

Title	On delta-unknotting operation
Author(s)	Uchida, Yoshiaki
Citation	Osaka Journal of Mathematics. 1993, 30(4), p. 753-757
Version Type	VoR
URL	https://doi.org/10.18910/7207
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON DELTA-UNKNOTTING OPERATION

YOSHIAKI UCHIDA

(Received August 5, 1992)

1. Statement of Theorem. In this paper we study oriented knots in the oriented 3-sphere S^3 . In [3], H. Murakami and Y. Nakanishi defined a Δ -unknotting operation and proved that any knot can be transformed into a trivial knot by a finite sequence of Δ -unknotting operations. Let k be a knot in S^3 and B_1^Δ a 3-ball which intersects k as illustrated in Figure 1(a). Then k_Δ denotes the knot in S^3 obtained from k by changing B_1^Δ to B_2^Δ as illustrated in Figure 1(b). k_Δ is said to be obtained from k by a Δ -unknotting operation.

Figure 1

Let Δ_1 and Δ_2 be two Δ -unknotting operations for k such that $k_{\Delta_1} \cong k_{\Delta_2}$. Then Δ_1 and Δ_2 are said to be *homeomorphic*, if there is a homeomorphism $h: S^3 \rightarrow S^3$ such that $h(k) = k$, $h(k_{\Delta_1}) = k_{\Delta_2}$, $h(B_{1^1}^\Delta) = B_{1^2}^\Delta$, and $h(B_{2^1}^\Delta) = B_{2^2}^\Delta$.

REMARK. For an ordinary unknotting operation, the following results are known. If the image of an ordinary unknotting operation is unknot, then T. Kobayashi [2], Scharlemann and A. Thompson [4] proved that the number of homeomorphism classes for a non-trivial doubled knot is one. K. Taniyama [5] proved for two-bridge knots, the number is at most two. In contrast to such knots, Y. Nakanishi conjectured that for any natural number n , there exist knots such that the number of homeomorphism classes is at least n . A. Kawauchi proved that affirmatively by using imitation theory [1].

Theorem. *Let k be a knot in S^3 . Suppose that k_Δ is obtained from k by a Δ -unknotting operation. Then the number of the homeomorphism classes of*

Δ -unknotting operations is infinite.

Proof. We consider the Δ -unknotting operations Δ_n ($n \geq 0$) as illustrated in Figure 2.

Figure 2

Considering the disk D in Figure 2, it is easy to show that k_{Δ_n} is ambient isotopic to k_{Δ_0} . Now we will prove that if $n \neq m$ then Δ_n is not homeomorphic to Δ_m .

We consider the following graph. (See Figure 3(a).) It is an embedding of the graph indicated in Figure 3(b). If Δ_1 is homeomorphic to Δ_2 , then there is a homeomorphism of S^3 such that $h(k) = k$, $h(G_{\Delta_1}) = G_{\Delta_2}$. To prove that G_{Δ_n} is not equivalent to G_{Δ_m} , it is sufficient to consider the three constituent knots, which span all vertices, illustrated in Figure 3(c).

Figure 3

Since k is a knot, it is sufficient to consider two cases as indicated in Figure 4.

In the case (i), after moving by an ambient isotopy, G_{Δ_n} and its three constituents knots are illustrated in Figure 5. It is easy to show that $k_{n,1} \cong k_{m,1}$ and $k_{n,2} \cong k_{m,2}$. Now we will prove that $k_{n,3} \not\cong k_{m,3}$, if $n \neq m$. Let a_n be the second

Figure 4

Figure 5

coefficient of the Conway polynomial of $k_{n,3}$. We have $a_n - a_{n-1} = 1$ i.e. $a_n = a_0 + (n-1)$. Then $k_{n,3} \not\approx k_{m,3}$ if $n \neq m$.

In the case (ii), we can prove that similarly. This completes the proof.

2. Note. In this section, we consider a Δ -unknotting operation as a local move on a knot diagram, ignoring the orientations [3]. Furthermore, we consider the mirror image of a Δ -unknotting operation as a Δ -unknotting operation, too. Suppose that Δ_l and Δ_r are like as illustrated in Figure 6, then

Δ_l and Δ_r are said to be twin-equivalent. The performances of Δ -unknotting operations on Δ_l and Δ_r are equivalent. Let k and k' be diagrams of a knot K , $\Delta(\Delta', \text{ resp.})$ Δ -unknotting operation for $k(k'$, resp.). Δ and Δ' are equivalent, write $\Delta \cong \Delta'$, if there exists a finite sequence $\{k_i, \Delta_i\}_{i=1,2,\dots,n}$ such that

- (1) Δ_i and Δ_{i+1} are Δ -unknotting operations of k_{i+1} ,
- (2) k_{i+1} is obtained from k_i by a combination of Reidemeister moves which fix Δ_i ,
- (3) Δ_i is twin-equivalent to Δ_{i+1} on k_{i+1} ,
- (4) $(k, \Delta) \cong (k_1, \Delta_1)$ and $(k', \Delta') \cong (k_n, \Delta_n)$,
- (5) (k_{i+1}, Δ_{i+1}) is obtained from (k_i, Δ_i) by the move illustrated as in Figure 7.

Figure 6

Figure 7

EXAMPLE 1. The knots as in Figure 8 have Δ -unknotting number one. The triangle regions marked by \blacktriangle are places to be performed by Δ -unknotting operations. For each knot, these Δ -unknotting operations are equivalent in the

Figure 8

above sense.

EXAMPLE 2. Each Δ_n in the proof of Theorem is equivalent in the above sense.

Here, we raise the following problem.

Problem. *Let K be a knot with Δ -unknotting number one. Suppose that Δ and Δ' are Δ -unknotting operations which deform K into a trivial knot. Are Δ and Δ' equivalent in the above sense?*

References

- [1] A. Kawauchi: *Introduction to topological imitations of (3,1)-dimensional manifold pairs*, "Topics in Knot Theory" Proc. NATO-ASI(Erzurum/Turkey, 1992) to appear.
- [2] T. Kobayashi: *Minimal genus Seifert surfaces for unknotting number 1 knots*, Kobe J. Math. **6** (1989), 53–62.
- [3] H. Murakami and Y. Nakanishi: *On a certain move generating link-homology*, Math. Ann. **284** (1989), 75–89.
- [4] M. Sharlemann and A. Thompson: *Link genus and the Conway moves*, Comm. Math. Helv. **64** (1989), 527–535.
- [5] K. Taniyama: *On unknotting operations of two-bridge knots*, Math. Ann. **291** (1991), 579–589.

Department of Mathematics
Kobe University
Nada, Kobe 657
Japan

