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1. Introduction

As is well-known, the Whitehead product [ι2n+i, hn+i] is of order 2 if
1 or 3. It is commonly recognized that the Whitehead product [t2n+i> hn+ΐ\
plays a significant role for studying the homotopy groups of spheres.

In this paper we investigate the following problem: For a given finite
complex X, when can the Whitehead product [/2»+i> hn+i] be factorized as
aoβ, where β: S4n+1-+X and a: X->S2n+1}

Two extreme cases are known; First, when X=one point, then the classical
theoiem of J.F. Adams gives the answer, that is, in this case, the above factoriza-
tion happens if and only if n=0, 1 or 3. Second, let F be one of the fields
Λ(real), C(complex) or H(quaternion). Let Qn(F) be the quasi F-projective
space [3]. We take X as ^d^l)-lQ\Fi), d(n+l)-l fold suspension of the
space QΛ(F), where d is the dimension of F over R. Let a: S2^*1)-3-*

Σrf(»+i)-iρ%F) be the d(n+l)— 1 fold suspension of the attaching map of the top
cell of Qn+1(F) and β: 2d(n+1)-1Qn(F)->Sd(n+1)-1 be the unstable representative
of the Sd~1 transfer map. For example, we can take β as the adjoint map of the
following composite;

Qn(F) -^—>GF(ή) - i Ωd»Sd" - ^

where r is the reflection map [3], GF(n) is the orthogonal /^-linear group, and
/ i s the/-map. Then, for any n, aoβ—li^+tf^ ^(n + 1)-J. This result is due
to James and Whitehead [4].

There is another known example. Let Qln+Ϋ(F) be the stunted quasi-
projective space Q2n+1(F)/Qn(F). There is a canonical cofibration;

5*<.+o-i _* QHγ(F) -> QllΫ(F) -> 5^Λ+1> -^ ... ,

where the first map is the inclusion of the bottom sphere and the second is the
pinching map of the bottom sphere. It is easy to see that there exist a complex
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X and a map a: X-+S«**'v>-1 such that XX=Q2

n%Y(F) and Ί,a=d. So we can

ask whether there exists a map β: S2d(n+1)~3-*X such that «o iS=[^ ( n + 1 )_1,^ ( M + 1 )_1].

In this case, if w+lΦ2', it is known that there is no such a map β. This re-

sult is due to Oshima [8] (See also [6]). However in case that w + l = 2 ' , almost

nothing is known except the case that (n, d)=(7, 2) or (3,4): in the both cases,

there is a factorization as above.

In this paper we deal with the cases that X is a bouquet of spheres and

that X is a two cell complex or their bouquet. When X is a sphere, the follow-

ing theorem is already known [7].

Theorem A. Assume rcφO, 1 or 3. The Whitehead product [t2n+i,

can be represented by a product of elements of positive stem in the homotopy groups

of spheres if and only if n=2, 5 or 7.

Main results of this paper are the following results:

Theorem B. Assume wφO,1 or 3. The Whitehead product |/2»+i> hn+i]

is decomposable by elements of positive stem in the homotopy groups of spheres if

and only if n = 2 , 4, 5 or 7.

Theorem C. Assume wΦO, 1 or 3. The Whitehead product [t2n+i,

belongs to such a Toda bracket as <α0, γ, βoy if and only if n=2y 4, 5, 6, 7 or 11,

where aOy β0 and γ are some elements of positive stem in the homotopy groups of

spheres.

Theorem D. Assume nΦO, 1 or 3. The Whitehead product [c2n+ι,

can be represented as such a sum of Toda brackets as Σ ^h Ύi> &> if anά onty

if n=2, 4, 5, 6, 7, 8, 9 or 11, where ah β{ and γ, are some elements of positive

stem of the homotopy groups of spheres.

This paper is organized as follows; In section 2, we recall from [6] a neces-
sary condition for the existence of factorization above. In section 3, we list up
examples of "deocmposables". In section 4-5 we prove Theorem B. In
section 6-7, we give the outline of the proofs of Theorem C and D and list
up the needed algebraic lemmas. The proofs of those algebraic lemmas are
omitted, because they are very similar to those of the algebraic lemmas which
are needed in the proof of Theorem B.

2. A necessary condition of a factorization

For a given finite complex X and a map a: X->S2n+1> we denote the mapp-

ing cone of a by Y.

Proposition 2.1. Let i: S2n+1-+Y be the inclusion map. Assume that X is
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2/ί+l connected. Then the following are equivalent.
(1) There exists a map β: Sin+1^X such that [ι2n+lJ c2n+1]=aoβ.

(2) The Whίteheadproduct [i,ϊ\ is zero in π4n+1(Y).

(3) There exists a map f: 5 4 Λ + 3 ->ΣY whose Hopf invariant is one.
(4) There exists a map f: S4n+3->^ΣY whose Hopf invariant is odd.

Proof. Consider the exact sequence of homotopy groups of the pair
(Sn+\ X). Then (1)*>(2) follows from the Blakers-Massey theorem and the
fact that i*[ι2n+u hn+i] = [h *]• (2)**(3) follows from the EHP-sequences and
their naturality with respect to the spaces Y, S2n+1 and the inclusion i: S 2 Λ + 1 -> Y.
(3)<=>(4) follows from the fact that for any n^O there exists a map g: S4n+3->S2n+2

whose Hopf invariant is 2.

REMARK. Generally the Hopf invariant H: π*(ΣY)-*π*(ΣYΛ Y) is in-
duced by the map ΩΣY-+ΩΣYΛ Y. In our case, since 7r4n+3(ΣYΛ Y) is
isomorphic to Z> the Hopf invariant H(f) takes its value in Z for /e7Γ4n+3(Σ Y).

In this section, we observe a necessary condition (Corollary 2.5) for the
existence of a map whose Hopf invariant is one, under some conditions of a
space Y. Calculating this necessary condition, we prove main theorems. The
content of this section is a slight generalization of the appendix of [6],

Throughout this section, for technical reason, the complex Y is assumed to
satisfy the following conditions.

0) Y is a connected finite complex with a base point.
1) Y is 2w-connected.
2) dim. Y ^ 4 Λ + 1 .

3) H2n+1(Y;Z)^Z.
4) #*(ΣY; Z) is free and ίf e v e n(ΣY; Z) is generated by {uuu2) - , u t }

with dim. wf =2(/z+rat + l ) and n{^ni+1 (w1=0).
Under these conditions, the reduced i^-theory of Σ F , K(ΣY), is also

free. We can choose a basis {xu x2, •••, x} of K(Ί,Y) so that there exist
rational numbers ctj for l^i,j^l such that

ch(xs) = Σ CfjUi, with Cn = 1 and citj = 0 if
ί = l

where Â is the Chern character, i£(ΣY)->#e v e n(ΣY; Q)^i/ e v e n (ΣY;

We denote the matrix (citj) by C. For an integer k, let «j?(A) be the diagonal
matrix with diagonal entries, {kM+Mi+\ kn+n2+1, •••, kn+nι+1}. Then the following
proposition holds by virtue of the Adams operations in i^-theory and their
relations with the Chern character.

Proposition 2.2. For any k^Z} all entries of the matrix C~ι<A{(k)C are
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integral.

We denote the -th column vector of the matrix tfn+26—C~ιJt(h)C by α'(ft),
where 8 is the unit matrix. Especially we denote a\2) by h which we call the
Hopf vector.

Letf^π4n+3(ΣiY). The e-invarinat vector of/, e(/), is defined by

where ec is the Adams-Toda ^-invariant, that is,

ec: π4n+3(Ί,Y) - Horn (K&Y), Q\Z).

The following theorem gives a relation between the Hopf invariant and the
^-invariant. It is a slight generalization of Adams or Toda's observation in
case Y=S2n+1 (Cf. [2]).

Theorem 2.3. Under the same assumption, letf e 7Γ4Λ+3(Σ Y). Then for any
k^Z, the inner product of the vector aJfk) and the e-invariant vector, (e(f), aJ(k))

is always integer. And the mod 2 Hopf invariant of f, H(2)(f), is equal to the mod
2 reduction of the integer (e(f), h).

Remark that the properties mentioned above are independent of the choices
of bases of # e v e n ( Σ Y) and ϋΓ(Σ Y).

Let E4n+2(Y) be the image of ec

: πln+3(ΣY)-*(QIZy under our choice of
basis of K(Σ Y). Then we have,

Theorem 2.4. There exists a map f^π4n+3(ΣY) whose Hopf invariant is
one if and only if there exists an element e^E4n+2( Y) such that (e, h) is odd.

The following corollary gives a necessary condition for existence of a map
with Hopf invariant one.

Corollary 2.5. Under the same assumption, if Hω'- π4n+3(ΣY)->ZI2 is onto,
then, there exists a row vector x^Q1 which satisfies the following:
(1) for any k^Z, the vector x(k2n+2β—<Jl(k))C is an integral row vector.
(2) The first component of the row vector x(22n+2<S—<Jl(2))C is an odd integer.

Proof. Take JC as fe(/)£~1. Then the proof follows easily from Theorem
2.3. Here the symbol * means the transposition of a vector.

3. Examples of decomposabilities

In this section we freely use Toda's notation [9] for the 2-component of
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the homotopy groups of spheres. The following proposition holds:

Proposition 3.1.

2) [c5> ^ ] = ^ 5 O % ,

3) [h> ^ ]
4) [)i3, % ] = 2 0 G Σ<σ 1 2 , ^ i 9 , W>>

[>23> '23] G Σ 7 <σ 1 6 , 2σ 2 3, σ*30>,
5 ) [<i7> Ί?] ̂ 2 < σ 1 6 , 2<r23, ^3o>+22<9715, 2σ1 6, σ 2 3>,

Proof. All above statements except the first of 5) in Proposition 3.1 are

already known [9] (For the second of 4), see Lemma 8.3 in [5]). It should be

noted that the above 2) and 3) follow from a general formula (Proposition 3.2

in [9]). Now we shall prove the first of 5). According to [9],

17oμ24 and 77*eΣ<σ16, 2<r23,

Thus it is enough to show that

L e m m a 3.2. ω17^Σ2<(77i5, 2<r16,

Proof. The bracket ζrj^ 2σ16, σ23> is clearly contained in π^S*5), which

is isomorphic to Z2iη*'}®Z2{ωJ^®Z2{σJsoμ2^ (By Theorem 12.16 in [9]).

From page 160 in [9], the element Σ2?7*' belongs to Σ37Γ30(S14), which is equal

to Z2 {ω17} θ Z2 {σ17 o μ24}. Thus, Σ2<^15, 2σ16, σ23> C Z2 {ω17} 0 Z2 {σlΊ o μ2}.

Take any element x^(ηι5, 2σ16, σ23>. Then there exist numbers a and b^Z2,

which are uniquely determined by the element xy such that

Σ2# = aωί7-\-bσ17°μ24.

Now we claim that a=ί. If a — 0, then bσ17oμ24=Σ2x^Σ\ηι5> 2σm, σ23y.

Since σl7oμ24= Σ2η15op16 (Proposition 12.20 in [9]), this implies that 0G

Σ\η15, 2σ16, σ23>. This contradicts the fact that the stable Toda bracket (η,

2<r, σ)> = <(σ, 2σ, ?7> does not contain zero. Since σλloμu belongs to the in-

determinacy of the bracket Σ2<^i5, 2<r16, σ-23)> we conclude that

2σ16,

Proposition 3.1 clearly implies that if n^\2 and wΦlO, then the White-

head product [t2n+1, ι2n+ι] is "decomposable" in the sense of the main theorems
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4. Proof of Theorem B

Suppose that the Whitehead product [t2n+ij hn+i] can be expressed as

Σ 0Ci°βi by elements of the homotopy groups of spheres with sterns^ 1. Let Y
ι = l

be the mapping cone of the bouguet of {aά. Then, by Proposition 2.1 there
exists a map/e7Γ4n+3(ΣY) whose Hopf invariant is one. It is obvious that the
complex Y satisfies the conditions in §2. We shall apply Corollary 2.5. Since
odd dimensional cells of Σ Y have no relation with our necessary condition, we
may asume that the stem of α, is odd for all ί. (If the stem of a{ is even for all
i, then it follows that n=0, 1 or 3.) Let the stem of α, be 2mf —1 and ec(cCi)=
a^Q/Z, where ec stands for the complex ^-invariant. In this situation we can
choose bases of i/ e v e n (Σ Y; Z) and K(ΣY) so that the matrix of the Chern char-
acter of 2 Y is

1 0 0

C =

0 (V

a2 0 1
. 0

o ••.
\ 0

So the matrix tfn+2e-C-χJl(k)C is given by

* +»(* +l_Λ"l)

fe- -l)α.

Therefore by Proposition 2.2, for any k^Z and \^Li^-s,

(4.1)

And by Corollary 2.5, there exist rational numbers x0> xl9 •• ,Λ>

S which satisfy
that for any integer

(4.2)

xo k*+\k*+1-l)+ £ xraik^\l^+1-

xrk
n+\kn+1-kmi)(=Z for l ^ i ^ ϊ ,

xo 2" + 1 (2" + 1 -l)+ Σ Xi ai2
n+\2n+λ-2m>) is an odd integer .
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Let q be a rational number. We denote the 2-adic valuation of q by
v2(q). For convenience, from now on we always assume that all spaces are
localized at 2. Therefore the ^-invariant ec takes its value in Q/Z(2). Recall
that the stem of a{ is 2^, —1 and ai=ec{ai). Note that m^n. From (4.1)
and taking k=3 (see Lemma 5.1), we have

Lemma 4.3. Under the notation above, for each ί, it holds that

Especially if 2p^n<2p~hl, then v2{ai)'^—p—2.

Now the main part of the proof of Theorem B follows from the following
lemma:

Lemma 4.4. If n^8 or n=6, then the above equation (4.2) has no solution.

The proof of the above lemma is given in §5.

Proposition 3.1 and Lemma 4.4 clearly imply Theorem B.

5. The proof of the algebraic lemma 4.4

This section is devoted to the proof of Lemma 4.4. The following numeri-
cal lemma is well-known:

Lemma 5.1.

m 7, nn n ί ^(»)+2 if n is even,
' 11 ifnis odd.

(2) For a positive integer t, t^v2(t)J

rl. Moreover, t^ v2(t)+3 unless t= 1, 2 or
4.

We need the following lemmas:

Lemma 5.2. Letp=2 and n=6 or p^3 and 2p^n<2p+1. Then

Proof. For p=2 and n=6, the assertion is easily proved. Assume that
n-\-ί is odd. Then by Lemma 5.1,

n+1—z/2(3w+1—1)—i>—2 = n+l-p-3

if

Assume that n + 1 is even. Then by Lemma 5.1,

- v2(3n+1-l)-p-2 = n+l-v2(n+ί)-2-p-2 .
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If 2p<n+l<2p+\ then n+ί^2p+2 and v2(n+l)^p-l. Thus in this case,

n+ί-v2(n+ί)-2-p-2^2p-2p-ί

lϊn+ί=2p+\ then

n+l-vz(n+l)-2-p-2 = 2p+1-2p-5

>0, if ρ^3.

This completes the proof.

Lemma 5.3. Let n^5. If l^m^n, then

Proof. Assume that n-j-1—m is odd. Then, by Lemma 5.1,

n+l+m-v2(3n+1-m-l)-v2(m)-2 = n+m-v2(m)-2

if

Assume that n-\-\—m is even. Then by Lemma 5.1,

—v2(3n+1-m—1)—z/2(w)—2

If w ^ 3 , then clearly the assertion is right by (2) of Lemma 5.1. It is easily

checked that for m=\ or 2, the assertion still holds. This completes the proof.

Now we shall prove Lemma 4.4. In the equation (4.2) in §4, take k=3.

Then we have

(5.4) *o.3«+i(3»+1-l)+ ± x
ί = l

(5.5) xr3
n+\3n+1-3mή(ΞZω for l^i

where Z(2) is the set of integers localized at (2). In order to prove Lemma

4.4, we shall prove that the 2-exponent of the each term in the last equation

of (4.2) in §4 is positive. First, the equation (5.5) implies:

(5.6) v2{Xi)+v2{3^--i-\)^.

If a^Z^y then using (5.6) and Lemma 5.3, it is easy to check that
vi{x%*ai 2n+1(2w+1—2mή)^ 1. So we can neglect such terms. Therefore we may

assume that the number a^O in Q/^(2) for all . From (5.4) and (5.5) it follows

that

^ o ) + ^ ( 3 n + 1 - l ) ^ min.
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Now assume that n=6 andp=2 or n^8 and 2p^n<2p+1. Then,
M (2 +ι-l)) = n+l+vfa)

^ n+l-v2(3n+1-l)+ min. {v

i/ 2(3Λ + 1-l)-^)-2 from Lemma 4.3

1 from Lemma 5.2

^O-^S^-^ί-l) from (5.6)

^n+\+mi—v2(mi)—2—v2{Zn+ι-mi—\) from Lemma 4.3

^ 1 from Lemma 5.3

This completes the proof of Lemma 4.4.

6. The proof of Theore m C

Suppose that there exist maps cc0: S2n+1+ιi->S2n+\ γ : S2*+ι+i*-+S2n+ι+li9

and β0: S4n-^S2w+1+/2 such that 2n-2^l2>lΊ^l and the unstable Toda bracket
<α0 7, βoy is defined. Assume that the Whitehead product [t2n+v t>2n+i] belongs
to this bracket.

Let X be the mapping cone of 7. Then from the definition of Toda
bracket, it is clear that there exists a map a: X->S2n+1 which is an extension of
α0, and a mapyS: S4n+1->X which is a coextension of 2/30, such that a°β=
0*ι+i, hn+iϊ' L e t Y be the mapping cone of α. Then ΣF= t S

2 κ + 2 Ue 2 " + 2 + / i + 1

Ue2n+2+ί2+2. Since 2 n - 2 ^ / 2 > / 1 ^ l , this space ΣY satisfies the conditions of
§2. We shall apply Corollary 2.5. If lx = l2 mod 2, then the matrix C of the

Chern character is of type ί * ) and if lx is even and l2 is odd, then C=(l).

Thus in those cases, from the similar argument in the proof of Theorem B it
follows that n ^ 5 or n=7 [7].

From now on we assume that lx is odd and l2 is even. Put 2mι = lι-\-\
and 2m2= / 2+2. Then w^w 2 >m 1 ^ 1. In this case we can take the matrix of
the Chern character as

Here, from Proposition 2.2, it follows that for any

(6.1)
mi- l)-ckn+\km2-l) G Z .
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Note that a=ec(a0) and b=ec{
fγ)-

Now from Corollary 2.5 there exists a rational row vector (xQ, xly x2) which

satisfies the following conditions: for any

<fcn+\kn+ι- ί)+x1akn+1(kn+1-kmή+x2ckn+1(kn+1-km2) e Z,

(6.2) ] xjιn+\kn+ι-kmi)+xφk»+\kn+ι-km2)GZ,

Lemma 6.3. Let n^lO and Φ l l . TTzen MWύfer £A# conditions (6.1)
(6.2), eαcλ tern of the sum xo2Λ +\2Λ + 1-l)+x1α2M +\2w + 1-2^)+^2Λ + 1(2M + 1--2 l ί l2)
ώ even in Z(2) Especially there is no such vector (x0, xu x2) as in Corollary 2.5.

The proof of Lemma 6.3 follows from the following observations. From
(6.1) and (6.2) taking k=3, we have

Lemma 6.4.
(1) v&^-v^-l).
(2) i^δ^-ϊ^S- -i-l).
(3) v^c)^-v^3m>-l)-v^m'-'t-l).

Lemma 6.5.
(1) v2(x2)^-v2(3^-2-l).
(2) ^(Λ?!)^—^(S^1""1!-!)—^(S^-*!—1).

(3) ^ 0 ) ^ - i ; a ( 3 + 1-l)-i;2(3-»--i-l)-max.^1(3 l l li-l), ^ ^ - l ) } .

Lemma 6.6. Let w^lO and Λ Φ I I . Then for n^

which implies that v2(x02
n+1(2n+1— 1)) ̂  1.

Lemma 6.7. Under the conditions (6.1) and (6.2),
(1)
(2) z;

From Lemma 6.3 and Proposition 3.1, Theroem C has been proved un-
less n=S or 9. For n=8 or 9, we need the following lemma;

Lemma 6.8. Let n=8 or 9. There is no stable 4 cell-complex Z which
satisfies;

Z = S° U e21 U & U e2n+2 with 0<i<j<n+1

and

Sq*»+2x0 = xn+1,

where xk^H2k(Z; Zβ)^Zβ is the generator corresponding to the Ik-dimensional
cell of Z.
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Proof. We shall prove the case n=8. Since Hodd(Z; Z/2)=0, calculating
the Adem relation of S(fSq16 and Sq4Squ, we have

Sq18xQ=Sq2Sq16xQ=Sq16S<fx0 on H*(Z; Zβ).

This implies that t=ί and j=&. Since Scf2kχι=0 for &=1,2 or 3, usig the

Admas decomposition of Sq16,

Sq16= Σ akwlΦhtl

it follows that 17—2k—2/=2 for some k and /. But this is apparently impos-

sible. The proof of the case n=9 is almost the same as n=8.

Lemma 6.8 implies that for n=8 or 9, the Whitehead product [c2n+], ̂ «+i]

can not belong to such a Toda bracket as stated in Theorem B.

This completes the proof of Theorem C.

7. The proof of Theorem D

Suppose that there exist maps for l^ί^s, at: S2n+1+ί(iΛ)->S2n+\ γ t :
O2Λ+H~I(f ,2)__^ O2Λ+H-/(ί ,1) OTΊΓI & Q!4n ^ C'2it"f'l+/(i,2) c 1 i r , L J.'L._X. O^ O **> Ί(2 0\*\>.7/V 1 \ "*">»

kj kJ y dllvJ. fyj - . kj ^Kj o U C l l L l ldL Z /̂/ LJ *— * I t ŵ ) ̂ -^ V I ί , J. I "̂̂

1 and the unstable Toda bracket <α, , γ, , /?,-)> is defined. Assume that the

Whitehead product [t2n+i> hn+i] belongs to the sum of those brackets.

Let X be the wedge of the mapping cones of γ$ . Then from the definition

of Toda bracket, it is clear that there exist a map a: X-+S2n+1 which is an ex-

tension of α, on each of bottom spheres, and a map/3: S4n+1-^X which is a

coextension to each of top cells of Σ/3, , such that <χoβ=[ι2n+ly c2n+1]. Let Y be

the mapping cone of a. Then 2 Y = S 2 n + 2 U y e2n+3+/(t"'1)Ue2ίl+4+/(ί 2). Since

2n—2^/(z, 2)>l(i> 1)^1, this space Σ Y satisfies the conditions of §2. We shall

apply Corollary 2.5. Odd dimensional cells of ΣY have no relation with our

calculation, we may assume that the space ΣY has the following cell struc-

ture:

f = 1

where n^m(i, 2)>m(iy 1 ) ^ 1 for each z, n^tm(l)^ 1 for each /, and m(i, l)^m(j, 1)

if i<j.

Corresponding to the above ordering of cells, we can take the representative

matrix of the Chern character as follows:
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/ 1

!*

*

( d,.t

0

1
7

0

0

0

0

0

0
1
i.

0

0

0

0

0

0

o
\j

1

h

0

0

0 —

o
π

n

l . . .

0 -

0

...o

...o
o
o

... o

- I
h

0

0

π
\J

0

0

0

1

0

0

1

Then the inverse matrix of C is given by

j

Q>\0\ — C%

a2

aφ2—c2

atbt ct

\

0 0 0 0 0 0

1 0 0 0 0 0

-b} 1 0 0 0 0

0 0 1 0 0 0

0 0 ~b2 1 0 0

0 0 0 0 1 0

0 0 0 0 bt 1

0

o s

0

1
Under the ordering of cells, <Jί{k) is the diagonal matrix with diagonal entries
{kn+1 kn+1+m(^l'1) ^ Λ + 1 + W ί ( 1 ' 2 ) . . . ^«+l+«(M) ^»+l+«(ί,2) fon+l+m(t+l) . . . fcn+l+m(s)\

Since the matrix C~ιJl(k)C is integral for any A G Z , calculating this matrix,

we see that for any i,j> k such that k^Z, l^i^t and
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Corollary 2.5 implies that there exist rational numbers x0, xίt y%,

••',z, such that for any

Σ

Σy ic ik»+ 1(k»+ 1-km< i 2))+
ί 1 j(7-2) <

yik
n+Xkn+1-km«-2))(=Z for

Zjk*+1(k»+1-kmM)<=Z for

Now the rest of the proof of Theorem D is almost the same as Theorem C.
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