<table>
<thead>
<tr>
<th>Title</th>
<th>On delta-unknotting operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Uchida, Yoshiaki</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 30(4) P.753-P.757</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/7207</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/7207</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
1. Statement of Theorem. In this paper we study oriented knots in the oriented 3-sphere S^3. In [3], H. Murakami and Y. Nakanishi defined a Δ-unknotting operation and proved that any knot can be transformed into a trivial knot by a finite sequence of Δ-unknotting operations. Let k be a knot in S^3 and B_1^Δ a 3-ball which intersects k as illustrated in Figure 1(a). Then k^Δ_1 denotes the knot in S^3 obtained from k by changing B_1^Δ to B_2^Δ as illustrated in Figure 1(b). k_Δ is said to be obtained from k by a Δ-unknotting operation.

Let Δ_1 and Δ_2 be two Δ-unknotting operations for k such that $k^{\Delta_1} \approx k^{\Delta_2}$. Then Δ_1 and Δ_2 are said to be homeomorphic, if there is a homeomorphism $h: S^3 \rightarrow S^3$ such that $h(k) = k$, $h(k^{\Delta_1}) = k^{\Delta_2}$, $h(B_1^{\Delta_1}) = B_1^{\Delta_2}$, and $h(B_2^{\Delta_1}) = B_2^{\Delta_2}$.

Remark. For an ordinary unknotting operation, the following results are known. If the image of an ordinary unknotting operation is unknot, then T. Kobayashi [2], Scharlemann and A. Thompson [4] proved that the number of homeomorphism classes for a non-trivial doubled knot is one. K. Taniyama [5] proved for two-bridge knots, the number is at most two. In contrast to such knots, Y. Nakanishi conjectured that for any natural number n, there exist knots such that the number of homeomorphism classes is at least n. A. Kawauchi proved that affirmatively by using imitation theory [1].

Theorem. Let k be a knot in S^3. Suppose that k^{Δ_1} is obtained from k by a Δ-unknotting operation. Then the number of the homeomorphism classes of
\(\Delta \)-unknotting operations is infinite.

Proof. We consider the \(\Delta \)-unknotting operations \(\Delta_n(n \geq 0) \) as illustrated in Figure 2.

Considering the disk \(D \) in Figure 2, it is easy to show that \(k_n \) is ambient isotopic to \(\Delta_0 \). Now we will prove that if \(n \neq m \) then \(\Delta_n \) is not homeomorphic to \(\Delta_m \).

We consider the following graph. (See Figure 3(a).) It is an embedding of the graph indicated in Figure 3(b). If \(\Delta_1 \) is homeomorphic to \(\Delta_2 \), then there is a homeomorphism of \(S^3 \) such that \(h(k) = k, h(G_{\Delta_1}) = G_{\Delta_2} \). To prove that \(G_{\Delta_n} \) is not equivalent to \(G_{\Delta_m} \), it is sufficient to consider the three constituent knots, which span all vertices, illustrated in Figure 3(c).

Since \(k \) is a knot, it is sufficient to consider two cases as indicated in Figure 4.

In the case (i), after moving by an ambient isotopy, \(G_{\Delta_n} \) and its three constituents knots are illustrated in Figure 5. It is easy to show that \(k_{n,1} \cong k_{m,1} \) and \(k_{n,2} \cong k_{m,2} \). Now we will prove that \(k_{n,3} \not\cong k_{m,3} \), if \(n \neq m \). Let \(a_n \) be the second
coefficient of the Conway polynomial of \(k_{n,3}\). We have \(a_n-a_{n-1} = 1\) i.e. \(a_n = a_0 + (n-1)\). Then \(k_{n,3} \not= k_{m,3}\) if \(n \neq m\).

In the case (ii), we can prove that similarly. This completes the proof.

2. **Note.** In this section, we consider a \(\Delta\)-unknotting operation as a local move on a knot diagram, ignoring the orientations [3]. Furthermore, we consider the mirror image of a \(\Delta\)-unknotting operation as a \(\Delta\)-unknotting operation, too. Suppose that \(\Delta_l\) and \(\Delta_r\) are like as illustrated in Figure 6, then
\(\Delta_i \) and \(\Delta_r \) are said to be twin-equivalent. The performances of \(\Delta \)-unknotting operations on \(\Delta_i \) and \(\Delta_r \) are equivalent. Let \(k \) and \(k' \) be diagrams of a knot \(K, \Delta(\Delta', \text{resp.}) \)-unknotting operation for \(k(k', \text{resp.}). \) \(\Delta \) and \(\Delta' \) are equivalent, write \(\Delta \cong \Delta' \), if there exists a finite sequence \(\{k_i, \Delta_i\}_{i=1,2, \ldots, n} \) such that

1. \(\Delta_i \) and \(\Delta_{i+1} \) are \(\Delta \)-unknotting operations of \(k_{i+1} \),
2. \(k_{i+1} \) is obtained from \(k_i \) by a combination of Reidemeister moves which fix \(\Delta_i \),
3. \(\Delta_i \) is twin-equivalent to \(\Delta_{i+1} \) on \(k_{i+1} \),
4. \((k, \Delta) \cong (k_1, \Delta_i) \) and \((k', \Delta') \cong (k_n, \Delta_n) \),
5. \((k_{i+1}, \Delta_{i+1}) \) is obtained from \((k_i, \Delta_i) \) by the move illustrated as in Figure 7.

Example 1. The knots as in Figure 8 have \(\Delta \)-unknotting number one. The triangle regions marked by \(\blacktriangle \) are places to be performed by \(\Delta \)-unknotting operations. For each knot, these \(\Delta \)-unknotting operations are equivalent in the

![Figure 6](image)

![Figure 7](image)

![Figure 8](image)
above sense.

Example 2. Each Δ_s in the proof of Theorem is equivalent in the above sense.

Here, we raise the following problem.

Problem. Let K be a knot with Δ-unknotting number one. Suppose that Δ and Δ' are Δ-unknotting operations which deform K into a trivial knot. Are Δ and Δ' equivalent in the above sense?

References

Department of Mathematics
Kobe University
Nada, Kobe 657
Japan