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0. Introduction

A smooth circle action @ : S'X X—X on a smooth manifold X is called
principal if the isotropy subgroup

I(#) = {z= | g3, %) = 2}

consists of the identity element alone for each point x of X. For a principal
smooth circle action on a smooth manifold X, the orbit space M is a smooth
manifold, the natural projection = : X—M is a smooth principal S'-bundle,
and in addition the manifold M is orientable if and only if the manifold X is
orientable.

Two principal smooth circle actions (@, X) and (¢’, X’) are called to be
equivalent if there is an equivariant diffeomorphism of (@, X) onto (¢, X’).
A principal smooth circle action (@, X) on a closed oriented smooth manifold
X is called to bord if there is a principal smooth circle action (®, W) on a
compact oriented smooth manifold W and there is an equivariant orientation
preserving diffeomorphism of (¢, X) onto (®, 9W), the boundary of W.

In this paper we consider principal smooth circle actions on a closed
orientable smooth manifold which is cohomologically a product of spheres.
We show that any principal circle action on a manifold which is cohomologically
a product S*”**x §***! of odd dimensional spheres bords but on a certain
manifold which is cohomologically S*”Xx S**** (n=m) there is a principal circle
action which does not bord. And the cohomology rings of orbit manifolds
show that there are infinitely many (topologically) distinct principal circle
actions on S***'Xx §***'(m=mn). We can also show that the Pontrjagin classes
of orbit manifolds well distinguish some of the circle actions on a product of
spheres.

1. Cobordism of principal circle actions

Let E be a topological space whose integral cohomology group H*(E) is
isomorphic to an integral cohomology group H*(S*"*'x §***') of a product of
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odd dimensional spheres with 0<m<n. Let = : E—M be a principal S'-
bundle over an orientable closed smooth manifold M. Then,

Lemma 1.1.
(1) The integral cohomology ring H*(M) of M is isomorphic to one of the
truncated polynomial rings given under:

(a) Zle, x]/(x°, ™), where deg ¢ = 2 and deg x= 2m+1,
(b) Zlc, y1/(y° ™, k™™, yc™*), where deg ¢ = 2 and degy = 2n+1

and k is a positive integer. Here the element ¢ corresponds to the Euler class of the
principal S*-bundle = : E—~M.
(2) The each odd dimensional Stiefel-Whitney class of M vanishes.

Proof. By the Thom-Gysin sequence ([5] p. 60, Theorem 21) for the
principal S*-bundle = : E—M, H**"}(M)=0 and H**(M) is an infinite cyclic
group generated by ¢”. Then H****(M)=0 by the universal coefficient theo-
rem and the Poincaré duality of M. Now the ring structure of H*(M) is
obtained from the Thom-Gysin sequence by a routine calculation. Next, let
V,eH(M; Z,) be a class characterized by the equation

S¢ia = aUV; forall acH ™M i(M; Z,),

and let V=V +V +---+V;+ -, then SqgV =W(M), the total Stiefel-Whitney
class of M by the Wu’s formula ([5] p. 55, Theorem 17). Then W, ,(M)=0
follows from the ring structure of H*(M; Z,) and a property of the Steenrod
operations ([6] p. 5, Lemma 2.5). q.e.d.

Theorem 1. Let E be an orientable closed smooth manifold. Assume that
the integral cohomology group of E is isomorphic to one of a product S**'x S**
of odd dimensional spheres. Then any principal smooth circle action on E bords
as an orientable principal smooth circle action.

Proof. Letz : E—M be a principal S*’-bundle associated with a given
principal smooth circle action on E. Denote by ¢ the modulo 2 reduction of
the Euler class ¢ of the principal S*-bundle = : E—->M. Then the circle action
on E bords as an orientable principal smooth circle action if and only if all
bordism Stiefel-Whitney numbers vanish

Wi (M)-+- W, (M)c*, [M],) = 0,
and all bordism Pontrjagin numbers vanish
<Py (M) Py, (M)c*, [M]> = 0,
where [M], is the modu.lo 2 reduction of the fundamental class [M] of M ([3]
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p. 49, Theorem 17.5). But the orbit manifold M is odd dimensional and each
odd dimensional Stiefel-Whitney class of M vanishes by Lemma 1.1. Hence all
bordism Stiefel-Whitney numbers and all bordism Pontrjagin numbers of
7w : E—>M vanish. Therefore this principal smooth circle action bords as an
orientable principal smooth circle action. q.e.d.

2. Principal circle actions on a product of spheres
For a sequence a=(a,, ***, a,,) of integers, we define the circle action ¢,
on C™*' by
o2, (o *+* Up)) = (outy, -+, 2°mus,),

and denote by S*"**'(a,,-*, a,,) the unit sphere S**** in C™** with this action ¢,.
Let a=(ay -+, a,,), b=(b,,*, b,) be sequences of integers. We also define
the circle action ¢, , on S**' x .S*** by

¢)a,b(z’ (il), 7-;)):(¢'a(z’ i:)’ ¢b(z’ '_5))

where _ﬁz(uo,o--, Up), %z('vo,---, v,), and denote by
S2m+1(a0,.‘.’ am) X S2ﬂ+l(bo’._.’ b”)

the product S***' x $**** with the action ¢, ;. Then the circle action ¢, , is
principal if and only if each g, is relatively prime to each 5;. When the circle
action @, , is principal, the orbit manifold is denoted by

M(ag, -+, @, boyee,by,).

In particular, M(a,; by,--+, b,) is naturally diffeomorphic to the lens space

obtained from S***! by the identification & =g,(\, ?) for all A &C, A%=1. The
cohomology ring of M(ay, **, @, by,-++, b,,) is determined as follows:

Theorem 2. Suppose 0=<m=mn. Then the integral cohomology ring of
M(ag, -+, @y boy++, by,) is isomorphic to

(1) Z[e, x]/(x?, ¢***), where deg c=2 and deg x=2m~+1,if m=n or if a;
=0 for some 1,

(it) Ze, /(% ™, ke™, ye™), where deg c¢=2, deg y=2n+1 and
k=TI a; if m<n and I a;+0. Here the element c corresponds to the Euler class

of the principal S*-bundle
o S2m+1(a0’...’ am)XS2”+1(bo,“', b,)—>M(ay+-, ay; by b,).

By virtue of Lemma 1.1, it is sufficient to determine the (2m+2)-
dimensional cohomology group of M(ay,:+, a,,; b+, b,), and furthermore - if
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m=n the cohomology ring is determined by Lemma 1.1 already.
Denote by &, the canonical complex line bundle over the complex projective

n-space P*(C) obtained from S$***'x C by the identification (%, p)=(A\%, \p)
forall AeC, M| =1 ([5] p. 75). Then there is a mapping

P :M(ao""» Qs L., 1) _)P"(C)

~———

(n+ 1)times
given by the following commutative diagram:

Szm+1(a0",,.’ am)xsznﬂ(l’...’ 1) _P_z) S2n+1(1’...’ 1)

T T,

My, a,; 1, 1) —2s PC)

where p, is the projection to the second factor and =, is the projection of the
principal S*-bundle associated with the canonical complex line bundle £,,.

Lemma 2.1.
(1) The natural projection

p: M(ay,++, a,; 1,-++, 1) > P*(C)
is a sphere bundle associated with the complex (m+1)-plane bundle
EnD---DEam

where E° is the a-fold tensor product of a complex line bundle & for a>0 and the
(—a)-fold tensor product of the conjugate line bundle & of £ for a<0.
(it) For M=M (a,*, a,,; 1,--, 1), we have

Z(Ha)-Z i m<n,

Hzm+z(M)_z_{ 0 i men

Proof. (i) 1is proved easily from the fact that the total space E(£;) of
the complex line bundle £ can be represented as the space obtained from

S#*1x C by the identification (it), P) =(7xi2, Ap) for all A&, |A|=1. Next
the Euler class of the complex (m+1)-plane bundle § =@ PE&rm is

e(t) = ({1ar)-e(En)"".

Then, by the Thom-Gysin sequence for the complex (m+1)-plane bundle £,
there is an exact sequence:
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of pn h 2m-+2( D P* 2m+-2 Px 1/ pn,
HY(P(C)) —> H*™(P™(C)) —> H*™*(M)— H'(P*(C))

where the homomorphism % is given by A(x)=x-e({). And this implies (ii).
q.e.d.

Lemma 2.2. We have

H2m+2(M(am'"a a,; bo’...’ b”)) ~ Z/(Ha‘)-Z

for m<n.

Proof. Consider the following commutative diagram:

S2m+l(a) X S2”+1(b) ll S2m+l(a) X S4ﬂ+3(b’ C) 12 S2m+l(a) X S2n+l(c)
|
ln b4 7
v
M(a; b) SN M(a; b, ¢) e——fL— M(a; )
where a=(ay,**, @), b=(by,"*+, b,), c=(co***; €4), il((ﬁ’ E3)) :(;2’ ('?)’ 0)), iz((a! 5))
=(u, (0, ¥)) and f,, f, are induced mappings. Then f,, f, induce isomorphisms
of (2m+ 2)-dimensional cohomology groups if m<n, and we have
H?"™ (M (@gy++y Qs boy+5 b)) = H™ *(M(agy++5 Gy €oy***» €4)). Thus Lemma
2.2 follows from this isomorphism and Lemma 2.1 (ii). q.e.d.
The proof of Theorem 2 completes.

Corollary. There are infinitely many (topologically) distinct principal smooth
circle actions on S™*' X S*** for each m=+n.

This follows directly from Lemma 2.2.

3. Pontrjagin classes of orbit manifolds

For a given principal smooth circle action on E in our examples, the
Pontrjagin classes of the orbit manifold M can be expressed by the Euler
class ¢ of the principal S'-bundle = : E—~M.

Let E be a smooth submanifold of an N-dimensional euclidean space RV.
For each point p of E, the tangent space 7,(E) of E at p can be canonically
imbedded into the tangent space 7,(RY) of RV at p. If we denote by v (E)

the orthogonal complement of 7,(E) in 7,(RY), then »(E)= | v,(E) is the
»en

normal bundle of E in RY. Let ¢ be an isometry of RY such that #(E)CE.
Then the differential (dt), of t at p in E maps 7,(E) onto 7,,(E), and v,(E)
onto v ,(E). Suppose the normal bundle »(E) is trivial, i.e.

v(E) = E X R*.
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If dt on »(E) satisfies:
(dt)p(Pv v) = (¥p), v) for peE, veR?,

then we say the action of ¢ on »(E) is compatible with the trivialization, or
simply ¢ acts on »(E) trivially.

Lemma 3.1. Let E be a smooth submanifold of an N-dimensional euclidean
space RN, and T a circle subgroup of SO(N, R) acting principally on E. Suppose
the normal bundle v(E) of E in R is trivial and the action of T on v(E) is
compatible with the trivialization. Then the tangent bundle T(M) of the orbit
manifold M is stably equivalent to the vector bundle obtained from E X RN by the
identification (p, v) = (¢(p), t(v)), for all t T.

Proof. At each point p of RY, we have the usual identification of 7,(RY)
with R¥, which is denoted by 4,. First we remark that for any element ¢ in
GL(N, R), the differential d¢ of ¢ is compatible with the above identifications,
Le.

(3.1) hypyo(dt), = toh, at each peRN.
Denote by A(E) the restriction of 7(R¥) over E given by
A ,(E) = 7,(RN), for peE.

Consider the equivalence relation on A(E) as follows: X~Y if and only if
Y =(dt)(X) for some ¢in T. Now (3.1) shows that the bundle over M obtained
from A(E) by the above relation is isomorphic with the vector bundle stated in
Lemma 3.1. Let v ,(E) be the kernel of (dz), : 7,(E)—7,(M), and 7, (E) the
orthogonal complement of v ,(E) in 7,(E). We have the decomposition:

ME) = T(B)Dv(E)Dv(E),

where T acts on each factor. From the assumption in Lemma 3.1, »(E) is trivial
and T acts trivially on »(E). The bundle y(E) is trivial and the action of T' on
v(E) is compatible with this trivialization since T is abelian. Thus the bundle
over M obtained from A(E) by the above equivalence relation is stably
equivalent to the bundle over M obtained from 7/(E) by the same relation. The
differential d= of the projection = : E—M gives an isomorphism 7,(E) with
Tacp(M) and dz is compatible with the action of T, i.e.

drodt = drn forany teT.

Now it is easy to see that the bundle obtained from 7/(E) is isomorphic with
the tangent bundle 7(M). q.e.d.
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Theorem 3. Under the same notations as in section 2, the total Pontrjagin
class of the orbit manifold M =M(a,,-, a,,; b,,-++, b,) is

P(M) = 1] (1+ate)- TT (1+5567,

where ¢ is the Euler class of the principal S*-bundle associated with the circle action
¢(d0,-“, Ay bo)"') bn)' »

Proof. For the unit (2m+ 1)-sphere S*”*' in C™"'=R***?, we choose
a unit normal vector field X on S****. Then each element in SO(2m+2, R)
fixes X, thus the action of SO(2m+2, R) is trivial on the normal bundle of
S+, S in C*** has the same property. It is easy to see that our action
@D(@gy*s Apg; by +++, b,) on E=S?*x §* in C™"'X C*"'=RN satisfies the
required assumption in Lemma 3.1, where N=2m+2n+2 and S'=T is
expressed as

a
1 I m
S— zbO

0 ‘ ‘ 2bn
by the complex coordinates. On the other hand, if we denote by £ the complex

line bundle over M associated with the principal S*-bundle 7 : E—M, then the
bundle constructed in Lemma 3.1. is isomorphic with

C = g“o®...@g“m@gbo@...@§b”,

where £% denotes the a-fold tensor product of £. Thus, by Lemma 3.1, the
tangent bundle 7(M) of the orbit manifold is stably equivalent to the real
restriction of the complex vector bundle {. Now the conclusion of Theorem
3 follows from properties of Pontrjagin classes ([5], Chapter XII). q.e.d.

Corollary. If two principal circle actions @, , and @, 5 are equivalent, where
a=(ap, @)y b=(by,***, ba), c=(Cp***, Cn) and d=(d,,+-, d,,), then

( 1 ) a-k(a(zh"') a'rzm bg:"', byzs) = O'k(C(zj,"‘, C.,z,., dg,'--, d,,z.)
for 2k=m=<n,

(2) |Ha;|=1Ic;|  for m<n,
and

(3) o'k(agr"') afm 5,"', bﬁ)zak(CE:“') cﬁ., dg!'“! d’i)
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mod | f[ai | for m<2k<mn. Here o} is the k-th elementary symmetric function on
i=0

(m+n+2)-variables.

4. Gysin homomorphism

Let £ be an oriented n-plane bundle over a topological space X with a
Thom class Ue H*(D(§), S(£)), where p : D()—X and = : S(§)—X are the
associated disk bundle and the associated sphere bundle respectively. Then
there is a commutative diagram:

H¥(S(8) — H¥(D(£), S(E)) —> H¥(D(E)) —— H*(S(E))

=|d¢ | p*

H*(S(8) —2> H¥(X) —— )

> HYX)—"—> H*S(®))

where the homomorphism ¢ is a Thom isomorphism defined by ¢g(x) =p*(x)U,
e(£) is a Euler class of £ and the homomorphism 74 is a2 Gysin homomorphism.
The lower horizontal line is a Thom-Gysin sequence for the oriented n-plane

bundle & ([5] p. 60).

Lemma 4.1.

(1) ze(r*xUy)=(—1)2*xUzyy for xc H¥X) and ye H*(S(E)), ([4]
p.- 71; [7] p. 121)

(2) mx(Sq'u)= _2=_Sqf7z*u UWWE) for uc H*(S(§); Z,) where Wi(E) is a
k-th Stiefel-Whitney class of £, ([5]p. 35; [7] p. 137)

(3) m(Po)= 3 PimywUQuE) for ve HX(S(E); Z,) where p is an odd
prime, P is a reduced power operation and Qu(§)H**~(X; Z,) is a k-th Wu
class defined by Qn(€)=¢:*P*U, ([5] p. 120).

Proof. Pems(r*x Uy) = 8(z*x Uy)
= 8(*p*x Uy)
= (— 1y prUdy
= (=1)%=* p*x U (p*msy U D)
= (—1)%%* Pyl Umyy).
This implies (1), since ¢; is an isomorphism. Next
berx(Sq'u) = 3(Sq'u)

= Sq(3u)

= S¢(p*mxu U U)

= > S¢/p*ruUSqg*U  (Cartan formula)

jth=i
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= 2 p*Sgmau U(p*WiE)UU)  ([Slp. 35; [7Ip- 137)

jre=i

= e 3 Semau UWA(E).

This implies (2). The relation (3) is proved similarly by the Cartan formula
of reduced power operations ([6] p.76) and the definition of Wu classses
([5] p- 120). q.e.d.

5. Miscellaneous principal circle actions

In this section we give some examples of principal circle actions on a closed
orientable smooth manifold E which is cohomologically a product S x S****,

- 5.1. Given a sequence a=(a,,-, a,,) of integers, let J, be a principal
smooth circle action on S** x S**** given by

‘:ba(z’ ((uo""a um)’ ("00,~--, 'Un))) = ((um zaluv"" zamum)’ (z'vo’"') 27),,))

in complex coordinates, where u, is a real number. Denote by M, the orbit
manifold. Then there is a mapping p : M,—~P*(C) given by the following
commutative diagram as in section 2:

P.

S2m X S2ﬂ+1 S2n+l
=, |
M~ pre)

where p, is a projection to the second factor, z and 7, are natural projections.
The projection p : M,—P"*(C) is a sphere bundle associated with a real
(2m+1)-plane bundle

£ = 0rDEUD - DEwm

where £, is the canonical complex line bundle over P*(C) and 6% is a trivial real
line bundle (see Lemma 2.1), and there is a cross-section s : P*(C)—M, defined
by s([7gs+s a])=7((1, 0,-+, 0), (vgs°++, V,,)), s0 the Euler class ¢({)=0. Then,
by the Thom-Gysin sequence for &, there is a short exact sequence:

(5.1.1) 0 —> H¥P"(C)) £, HYM,) 2%, HE-m(Pr(C)) — 0.

Proposition 5.1.
(1) The integral cohomology ring of M, is

H*(M,) = Z[c, x]/(c"", xz—(gai)'xc")
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where c=p*e(E,), deg x=2m, pux=1 and s*x=0.
(2) The total Pontrjagin class of M, is-

P(M,) = (1+¢y - T(1+aie).

Proof. The module structure of H*(M,) and the relation ¢"*'=0 are
obtained directly by the exact sequence (5.1.1). And the total Pontrjagin class
of M, is calculated similarly as Theorem 3. Finally the relation x*=(J]a;)-xc™

is obtained from Lemma 4.1 (2), (3), a property of the reduced power
operations ([6] p. 1, p. 76) and a property of Wu classes ([5] p. 120), so we
leave it to the reader. q.e.d.

Corollafy. If the corresponding actions J, and J, are equivalent for sequences
a=(a, -+, a,,) and b=(b,,*++, b,,) of integers. Then

o'p(a%)"': afn) = o-l,(bf,-", byzn)

for any positive integer p with 2p <n, where o, is the p-th elementary symmetric
function on m-variables.

5.2. Let &, be the canonical complex line bundle over PY(C). Given a
sequence a=(a,,**, a,) of integers, denote by .

S(E3D -+ DEIn)

the total space of a sphere bundle associated with the complex (n-+1)-plane
bundle £3oP--- PEPs over PY(C). Then there is a natural principal circle action
@ on S(EHD--- DET) whose orbit space is CP(£5P---PEin), the total space of
a projective space bundle.

Proposition 5.2.

(1) H*(CP(ED:- DEn))=Z]c, x]/(x*, "+ (a,+ - + a,)xc”), where deg
c=deg x=2, and c is the Euler class of the canonical line bundle over CP(E}
@ eee @ET”)’

(2) H*(S(E3D- DEM))=H*(S*x S™*) if n>0,

(3) If a,+-++a,=1(mod 2), then the principal circle action @ on S(E3
D+ DEjn) does not bord even as unoriented principal smooth circle action.

Proof. (1), (2) are clear from the cohomology ring structure of the projective
space bundle ([2] p. 8, Proposition 3.1, 3.2). Next, assume a,+ - +a,=1
(mod 2), then

", [CP(E1 D+ DEM)]>+0

where € is a modulo 2 reduction of the Euler class ¢. Thus the action ¢ does
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not bord as unoriented principal smooth circle action ([3] p. 47, Theorem 17.2).
q.e.d.

Remark. If a,+:+a,=1 (mod 2), S(EHP---PEfs) is not the same
homotopy type as a product S*”x S***!; since' S¢°u=+0 for non-zero element

ue H"(S(Efo®-+ BEL); Z,) by Lemma 4.1 (2).

5.3. There is a complex (n+ 1)-plane bundle & over S* with <{c,,(§), [S*]>
=(m—1)! for any n+1=m ([1]p. 349, Theorem 26.5 (a)).

Proposition 5.3. Assume n=m>0, then
( 1 ) H*(CP(E)) = Z[C, x]/(xz, cn+1+(m_ 1)| xcn—m+1),

where deg c=2, deg x=2m and ¢ is the Euler class of the canonical line bundle
over CP(§),

(2) H*(S(8)) = H*(S™ xS*"),

(3) the natural principal circle action on S(£) does not bord as an orientable
principal smooth circle action.

Proof. (1), (2) are clear. And
M= —(m—1)! xc"=0.
Hence (3) is obtained (see the proof of Theorem 1). q.e.d.

5.4. Let E be a topological space which is cohomologically a product S*”
X 8 with m>n=0. Let = : E->M be a principal S'-bundle over an
orientable closed smooth manifold M. Then,

Proposition 5.4.
(1) The integral cohomology ring H*(M) of M is

H*(M) = Z[c, x]/(c""*, &%), where deg ¢ = 2, deg x = 2m

and the element c is the Euler class of the principal S*-bundle = : E—M
(2) The Stiefel-Whitney classes of M are

Won(M) = 0, W (M) = agi(a; = 0, 1)
where T is a modulo 2 reduction of the Euler class c.

Proof. This is proved similarly as Lemma 1.1, but it makes Lemma 4.1 (1)
necessary to determine the ring structure of H*(M). We leave it to the reader.
q.e.d.



390 H. Ozexi1 anp F. UcHIDA

Proposition 5.5. Let E be an orientable closed smooth manifold which is
cohomologically a product S*™ x S**** with m>n=0. Then any principal smooth
circle action on E bords as unoriented princpal smooth circle action.

Proof. By Proposition 5.4, all bordism Stiefel-Whitney numbers of an
associated principal S*-bundle vanish (see Theorem 1). Thus the result is
obtained ([3] p. 47, Theorem 17.2). q.e.d.

Remark. There is no principal smooth circle action on a compact smooth
manifold whose each odd dimensional integral cohomology group is zero.
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