude to Professor Tuyoshi Ando, my super-visor at post graduate course in Hokkaido University, for his guidance and helpful discussions.

I am very grateful to Professor Sumiyuki Koizumi for introducing me to the operator theory.

I would like to thank Professor Osamu Takenouchi for his warm encouragement and support.
Table of contents
page
Introduction. - 1
Chapter I. Hyper-invariant subspaces 4
1.1. $C_{0}(n)-c o n t r a c t i o n s$ - 4
I.2. C.o - contractions 10
Chapter II Commutants and double commutants 19
2.l. Generalized Toeplitz operators 19
2.2. Double commutants 22
Chapetr III. Cio-contractions 29
3.1. Operator valued functions 29
3.2. Quasi-unilateral shifts 32
Bibliography 47

Introduction

In this thesis, I will make a study on operators of class C. 0 on a Hilbert space. When a bounded operator T on a Hilbert space satisfies $||T|| \leqq 1$ and $T^{*^{n}} \rightarrow 0$ strongly as $n \rightarrow \infty$, T is said to belong to class $C .0$. This particular class contains many non-normal operators. In particular, the unilateral shift S on the Hardy class H^{2} on the unit disc D in the complex plane belongs to it. In [3] Beurling showed that the invariant subspaces for S are precisely those of the form $\psi \mathrm{H}^{2}$, where ψ is an inner function. For a Hilbert space E, we denote the E-valued Hardy class by $H^{2}(E)$. Lax [19] and Halmos [17] showed that the invariant subspaces for the unilateral shift S on $H^{2}(E)$ are precisely those of the form $\theta H^{2}(F)$, where F is a Hilbert space with dim $F \leqq \operatorname{dim} E$ and $\theta(\lambda)$ is an arbitrary $B(F, E)$-valued inner function defined on D. In this case, if we set

$$
H(\theta)=H^{2}(E) \Theta \Theta H^{2}(F) \quad \text { and } \quad S(\theta)=P_{H(\theta)} S \mid H(\theta)
$$

then $S(\theta)$ belongs to $C .0$.

In [25] Rota showed that a contraction with norm <1 is unitarily equivalent to $S(\theta)$ for a suitable inner function $\theta(\lambda)$.

Let T be a contraction on a Hilbert space H. Then $S z .-N a g y$ and Foias defined the characteristic function $\theta_{T}(\lambda)$ of T by

$$
\theta_{T}(\lambda)=\left\{-T+\lambda D_{T} *\left(I-\lambda T^{*}\right)^{-1} D_{T}\right\} \mid D_{T} H \quad \text { for } \lambda \in D,
$$

where

$$
D_{T}=(I-T * T)^{1 / 2} \quad \text { and } \quad D_{T} *=(I-T T *)^{1 / 2} \quad \text {. And they showed }
$$

that T belongs to $C .0$ if and only if $\Theta_{T}(\lambda)$ is inner. They also
showed that in this case T is unitarily equivalent to $S\left(\theta_{T}\right)$ (cf.[28]). Thus the theory of spaces of analytic functions (cf.[18]) and the corona theorem (]6],[24]) have come to play important roles in the study of C.0.

A subspace of H is called hyper-invariant for an operator T on H if it is invariant for every hounded operator which commutes with T. In [20] Lomonosov proved a famous theorem : Every compact operator has a hyper-invariant subspace. The invariant subspace problem is an important subject in the actual study of operators.

Now, I will give a few accounts of the contents of this thesis.

In chapter I, we will characterize the hyper-invariant subspaces for a contraction T which belongs to C.0 and satisfies $\operatorname{dim} D_{T}{ }^{H}<\infty$. Here the techniques introduced by Nordgren[22] is useful.

Chapter II is a study on the operators of the form $\phi(S(\psi))$. $\phi\left(S(\psi)\right.$) is the general Toeplitz operator $\mathrm{PT}_{\phi} \mid \mathrm{H}(\psi)$. (For precise definitions, cf. the first few lines of Chapter II . These operators are considered to extend Toeplitz operators.) In [26],Sarason showed that, for ϕ in H^{∞} and a scalar inner function $\psi, \phi(S(\psi)$) is compact if and only if $\bar{\psi} \phi$ belongs to $H^{\infty}+C$, where C is the Banach algebra of all continuous functions on the unit circle. In the first section of this chapter we will show that,for ϕ in $H^{\infty}+C$, this result is still true.

We then proceed to establish some results on the double commutant of the operator $S(\theta)$. It is well-known that the double commutant of an arbitrary unilateral shift consists of multiplications by bounded scalar analytic functions. We extend this result to a wider class of operators of the form $S(\theta)$. Indeed, we will show that the double commutant consists of $\phi(S(\theta)), \phi \in H^{\infty}$.

Chapter III contains the main results of this thesis. A contraction T is called a weak contraction if I-T*T has a finite trace , and $\sigma(T) \neq D$. Weak contractions have nice properties and there are a good deal of studies (cf.[28]). My study concerns on the operators outside of this operator class. We will consider a contraction T which has following properties:

```
T belongs to C.0 ,
I-T*T has a finite trace,
\sigma(T)=D and \sigma }\mp@subsup{\sigma}{p}{}(T)\not=D
```

Every unilateral shift has these properties, and we will call such an operator a quasi unilateral shift. One of the B.D.F. theorems[4] implies that $T=S+c o m p a c t$, where S is a unilateral shift with index $S=i n d e x T$. My contribution here is to show that there is an intertwining operator between T and S. This stronger result will make easier the analysis of the operators of this kind.

Chapter I. Hyperinvariant subspaces
1.1. $C_{0}(\mathrm{n})$-contractions.

Let T be a contraction on H belonging to C. . . Then it necessarily follows that

$$
\delta_{*}=\operatorname{dim} \overline{\mathrm{D}_{\mathrm{T}^{*}} \mathrm{H}} \geqq \operatorname{dim} \overline{\mathrm{D}_{\mathrm{T}^{H}}}=\delta .
$$

Suppose $\delta_{\star}=\delta=n<\infty$, Then T is said to belong to $C_{0}(n)$. Simply, we denote the characteristic function of T by $\theta(\lambda)$. In this case, we may regard $\theta(\lambda)$ as an $n \times n$ matrix over H^{∞}. Since $\theta(\lambda)$ is inner , that is, $\theta\left(e^{i t}\right)$ is isometry for almost all $t, \theta\left(e^{i t}\right)$ is unitary for aimost all t. And T on H is unitarily equivalent to $S(\theta)$ on $H(\theta)=H_{n}^{2} \Theta \theta H_{n}^{2}$, where H_{n}^{2} denotes $H^{2}\left(\mathbb{C}^{n}\right)$.

Definition 1.1. A nommal $n \times n$ matrix Φ over H^{∞} is of the form

$$
\Phi=\left[\begin{array}{cc}
\phi_{1} & 0 \\
& \ddots \\
0 & \phi_{\mathrm{n}}
\end{array}\right] \text {, where , for each i, } \phi_{i} \text { is a scalar }
$$

inner function and a divisor of ϕ_{i+1}. The operator
$S(\Phi)=S\left(\phi_{1}\right) \oplus \ldots \oplus S\left(\phi_{\mathrm{n}}\right)$ induced by Φ is called a Jordan operator.

By the Sz.-Nagy and Foias theorem [29], every contraction in $C_{0}(n)$ is quasi-similar to a Jordan operator.

Theoreml.2. Let θ be an $n \times n$ inner matrix over H^{∞} and Φ an $n \times n$ normal one. If $S(\theta)$ and $S(\Phi)$ are quasi similar , then there exist quasi-affinities X from $H(\theta)$ to $H(\Phi)$ and Y from
$H(\theta)$ to $H(\Phi)$ and Y from $H(\Phi)$ to $H(\theta)$ such that
(i) $X S(\theta)=S(\Phi) X$ and $S(\theta) Y=Y S(\Phi)$,
(ii) the correspondence $\tau: L \rightarrow \overline{\mathrm{X} L}$ and $\tau *: M \rightarrow \overline{\mathrm{Y} M}$ establish an isomorphism from the lattice θ_{θ} of hyperinvariant subspaces for $S(\theta)$ onto the lattice ϑ_{Φ} for $S(\Phi)$, and its inverse, $\tau^{*}=\tau^{-1}$.

Proof. The hypothesis of quasi-similarity implies for $L \in \mathcal{G}_{\theta}$

$$
\begin{equation*}
\tau(L)=\underset{Z}{V}\{Z L ; Z S(\theta)=S(\Phi) Z\} \tag{1.1}
\end{equation*}
$$

belongs to U_{Φ} (c.f.[23]). By one of the Moore-Nordgren theorems ([21], [22]) the quasi-similarity of $S(\Theta)$ and $S(\Phi)$ implies that there exist matrices $\Delta, \Delta^{\prime}, \Lambda$ and Λ^{\prime} each of whose determinants is relatively prime to the determinants of θ and $\bar{\phi}$, and such that
(1.2) $\Delta \theta=\Phi \Lambda$ and $\theta \Lambda^{\prime}=\Delta^{\prime} \Phi$.

Define the operator X from $H(\theta)$ to $H(\Phi)$ and Y from $H(\Phi)$ to $H(\theta)$ by
(1.3) $\quad X h=P_{H(\Phi)} \Delta h$ for h in $H(\theta), Y g=P_{H(\theta)} \Delta$ 'g for g in $H(\Phi)$. Relation (1.2) guarantees condition (i), and X, Y are quasiaffinities. Take an arbitrary L in the lattice ϑ_{θ} and let $L^{\prime}=\tau(L)$. By a well-known theorem[28] the (hyper-)invariance of L and L^{\prime} implies the existence of inner matrices $\theta_{1}, \theta_{2}, \Phi_{1}$ and Φ_{2} over H^{∞} satisfying
(1.4) $\quad \theta=\theta_{2} \theta_{1}$ and $\Phi=\Phi_{2} \Phi_{1}$,
and
(1.5) $L=\theta_{2}\left(H_{n}^{2} \Theta \Theta_{1} H_{n}^{2}\right)$ and $L^{\prime}=\Phi_{2}\left(H_{n}^{2} \Theta \Phi_{1} H_{n}^{2}\right)$.

By the definition(I.I) of $\tau(L)$ we have $X L \subseteq \tau(L)=L^{\prime}$. on the other hand, since $Y Z$ commutes with $S(\theta)$ for every Z occuring in (I.I), hyper-invariance of L for $S(\theta)$ implies $Y Z L \subseteq L$, and therefore $\mathrm{Y} L^{\prime}=\mathrm{Y} \tau(L) \subseteq L$. Now the inclusions $\overline{\mathrm{X} L} \leqq L^{\prime}$ and $\overline{Y L^{\prime}} \subseteq L$, and relations (1.2)-(1.5) imply $\Delta \theta_{2} H_{n}^{2} \subseteq \Phi_{2} H_{n}^{2}$ and $\Delta^{\prime} \Phi_{2} H_{n}^{2} \subseteq \theta_{2} H_{n}^{2}$; whence we deduce the existence of matrices A and B over H^{∞} such that
(1.6) $\quad \Delta \theta_{2}=\Phi_{2} A$ and $\Delta^{\prime} \Phi_{2}=\theta_{2} B$.

Thus it follows that $\Phi_{2} A B=\Delta \Delta^{\prime} \Phi_{2}$, and hence,
(1.7) $\operatorname{det} A \cdot \operatorname{det} B=\operatorname{det} \Delta \cdot \operatorname{det} \Delta^{\prime}$.

Since det Δ. det Δ^{\prime} is relatively prime to det Φ, (1.7) implies that det A is relatively prime to det Φ, hence to det Φ_{1}. To prove $L^{\prime}=\overline{X L}$ suppose that $f \in L^{\prime} \Theta \overline{X I}$. Then , again using (1.2)-(1.5), we see that f is orthogonal to $\Delta \theta_{2} H_{n}^{2}$, and hence to $\Phi_{2} A H_{n}^{2}$, by (1.6). Moreover, (1.5) implies $f=\Phi_{2} g$ for some $g \in H_{n}^{2} \Theta \Phi_{1} H_{n}^{2}$. Then for every $h \in H_{n}^{2}$

$$
0=\left(E, \Delta \theta_{2} h\right)=\left(\Phi_{2} \quad g, \Phi_{2} A h\right)=(g, A h) .
$$

Since detA is relatively prime to det $\Phi_{1}, A H_{n}^{2}$ and $\Phi_{1} H_{n}^{2}$ span the whole H_{n}^{2}. This implies $g=0$, hence $f=0$, proving $L^{\prime}=\overline{X L}$. The relation $L=\overline{Y L}=\overline{Y X L}$ is proved in a similar way. This completes the proof.

Theorem 1.3. Let Φ be an $n \times n$ normal matrix over H^{∞}. A subspace L of $H(\Phi)$ is hyper-invariant for $S(\Phi)$ if and only if there are $n \times n$ normal matrices Φ_{1}, Φ_{2} satisfying
(1.8) $\Phi=\Phi_{2} \Phi_{1}$ and $L=\Phi_{2}\left(H_{n}^{2} \Theta \Phi_{1} H_{n}^{2}\right)$.

Proof. By the lifting theorem ([28] p.258), for every operator X on $\mathrm{H}(\Phi)$ commuting with $\mathrm{S}(\Phi)$, there is a matrix Δ over H^{∞} satisfying
(1.9) $\quad \mathrm{Xh}=\mathrm{P}_{\mathrm{H}(\Phi)} \Delta \mathrm{h} \quad(\mathrm{h} \in \mathrm{H}(\Phi))$ and $\Delta \Phi \mathrm{H}_{\mathrm{n}}^{2} \subseteq \Phi \mathrm{H}_{\mathrm{n}}^{2}$.

The latter condition is equivalent to the existence of a matrix Λ over H^{∞} satisfying

$$
\begin{equation*}
\Delta \Phi=\Phi \Lambda . \tag{1.10}
\end{equation*}
$$

Suppose that L is of the form (1.8), and that $\Phi=\operatorname{diag}\left(\phi_{1}, \ldots, \phi_{n}\right)$. To prove the hyper-invariance of L for $S(\Phi)$, it suffices to show the invariance of L for the operator X defined by (1.9). The existence of Λ satisfying (1.10) implies that if $i>j$, then the inner function ϕ_{i} / ϕ_{j} is a divisor of the $\Delta_{i j}$, that is, the (i, j)-th entry of Δ. Since Φ_{2} and Φ_{1} are normal matrices with $\Phi=\Phi_{2} \Phi_{1}$, for $i>j$ the inner function u_{i} / u_{j} is a divisor of ϕ_{i} / ϕ_{j}, where u_{i} is the (i,i)-th entry of Φ_{2}, hence a divisor of $\Delta_{i j}$. This guarantees the existence of a matrix Λ^{\prime} over H^{∞} satisfying (1.11) $\quad \Delta \Phi_{2}=\Phi_{2} \Lambda^{\prime}$;
and consequently the invariance of I for X.
Suppose conversely that L is hyper-invariant for $S(\Phi)$.
Let P_{i} be the orthogonal Projection from $H(\Phi)$ onto the i-th component space. Since P_{i} commutes with $S(\Phi)$, the hyperinvariance of L implies that

$$
L=P_{1} L \oplus, \ldots, \oplus P_{n} L
$$

and each $P_{i} L$ is an invariant subspace for $S\left(\phi_{i}\right)$. By the Beurling theorem there are inner divisors u_{i} and v_{i} of ϕ_{i} satisfying

$$
\begin{equation*}
\phi_{i}=u_{i} v_{i}, P_{i} L=u_{i}\left(H^{2} \Theta v_{i} H^{2}\right) \tag{1.12}
\end{equation*}
$$

Set $\Phi_{2}=\operatorname{diag}\left(u_{1}, \ldots, u_{n}\right)$ and $\Phi_{i}=\operatorname{diag}\left(v_{1}, \ldots, v_{n}\right)$, then Φ_{2} and Φ_{1} satisfy (I. 8). It remains to prove the normality of Φ_{2} and Φ_{1}. To this end, take the matrix Δ over H^{∞} whose (i,j)-th entry $\Delta_{i j}$ is defined by

$$
\Delta_{i j}=1(i \leqq j) \quad \text { and } \quad \Delta_{i j}=\phi_{i} / \phi_{j}(i>j)
$$

Clearly there exists a matrix Λ over H^{∞} satisfying (1.10). The hyper-invariance of L implies the existence of a matrix Λ^{\prime} satisfying (l.11). This means if i<j, then u_{i} is a divisor of u_{j} and u_{j} / u_{i} is a divisor of ϕ_{j} / ϕ_{i}. The former condition guarantees the normality of Φ_{2}, while the latter does the normality of Φ_{1}. This completes the proof.

Since every $C_{0}(n)$-contraction is quasi-similar to its Jordan operator ,by above theorems, we can characterize the hyper-invariant subspaces for it.

When ϕ is a scalar inner function, for the operator $S(\phi)$
the invariance of a subspace is equivalent to its hyper-invariance - The lattice ϑ_{ϕ} of all (hyper-)invariant subspaces is totally ordered if and only if ϕ is of the form
(1.13) $\quad((\lambda-\alpha) /(1-\bar{\alpha} \lambda))^{n} \quad(|\alpha|<1, n$ a positive integer)
or of the form

$$
\begin{equation*}
e_{s}(\lambda) \equiv \exp (s(\lambda+\alpha) /(\lambda-\alpha)) \quad(|\alpha|=1, s>0) \tag{1.14}
\end{equation*}
$$

according as $\operatorname{dim} H(\phi)=n$ or $\operatorname{dim} H(\phi)=\infty$ (cf.[28] p.136). This can be generarized to the case of inner matrices.

Theorem 1.4. Let Φ be an $n \times n$ normal matrix over H^{∞} and $\operatorname{dim} H(\Phi)=\infty$. The lattice ϑ_{Φ} of hyper-invariant subspaces for $S(\Phi)$ is totally ordered if and only if ϕ_{n} is of the form (1.14) and each ϕ_{i} coincides with either 1 or ϕ_{n}, where ϕ_{i} is the (i,i)-th entry of Φ.

Proof. By theorem 1.3 the total orderdness of the lattice ϑ_{Φ} is equivalent to the condition that if normal matrices Φ_{2} and Φ_{2} ' are left divisors of Φ such that $\Phi_{2}-_{\Phi}$ and $\Phi_{2} \cdot{ }^{-1} \Phi_{\Phi}$ are normal too, then one of Φ_{2} and Φ_{2} ' is a left divisor of the other. Suppose that ϑ_{Φ} is totally ordered. Take arbitrary inner divisors u and v of ϕ_{n}, and set $u_{i}=u \wedge \phi_{i}$ and $v_{i}=v \wedge \phi_{i} \quad(a \Lambda b$ denotes the gratest common inner divisor of a and b). Then the normal matrices Φ_{2} and Φ_{2} defined by

$$
\Phi_{2}=\operatorname{diag}\left(u_{1}, u_{2}, \ldots, u_{n-1}, u\right) \quad \text { and } \Phi_{2}{ }^{\prime}=\operatorname{diag}\left(v_{1}, v_{2}, \ldots, v_{n-1}, v\right)
$$

are left divisor of Φ, and $\Phi_{2}{ }^{-1} \Phi$ and $\Phi_{2}{ }^{-1}{ }_{\Phi}$ are normal matrices over H^{∞}. The divisibility of Φ_{2} by Φ_{2} ' or Φ_{2} ' by Φ_{2} implies that one of u and v is a divisor of the other. The arbitrariness of u and v implies that ϕ_{n} is of the form (1.14)
because $\operatorname{dim} H(\Phi)=\infty$ implies $\operatorname{dim} H\left(\phi_{n}\right)=\infty$. There exists an ϕ_{i} such that $\phi_{i} / \phi_{i-1}=e_{s}(1 \leqq i \leqq n)$. If fact if any ϕ_{i} / ϕ_{i-1} is not equal to e_{s}, then there exists i and j such that $l \leqq i<j \leqq n, \phi_{i} / \phi_{i-1}=e_{a}(s>a>0), \phi_{j} / \phi_{j-1}=e_{b}(s>b>0)$ and $a+b \leqq s$. Now set c and d so that $0<c \leqq a, 0<d \leqq b$ and $c<d$. Consider the normal matrices Ω_{1} and Ω_{2} defined by

$$
\Omega_{1}=\operatorname{diag}\left(1, \ldots, 1, e_{c}^{(i)}, \ldots, e_{c}\right) \text { and } \Omega_{2}=\operatorname{diag}\left(1, \ldots, 1, e_{d}, \ldots, e_{d}\right)
$$

- Clearly Ω_{i} is a left divisor of Φ and $\Omega_{i}{ }^{-1}{ }_{\Phi}$ is a normal matrix. By Theorem 1.3, the subspaces

$$
\Omega_{1} H_{n}^{2} \Theta \Phi H_{n}^{2} \quad \text { and } \quad \Omega_{2} H_{n}^{2} \Theta \Phi H_{n}^{2}
$$

are hyper-invariant for $S(\Phi)$, but any one of them is not included in the other, a contadiction. Consequently $\Phi=\operatorname{diag}\left(1, \ldots, 1, e_{s}, \ldots, e_{s}\right)$. The "only if" part is trivial. Therefore we omit the proof (see [33]).
1.2. C.0 - contractions.

In this section, we consider a contraction T in $C .0$ such that $m=\delta<\delta_{*}=n<\infty$. Firstly we decide the lattice of hyperinvariant subspaces for a Jordan operator in class C.0. Next we establish a canonical isomorphism between the lattice of hyper-invariant subspaces for T and that for the Jordan model of T. Since $\delta=m, \delta_{*}=n$, the characteristic function $\theta(\lambda)$ of
T is regarded as an $n \times m$ matrix over H^{∞}. Let d_{k} be the largest common inner divisor of all the minors of order $k(1 \leqq k \leqq m)$. And set $\psi_{k}=d_{k} / \alpha_{k-l}\left(d_{0}=1\right)$. Then ψ_{k} is a scalar inner function and a divisor of its succesor. In this case, an $n \times m$ matrix;

$$
\Phi=\left[\begin{array}{cccc}
\psi_{1} & & 0 \\
& \psi_{2} & & \\
& & \ddots & \\
0 & & \psi_{\mathrm{m}} \\
0 & \ldots & 0
\end{array}\right]
$$

is called normal, and a corresponding operator;

$$
S(\Phi)=S\left(\psi_{1}\right) \oplus \ldots \oplus S\left(\psi_{\mathrm{m}}\right) \oplus \mathrm{S},
$$

where S is the unilateral shift with index $S=n-m$,is called Jordan model of T. Nordgren [22] has shown that there are pairs of matrices Δ_{i}, Λ_{i} and $\Delta_{i}{ }^{\prime}, \Lambda_{i}^{\prime}(i=1,2)$ satisfying
(2.1)

$$
\Delta_{i} \theta=\Phi \Lambda_{i},
$$

$(2.1)^{\prime}$

$$
\theta \Lambda_{i}^{\prime}=\Delta_{i}^{\prime} \Phi
$$

(2.2) $\left(\operatorname{det} A_{i}\right)\left(\operatorname{det} \Lambda_{i}{ }^{\prime}\right) \wedge d_{m}=1$,
(2.3) $\left(\operatorname{det} \Delta_{1}\right)\left(\operatorname{det} \Delta_{1}{ }^{\prime}\right) \wedge\left(\operatorname{det} \Delta_{2}\right)\left(\operatorname{det} \Delta_{2}{ }^{\prime}\right)=1$,
$(2.3)^{\prime} \quad\left(\operatorname{det} \Lambda_{1}\right)\left(\operatorname{det} \Lambda_{1}{ }^{\prime}\right) \Lambda\left(\operatorname{det} \Lambda_{2}\right)\left(\operatorname{det} \Lambda_{2}{ }^{\prime}\right)=1$.
Setting
(2.4)

$$
X_{i}=P_{\Phi} \Delta_{i} \mid H(\theta)
$$

and
$(2.4)^{\prime}$

$$
y_{i}=P_{\theta} \Delta_{i}^{\prime} \mid H(\Phi) \quad \text { for } i=1,2,
$$

where P_{Φ} simply denotes $\mathrm{P}_{\mathrm{H}(\Phi)}$,
$\left\{X_{1}, X_{2}\right\}$ and $\left\{Y_{1}, Y_{2}\right\}$ are injective families satisfying the following relations:

$$
\begin{align*}
& X_{i} S(\theta)=S(\Phi) X_{i}, \tag{2.5}\\
& S(\theta) Y_{i}=Y_{i} S(\Phi),
\end{align*}
$$

(2.7)

$$
\begin{array}{ll}
(2.7) & X_{1} H(\theta) \vee X_{2} H(\theta)=H(\Phi), \\
(2.8) & Y_{1} H(\Phi) \vee Y_{2} H(\Phi)=H(\theta)
\end{array}
$$

This implies $S(\theta) \mathcal{C}^{i} S(\Phi)$ [30].
Now set $\Psi=\operatorname{diag}\left(\psi_{1}, \ldots, \psi_{\mathrm{m}}\right)$, that is, $\Phi=\left[\begin{array}{l}\Psi \\ 0\end{array}\right]$. Then
$S(\Phi)$ on $H(\Phi)$ are identified with

$$
\mathrm{S}(\Psi) \oplus \mathrm{S} \quad \text { on } \quad \mathrm{H}(\Psi) \oplus \mathrm{H}_{\mathrm{n}-\mathrm{m}}
$$

Let N be a hyper-invariant subspace for $S(\Phi)$. Then it is clear that N is decomposed to the direct sum, $N=N_{1} \oplus N_{2}$, where N_{1} is a subspace of $H(\Psi)$, hyper-invariant for $S(\Psi)$, and N_{2} is a subspace of H_{n-m}, hyper-invariant for S. In this case we have the following lemma.

Lemma 2.1. In order that $N=N_{1} \oplus N_{2}$ is hyper-invariant for $S(\Phi)$, it is necessary and sufficient that $N_{2}=\{0\}$ or there exists an inner function ϕ such that $N_{2}=\phi H_{n-m}^{2}$ and $N_{1} \geqq \phi(S(\Psi)) H(\Psi)$.

Proof. Simply set $k=n-m$. An operator $X=\left[\begin{array}{lll}Y_{11} & Y_{12} \\ Y_{2} & 1 & Y_{22}\end{array}\right]$ commutes with $S(\Phi)$, if and only if $Y_{i j}$ satisfy the following conditions:

$$
\begin{array}{ll}
Y_{11} S(\Psi)=S(\Psi) Y_{11}, & Y_{12} S=S(\Psi) Y_{12}, \\
Y_{21} S(\Psi)=S Y_{21}, & Y_{22} S=S Y_{22} .
\end{array}
$$

Since $S(\Psi)^{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow 0$ and S is isometry, we have $\mathrm{Y}_{21}=0$. Thus if $N_{2}=\{0\}$, then it follows that $\mathrm{X} N \subseteq N$ for every X commuting $S(\Phi)$. By the lifting theorem ([26],[28]), a bounded
operator Y_{12} from H_{k}^{2} to $H(\Psi)$ intertwines S and $S(\Psi)$, if and only if there is an $m \times k$ matrix Ω over H^{∞} such that $Y_{12}=P_{\psi} \Omega$. Thus, if $N_{2}=\phi \mathrm{H}_{\mathrm{k}}^{2}$ and $N_{1} \supseteqq \phi(\mathrm{~S}(\Psi)) \mathrm{H}(\Psi)$ for some inner function ϕ, then we have

$$
\begin{aligned}
\mathrm{XN} & =\left(\mathrm{Y}_{11} N_{1}+\mathrm{Y}_{12} \phi \mathrm{H}_{\mathrm{k}}^{2}\right) \oplus \mathrm{Y}_{22} \phi \mathrm{H}_{\mathrm{k}}^{2} \\
& \leqq\left(N_{1}+\mathrm{P}_{\Psi} \Omega \phi \mathrm{H}_{\mathrm{k}}^{2}\right) \oplus \phi \mathrm{H}_{\mathrm{k}}^{2} \\
& \leqq\left(N_{1}+\mathrm{P}_{\Psi} \phi \mathrm{H}_{\mathrm{m}}^{2}\right) \oplus \phi \mathrm{H}_{\mathrm{k}}^{2} \\
& =\left(N_{1}+\phi(\mathrm{S}(\Psi)) \mathrm{H}(\Psi)\right) \oplus \phi \mathrm{H}_{\mathrm{k}}^{2} \\
& \leqq N_{1} \oplus \phi \mathrm{H}_{\mathrm{k}}^{2}=N,
\end{aligned}
$$

where $\phi(S(\Psi)) h=P_{\Psi} \phi h$ for $h \in H(\Psi)$. Thus N is hyper-invariant for $S(\Phi)$.

Conversely suppose $N=N_{1} \oplus N_{2}$ is hyper-invariant for $S(\Phi)$, and $N_{2}=\{0\}$. Then by [10], there is an inner function ϕ such that $N_{2}=\phi H_{k}^{2}$. Let $\Omega_{i}(i=1,2, \ldots, m)$ be the $m \times(n-m)$ matrix such that the (i,l)-th entry of Ω_{i} is l and the other entry is 0 . Setting

$$
X_{i}=\left[\begin{array}{ll}
0 & Y_{i} \\
0 & 0
\end{array}\right] \quad \text { and } \quad Y_{i}=P_{\Psi} \Omega_{i}
$$

each X_{i} commutes with $S(\Phi)$, hence we have

$$
N_{1}={ }_{i} \sum_{1}^{\mathrm{E}} \mathrm{Y}_{\mathrm{i}} \phi \mathrm{H}_{\mathrm{k}}^{2}=\mathrm{P}_{\Psi} \phi \mathrm{H}_{\mathrm{m}}^{2}=\phi(\mathrm{S}(\Psi)) \mathrm{H}(\Psi) .
$$

This completes the proof.

Theorem 2.2. In order that a factorization $\Phi=\Phi_{2} \Phi_{1}$ of Φ into the product of an $n \times 1$ inner matrix Φ_{2} and an $1 \times m$ inner matrix $\Phi_{1}(n \geqq I \geqq m)$ corresponds to a hyper-invariant subspace
N for $S(\Phi)$, it is necessary and sufficient that Φ_{1} and Φ_{2} are normal matrices satisfying (i) or (ii):
(i) $1=m$,
(ii) $l=n$ and Φ_{2} has the form

$$
\left[\begin{array}{cc}
\Psi_{2} & 0 \\
0 & \phi I_{k}
\end{array}\right]
$$

Proof. First, assume that $l=m$, and both Φ_{1} and Φ_{2} are normal inner matrices. Then, setting $\Phi_{2}=\left[\begin{array}{c}\Psi_{2}^{\prime} \\ 0\end{array}\right]$, it follows that $\Phi_{2} H\left(\Phi_{1}\right)=\Psi_{2}{ }^{\prime} H\left(\Phi_{1}\right)$ is hyper-invariant for $S(\Psi)$ (see Sec.l.1). Therefore , by Lemma 2.1, it is hyper-invariant for $S(\Phi)$.

Next, assume that Φ_{1} and Φ_{2} are normal matrices satisfying (ii). Set $\Phi_{1}=\left[\begin{array}{c}\Psi_{1} \\ 0\end{array}\right]$. Then we have

$$
N=\Phi_{2}\left\{\mathrm{H}_{\mathrm{n}}^{2} \Theta \Phi_{1} \mathrm{H}_{\mathrm{m}}^{2}\right\}=\Psi_{2} \mathrm{H}\left(\Psi_{1}\right) \oplus \phi \mathrm{H}_{\mathrm{k}}^{2}
$$

Normality of Ψ_{1} and Ψ_{2} implies that $\Psi_{2} H\left(\Psi_{1}\right)$ is hyper-invariant for $S(\Psi)$. On the other hand, normality of Φ_{2} implies $\Psi_{2} H_{m}^{2} \supseteq \phi H_{m}^{2}$, and hence we have

$$
\Psi_{2} \mathrm{H}_{\mathrm{m}}^{2} \Theta \Psi \mathrm{H}_{\mathrm{m}}^{2} \supseteqq \phi(\mathrm{~S}(\Psi)) \mathrm{H}(\Psi) .
$$

Thus ,from Lemma 2.1, we deduce that N is hyper-invarinat for $S(\Phi)$.

Conversely,first assume that $N=N_{1} \oplus\{0\}$ is hyper-invariant for $S(\Phi)$, and $\Phi=\Phi_{2} \Phi_{1}$ is the factorization corresponding to N. Since $S(\Phi)|N=S(\Psi)| N_{1}$ is of class $C_{0}, S\left(\quad\right.$ is of class C_{0} (about notation C_{0} see [28]). This implies that Φ_{1} is an $m \times m$ inner matrix, that is , $I=m$. Setting $\Phi_{2}=\left[\begin{array}{l}\Psi_{2} \\ \Gamma\end{array}\right]$, where Ψ_{2} is an $m \times m$ matrix and Γ an $k \times m$ matrix $(k=n-m)$, we have

$$
\Psi=\Psi_{2} \Phi_{1}, \quad N_{1}=\Psi_{2} H\left(\Phi_{1}\right) \quad \text { and } \Gamma H_{m}^{2}=\{0\}
$$

Since $\Gamma=0$ and Φ_{2} is inner, also Ψ_{2} is inner. Thus the hyper-invariance of N_{1} corresponding to $\Psi=\Psi_{2} \Phi_{1}$ implies that Ψ_{2} and Φ_{1} are $m \times m$ normal matrices. Next assume that

$$
N=N_{1} \oplus \phi \mathrm{H}_{\mathrm{k}}^{2} \quad \text { and } \quad N_{1} \supseteq \phi(\mathrm{~S}(\Psi)) \mathrm{H}(\Psi) .
$$

Clearly we have

$$
\left.\mathrm{P}_{N^{\perp}}^{\perp} \quad \mathrm{S}(\Phi)\right|_{N} ^{\perp}=\mathrm{P}_{N} \perp \mathrm{~S}(\Psi) \mid N_{1}^{\perp} \oplus \mathrm{S}\left(\phi \mathrm{I}_{\mathrm{k}}\right) .
$$

Since the right hand operator is of class $C_{0}, S\left(\Phi_{2}\right)$ is of class C_{0}. This implies Φ_{2} is an $n \times n$ matrix; i.e., $l=n$. To the hyper-invariant subspace N_{1} for $S(\Psi)$ there corresponds a factorization $\Psi=\Psi_{2} \Psi_{1}$, where Ψ_{1} and Ψ_{2} are $m \times m$ normal matrices. Thus setting $\quad \Phi_{2}^{\prime}=\left[\begin{array}{cc}\Psi_{2} & 0 \\ 0 & \phi I_{k}\end{array}\right] \quad$ and $\quad \Phi_{1}^{\prime}=\left[\begin{array}{r}\Psi_{1} \\ 0\end{array}\right]$,
it is clear that

$$
\Phi=\Phi_{2} \prime \Phi_{1} \prime \text { and } N=\Phi_{2} \prime\left\{H_{n}^{2} \Theta \Phi_{1} ' H_{m}^{2}\right\} .
$$

From the uniqueness of the factorization of Φ into product of two inner matrices corresponding to invariant subspace N, only this factorization $\Phi=\Phi_{2} ' \Phi_{1}$ ' corresponds to N, that is, $\Phi_{2}=\Phi_{2}^{\prime}$ and $\Phi_{1}=\Phi_{1}^{\prime}$. Since

$$
\Psi_{2} \mathrm{H}\left(\Psi_{1}\right)=N_{1} \supseteqq \phi(\mathrm{~S}(\Psi)) \mathrm{H}(\Psi)=\mathrm{P}_{\Psi} \phi \mathrm{H}_{\mathrm{m}}^{2},
$$

we have $\Psi_{2} H_{m}^{2} \supseteqq \phi H_{m}^{2}$; this implies that every entry of Ψ_{2} is a divisor of ϕ. Therefore Φ_{2} is an $n \times n$ normal matrix. Hence Φ_{1} and Φ_{2} are normal matrices satisfying (ii). Q.E.D.

Set

$$
\tau(L)=V_{Z}\{Z L: \quad Z S(\theta)=S(\Phi) Z\}
$$

and

$$
\tau^{*}(N)=\underset{W}{W}\{W N: \quad W S(\Phi)=S(\theta) W\}
$$

for each subspace L and N hyper-invariant for $S(\theta)$ and $S(\Phi)$, respectively. Since $S(\theta) \mathrm{Ci} S(\Phi)$, it is clear that $\tau(L)$ is the nontrivial hyper-invariant subspace for $S(\Phi)$, if L is non-trivial.

Lemma 2.3. If $\theta=\theta_{2} \theta_{1}$ is the factorization corresponding to a non -trivial hyper-invariant subspace L for $S(\theta)$, then θ_{1} is an $m \times m$ inner matrix, or θ_{2} is an $n \times n$ inner matrix.

Proof. Let $S(\theta)=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ and $S(\Phi)=\left[\begin{array}{ll}S_{1} & * \\ 0 & S_{2}\end{array}\right]$ be the triangulations corresponding to

$$
\mathrm{H}(\theta)=L \oplus L^{\perp} \quad \text { and } \mathrm{H}(\Phi)=\tau(L) \oplus \tau(L)^{\perp} \text {, respectively. }
$$

Theorem 2.2. implies that S_{1} or S_{2} is in C_{0}. First, suppose $u\left(S_{1}\right)=0$ for some u in H^{∞}. For the bounded operator X_{1} given by (2.4) and every f in L, in virtue of (2.1), it follows that $\quad X_{1} u\left(T_{1}\right) f=X_{1} u(S(\theta)) f=P_{\Phi} \Delta_{1} P_{\theta} u f=P_{\Phi} \Delta_{1} u f=P_{\Phi} u \Delta_{1} f=$ $=u(S(\Phi)) X_{1} f=0$.

Since X_{1} is an injection, we have $u\left(T_{1}\right) f=0$, which implies that T_{1} belongs to C_{0}, that is, θ_{1} is an $m \times m$ inner matrix. Next suppose S_{2} belong to C_{0}, hence so does S_{2}. For Y_{i} given by (2.4)' and every Z such that $Z S(\theta)=S(\Phi) Z$, in virtue of (2.6), $Y_{i} Z$ commutes with $S(\theta)$, this implies $Y_{i} Z L \subseteq L$ and hence $Y_{i} \tau(L) \subseteq L$. Thus we have $Y_{i}{ }^{*}{ }_{L} \subseteq \tau(L)^{\perp}$. From this and (2.6),
for each h in L, it follows that

$$
Y_{i}^{*} T_{2} * h=S_{2} * Y_{i}^{*} h \quad \text { for } i=1,2
$$

From this, we can deduce that

$$
Y_{i}^{*} u\left(T_{2}^{*}\right) h=u\left(S_{2}^{*}\right) Y_{i}^{*} h \text { for every } u \text { in } H^{\infty} .
$$

Since $Y_{1} H(\Phi) V Y_{2} H(\Phi)=H(\theta)$, we have $u\left(T_{2} *\right)=0$ for u satisfying $u\left(S_{2} *\right)=0$. Therefore θ_{2} is an $n \times n$ inner matrix. This completes the proof.

A following theorem implies that the mapping τ is isomorphism from the lattice ϑ_{θ} onto the lattice Θ_{Φ}, and its inverse is given by τ^{*}.

Theorem 2.4. For X_{i} and Y_{i} given by (2.4), (2.4)',
(2.9) $\tau(L)=\mathrm{X}_{1} L \vee \mathrm{X}_{2} L \quad$ and $\tau *(\tau(L))=L$,
$(2.9)^{\prime} \tau^{*}(N)=Y_{1} N \vee Y_{2} N \quad$ and $\tau\left(\tau^{*}(N)\right)=N$, where $L \in g_{\theta}$ and $N \in g_{\Phi}$.

Proof. Let $\theta=\theta_{2} \theta_{1}$ and $\Phi=\Phi_{2} \Phi_{1}$ be the factorizations of θ and Φ corresponding to L and $\tau(L)$,respectively. Then the proof of Lemma 2.3 implies that both θ_{1} and Φ_{1} are $1 \times m$ matrices and both θ_{2} and Φ_{2} are $n \times 1$ matrices, where $l=n$ or l=m. Since $X_{i}^{L} \subseteq \tau(L)$ and $Y_{i} \tau(L) \cong L$, it clearly follows that

$$
\Delta_{i} \Theta_{2} H_{l}^{2} \subseteq \Phi_{2} H_{l}^{2} \quad \text { and } \quad \Delta_{i} \Phi_{2} H_{l}^{2} \cong \theta_{2} H_{l}^{2}
$$

which guarantee the existence of $l \times l$ matrices A_{i} and B_{i} over $H^{\infty} \quad$ satisfying
(2.10)

$$
\Delta_{i} \theta_{2}=\Phi_{2} \quad A_{i} \quad \text { and } \quad \Delta_{i}^{\prime} \Phi_{2}=\theta_{2} \quad B_{i}
$$

This and (2.1) implies that
(2.10) $\quad A_{i} \Theta_{1}=\Phi_{1} \Lambda_{i} \quad$ and $B_{i} \Phi_{1}=\theta_{1} \Lambda_{i}{ }^{\prime}$.

By (2.10) we have
(2.11) $\Delta_{i}{ }^{\prime} \Delta_{i} \theta_{2}=\theta_{2} B_{i} A_{i}$,
and by (2.10)'
(2.11) ' $B_{i} A_{i} \theta_{i}=\theta_{1} \Lambda_{i}{ }^{\prime} \Lambda_{i}$.

Thus if $l=n$, then $\operatorname{det} A_{i}$ is a divisor of $\operatorname{det} \Delta_{i} \cdot \operatorname{det} \Delta_{i}{ }^{\prime}$, and if $l=m$ then $\operatorname{det} A_{i}$ is a divisor of $\operatorname{det} \Lambda_{i} \cdot \operatorname{det} \Lambda_{i}{ }^{\prime}$. To prove the first relation of (2.9) suppose that

$$
\tilde{f} \in \tau(L) \ominus\left\{X_{1} L V X_{2} L\right\} .
$$

Then f is orthogonal to $\Delta_{1} \theta_{2} H_{1}^{2} V \Delta_{2} \theta_{2} H_{l}^{2}$. On the other hand $f \in \tau(L)$ implies the existence of g belonging to $H_{1}^{2} \Theta \Phi_{1} H_{m}^{2}$ such that $f=\Phi_{2} g$. Thus for every h in H_{k}^{2}, we have

$$
0=\left(f, \Delta_{i} \Theta_{2} h\right)=\left(\Phi_{2} g, \Phi_{2} A_{i} h\right)=\left(g, A_{i} h\right) \quad\left(i=1,{ }^{2}\right)
$$

Thus if $l=n$, then , by (2.3) and Beurling's theorem

$$
A_{i} H_{n}^{2} \geqq\left(\operatorname{det} A_{i}\right) H_{n}^{2} \geqq\left(\operatorname{det} \Delta_{i}\right)\left(\operatorname{det} \Delta_{i}^{\prime}\right) H_{n}^{2}
$$

induce $\quad \mathrm{A}_{1} \mathrm{H}_{\mathrm{n}}^{2} \bigvee \mathrm{~A}_{2} \mathrm{H}_{\mathrm{n}}^{2}=\mathrm{H}_{\mathrm{n}}^{2}$ and hence $\mathrm{g}=0$.
If $1=m$, then, by (2.3)' and Beurling's theorem

$$
A_{i} H_{m}^{2} \supseteq\left(\operatorname{det}_{i}\right) H_{m}^{2} \supseteq\left(\operatorname{det} \Lambda_{i}\right)\left(\operatorname{det} \Lambda_{i}^{\prime}\right) H_{m}^{2}
$$

induce $\quad A_{1} H_{m}^{2} V A_{2} H_{m}^{2}=H_{m}^{2}$ and hence $g=0$. Thus we showed $\tau(L)=X_{1} L V X_{2} L$. The rest is proved in a similar way. Q.E.D.

Chapter II. Commutants and double commutants
2.1. Generalized Toeplitz operator.

Let L^{2} be the Hilbert space of all square Lebesgue integrable functions defined on the unit circle, and L^{∞} the Banach algebra of all essentially bounded functions defined on the unit circle. Given ϕ in $L^{\infty}, M(\phi)$ denotes the multiplication of ϕ on L^{2}. Let P^{\prime} be the projection from L^{2} onto H^{2}. Then a Toeplitz operator T_{ϕ} is defined by $T_{\phi}=P^{\prime} M(\phi) \mid H^{2}$. Let ψ be a scalar inner function. Then ,for ϕ in L^{∞}, we define the general Toeplitz operator $\phi(S(\psi)$) in the sense of [7] by $\phi(S(\psi))=P T_{\phi} \mid H(\psi)$, where $P=P_{\psi}$. We denote the inner products in $H(\psi), H^{2}$ and L^{2} by (,), ()' and (,)",respectvely, and the identical operators in them by I, I' and I".

Lemma 1.1. For ϕ in $H^{\infty}+C$, (I"-P')M(ϕ) P^{\prime} is a compact operator on L^{2}, where C is a space of all continuous functions on the unit circle.

Proof. Let $\phi=\phi_{1}+\phi_{2}$ be a decomposition of ϕ such that ϕ_{2} is in H^{∞} and ϕ_{2} in C. Then it follows that

$$
\left(I^{\prime \prime}-P^{\prime}\right) M(\phi) P^{\prime}=\left(I "-P^{\prime}\right) M\left(\phi_{2}\right) P^{\prime} .
$$

Take trigonometric polynomials $g_{n}(n=1,2, \ldots)$ whose sequence uniformly converges to ϕ_{2}. Then, since

$$
\begin{aligned}
& \left\|\left(I^{\prime \prime}-P^{\prime}\right) M\left(g_{n}\right) P^{\prime}-\left(I^{\prime \prime}-P^{\prime}\right) M\left(\phi_{2}\right) P^{\prime}\right\| \leqq\left\|M\left(g_{n}\right)-M\left(\phi_{2}\right)\right\| \\
& \quad \leqq g_{n}-\phi_{2} \|_{\infty} \rightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

finiteness of the rank of (I" - $\left.P^{\prime}\right) M\left(g_{n}\right) P^{\prime}$ implies that
(I' - $\left.P^{\prime}\right) M\left(\phi_{2}\right) P^{\prime}$ is compact.

Lemma 1.2. For ϕ in $H^{\infty}+C, \mathrm{PT}_{\phi}\left(I^{\prime}-\mathrm{P}\right)$ is compact.

Proof. This lemma follows from Lemmal.l and next relations;
$P T_{\phi}\left(I^{\prime}-P\right)=P P^{\prime} M(\phi)\left(I^{\prime}-P\right)=P P^{\prime} M(\phi) M(\psi) M(\bar{\psi})\left(I^{\prime}-P\right)$ $=P P^{\prime} M(\psi) M(\phi) M(\bar{\psi})\left(I^{\prime}-P\right)=P P^{\prime} M(\psi)\left(I^{\prime \prime}-P^{\prime}\right) M(\phi) P^{\prime} M(\bar{\psi})\left(I^{\prime}-P\right)$.

Lemma 1.3. If ϕ is in $H^{\infty}+C$, then there exists a compact operator K from H^{2} to \bar{H}_{0}^{2}, which is the conjugate space of H_{0}^{2}, such that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi \bar{\psi} f d t=\left(K f_{1}, f_{2}\right) "+\left(\phi(S(\psi)) P f_{1}, P^{\prime} \psi \bar{f}_{2}\right)
$$

for every f in H_{0}^{1}, f_{1} in H^{2} and f_{2} in H_{0}^{2} such that $f=f_{1} f_{2}$.

$$
\text { Proof. } \psi \overline{\mathrm{F}}_{2} \text { is orthogonal to } \psi \mathrm{H}^{2 \mathrm{~L}} \text {, and . P' } \psi \overline{\mathrm{F}}_{2} \text { belongs }
$$ to $\mathrm{H}(\psi)$. Therefore we have

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \phi \bar{\psi} \mathrm{f} d t=\left(\phi \mathrm{f}_{1}, \psi \overline{\mathrm{f}}_{2}\right)^{\prime \prime}=\left(\mathrm{P}^{\prime} \phi \mathrm{Pf}_{1}, \psi \overline{\mathrm{f}}_{2}\right)^{\prime \prime}+ \\
& +\left(P^{\prime} \phi\left(I^{\prime}-P\right) f_{1}, \psi \bar{f}_{2}\right) "+\left(\left(I^{\prime \prime}-P^{\prime}\right) \phi f_{1}, \psi \bar{f}_{2}\right) " \\
& =\left(P^{\prime} \phi \mathrm{Pf}_{1}, \mathrm{P}^{\prime} \psi \overline{\mathrm{f}}_{2}\right)^{\prime \prime}+\left(\bar{\psi} \mathrm{PP}^{\prime} \phi\left(\mathrm{I}^{\prime}-\mathrm{P}\right) \mathrm{f}_{1}, \overline{\mathrm{f}}_{2}\right) "+\left(\bar{\psi}\left(I^{\prime \prime}-P^{\prime}\right) \phi \mathrm{f}_{1}, \overline{\mathrm{f}}_{2}\right) " \\
& =\left(\phi(S(\psi)) P f_{1}, P^{\prime} \psi \bar{f}_{2}\right)+\left(\bar{\psi} P T_{\phi}\left(I^{\prime}-P\right) f_{1}, \bar{f}_{2}\right) "+ \\
& \text { (} \left.\bar{\psi}\left(I^{\prime \prime}-P^{\prime}\right) M(\phi) \mathrm{E}_{1}, \overline{\mathrm{f}}_{2}\right) " \text {. }
\end{aligned}
$$

Thus $K=M(\bar{\psi}) P T_{\phi}\left(I^{\prime}-P\right)+M(\bar{\psi})\left(I^{\prime \prime}-P^{\prime}\right) M(\phi) \mid H^{2}$ satisfies the conditions of this lemma.

The proof of the next theorem deeply depends on [26].

```
Proposition 1.4. Let }\phi\mathrm{ be a function in H}\mp@subsup{H}{}{\infty}+C.Then \phi(S(\psi)
```

is compact if and only if $\bar{\psi} \phi$ belongs to $H^{\infty}+C$.

Proof. "Only if " part is obvious. Suppose $\phi(S(\psi))$ be compact. We wish to show that the kernel of functional of $\bar{\psi} \phi+H^{\infty}$ on H_{0}^{1} is sequentially weak star closed. Let f_{n} be a sequence in its kernel and converge weak star to f. Let $f_{n}=f_{1} f^{f_{2}} n$ be the factorization of f_{n} such that $f_{1_{n}}$ and f_{2} belong to H^{2} and H_{0}^{2}, respectively, and $\left|f_{n}\right|=\left|f_{1_{n}}{ }^{2}=\left|f_{2}\right|^{2}\right.$. Then, since $\left\{f_{1_{n}}\right\}$ and $\left\{f_{2_{n}}\right\}$ are bounded in L^{2}, we may assume that they converge weakly to. f_{1} and f_{2} in L^{2}, respectively, and $f=f_{1} f_{2}$. It is clear that f_{1} is in H_{0}^{2} and f_{2} is in H^{2}. From Lemmal.3, there is a compact operator K such that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi \bar{\psi} f_{n} d t=\left(\mathrm{Kf}_{\mathrm{n}}, \overline{\mathrm{f}}_{2}\right){ }^{\prime}+\left(\phi(S(\psi)) P f_{1_{n}}, P^{\prime} \psi \bar{f}_{2}\right)
$$

and

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi \bar{\psi} f d t=\left(\mathrm{Kf}_{1}, \overline{\mathrm{f}}_{2}\right) "+\left(\phi(S(\psi)) P f_{1}, P^{\prime} \psi \overline{\mathrm{f}}_{2}\right) .
$$

Since both K and $\phi(S(\psi))$ are compact, it follows that

$$
\left(\operatorname{Kf}_{1_{n}}, \overline{\mathrm{f}}_{2}\right)^{\prime \prime} \rightarrow\left(\mathrm{Kf}_{1}, \overline{\mathrm{f}}_{2}\right) " \quad(\mathrm{n} \rightarrow \infty)
$$

and

$$
\left(\phi(S(\psi)) P f_{1}, P^{\prime} \psi \bar{f}_{2}\right) \rightarrow\left(\phi(S(\psi)) P f_{1}, P^{\prime} \psi \bar{f}_{2}\right) \quad(n \rightarrow \infty)
$$

Thus we have $\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi \bar{\psi} \mathrm{f} d t=0$.
The proof is complete.

Theorem 1.5. If ϕ is in H^{∞}, then next conditions are equivalent;
(a) $\phi(S(\psi))$ is a Fredholm operator ,
(b) there are $\varepsilon>0$ and $1>\delta \geqq 0$ such that

$$
|\phi(\lambda)|+|\psi(\lambda)| \geq \varepsilon \text { for } \quad 1>|\lambda| \geqq \delta,
$$

(c) $\phi\left(H^{\infty}+C\right)+\psi\left(H^{\infty}+C\right)=H^{\infty}+C$.

Proof. First assume (a). Then there is a factorization $\phi=\phi_{1} \phi_{2}$, where $\phi_{1}(S(\psi))$ is invertible and ϕ_{2} is a finite Blashke function. By [12] and [13], there is an $\varepsilon_{1}>0$ such that

$$
\left|\phi_{1}(\lambda)\right|+|\psi(\lambda)| \geqq \varepsilon_{1} \text { for }|\lambda|<1 \text {. }
$$

Since ϕ_{2} is a finite Blashke function, we can easily show (b).
Next assume (b). Setting $\eta=\phi \wedge \psi$, there is an $\varepsilon_{1}>0$
such that $\quad|n(\lambda)| \geqq \varepsilon_{1}$ for $1>|\lambda| \geqq \delta$.
Consequently I / η belongs to $H^{\infty}+C[8]$. Set $\phi^{\prime}=\phi / \eta$ and $\psi^{\prime}=\psi / \eta$. Then it is clear that there is an $\varepsilon_{2}>0$ such that

$$
\left|\phi^{\prime}(\lambda)\right|+\left|\psi^{\prime}(\lambda)\right| \geqq \varepsilon_{2} \quad \text { for }|\lambda|<1
$$

Hence, by corona theorem [6] [24], we have $\phi^{\prime} H^{\infty}+\psi^{\prime} H^{\infty}=H^{\infty}$, which yields (c). It is clear that (c) implies (a). Thus the theorem is established.
2.2. Double commutants.

When T is a special C.o-contraction, the A_{T} and $\{T\} "$ were investigated by several authors (for unilateral shift see
[5],for C_{0}-contraction [1],[31] and [40]), where A_{T} is a weakly closed algebra generated by T and I. In place of C.o-contraction T with $\delta=m, \delta_{\star}=n$ (necessarily $n \geqq m$) we may consider $S(\theta)$, where $\theta(\lambda)$ is the characteristic function of $T, n \times m$ matrix of H^{∞} and $|P(\lambda)| K I$ for every λ in D. In this section we assume $\infty \geq \mathrm{n}>\mathrm{m}$. In this case there is an $\mathrm{n} \times \mathrm{m}$ normal matrix;
$\Phi=\left[\begin{array}{lll}\psi_{1} & & 0 \\ 0 & \ddots & \psi_{\mathrm{m}} \\ 0 & \cdots & 0\end{array}\right]$,
and injective families $\left\{X, X^{\prime}\right\}$ and $\{Y, Y '\}$ such that

$$
X S(\theta)=S(\Phi) X, S(\theta) Y=Y S(\Phi),
$$

$X^{\prime} S(\theta)=S(\Phi) X^{\prime}, S(\theta) Y^{\prime}=Y^{\prime} S(\Phi)$,
$X Y=\eta(S(\Phi)), \quad Y X=n(S(\theta))$
$X^{\prime} Y^{\prime}=\eta^{\prime}(S(\Phi)), Y^{\prime} X^{\prime}=\eta^{\prime}(S(\Phi))$,
and
$\eta^{\prime} \wedge^{n} \cdot \psi_{\mathrm{m}}=1$ ([21],[22],[27]). Next two lemmas are
obvious.

Lemma 2.1. $\phi(S(\theta))$ is injective if and only if $\phi / \backslash \psi_{m}=1$, and $\phi(S(\theta)) H(\theta)$ is dense in $H(\theta)$ if and only if ϕ is outer.

$$
\text { Lemma 2.2. }\{S(\Phi)\}^{\prime \prime}=\left\{\phi(S(\Phi)): \phi \in H^{\infty}\right\} .
$$

For a bounded operator T, we denote the lattice of invariant subspaces for T by Lat T.

Lemma 2.3. $\{A: \operatorname{Lat} A \geqq \operatorname{Lat} S(\Phi)\}=\left\{\phi(S(\Phi)): \phi \in H^{\infty}\right\}$.

Proof. Suppose Lat $A \geqq$ Lat $S(\Phi)$. Since each component space of $H(\Phi)$ reduces $S(\Phi)$,it also reduce A, that is, A has the form $A==_{i=1}^{n} \oplus A_{i} \cdot \psi_{i+1} / \psi_{i} \in H^{\infty}$ implies that $H\left(\psi_{i}\right) \subseteq H\left(\psi_{i+1}\right) \leqq H^{2}$. Let P_{i} be the projection from $H(\Phi)$ onto i-th component space. Then $L_{i j} \equiv\left\{\left(P_{i} x \oplus P_{j} x: x \in H^{\infty}\right\}\right.$ is invariant for $S(\Phi)$. If $i, j \geqq m+1$, then $A L_{i j} \cong L_{i j}$ implies $\phi_{i}=\phi_{j}$. If $i \leqq m<j$, then $A L_{i j} \subseteq L_{i j}$ implies that for every x in $H\left(\psi_{i}\right)$ there is a y in H^{2} such that $A_{i} x \oplus \phi_{j} x=P_{i} y \oplus y$,
which implies $A_{i}=\phi_{j}\left(S\left(\psi_{i}\right)\right)$ and hence $A=\phi(S(\Phi))$ for some ϕ in H^{∞}. The converse assertion is trivial.

Lemma 2.4. $\{S(\theta)\}^{\prime \prime}=\left\{N: \eta(S(\theta)) N=\phi(S(\theta))\right.$ for some ϕ in $\left.H^{\infty}\right\}$.

Proof. For each N in $\{S(\theta)\}^{\prime \prime}$ and each B in $\{S(\Phi)\}^{\prime}$, set $\mathrm{K}=\mathrm{XNYB}-\mathrm{BXNY} . \operatorname{Then}$, since $\mathrm{YBX} \in\{\mathrm{S}(\theta)\}^{\prime}$ and $\mathrm{XY} \in\{S(\Phi)\}$ ", it follows that $Y K=Y X N Y B-Y B X N Y=N Y X Y B-N Y B X Y=0$, which implies $K=0$. Consequently, from Lemma 2.2, there is a ϕ in H^{∞} such that $X N Y=\phi(S(\Phi))$. Since $Y X=\eta(S(\theta))$ is injective, from $\operatorname{YXn}(S(\theta)) N=Y X N \eta(S(\theta))=Y X N Y X=Y \phi(S(\Phi)) X=Y X \phi(S(\theta))$, we have $\eta(S(\theta)) N=\phi(S(\theta))$. The converse assertion is trivial.

Lemma 2.5. If $\mathrm{XNY}=\phi(\mathrm{S}(\Phi))$ and $\mathrm{X}^{\prime} \mathrm{NY}^{\prime}=\phi^{\prime}(\mathrm{S}(\Phi))$ for ϕ, ϕ^{\prime} in H^{∞}, then N belongs to $\{S(\theta)\}^{\prime \prime}$.

Proof. Clearly we have
$N \eta(S(\theta))=\phi(S(\theta)) \quad$ and $\quad N \eta^{\prime}(S(\theta))=\phi^{\prime}(S(\theta))$.
Hence, for each M in $\{S(\theta)\}$, we have
$\operatorname{NMn}(S(\theta))=\operatorname{Nn}(S(\theta)) M=\phi(S(\theta)) M=M \phi(S(\theta))=\operatorname{MNn}(S(\theta))$,
and similarly $N M \eta^{\prime}(S(\theta))=M N \eta^{\prime}(S(\theta))$. Since $\eta \eta^{\prime}=1$, the ranges of $\eta(S(\theta))$ and $\eta^{\prime}(S(\theta))$ span a dense set in $H(\theta)$. Thus we have $N M=M N$.

Theorem 2.6. If N belongs to $\{S(\theta)\} "$, then there is a unique ϕ in H^{∞} such that $N=\phi(S(\theta))$. In this case $\|N\|=\|\phi\|_{\infty}$.

Proof. Let N belong to $\{S(\theta)\} "$. Then from Lemma 2.5 and Lemma 2.1 we have $\phi_{1}(S(\theta)) N=\phi_{2}(S(\theta))$, where $\phi_{1}=n / n \wedge \phi$ and $\phi_{2}=\phi / n \Lambda \phi$. Thus from the lifting theorem, there are an $n \times n$ bounded matrix $\Gamma=\left(\gamma_{i j}{ }^{\prime}\right)$ over H^{∞}, and an $m \times n$ bounded matrix $\Omega=\left(\omega_{i j}\right)$ over H^{∞} such that
(2.1) $\quad \Gamma \theta H_{m}^{2} \subseteq \theta H_{m}^{2}, N=P_{\theta} \Gamma \mid H(\theta),\|N\|=\|\Gamma\|_{\infty}=\sup _{\lambda}\|\Gamma(\lambda)\|$, and

$$
\begin{equation*}
\phi_{2} I_{n}-\phi_{1} \Gamma=\theta \Omega \tag{2.2}
\end{equation*}
$$

Since θ is inner, $1=\operatorname{det}\left(\theta *\left(e^{i t}\right) \theta\left(e^{i t}\right)\right)=\left.\sum_{a}^{\operatorname{det} \mid} \underset{a}{\theta}\left(e^{i t}\right)\right|^{2}$, where θ_{a} denotes an $m \times m$ submatrix. Therefore there is a θ_{a} such that $\operatorname{det}_{a}=0$. We may assume that the first minor is not 0 . Let $\theta_{i j}$ and $\theta_{a(i) j}$ be the (i,j)-th component of θ and θ_{a}, respectively. Let $\theta_{a}^{\prime}=\left(\theta^{\prime} a(i) j\right)$ be the classical adjoint matrix of θ_{a}. Then, for $k(a) \neq a(i) \quad(1 \leqq i \leqq m)$, by the same technique as the proof of Theorem 1 of [35], from(2.2), we have
$-\phi_{1} \theta_{a}^{\prime}\left[\begin{array}{l}\gamma_{a(1) k}(a) \\ \vdots \\ \gamma_{a(m) k(a)}\end{array}\right]=\operatorname{det} \theta_{a}\left[\begin{array}{l}\omega_{1 k}(a) \\ \vdots \\ \omega_{m k}(a)\end{array}\right]$,
and hence
$-\phi_{1}\left(\theta_{k(a) 1}, \ldots, \theta_{k(a) m}\right) \theta_{a}^{\prime}\left[\begin{array}{c}\gamma_{a(l) k(a)} \\ \vdots \\ \gamma_{a(m) k(a)}\end{array}\right]=\operatorname{det} \theta_{a}\left(\phi_{2}-\phi_{1} \gamma_{k(a) k(a)}\right)$.
Thus , by simple calculations, we have

This implies that the inner factor of ϕ_{I} is a divisor of $\wedge_{a} d e t \theta_{a}$ which is equal to $\psi_{m}([21],[27])$. Thus $\phi_{1} \Lambda \psi_{m}=1$ deduce that ϕ_{1} is outer. For a submatrix θ_{a} satisfying $l \leqq a(l)<\cdots<a(m) \leqq m+1$, there is a unique $k(a)$ such that $l \leqq k(a) \leqq m+1$ and $k(a) \neq a(i)$. C-nversely, for every $1 \leq k \leq m+1$, there is a unique θ_{a} such that $l \leqq a(1)<\cdots<a(m) \leqq m+1$ and $k(a)=k$. Thus setting

$$
\begin{aligned}
& \xi_{k(a)}(\lambda)=\operatorname{det} \theta_{a}(\lambda) \text {, from }(2.3), \text { we have } \\
& \qquad\left.\left|\phi_{2}(\lambda)^{2}\right| \xi_{k}(\lambda)\right|^{2}=\left|\phi_{1}(\lambda)\right|^{2}\left|\operatorname{det}\left[\begin{array}{llll}
\theta_{11} \cdots & \theta_{1 m} & \gamma_{1} k \\
\vdots & \vdots & \vdots & \\
\theta_{m 1} \cdots & \cdots & \theta_{m m} & \gamma_{m} k \\
\theta_{m+11} & \theta_{m+1 m+1} & \gamma_{m+1 k}
\end{array}\right]\right|^{2}
\end{aligned}
$$

for every $k ; l \leqq k \leqq m+1$. Hence it follows that

$$
\begin{aligned}
& \leqq \mid \phi_{1}(\lambda)^{R}\left\|^{t} \Gamma_{m+1}(\lambda)\right\|^{2}{\left.\underset{k}{m+1} \underline{\underline{\Sigma}}_{1}\left|\xi_{k}(\lambda)\right|^{2}\right), ~}_{\text {, }}
\end{aligned}
$$

where $\Gamma_{m+1}(\lambda)$ is the first submatrix of $\Gamma(\lambda)$ of order $m+1$, and $t_{\Gamma_{m+1}}(\lambda)$ is the transposed matrix of $\Gamma_{m+1}(\lambda)$. Since by the assumption $\xi_{m+1}(\lambda) \neq 0$, it follows that

$$
\left|\phi_{2}(\lambda)\right|^{2} \leqq\left|\phi_{1}(\lambda)\right|^{2}\left\|^{t} \Gamma_{m+1}(\lambda)\right\|^{2} \leqq\left|\phi_{1}(\lambda)\right|^{2} \|\left.\Gamma\right|_{60} ^{2} .
$$

Thus there is a ϕ in H^{∞} such that $\phi_{2}=\phi \phi_{1}$ and
$\|\phi\|_{\infty} \leqq\|\Gamma\|_{\infty}=\|N\|$ (cf.[8]). Hence we have $N=\phi(S(\theta))$. Since $\|\mathrm{N}\| \leqq\|\phi\|_{b}$ is clear, we have $\|\mathrm{N}\|=\|\phi\|_{\infty}$. Assume that $\phi(S(\theta))=\Psi(S(\theta))$ for ϕ and ψ in H^{∞}. From $X S(\theta)=S(\Phi) X$ and $X^{\prime} S(\theta)=S(\Phi) X^{\prime}$, we have

$$
\phi(S(\Phi)) X=\psi(S(\Phi)) X \quad \text { and } \phi(S(\Phi)) X^{\prime}=\psi(S(\Phi)) X^{\prime} .
$$

By $\quad \mathrm{XH}(\theta) \vee X^{\prime} H(\theta)=H(\Phi)$, we deduce
$\phi(S(\Phi))=\psi(S(\Phi))$, from which $\phi=\psi$ follows.

Theorem 2.7. ${ }^{A} S(\theta)=\{N:$ Lat $N \supseteqq$ Lat $S(\theta)\}=\{S(\theta)\} "=$ $\left\{\phi(S(\theta)): \phi \in H^{\infty}\right\}$.

Proof. From Theorem 2.6, it follows that $\{S(\theta)\}^{\prime \prime}=\left\{\phi(S(\theta)): \phi \in H^{\infty}\right\} \subseteq A_{S}(\theta) \leqq\{N: \operatorname{Lat} N \geqq \operatorname{Lat} S(\theta)\}$. Therefore we must only show that if Lat $N \geqq$ Lat $S(\theta)$, then N belongs to $\{S(\theta)\} "$. Let L be an arbitrary subspace in Lat $S(\Phi)$ - Then , since $\overline{Y L}$ is in Lat $S(\theta)$,

$$
X N Y L \leqq X N \overline{Y L} \leqq X \bar{Y} \bar{L} \subseteq \overline{X Y L}=\overline{\eta(S(\Phi)) L} \leqq L
$$

From Lemma 2.3, we have $\mathrm{XNY}=\phi\left(\mathrm{S}(\Phi)\right.$) for some ϕ in H^{∞}. Similarly we have $X^{\prime} \mathrm{NY}^{\prime}=\phi^{\prime}(\mathrm{S}(\Phi))$. Thus by Lemma 2.5,we can conclude the theorem.

Chapter III. C_{10} - contraction

We determine C_{1}, C_{10} and C_{11} by

$$
\begin{aligned}
& C_{1}=\left\{T: T^{n} x \rightarrow 0 \text { as } n \rightarrow \infty \quad \text { for all } x\right\}, \\
& C_{10}=C_{1} \cdot \cap C \cdot 0 \quad \text { and } \\
& C_{11}=\left\{T: T \in C_{1} ., T^{*} \in C_{1} .\right\} \text {. }
\end{aligned}
$$

It is well-known that there is a $C_{0}-C_{11}$ decomposition for a weak contraction. Therefore we can easily show that if T is of class C_{10} and $I-T^{*} T \in(\tau, C)$, where (τ, C) denotes the trace class , then $\sigma_{p}\left(T^{*}\right)=D$ and $\sigma_{p}(T) \cap D=\phi$.

In this chapter, we shall investigate a contraction T such that $I-T * T \in(\tau, C)$ and $\sigma(T)=\bar{D}$. The main tool is the theory of infinite determinant [15]. About C_{10} see [11], [14] and [41].
3.1. Operator valued functions.

For $T \in I+(\tau, c)$,Bercovici and Voiculescu defined the algebraic adjoint T^{a}, which satisfies

$$
T^{a} T=T T^{a}=\operatorname{det} T
$$

They showed that if $\theta(\lambda)$ is a contractive holomorphic function and if $\theta(\lambda) \in I+(\tau, c)$ for every $\lambda \in D$, then $\theta(\lambda)^{\text {a }}$ is a contractive holomorphic function. In this case, if det $\theta\left(e^{i t}\right) \neq 0$ a.e. , then $\theta\left(e^{i t}\right)$ is invertible and its inverse is

$$
\theta\left(e^{i t}\right)^{a} / \operatorname{det} \theta\left(e^{i t}\right) \text { a.e. }
$$

Theoreml. Let $\theta(\lambda)$ be an inner function (that is, $\theta(\lambda)$ is a contractive holomorphic function defined on D and $\theta\left(e^{i t}\right)$ is isometric a.e.) with values in $L\left(E, E^{\prime}\right)$, where E, E are separable Hilbert space. If there is an isometry V in $E(E, E ')$ such that for every $\lambda \in D$

$$
\begin{align*}
& I_{E}-V^{*} \theta(\lambda) \in(\tau, C), \tag{1.1}\\
& \operatorname{det} V * \theta(\lambda) \neq 0, \tag{1.2}
\end{align*}
$$

then there is a bounded holomorphic function $\Delta(\lambda)$ with values in $L\left(E^{\prime}, F\right)$ for a suitable Hilbert space F such that

$$
\begin{equation*}
\theta\left(e^{i t}\right) E \oplus \Delta^{*}\left(e^{i t}\right) F=E^{\prime} \quad \text { a.e. } \tag{1.3}
\end{equation*}
$$

Proof. If V is a unitary, then $\theta\left(e^{i t}\right)$ is invertible a.e.. Hence we may assume that V is not a unitary. Set $F=E^{\prime} \theta$ VE. Let $E_{0}=E \oplus E$ be the direct summation of E and F. For $\lambda \in D$, define $\theta^{\prime}(\lambda) \in L\left(E_{0}, E^{\prime}\right)$ by

$$
\left.\theta^{\prime}(\lambda)\right|_{E}=\theta(\lambda) \text { and }\left.\theta^{\prime}(\lambda)\right|_{F}=I_{F} .
$$

For simplicity, set $\bar{\alpha}(\lambda)=$ det $V^{*} \theta(\lambda)$ and $A(\lambda)=\left(V^{*} \theta(\lambda)\right)^{a}$. Determine $\Delta(\lambda) \in L\left(E^{i}, F\right)$ by
(1.4)

$$
\Delta(\lambda)=-P_{F} \theta(\lambda) A(\lambda) V^{*}+d(\lambda) P_{F}
$$

and $\Delta^{\prime}(\lambda) \in L\left(\Sigma^{\prime}, E_{0}^{\prime}\right)$ by

$$
\Delta^{\prime}(\lambda)=A(\lambda) V^{*}+\Delta(\lambda) .
$$

Then we have

$$
\begin{aligned}
& \left.\Delta^{\prime}(\lambda) \theta^{\prime}(\lambda)\right|_{E}=\Delta^{\prime}(\lambda) \theta(\lambda)=A(\lambda) V^{*} \theta(\lambda)+\Delta(\lambda) \theta(\lambda) \\
& =d(\lambda) I_{E}-P_{F} \theta(\lambda) d(\lambda) I_{E}+d(\lambda) P_{F} \theta(\lambda)=d(\lambda) I_{E}
\end{aligned}
$$

$$
\left.\Delta^{\prime}(\lambda) \theta^{\prime}(\lambda)\right|_{F}=A(\lambda) V^{*} I_{F}+\Delta(\lambda) I_{F}=d(\lambda) I_{F^{\prime}}
$$

and

$$
\begin{aligned}
& \theta^{\prime}(\lambda) \Delta^{\prime}(\lambda)=\theta(\lambda) A(\lambda) V^{*}+\Delta(\lambda)=\left(I-P_{F}\right) \theta(\lambda) A(\lambda) V^{*}+d(\lambda) I_{F} \\
& =V V^{*} \theta(\lambda) A(\lambda) V^{*}+d(\lambda) I_{F}=V d(\lambda) V^{*}+d(\lambda) I_{F}=d(\lambda) I_{E^{\prime}} .
\end{aligned}
$$

Thus we have

$$
\Delta^{\prime}(\lambda) \theta^{\prime}(\lambda)=d(\lambda) I_{E_{0}}, \theta^{\prime}(\lambda) \Delta^{\prime}(\lambda)=d(\lambda) I_{E^{\prime}} .
$$

Since the inverse of $\theta^{\prime}\left(e^{i t}\right)$ is $\Delta^{\prime}\left(e^{i t}\right) / d\left(e^{i t}\right)$ a.e., the orthogonal complement of $\theta\left(e^{i t}\right) E=\theta^{\prime}\left(e^{i t}\right) E$ is

$$
\frac{\Delta^{\prime}\left(e^{i t}\right)}{d\left(e^{i t}\right)}(E ; \Theta E)=\Delta\left(e^{i t}\right) * F .
$$

It is clear that $\Delta(\lambda)$ is a bounded holomorphic function. Q.E.D.

Cambern showed that the orthogonal complement of a finite dimensional holomorphic range function is conjugate holomorphic (c.f. p. 94 of [1可]. Now, we can show this result as a corollary.

Corollary 12. Let $\theta(\lambda)$ be an inner function with values in $L\left(E, E^{\prime}\right)$. Suppose dim $E=m<\infty$. Then there is an bounded holomorphic function $\Delta(\lambda)$ satisfying (I.3).

Proof. We may assume that $E \subset E$ and $\theta\left(e^{i t}\right)$ is a matrix. Since $\quad i=\operatorname{det}\left(\theta *\left(e^{i t}\right) \theta\left(e^{i t}\right)\right)=\sum_{\sigma}\left|\operatorname{det} \theta_{\sigma}\left(e^{i t}\right)\right|^{2}, \exists . e$. , where \sum_{o} is taken over all m×m submatrices of $\theta\left(e^{i t}\right)$, there is at least one σ such that $\operatorname{det} \theta_{\sigma}\left(e^{i t}\right) \neq 0$ a.e.. Thus there is an isometry V such that

$$
\operatorname{det} V * \theta\left(e^{i t}\right)=\operatorname{det} \theta_{\sigma}\left(e^{i t}\right) \neq 0 \text { a.e. }(\operatorname{see}[30]) \text {. }
$$ Hence V and $\theta(\lambda)$ satisfy (1.1),(1.2). Q.E.D.

3.2.Quasi unilateral shifts.

We begin with a short review about the canonical model theory of $S z, N a g y$ and C.Foias. Let T be a contraction of class C. O on a separable Hilbert space H. Set $D_{T}=\left(I-T^{*} T\right)^{1 / 2}$, and let E and E ' be the closures of $D_{T} H$ and $D_{T{ }^{*}}{ }^{H}$, respectively. Then the characteristic function $\theta(\lambda)$ of T determined by

$$
\begin{equation*}
\theta(\lambda)=\left.\left\{-T+\lambda D_{T^{*}}\left(I-\lambda T^{*}\right)^{-1} D_{T_{T}}\right\}\right|_{E} \text { for } \lambda \in D \tag{2.1}
\end{equation*}
$$

is an inner function with values in $L(E, E ')$. Therefore $\operatorname{dim} \mathrm{E} \leqq \operatorname{dim} \mathrm{E}^{\prime}$.

Moreover T is unitarily equivalent to $S(\theta)$ on $H(\theta)$ defined by (2.2) $H(\theta)=H^{2}\left(E^{\prime}\right) \Theta \theta H^{2}(E), S(\theta) * h=\bar{\lambda} h$ for h in $H(\theta)$. T is of class C_{I}. if and only if $\theta(\bar{\lambda}) * H^{2}\left(E^{\prime}\right)$ is dense in $H^{2}(E)$ (that is, θ is *-outer).

In this thesis,for simplicity, we call T a quasi unilateral shift if T is a contraction of class C.o such that

$$
I-T^{*} T \in(\tau, C), K(T)=\{0\} \text { and } K\left(T^{*}\right) \neq\{0\} .
$$

Theorem 2l. If T is a quasi unilateral shift on H, then there is a bounded operator X with dense range satisfying

$$
\begin{equation*}
X T=S X \tag{2.3}
\end{equation*}
$$

where S is a unilateral shift satisfying

$$
0>\text { index } S=\text { index } T \geqq-\infty
$$

Proof. We may assume $I-T * T \neq 0$. From $T(I-T * T)=(I-T T *) T$ it follows that $T E \subset E^{\prime}, T(H \Theta E)=H \Theta E^{\prime}$, where E and E^{\prime} are the spaces defined above. Thus we have
(2.4)

$$
\mathrm{H} \Theta \mathrm{TH}=\mathrm{E}^{\prime} \Theta \mathrm{TE} \neq\{0\}
$$

$\operatorname{Let}\left\{e_{1}, e_{2}, \ldots, e_{n}, \ldots\right\}$ be the C.O.N.B. of E such that $(I-T * T) e_{n}=\mu_{n} e_{n}, \mu_{n} \geqq 0$. Then $f_{n}=\left(1-\mu_{n}\right)^{1 / 2} T e_{n} \quad(n=1,2, \ldots)$ is a C.O.N.B. of TE and $T A_{n}=\left(1-\mu_{n}\right)^{\frac{1}{2}} e_{n}($ see $[28])$. Setting $V e_{n}=-f_{n}(n=1,2, \ldots), V$ is an isometry from E to $E '$, and

$$
\begin{equation*}
V+\left.T\right|_{E} \in(\tau, C) \quad(\operatorname{see}[2]) \tag{2.5}
\end{equation*}
$$

Setting $F=E^{\prime} \Theta V E$, from(2.4), it follows that

$$
\begin{equation*}
\operatorname{dim} F=- \text { index } T \tag{2.6}
\end{equation*}
$$

I-T*T $\in(\tau, C)$ implies $D_{T} \in(\sigma, C)$ which denotes the Hilbert Schmidt class. Since (I-TT*)| $\left.\right|_{T E}$ is unitarily equivalent to $I-T * T$, we have $\left.D_{T *}\right|_{T E} \in(\sigma, C)$. Thus

$$
\lambda V^{*} D_{T^{*}}\left(I-\lambda T^{*}\right)^{-i} D_{T}=\lambda V^{*}\left(D_{T^{*}} T_{T}\right)\left(I-\lambda T^{*}\right)^{-1} D_{T} \quad(\lambda \in D)
$$

belongs to (τ, C). Thus ,from (2.1), (2.5), we have

$$
\text { I- } V * \theta(\lambda) \in(\tau, C) \text { for each } \lambda
$$

Since

$$
\begin{aligned}
& \left|\operatorname{det}\left(V^{*} \theta(0)\right)\right|^{2}=\operatorname{det}\left(\theta\left(0 * V V^{*} \theta(0)\right)=\operatorname{det}\left(\left.T * V V^{*} T\right|_{E}\right)\right. \\
= & \operatorname{det}\left(\left.T^{*} T\right|_{E}\right)=0,
\end{aligned}
$$

We have det $V^{*} \theta(\lambda) \not \equiv 0$. Thus V and $\theta(\lambda)$ satisfy the conditions of Theorem 1.l.Hence $\Delta(\lambda)$ defined by (1.4) satisfy (1.3). Since $\Delta(\lambda) \theta(\lambda)=0$, setting

$$
\begin{equation*}
x_{0} h=\Delta h \text { for } h \text { in } H(\theta), \tag{2.7}
\end{equation*}
$$

we have $X_{0} \in L\left(H(\theta), H^{2}(F)\right)$ and $X_{0} S(\theta)=S_{0} X_{0}$, where S_{0} is the unilateral shift on $H^{2}(F)$. Since

$$
H^{2}(F) \supset X_{0} H(\theta)=\Delta H^{2}\left(E^{\prime}\right) \supset \Delta H^{2}(F)=(\operatorname{det} V * \theta(\lambda)) H^{2}(F),
$$

it follows that $S=S_{0} \mid \overline{X_{0} H(\theta)}$ is unitarily equivalent to S_{0}. Thus, from (2.6), we have

$$
\text { index } S=\text { index } S_{0}=-\operatorname{dim} F=\text { index } T
$$

Consequently an operator X from $H(\theta)$ to $\overline{X_{0} H(\theta)}$ defined by (2.8)
$\mathrm{Xh}=\mathrm{X}_{0} \mathrm{~h}$ for h in $\mathrm{H}(\theta)$
satisfy (2.3).
Q.E.D.

Corollary 2.2.Let T be a contraction of class C_{00} such that I-T*T and I-TT* belong to (τ, C). Then for $a \in D, K(T-a I)=\{0\}$ if and only if $K\left(T^{*}-\bar{a} I\right)=\{0\}$.

Proof. Set $T_{a}=(T-a I)(1-\bar{a} T)^{-1}$ and $A=\left(1-|a|^{2}\right)^{\frac{1}{2}}(1-\bar{a} T)^{-1}$.
Then we have $I-T_{a}{ }^{*} T_{a}=A^{*}\left(I-T^{*} T\right) A, I-T_{a} T_{a}^{*}=A\left(I-T T^{*}\right) A^{*}$, and T_{a} is of class C_{00} (see p. 240 and $P .257$ of [28]). Suppose $K(T-a I)=\{0\}$ and $K\left(T^{*}-\bar{a} I\right) \neq\{0\}$. Then T_{a} is a quasi unilateral shift. Therefore, there is an X satisfying
$X T_{a}=S X$, which implies that T_{a} is not of class C_{00}. This is a contradiction. Thus $K(T-a I)=\{0\}$ implies $K\left(T^{*}-\bar{a} I\right)=\{0\}$. Similarly we can proove the converse assertion. Q.E.D.

For a contraction T on H, we have

$$
\begin{equation*}
\|I-T * T\|_{\mathrm{p}}+\operatorname{dim} K\left(T^{*}\right)=\left\|\mathrm{I}-T T^{*}\right\|_{\mathrm{p}}+\operatorname{dim} K(T) \tag{2.9}
\end{equation*}
$$ where $\left\|\left\|\|_{\mathrm{p}}\right.\right.$ denotes the p-Schatten norm.

Indeed, from $T(I-T * T)=\left(I-T T^{*}\right) T,(I-T * T) \left\lvert\, \frac{}{T *} H\right.$ and $\left.\left(I-T T^{*}\right)\right|_{\overline{T H}}$ are unitarily equivalent. $\left.(I-T * T)\right|_{K(T)}=I_{K(T)}$ and $\left.\left(I-T T^{*}\right)\right|_{K\left(T^{*}\right)}=I_{K\left(T^{*}\right)}$ imply that

$$
\begin{aligned}
& \left\|I-T^{*} T\right\|_{\mathrm{p}}=\left\|\left.\left(I-T^{*} T\right)\right|_{\mathrm{T} * \mathrm{H}}\right\| \mathrm{p}+\operatorname{dim} K(T) \\
& \left.\left\|I-T T_{\mathrm{p}}=\right\|\left(I-T \|^{*}\right)\right|_{T H} \| \mathrm{p}+\operatorname{dim} K\left(T^{*}\right)
\end{aligned}
$$

Thus we have (2.9). Similarly we have $(2.9)^{\prime} \quad \operatorname{rank}\left(I-T^{*} T\right)+\operatorname{dim} K\left(T^{*}\right)=\operatorname{rank}\left(I-T T^{*}\right)+\operatorname{dim} K(T)$.

Proposition 2.3. Let T be a Fredholm quasi unilateral shift. Suppose X with dense range satisfies $X T=S X$ where S is a unilateral shift with index $S=$ index T. Then $\left.T\right|_{K(X)}$ is of class C_{0}.

Proof. Let $T=\left[\begin{array}{ll}T_{1} & T_{12} \\ 0 & T_{2}\end{array}\right]$ be a decomposition of T corresponding to $H=K(X) \oplus K(X)^{\perp}$. Then T_{1} is injective and , from (2.3), also T_{2} is injective. From the assumption and
(2.9), it follows that $I-T * T \in(\tau, C)$ and $I-T T * \in(\tau, C)$, which imply
(2.10) $I-T_{1} * T_{1} \in(\tau, C)$,
(2.11) $I-\left(T_{1} T_{1} *+T_{12} T_{12} *\right) \in(\tau, C)$,
(2.12) $I-\left(T_{12} * T_{12}+T_{2} * T_{2}\right) \in(\tau, C)$,
(2.13) I - $T_{2} T_{2} * \in(\tau, C)$.

From $K\left(T_{2}{ }^{*}\right) \subset K\left(T^{*}\right)$, it follows that
index $T=-\operatorname{dim} K\left(T^{*}\right) \leqq-\operatorname{dim} K\left(T_{2} *\right) \leqq-\operatorname{dim} K\left(S^{*}\right)=$ index T, which implies index $\mathrm{T}=$ index T_{2}. From (2.9) and (2.13), we have $\quad I-T_{2}{ }^{*} T_{2} \in(\tau, C)$, which, by (2.12), implies $T_{12} \in(\sigma, C)$. Therefore, from (2.10) and (2.11), T_{1} is a Fredholm-operator. Since

$$
\text { index } T=\text { index }\left[\begin{array}{ll}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right]=\text { index } T_{1}+\text { index } T_{2}
$$

we have index $T_{1}=0$. Thus T_{1} is invertible. Hence T_{1} is a weak contraction of class C.0. Consequently T_{1} is of class Co . Q.E.D.

Corollary 2.4. Let T be a Fredholm quasi unilateral shif.t of class C_{10}. Then, if $A T=T A$ and $K\left(A^{*}\right)=\{0\}, K(A)=\{0\}$ (c.f.[42]).

Proof. For X defined in Theorem 2.1, we have - (XA) T $=\mathrm{S}(\mathrm{XA})$

- From Proposition 23 , we have $K(X A)=\{0\}$.
Q.E.D.

Proposition 25.Let T be of class C.0. Then T is of class C_{10} if and only if

$$
\begin{equation*}
\theta \mathrm{I}^{2}(E) \cap H^{2}\left(E^{\prime}\right)=\theta H^{2}(E) \tag{2.14}
\end{equation*}
$$

Proof. Since

$$
\begin{aligned}
&(\theta(\bar{\lambda}) * h(\lambda), f(\lambda)) H^{2}(E)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\theta\left(e^{-i t}\right) * h\left(e^{i t}\right), f\left(e^{i t}\right)\right)_{E} d t \\
&=-\frac{1}{2 \pi} \int_{0}^{-2 \pi}\left(\theta\left(e^{i t}\right) * h\left(e^{-i t}\right), f\left(e^{-i t}\right)\right)_{E} d t \\
&= \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\theta\left(e^{i t}\right) * h\left(e^{-i t}\right), f\left(e^{-i t}\right)\right)_{E} d t \\
&= \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\theta\left(e^{i t}\right) * e^{-i t} h\left(e^{-i t}\right), e^{-i t} f\left(e^{-i t}\right)\right)_{E} d t \\
&=\left(\theta(\lambda)^{*} \overline{\lambda h}(\bar{\lambda}), \bar{\lambda} f(\bar{\lambda})\right)_{L^{2}}(E)^{\prime} \\
& \theta(\bar{\lambda}) * H^{2}(E \prime) \text { is dense in } H^{2}(E) \text { if and only if } \\
& \theta(\lambda) *\left(H^{2}(E)^{\perp} \text { is dense in }\left(H^{2}(E)\right)^{\perp}, \text { where } \perp\right. \text { denotes }
\end{aligned}
$$

the orthogonal complement. We have always

$$
\theta L^{2}(E) \cap H^{2}\left(E^{\prime}\right) \supset \theta H^{2}(E)
$$

At first, assume that T is of class C_{10}. Suppose

$$
\theta g \in\left\{\theta \mathrm{~L}^{2}(E) \cap \mathrm{H}^{2}\left(E^{\prime}\right)\right\} \Theta \theta \mathrm{H}^{2}(E)
$$

Then $\theta g \in H^{2}\left(E^{\prime}\right)$ and $g \perp H^{2}(E)$, because θ is an isometry from $L^{2}(E)$ to $L^{2}\left(E^{\prime}\right)$. Thus $g \perp \theta^{*}\left(H^{2}\left(E^{\prime}\right)\right)^{\perp}$ and $g \in\left(H^{2}(E)\right)^{\perp}$. Since $\theta(\lambda)$ is *-outer, we have $g=0$. Consequently (2.14) follows.
Conversely assume (2.14). Suppose $f \perp \theta(\lambda)$ * $\left(H^{2}\left(E^{\prime}\right) 广\right.$ and
$f \in\left(H^{2}(E)\right)^{\perp}$. Then $\theta f \in H^{2}\left(E^{\prime}\right)$ and $\theta f \perp \theta H^{2}(E)$. Thus from (2.14) , we have $\theta f=0$ and hence $f=0$. Consequently $\theta(\lambda)$ is *-outer Q.E.D.

Theorem 2.6. Let T be a quasi unilateral shift. Then $\mathrm{T}<\mathrm{S}$ (that is, there is an X such that $K(\mathrm{X})=K(\mathrm{X} *)=\{0\}, \mathrm{X}=\mathrm{TX})$, where S is a unilateral shift with index $S=$ index $T, i f$ and only if T is of class C_{10}.

Proof. Assume that T is of class C_{10}. Then ,from Theorem 2.1, , there is an X with dense range satisfying. (2.3). If $X h=0$ for h in $H(\theta)$, then from (2.7) and (2.8), $\Delta\left(e^{i t}\right) h\left(e^{i t}\right)=0$ a.e.. Thus , from (1.3), $h \in \theta L^{2}(E)$, so that, from (2.14), h $\in \theta H^{2}$ (E). Consequently $h=0$. Thus we have $T<S$. Conversely, assume $X T=S X$ and $K(X)=K\left(X^{*}\right)=\{0\}$. From $X T^{n}=S^{n} X$ ($\mathrm{n}=1,2, \ldots$) it follows that T is of class C_{10}. Q.E.D.

Remark I. If T is a Fredholm operator, then ,from Theorem 2.1 and Proposition 2.3, it is clear that $T<S$ if T is of class C_{10}.

Remark 2. Theorem 2.6.implies that the Jordan model of a quasi unilateral shift of class C_{10} is a unilateral shift.

Corollary 2.7. Let T be a quasi unilateral shift of class C_{10}. Then T^{*} has a cyclic vector.

Proof. $T<S$ imlies that $S^{*}<T^{*}$. Since S^{*} has a cyclic vector, also T* does. Q.E.D.

Proposition 28. Let T be a quasi unilateral shift. Then there is an injection Y such that

$$
\begin{equation*}
Y S=T Y \tag{2.15}
\end{equation*}
$$

where S is a unilateral shift such that index $S=$ index T.

Proof. Consider $S(\theta)$ defined by (2.2) instead of T. Let.
V be an isometry defined in the proof of Theorem 2.1, Then

$$
E^{\prime}=V E \oplus F \quad \text { and } \operatorname{det} V^{*} \theta\left(e^{i t}\right) \neq 0 \text { a.e.. }
$$

Define an operator Y from $H^{2}(F)$ to $H(\theta)$ by

$$
Y h=P_{H(\theta)^{h}} \text { for } h \text { in } H^{2}(F) .
$$

Then we have
$Y S h=P_{H(\theta)} S h=P_{H(\theta)} S P_{H(\theta)} h=S(\theta) Y h$,
which implies (2.15). Suppose $Y h=0$. Then $h=\theta f$ for some $f \in H^{2}(E)$ - Thus $0=V^{*} h\left(e^{i t}\right)=V^{*} \theta\left(e^{i t}\right) f\left(e^{i t}\right)$ a.e. Since $V^{*} \theta\left(e^{i t}\right)$ is invertible a.e. $f\left(e^{i t}\right)=0$ a.e. Consequently Y is injective Q.E.D.

Proposition 2.9.Let T be a quasi unilateral shift of class C_{10}. Then, if $T<S^{\prime}$, where S^{\prime} is a unilateral shift, then index $S^{\prime}=$ index T.

Proof. From S'*くT*, $\operatorname{dim} K\left(S^{\prime *}\right) \leqq \operatorname{dim} K\left(T^{*}\right)$.Above proposition implies that there is an injection Y ' such that $Y^{\prime} S=S^{\prime} Y^{\prime}$, index $S=$ index T,
which implies that $0>$ index $S \geqq$ index $S^{\prime}(c . f .[30])$. we have

```
    index T= index S \ index S' \geqq index T,
```

from which index $T=$ index S^{\prime} follows. Q:E.D.

Remark 3. In [42], P.Y.Wu showed that if I-T*T is a finite rank operator , and if $T<S^{\prime}$, then
$\operatorname{rank}\left(I-T T^{*}\right)-\operatorname{rank}\left(I-T^{*} T\right)=-i n d e x S^{\prime}$.
From (2.9)' , our proposition is a extension of this result.
3.3. Cyclic vector.

In this section, we consider a quasi unilateral shift of class C_{10} which has a cyclic vector. Next proposition is a partial extension of Proposition 2 of [30] and Theorem 3.1 of [41].

Proposition 3 . Let T be a quasi unilateral shift of class C_{10}. Then next conditions are equivalent:
(a) T has a cyclic vector ;
(b) there is a bounded operator Y satisfying

$$
\begin{equation*}
Y S_{1}=T Y, K\left(Y^{*}\right)=\{0\} \tag{3.1}
\end{equation*}
$$

where S_{1} is a unilateral shift with index $S_{1}=-1$;
(c) $\mathrm{S}_{1}<\mathrm{T}$;
(d) $\mathrm{S}_{1}<\mathrm{T}$ and $\mathrm{T}<\mathrm{S}_{1}$;
(e) $\left\|I-T T^{*}\right\|_{1}-\left\|I-T^{*} T\right\|_{1}==1$, and there is a holomorphic function Γ from $H^{2}(\mathbb{C})$ to $H^{2}\left(E^{\prime}\right)$ satisfying

$$
\begin{equation*}
\left\|\Gamma\left(e^{i t}\right)\right\|_{E^{\prime}} \leqq 1 \text { a.e. } \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\Gamma H^{2}(\mathbb{C}) V \theta H^{2}(E)=H^{2}\left(E^{\prime}\right) \tag{3.3}
\end{equation*}
$$

where θ is a characteristic function of T defined by (2.1).

Proof. (a) \rightarrow (e). From Theorem 2.6,for a unilateral shift S with index $S=$ indexT, we have $T<S$. That T has a cyclic vector implies that also S does. Thus index $S=-1$. Consequently , from (2.9), we have

$$
\|I-T T *\|_{1}-\|I-T * T\|_{2}=1
$$

We can construct a function Γ in the same way as [30].
$(e) \rightarrow(b)$. A contraction Y defined by $Y h=P_{H(\theta)} \Gamma h$ for h in $H^{2}(\mathbb{C})$ satisfies (3.1).
$(b) \rightarrow(c)$. Suppose $K(Y) \neq\{0\}$. Since $S_{1} K(Y) \subset K(Y)$, there is a scalar inner function ψ such that $K(Y)=\psi H^{2}(\mathbb{C})$.Thus

$$
\begin{aligned}
& K(Y)^{\perp}=H(\psi) \quad\left(=H^{2}(\mathbb{C}) \Theta \psi H^{2}(\mathbb{C})\right) \\
& \left.Y\right|_{H(\psi)} S(\psi)=\left.T Y\right|_{H(\psi)}
\end{aligned}
$$

where $S(\psi)=\left.P_{H(\psi)} S\right|_{H(\psi)}$. Since $S(\psi)$ is of class C_{0},T must be of class C_{0}. This is a contradiction. Consequently $K(Y)=\{0\}$.

$$
(c) \rightarrow \text { (d) } \cdot S_{1} \prec T \text { implies } T *<S_{1} * \text {, from which it follows }
$$ that $\operatorname{dim} K\left(T^{*}\right) \leqq \operatorname{dim} K\left(S_{1} *\right)=1$. That T is of class C_{10} implies index $T<0$. Thus index $T=-1$. By theorem 2.6, we have $T<S_{1}$

$(\mathrm{d}) \rightarrow(a)$. This is obvious.
Q.E.D.
(3.3) implies that $[\Gamma, \theta]$ is an outer function from $H^{2}(\mathbb{C}) \oplus H^{2}(E)$ to $H^{2}\left(E^{\prime}\right)$. Generally $[\Gamma, \theta]$ is not contractive. Therefore $d(\lambda)=\operatorname{det}[\Gamma(\lambda), \theta(\lambda)] \in H^{\infty}$ and $d(\lambda) \leqq I$ are not obvious. We shall show these results.

Let $A \in L\left(E, E^{\prime}\right)$ be a contraction and $V \in L\left(E, E^{\prime}\right)$ an isometry with index $V=-1$. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}, \ldots\right\}$ be a C.O.N.B.in E. Then, setting $d_{n}=V e_{n}(n=1,2, \ldots),\left\{d_{0}, d_{1}, \ldots, d_{n}, \ldots\right\}$ is a C.O.N.B. in E^{\prime}, where d_{0} is a unit vector in $K\left(V^{*}\right)$. For $i=1,2, \ldots$, define an isometry $V_{i} \in L\left(E, E^{\prime}\right)$ by

$$
v_{i} e_{1}=d_{0}, \ldots, v_{i} e_{i}=d_{i-1}, v_{i} e_{i+1}=d_{i+1}, v_{i} e_{i+2}=d_{i+2}, \ldots
$$

Let $a_{i j}=\left(A e_{j}, d_{i}\right)(i \geqslant 0, j \geqq 1)$. Then , by base $\left\{e_{1}, e_{2}, \ldots\right\}$, we have

$$
V_{i} * A=\left[\begin{array}{cccc}
a_{01} & , \ldots, & a_{0 j} & \cdots \\
a_{i-1} & 1 & \ldots, & a_{i-1} \\
a_{i-1} & \ldots \\
a_{i+1} & 1 & \ldots, & a_{i+1} \\
\vdots & & \vdots &
\end{array}\right] \quad(i=1,2, \ldots)
$$

Let $E_{0}=\mathbb{C} \oplus E$ be a direct sum of \mathbb{C} and E, and e_{0} a unit vector in \mathbb{C}. Let $x_{n}(n=0,1,2, \ldots)$ be a scalar number such that $n{ }_{n}^{\infty}{ }_{0}^{\infty}\left|x_{n}\right|^{2} \leq 1$. Let $B \in L\left(E_{0}, E_{-}^{\prime}\right)$ be an operator defined by

$$
\left(B e_{0}, d_{i}\right)=x_{i}, \quad\left(B e_{j}, d_{i}\right)=a_{i j} \quad(i \geqq 0, j \geqq 1) .
$$

Determine a unitary $U \in L\left(E_{0}, E^{\prime}\right)$ by $U e_{i}=d_{i}(i \geqslant 0)$. Then by base $\left\{e_{0}, e_{1}, \ldots, e_{i}, \ldots\right\}$ of E_{0} we have

$$
U^{*} B=\left[\begin{array}{c}
x_{0}, a_{01}, \ldots, a_{0 j}, \ldots \\
x_{1}, a_{11}, \ldots, a_{1 j}, \ldots \\
x_{i}, a_{i 1}, \ldots, a_{i j}, \ldots \\
: ~:
\end{array}\right]
$$

Let $I_{E}-V * A \in(\tau, C)$. Then, since $\left(V_{i}{ }^{*} A e_{j}, e_{k}\right)=\left(V^{*} A e_{j}, e_{k}\right)$ for $j \geq 0$ and $k \geq i+1, I_{E}-V_{i} * A \in(\tau, C)$ for every i.

$$
\left.P_{E}\left(I_{E_{0}}-U * B\right)\right|_{E}=I_{E}-V^{*} A
$$

implies $I_{E_{0}}-U * B \in(\tau, C)$.

Lemma 3. 2. Let $I_{E}-V^{*} A \in(\tau, C)$. Set $V_{0}=V$. Then

$$
\operatorname{det} U^{*} B={ }_{i=0}^{\infty} x_{i} \cdot(-1)^{i} \operatorname{det}\left(V_{i} *_{A}\right) \text {, }
$$

and

$$
i \stackrel{\infty}{=}\left|x_{i} \cdot(-1)^{i} \operatorname{det}\left(v_{i}^{*} A\right)\right| \leqq 1 .
$$

Proof. For simplicity, let $[A]_{n}$ denote the first $n \times n$
submatrix of A, and A_{n} the $\left.A\right|_{E_{n}}$, where $E_{n}=\left\langle e_{1}, \ldots, e_{n}\right\rangle$. For any $k \underset{k}{ }$ and n as $n \geqq k$, we have
(3.4)

$$
\sum_{i=1}^{k}\left|\operatorname{det}\left[V_{i}{ }^{*} A\right]_{n}\right|^{2} \leqq \operatorname{det}\left(A_{n}{ }^{*} A_{n}\right)=\operatorname{det}[A * A]_{n} \leqq 1
$$

because A is a contraction. Since for each i
we have $\sum_{i=0}^{\operatorname{det}_{i}^{k}\left[V_{i}^{*} A\right]_{n}}\left|\operatorname{det}\left(V_{i}^{* A}\right)\right|^{2} \leqq 1, \operatorname{det}\left(V_{i}{ }^{*} A\right) \quad(n \rightarrow \infty)$, which implies

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left|\operatorname{det}\left(V_{i}^{*} A\right)\right|^{2} \leqq 1 \tag{3.5}
\end{equation*}
$$

Consequently

$$
i \sum_{0}^{\infty}\left|x_{i} \cdot(-1)^{i} \operatorname{det}\left(V_{i}^{* A}\right)\right| \leqq 1
$$

For any $\varepsilon>0$, take an m such that

$$
\begin{equation*}
i \sum_{m+1}^{\infty}\left|x_{i}\right|^{2}<\varepsilon^{2} \tag{3.6}
\end{equation*}
$$

Since $\operatorname{det}\left[U^{* B}\right]_{n} \rightarrow \operatorname{det}\left(U^{*} B\right)$, and $\operatorname{det}\left[V_{i}{ }^{*} A\right]_{n} \rightarrow \operatorname{det}\left(V_{i}{ }^{*} A\right)$ as
$n \rightarrow \infty$, we can take an N such that
(3.7) $n \geqq N \rightarrow\left|\operatorname{det}\left[U^{*} B\right]_{n}-\operatorname{det}\left(U^{*} B\right)\right|<\varepsilon_{\text {, }}$
and
(3.8) $\mathrm{n} \geqq \mathrm{N} \rightarrow{ }_{i}^{\mathrm{E}} \underline{\underline{E}}_{0} \mid \operatorname{det}\left[\mathrm{V}_{\mathrm{i}}{ }^{*}{ }_{\mathrm{A}}{ }_{\mathrm{n}}-\left.\operatorname{det}\left(\mathrm{V}_{\mathrm{i}}{ }^{*} \mathrm{~A}\right)\right|^{2}<\varepsilon^{2}\right.$.

Fix a k as $k \geqq N+1$ and $k \geqq m+1$. Then it follows that

$$
\begin{aligned}
& \left|\operatorname{det}\left(U^{*} B\right)-\sum_{i=0}^{\infty} x_{i} \cdot(-1)^{i} \operatorname{det}\left(V_{i}^{*} A\right)\right| \\
& \leqq\left|\operatorname{det}\left(U^{*} B\right)-\operatorname{det}\left[U^{*} B\right]_{k}\right|+\mid \operatorname{det}\left[U^{*} B\right]_{k}-\sum_{i=1}^{m}{\underset{\sim}{x}}_{i} \cdot(-1)^{i^{\prime}} \operatorname{det}\left[V_{i}{ }^{*} A\right]_{k-1} \\
& +\left|\sum_{i=0}^{m} x_{i} \cdot(-1)^{i}\left\{\operatorname{det}\left[V_{i}{ }^{*} A\right]_{k-1}-\operatorname{det}\left(V_{i}{ }^{*} A\right)\right\}\right| \\
& +\left|\sum_{i} \sum_{m+1}^{\infty} x_{i} \cdot(-1)^{i} \operatorname{det}\left(V_{i} *_{A}\right)\right| \text {. }
\end{aligned}
$$

From (3.7) $\left|\operatorname{det}\left(U^{*} B\right)-\operatorname{det}\left[U^{*} B\right]_{k}\right|<\varepsilon$, and from (3.8)

$$
\begin{aligned}
& \left|{ }_{i} \sum_{=0}^{m} x_{i} \cdot(-1)^{i}\left\{\operatorname{det}\left[V_{i}^{* A}\right]_{k-1}-\operatorname{det}\left(V_{i} *_{A}\right)\right\}\right| \\
\leqq & \left({ }_{i}^{m} \sum_{0}\left|x_{i}\right|^{\frac{1}{2}}\right)^{m}\left({ }_{i=0}^{m}\left|\operatorname{det}\left[V_{i}{ }^{*} A\right]_{k-1}-\operatorname{det}\left(V_{i} *_{A}\right)\right|^{2 \frac{1}{2}}<\varepsilon .\right.
\end{aligned}
$$

(3.5) and (3.6) implies that

$$
\left|\sum_{i=1}^{m} x_{i} \cdot(-1)^{i} \operatorname{det}\left(\nabla_{i} * A\right)\right|<\varepsilon
$$

By the finite matrix theory

$$
\begin{aligned}
& \left|\operatorname{det}\left[U^{*} B\right]_{k}-\sum_{i=0}^{m} x_{i} \cdot(-1)^{i} \operatorname{det}\left[V_{i}^{* A}\right]_{k-1}\right| \\
= & \left|{ }_{i=m+1}^{k-1} x_{i} \cdot(-1)^{i} \operatorname{det}\left[V_{i} *_{A}\right]_{k-1}\right|<\varepsilon
\end{aligned}
$$

begause the last inequality follows from (3.4), (3.6).Consequently, for any $\varepsilon>0$ we have

$$
\left|\operatorname{det}\left(U U^{*}\right)-{ }_{i}{ }_{\underline{E}}^{\underline{E}_{0}} x_{i} \cdot(-1)^{i} \operatorname{det}\left(V_{i}^{*} A\right)\right|<4 \varepsilon \text {.Q.E.D. }
$$

In (e) of Proposition 3.1, set $\left(\Gamma(\lambda) e_{0}, d_{i}\right)=h_{i}(\lambda)$ for $i \geqslant 0$. Then we have:

Proposition 3.3. $\left|\operatorname{det}\left(U^{*}[\Gamma(\lambda), \theta(\lambda)]\right)\right| \leqq 1$, and

$$
\begin{equation*}
\operatorname{det}\left(U^{*}[\Gamma(\lambda), \theta(\lambda)]\right)={ }_{i}^{\infty}=0 h_{i}(\lambda) \cdot(-1)^{i} \operatorname{det}\left(V_{i}^{*} \theta(\lambda)\right) \tag{3.9}
\end{equation*}
$$

is holomorphic on D.

Proof. From(3.2), we have $\sum_{i=0}^{\infty}\left|h_{i}(\lambda)\right|^{2} \leqq 1$. Since $V_{i}{ }^{*} \theta(\lambda)$ is a contractive holomorphic function, $\operatorname{det}\left(V_{i} * \dot{\theta}(\lambda)\right) \in H^{\infty}$.

Since $\theta(\lambda)$ is a contraction for every $\lambda \in D, i t$ follows that $i{ }_{i}^{\infty} \sum_{0}\left|h_{i}(\lambda) \cdot(-1)^{i} \operatorname{det}\left(V_{i} * \theta(\lambda)\right)\right| \leqq 1$,
which implies $i \sum_{i=0}^{\infty} h_{i}(\lambda),(-1)^{i} \operatorname{det}\left(V_{i}^{*} \theta(\lambda)\right)$ is holomorphic. Equality (3.9) follows from Lemma. Q.E.D.

Problem. Is $\operatorname{det}\left(U^{*}[\Gamma(\lambda), \theta(\lambda)]\right)$ outer?

BIBLIOGRAPHY

1. H. Bercovici,C.Foias and B.Sz.-Nagy, Complements a letude des operateurs de class C_{0}. III, Acta Sci.Math. 37(1975),313322.
2. H.Bercovici and D.Voiculescu, Tensor operations on characteristic functions of C_{0} contractions,ibidem, 39 (1977), 205-231.
3. A. Beurling, on two problems concerning linear transformations in Hilbert space,Acta Math., 8l(1949), 239-255.
4. L.A.Brown,R.G.Douglas and P.Fillmore,Unitary equivalence module the compact operators and extensions of c^{*}-algebras, Proc.Conference on Operator theory,Springer, (1973).
5. L.A.Brown and P.R.Halmos,Algebraic properties of Toeplitz operators,J.Reine Angew.Math., 213(1964),89-102.
6. L.Carleson, Interpolation by bounded analytic functions and the corona problem, Ann.of Math.,76(1962), 547-559.
7. A.Devinatz and M. Shinbrot, General Wiener-Hopf operators,Trans. Amer.Math.Soc.,149(1969),467-494.
8. R.G.Douglas, Banach algebra techniques in operator theory, Academic press, New York, (1972).
9. -, On the hyperinvariant subspaces for isometries , Math. Z.,107(1968),297-300.
lo.R.G.Douglas and C.Peacy, on a topology for invariant subspaces ,J.Func.Anal., 2(1968), 323-341.
11.G.Eckstein, On the spectrum of contractions of class C.1 , Acta Sci.Math., 39(1977),251-254.
10. P.A.Fuhrmann, on the corona theorem and its application to spectral problems in Hilbert space,Trans.Amer.Math.Soc., 132 (1968), 55-66.
11. —, Linear systems and operaさors in Hilbert space, Mcgraw-Hill, New York,1981.
12. F.Gilfeather, Weighted bilateral shifts of class C_{01},Acta Sci.Math., 32(1971),251-254.
13. I.Gohberg and M.G.Krein, Introduction to the theory of linear non-selfadjoint operators,Nauka,Moskwa, (1965).
14. H.Helson, Lectures on invariant subspaces, New York, (1964).
15. P.R.Halmos, Shifts on Hilbert spaces, J.reine angew.Math., 208(1961),102-112.
16. K.Hoffman, Banach spaces of analytic functions, Englewood Cliffs, N.J., 1962 .
17. P.Lax, Translaton invariant spaces, Acta Math., 101 (1959), 163-178.
18. V.Lomonosov, Invariant subspaces for operators commuting with compact operators, Func.Anal. and its appl. (1973), 55-56.
19. B.Moore and E.A.Nordgren, On quasi-equivalence and quasisimilarity, Acta Sci.Math.,34(1973),311-316.
20. E.A.Nordgren, on quasi-equivalence of matrices over H^{∞}. ibidem, 34 (1973), 301-310.
21. H.Radjavi and P.Rosenthal, Invariant subspaces, Springer, Berlin, 1973.
22. M.Rosenblum, A corona theorem for countably many functions, Integral Equations and Operator theory,3(1980),125-137.
23. G.C.Rota, On models for linear operators, Comm. Pure Appl. Math. 13(1960), 468-472.
24. D.Sarason, Generalized interpolation in H^{∞}.Trans.Amer. Math. Soc.,127(1967),179-203.
25. B.Sz.-Nagy, Diagonalization of matrices over H^{∞}, Acta Sci. Math., 38(1976), 223-238.
26. B.Sz-Nagy and C.Foias, Harmonic analysis of operators on Hilber space, Academiai Kiado, Budapest,1970.
27. —. Modele de Jordan pour une classe d'operateurs de l'espace de Hilbert, Acta Sci.Math.61(1970),91-115.
28. _, Jordan model for contractions of class C_{0}, ibidem, 36 (1974), 305-322.
29. —, Commutants and bicommutants of class C_{0}, ibidem, $38(1976), 311-315$.
30. —. On injections, intertwining operators of class C_{0}, ibidem, $40(1978), 163-167$.
31. M.Uchiyama, Hyperinvariant subspaces of operators of class $C_{0}(N)$, ibidem, $39(1977), 179-184$.
32. \qquad , Hyperinvariant subspaces for contractions of class C.0, Hokkaido M.J., 6(1977), 260-272.
33. \qquad , Double commutants of C. 0 contractions, Proc. A.M.S., 69(1978), 283-288.
34. — , Double commutants of C. O contractions.II ,ibidem, 74(1979), 271-277.
35. M.Uchiyama, Some generalized Toeplitz operators, Bull.Fukuoka Univ. of Eaucation, $28(1979), 29-34$.
36. \qquad , Quasi-similarity of restricted Co contractions, Acta Sci.Math. 41(1979),429-433.
37. . C. 0 contractions and unilateral shifts, to appear,
38. P.Y.Wu, Commutants of $\mathrm{C}_{0}(\mathrm{~N})$ contractions, Acta Sci.Math. 38 (1976).1973-202.
39. —— On contractions of class C_{1}, ibidem, 42(1980), 205-210.
40. \qquad , On the quasi-similarity of hyponormal contractions, Illinois J.M. to appear.
