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1. Introduction

Let {V;};cz be an r-regular multiresolution analysis in L*(R") and ¢(x) an
r-regular father function. Denote by T the one-dimensional torus R/2nZ. Then
there exists an isomorphism of Hilbert spaces between V, and L*(T"),

1) VoafeomyeLXT"),
defined by the functional equations

@ J@H=m&@®)

and

3) m&)=2""3 (f (z),qo(x—k))e—ik.g‘

kezn\ \2
Here f¢) denotes the Fourier transform of f(x) and (-, -) denotes the inner product
of L*(R"). The function m(¢) will be called the symbol of f(x).

Put R={0,1}" and E=R\(0,---,0). To construct (2"—1) mother functions
Yx), eeE, we need to construct 2nZ"-periodic L*-functions, m,,, which satisfy
conditions to be specified below. For simplicity, we write m, for m, and m, for
my Ee€E.

To show that the mother functions y,(x) are r-regular, it is sufficient to show that

m, satisfy the same property as m, Therefore the simpler the construction of m,,
the better it is.

As asserted by Meyer [2, Section 3.4, Corollary 2], the functions ¢(x—k) and
Y (x—k), € E, ke Z" form an orthonornal basis of V, if and only if the 2" x 2" matrix
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(4) (7(6) = (ms(é + "n))(e,n)eR xR

is unitary for almost all ¢

In this paper, we obtain the eight possible independent sets of unitary matrices
of the form (4) in dimension three for a particular ordering of the vertices of the
unit cube. This ordering allows us to prove the non-existence of similar wavelets
in dimensions higher than three. Our construction will be called a simple
construction. We also remark that our result holds for any ordering of the vertices
of the unit cube.

Our result is based on the construction method used by Mallat [1] for
one-dimensional wavelets with a real- or complex-valued symbol m,, and Meyer [2]
for two-dimensional wavelets with a real-valuued symbol my,.

Riemenschneider and Shen [3,4] and de Boor et alii [5] have used the
machinery of box splines, which is well known to the approximation theorist but
may not be familiar to the average analyst, to construct similar wavelets in
dimensions two and three and used the fact, attributed to Hurwitz [6] by
combinatorists, that no unitary matrices of the form (4) exist for n> 3, to conclude
to the non-existence of similar wavelets in dimensions higher than three. Jia and
Micchelli [7], who are referred to in [3], have obtained similar results by a different
menthod. The present paper is selfcontained and uses only elementary analysis
tools.

2. Simple construction of wavelets

The construction of r-regular wavelets is reduced to the constructuction of
an r-regular multiresolution analysis. More precisely, for a given r-regular
multiresolution analysis {V'},,, we can construct an r-regular father function
¢(x). By using the general existence theorem as in [2, section 3.6], we can find
my&),eeE, satisfying (4). Thus we can construct r-regular mother functions
V. (x),e€E.

Our purpose is to show in which case it is possible to find m,(£),e€ E, in the form
ePmy(¢ +a,m), 2, € R, B,e R. This form covers the form A,(£)e'e *m(¢ + o), where
A (&) satisfies |1,(6) =1 for almost all ¢, because, if the former satisfies (4), then
the latter form also satisfies (4). Since the orthonormality of {@(x —k)},.z» implies
the identity

¥ mo(& +nmymo(E+nm) = 1

neR

for almost all &, it trivially follows, for this simple construction, that

¥ € (£ g+ )P P E Fnmtom) = 1,
neR
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for e E and almost all £.  Hence, in the case of our simple construction, we need only
check the orthogonality relations:

Y. e mOmy(¢ + nm + am)e?E Pmg(E +nm+o,m) = 0,
neR

for e#¢’,6,¢'e R and almost all &.
First we start with notation and definition. LetJ,={0,1,---,2"—1}. Then any
j€J, can be written uniquely, in the base two, as

O] J=no 12" ey o(N27 24 o ey ()21 +co(),

where each c¢,(j), k=0,---,n—1, is either 0 or 1. Without loss of generality, we
use the lexicographic ordering of the vertices of the unit cube in R",

an,j=(cn— 1(])’ cn—z(j)a"',cl(j)’ co(j)), jGJn.

We shall prove the following theorem.

Theorem. For the lexicographic ordering of the vertices of the unit cube in
R3, there exist eight independent simple constructions of wavelets in dimension three,
and there are none in dimension greater than three.

The following example is one of the eight simple constructions of wavelets in
dimension three.

ExaMPLE. Let {V}};.z be an r-regular multiresolution analysis in L*(R>) with
the real-valued symbol m(&) and ¢(x) be an r-regular father function. We define the
symbol mg(¢;,¢5,¢35) by

my®=2"2% («p(f), «p(x—k))e-"“E
kez:\ \2

and put
my(&1,82,.E3) =€ my(&,85,85+ ),
my(&1,¢5,E) = T (&8, +m L),
my(&1,¢5,83) =€ mg(¢,, €, + 1,85+ ),
my(&1,¢5,83) =€ mo(&y +m,8,¢3),
my(&1,¢2,83) =€ Cm(¢ +1,85,85+ ),
me(&1,¢2,¢83)=eSmo(& + 1,8, +1,85),
mo(&1,¢2,83)=€mo(& + 1,8, + 1l +m).
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Then the functions ¥ (x),j=1,---,7, defined by
V2)=mOp©), =17,

are r-regular mother functions of wavelets in dimension three.

ReMARK. It will be observed later that this theorem is in dependent of the
ordering of the vertices of the unit cube in R".

Let x;,x,-:,x,» be real variables. Then we put x'=(x,x;,*,Xsn-1),
X" =(Xgn-141,""",X2n) and x=(x',x").

DerFiNiTION 1. The symmetric matric F,(x) defined inductively by the follwing

recurrence,
Xy X3
Fi(xy,x;)= s
X2 X

Fn(x){ﬂ-l(x') F,_1<x")]’

) , n>2,
Fn-l(x ) Fn—l(x)

is called a function matrix of order n.

Put
Fx)=(fulx); jl1,-2% k= 1,---,27),
where x=(x,,---,X,n). Put
i, (=mo(E+on;m),  jET,
Since my(€) is a 2nZ"-periodic function, for every j,k € J,, there exists / € J, such that
Mo(& + (@, + 0 1)) =1M0(E + 2 170).

Then the following lemma is obvious.

Lemma 1.
(6) (’ﬁa",k(é + au.jn); ]l 0’ . "zn__ la k - 0’ e "2"_ 1)
= Fn(mo(f + an,On)’mO(é + an,ln)a b '9m0(€ + an,2"—— ln))'
Since, in general, we cannot say anything on the relation among the my(¢ + a,, j7),

JjeJ,, we may regard mo(¢+a, ;n), jeJ,, as variables denoted by x;, jeJ,. Hence
we need only consider the matrix
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(e"ﬁ"-"‘gn?amk(f +a,,,j1t); jl10,---,2"—1,k - 0,---,2"—1)
= (ew"'k‘:’ﬁo(é + (an,j + an,k)n); J l - 2%k— 0,---,2"— l)a

Here B, € {#, }xes, and we allow equality: B, , =B, for some k#k'. If B, =P,
for some k#k', then the scalar product of the kth and k’th columns cannot be
identically zero. Hence we need only consider the case

ﬂn,k = an,a(k)’ 0€E 62"9

where S, denotes the symmetric group of order n and S,.. acts on J,=(0,---,2" —1).
Now we want to evaluate

eltniato G+ anym) _ oltn,atiyan, i pltn; o),

It is enough to construct the table of signs, + or —, corresponding to the values +
1 or —1, of the exponential

eitlonotoan mod2)]  f ie g

Define

Ajy e =(=1frx jkeld,
For 6€S,., put

Sik=aj okp Jk=1,---,2",
where S,. acts on (1,-,2).
DEerFINITION 2. For 0€@,,, the matrix

Spa=p j 1 1,-,2%k = 1,---,2")

is called a sign matrix.

Then S,, can be regarded as the table of signs coresponding to

in[on; o (k) n d 2 7
em[a ,o(k)"@n, § (Mo )]’ k,]EJ".

For g€ &,,, write
Uy (X)=(s jkfjk; Jjl1,-,2",
Un,a(x) = (ua,k(x); k - 1; AR 2")

Denote by O(n) the orthogonal group of order n, by U(n) the unitary group of
order n, and by S"~! the unit sphere in R". Since
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(7(6) = (eia"'o(k).gua,k(x); k - la h .’2n),

where x;=mgy(é+a, ), jeJ, then we have U()eUQ2™ if and only if
U, .(x)e O(2"). Hence the simple construction of wavelets reduces to the following

problem.

Problem. Are there any o€ &,. satisfying o(1)=1 such that U, ,(x) belongs
to O(2") for all xeS?"~1?

To solve this problem we need several lemmas.

3. Preliminaries

Denote
Apyi=(ap jl1,--,2" " Lk—>1,...2""1,
Ap1a=(ap; jl1,-,2"" Lk —2""141,...,27,
Aypy=(ap jl2" '+ 1, 2%k > 1,.--,2"7Y),
Ayrr=(u jl2" '+ 1,25k > 2" 1+ 1,--.,2%),

A, =y jl1,--,2"k—1,...,2",
=(Apjs j1 1,2,k > 1,2).

The lexicographic ordering (5) of the vertices of the unit cube will give a
particular interesting form to matrices (8) and (9) of the following lemma.

Lemma 2. The following relations hold.
j=1,-,2"" 1 k=1,...,2""1,

™ Ajx=0j4an-1k J=
ajk=_aj+2n-l’k, j=1,"‘,2n—1, k=2n~1+1,"',2n,
® An,llen,12=An,21=—An,22=An-1’

+1 +1 +1 +1

+1 -1 +1 -1
O A= 41 41 -1 -1,

+1 -1 —1 +1

and
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+1 41 +1 +1 +1 +1 +1 41
+1 —1 +1 —1 41 —1 41 —t
+1 41 —1 —1 +1 +1 -1 -1
1 =1 —1 +1 +1 —1 —1 +1
10 A= | 41 41 41 +1 —1 —1 —1 -1
#1 =1 41 —1 —1 +1 —1 +1
+1 41 =1 —1 —1 —1 +1 +1
L+l =1 -1 41 —1 +1 41 -1

Proof. For every jeJ,_,, there exist two natural injections ¢, and ¢,from
{an—l,j}jeln-l to {an,j}je.l.. deﬁned by

¢o(0ty-1,)=0,0,_1 ) =0 ;,
‘1(%—1,,‘):(1,“"—1,;)=an.j+z~~t,
respectively. Then for jkeJ,_,,
an,j.an,kzan—l,j'an—l,k
Oy, jt2m=1" Oy g =0y q " Oy g k>
Uy jtan=1t Oy gran-t =140y 700y,

This implies (7).
By definition, a; =a,; jkeJ, This symmetry and (7) imply (8).

. 1 1
Sinece A2,11=|:+ +

41 1], then (9) and (10) follow inductively from (7). O

4. Necessary condition for the existence of the simple construction

The aim of this section is to seek a necessary condition on the sign matrix
S, so that U, (x)e O22"). Put

Sp11 =55 j 122" Lk —2,..,2m7 1),
Sp1z=55 71 2, 2" Lk > 2" 42,27,
Spa1 =5 j12"7 42,20k > 2,---,2"7Y),
Sp2a =055 j 12" 42, 2Mk > 2" 14 2,...,2m),

Denote by d; the Kronecker delta and by I, the unit matrix of order n.
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Lemma 3. If U, (x)e O2") for all xe S*"~!, then
(A1) Spp1=6m-14 1480 J1 22" Lk > 2,277,
(12)  Sp12=(=8sn-141, 85 712,527 Lk > 2,277,
=(Sgn-14 1, fSu 205 71 2,2 Lk = 2,027,
(13) Sp22=(S2n-141,552n- 14145k J | 2,27 Lk =2,-:,2"Y),

=(—=Sn-141,52m- 1414+ 2050 1 2,-++,2"7 Lk—2,-:,2"70),

Proof. Assume that there exists oce€S,. satisfying o(1)=1 such that
U, ,(x)e O2") for all xeS*"~ 1. Since, for k=2,---,2",
Ug,1(X) Ug i(x) = 0,
then s, = —1. Hence, by the orthogonality of the jth and kth columns, we have
(14) Sp=—8p  J#Ek,  jk=2,-2"
In particular, by (7) of Lemma 2, for j,k=2,---,2""!, we have

Son-141, k= T San-14 1 k42n-1= T Sjan-141 =Sjyon-12n-141.

Thus (7) of Lemma 2 implies (11) and
Sn,22=(—s2"‘1+1,ksjk; Jl 2, 2" Lk 2n! +2,--+,2").

By (14) we have S, ;,=—"'S,,;. Hence we have the first equalities of (12) and
(13). Since by (14), S, ;;+1;n-1_, is an alternating matrix, then

’Sn,ll = —'Sn,ll—212"'l-1~

Thus we have the second equalities of (12) and (13), respectively. This completes
the proof. []

Lemma 4. If U, (x)e OQ2") for all xeS*"~!, then

{65 7L L52" Doy a1 = {55 T 152" Dhmam- 14y, 2m
= {(ajk; .Il 1""’2"_ 1)}k: 1,.0,2n— 10

Proof. By its matrix structure, U, ,(x)e O(2") only if the 2"~ ! x 2"~ ! upper-left
block U, ,(x) belongs to O(2"~!). In particular, every two columns of the sign
matrix S,_, . of U,_; ,(x') are different. On the other hand, by (8) of Lemma
2, (A,,11,A4,,12) consists of 2"~ ! pairs of columns of A4,_;. This completes the
proof. [J



MULTI-DIMENSIONAL WAVELETS 405

5. Proof of the Theorem

First, we consider the three-diminsional case. Since s55= —1, there are four
possibilities for the choice of (s, k — 2,3,4), that is,

(+1a+13+1); (—19+1a'—1)9 (+13—1,—1), (—la—la+1)

Here, we check only the case corresponding to the first choice: (+1,+1,+1). Since
S3,11 is a permutation of the columns of the matrix

-1 +1 -1
+1 -1 -1
-1 -1 +1

and every diagonal element of S5, is —1, there are two possible forms for S; ,4,
namely,

-1 -1 +1 -1 +1 -1
+1 -1 -1 and -1 -1 +1
-1 +1 -1 +1 -1 -1

Corresponding to these two matrices, the permutations of the columns of the sign
matrix are 0=(0,5,7,6,4,3,2,1) and ¢=(0,7,6,5,4,1,3,2), respectively. We can easily
check that U, (x)eO(3) in these two cases. By the same argument, we
have the following table of all the possible column permutations of the sign matrix.

Table 1. Column permutations of the sign matrix producing orthogonal matrices in R®.

0(0) | o(1) |a(2) | a(3) |o(4) |a(5) | 0(6) | o(7)

SO O O O O o o O
NN W W W e e
AN N W AN NN W
N = O N = W N A
- N - Y e L |
—_ W W = A A NS
W N AN AW W
N D=0 = AN

Next, we consider the case of dimension four. To prove the non-existence
of wavelets obtained by the simple construction, it will suffice to show that
Lemma 3 contradicts Lemma 4. By Lemma 4, every column vector
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(So S +20,) j12,---,8),  k=2,---8,
of S, ,, coincides with one of
@p;jl2,,8), k=1,--8,
that is, one of
Gupsil2,-8),  k=2,--8,
or
@;,1;712,--,8).
But this condition cannot be satisfied, because each column
(tapjl2,-8), k=1,--8,
differs from each column
(@ j1258),  K'=1,18,

by at least three elements, except in the case where k=k" and 59 ;=1,j=2,--,8. But,
even in this exceptional case, the construction is impossible besause

(sjk+25jk§ Jl 2""98)7é(sjk; Jjl2,--,8).

Finally, we consider the case of dimension greater than four. By the structure
of U, .(x), which is induced by the ordering (5) of the vertices of the unit cube in
R", it is necessary for U, ,(x)e O(2") that the 2"~ x2"~! upper-left block of the
sign matrix S, , satisfies the condition of the Theorem for dimension n—1. By
induction, there is no such simple construction. [J

To generalize the result of the above Theorem to any ordering of the vertices,
o, of the unit cube in R3, we interpret each line of Table 1 as a permutation, g, of these
vertices, that is, B, =o(a,). Thus, if ¢ is one of these permutations, then the 8 x 8
matrix ((—1)°@*my(¢ + n(oy +a); j1 0,1,---,7,k = 0,1,---,7) is orthogonal. It thus
follows that the permutation o satisfies the relation

(o) +0() (e +a)  is odd if k#j.

Since this relation remains true for any permutation P applied to (ao,-:-,a;) and
(o(ety), -++,0(xt5)), then the above Theorem remains valid in R? for any ordering of
the vertices of the unit cube, and hence in R”, for n>3.

As a closing remark, we mention that the wavelets obtained by Riemenschneider
and Shen [3] with the following ordering of the vertices of the unit cube in R3:

0,0,0), (1,1,0), (0,1,1), (1,0,0), (1,0,1), (0,0,1), (0,1,0), (1,1,1),
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can be obtained from the lexicographic ordering (5):

0,0,0, (0,0,1), (0,1,0), (0,1,1), (1,0,0, (1,0,1), (1,1,0), (1,1,1),

with the permutation o given by the fifth line of the sign matrix of Table 1, simply
by mapping the latter ordering onto the former one.
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