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1. Statement of Theorem. In this paper we study oriented knots in
the oriented 3-sphere S°. In [3], H. Murakami and Y. Nakanishi defined a
A-unknotting operation and proved that any knot can be transformed into a tri-
vial knot by a finite sequence of A-unknotting operations. Let 2 be a knot
in 8% and B{ a 3-ball which intersects % as illustrated in Figure 1(a). Then
k, denotes the knot in S® obtained from & by changing Bf to B2 as illustrated
in Figure 1(b). %, is said to be obtained from k by a A-unknotting operation.
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Figure 1

Let A; and A, be two A-unknotting operations for k such that k, =<k,,. Then
A; and A, are said to be homeomorphic, if there is a homeomorphism #:
S8°—S? such that h(k)=k, h(ks)=ka,, h(Bf1)=B%2, and h(Bf1)=B3=.

ReEMARK. For an ordinary unknotting operation, the following results are
known. If the image of an ordinary unknotting operation is unknot, then
T. Kobayashi [2], Scharlemann and A. Thompson [4] proved that the number
of homeomorphism classes for a non-trivial doubled knot is one. K. Taniyama
[5] proved for two-bridge knots, the number is at most two. In constract to
such knots, Y. Nakanishi conjectured that for any natural number 7, there exist
knots such that the number of homeomorphism classes is at least n. A. Kawauchi
proved that affirmatively by using imitation theory [1].

Theorem. Let k be a knot in S®. Suppose that k, is obtained from k by
a A-unknotting operation. Then the number of the homeomorphism classes of
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A-unknotting operations is infinite.

Proof. We consider the A-unknotting operations A,(#>0) as illustrated
in Figure 2.

A,-operation
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Figure 2

Considering the disk D in Figure 2, it is easy to show that k, is ambient iso-
topic to k,,. Now we will prove that if n==m then A, is not homeomorphic to
Ap-

We consider the following graph. (See Figure 3(a).) It is an embedding
of the graph indicated in Figure 3(b). If A, is homeomorphic to A, then
there is a homeomorphism of S* such that A(k)=k, h(Gs,)=G,,. To prove
that G, is not equivalent to G,,, it is sufficient to consider the three constituent
knots, which spun all vertices, illustrated in Figure 3(c).
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Figure 3

Since k is a knot, it is sufficient to consider two cases as indicated in Figure
4.

In the case (i), after moving by an ambient isotopy, G, and its three cons-
tituents knots are illustrated in Figure 5. It is easy to show that k, =<k, , and
k,s=k, .. Now we will prove that &, ;2£k,, 5, if n=m. Let a, be the second
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Figure 4

Figure 5

coefficient of the Conway polynomial of k,;. We have a,—a,_,=1 ie. a,=
ay-+-(n—1). Then k, ;%k,, 5 if n=Em.
In the case (ii), we can prove that similarly. This completes the proof.

2. Note. In this section, we consider a A-unknotting operation as a
local move on a knot diagram, ignoring the orientations [3]. Furthemore, we
consider the mirror image of a A-unknotting operation as a A-unknotting ope-
ration, too. Suppose that A; and A, are like as illustrated in Figure 6, then
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A; and A, are said to be twin-equivalent. The performances of A-unknotting
operations on A; and A, are equivalent. Let 2 and &’ be diagrams of a knot
K, A(A’, resp.) A-unknotting operation for k(k’, resp.). A and A’ are equi-
valent, write A=<A’, if there exists a finite sequence {k;,A;};=1....» such that
(1) A;and Ay, are A-unknotting operations of k,,,,
(2) k4, is obtained from k; by a combination of Reidemeister moves which
ﬁX Ai ’
(3) A, is twin-equivalent to A;,, on &;,,,
(4) (&, A)=(k;, A)) and (K, A")==(k,, A,),
(5) (ki+1y Ag+1) is obtained from (k;, A;) by the move illustrated as in
Figure 7.
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Figure 6
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ExampLE 1. The knots as in Figure 8 have A-unknotting number one.
The triangle regions marked by A are places to be performed by A-unknotting
operations. For each knot, these A-unknotting operations are equivalent in the
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Figure 8
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above sense.

ExampLE 2. Each A, in the proof of Theorem is equivalent in the above
sense.

Here, we raise the following problem.

Problem. Let K be a knot with A-unknotting number one. Suppose that
A and A’ are A-unknotting operations which deform K into a trivial knot. Are
A and A’ equivalent in the above sense?
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