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1. Introduction. In [5] Schwarzenberger investigated the problem of
determing whether a real vector bundle over the real projective space RPn can
be extended to a real vector bundle over RPm (n<m). In [3], he also investigated
the case of the complex tangent bundle of the complex projective space.

The purpose of this note is to prove the non-extendibility of a bundle over
lens spases mod 3 by making use of Schwarzenberger's technique ([5]).

Let 5 2 n + 1 be the unit (2τz+l)-sphere. That is

S2n+1 = {(*o, - , *„); Σ k Γ = 1, *,€=C for all i}

Let γ be the rotation of S2n+1 defined by

I \Z0> > zn) — \ e Z0 > e Zn)

Then 7 generates the differentiable transformation group Γ of S2H+1 of order p,
and lens space mod p is defined to be the orbit space Ln(p)=S2n+1lT It is a
compact differentiable (2w+l)-manifold without boundary and Ln(2)=RP2n+1.

The Grothendieck rings KO{Ln{p)\ R{Ln{p)) were determined by T. Kambe
[4]. We recall them in 2. Let {#0, •••, zn}^Ln(p) denote the equivalence class
of (s0, ••-,*„)(= S2Λ+1. Ln(p) is naturally embedded in Ln+1(p) by identifying
{#0, •••, zn} with {SO, •••, zn, 0}. Hence Ln(p) is embedded in Lm(p) for n<m.
Throughout this note we suppose p=3. Now we state our theorems which
shall be proved in 3 and 4.

Let ζ be any /-dimensional real bundle over LΛ(3). Let p(ζ) be the mod 3
Pontryagin class of ζ

P(ζ) = ΈPAS) wherepjζ) = (-1)> C2j(ζ®C) mod 3 .

From the property of the cohomology algebra i/*(Lw(3): Z3), we have
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where rfyeZ3 and x is a generator of H2(Ln(3): Z). Then there exists an integer
s such that

( 1 ) p(ζ) = l+d1x
2+-+dsx

2s for O^ls^t.

Then we have the following

Theorem 1. Let ζ be a t-dίmensional real vector bundle over Ln(3). If

2t<n-\-l, then we have

p(ξ) = ( 1 + x

2 γ mod 3 for some integer s 0 ̂  2s ̂  t.

Corollary 2. Under the assumptions of Theorem I,

Pit) = P(VL»® *(ή ®VL») for some 0<^2s^t,

where we denote by © a Whitney sum of ηLn. (See 2 for the definition of ηLn.)

For a pair (Xy Y) of compact spaces, a bundle ζY over Y is said to be ex-
tendίble to X provided there exists a bundle ζx over X such that

ζχ\ Y = £V >

where we denote by | r the restriction to Y.
Let αbe a real number. We denote by [a] the integral part of a. Let b

be an integer. We denote by vz(b) an integer q such that

ft = r 3*, where (r, 3) = 1 .

For integers Z and m, define

where t<i<m, i=0 mod 2 and / = 1 mod 6.

Theorem 3. Assume that n, m and t are the positive integers such that

( 2 ) 2t<m+\

( 3 )

( 4 )

( 5 )

ζ be a t-dimentional real vector undle over Ln(3) which is extendible to
Lm(3) (n<m). Then ζ is stably equivalent to
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VL»(B•••($)••• ®VLH for some integer s (0^2s^t).

As an application of Th. 3, we obtain the following

Theorem 4. Let ζ be a t-dimensional real vector bundle over Ln(3)
mod 4). Assume that ζ is stably equivalent to

/or

Then ζ is not extendίble to L^un\3)} where

φ(t, n) = Min lm>2t; WΞJΞO mod 4, pΠ—/33(f, τrc)^Γ—ΊJ .

Next we show

Theorem 5. The tangent bundle τ(Ln(3)) of Ln{3) is not extendible to
L+C2H+UH\3) for w$0 mod 4. And r(Ln(3)) is not extendible to L4n+2(3) (w$0
mod 4).

2. The structure of Έ6{Ln(p)). The structure of KO(Ln(p)) is stated
as follows [4]. Let CPn be the complex projective space of complex n-dimension.
Let η be the canonical complex line bundle over CPn, r(η) the real restriction of
η. Consider the natural projection

π:Ln(p)->CPn.

Define vLn=π*(r(y))ϊΞKO(Ln(p)) where TΓ*: KO(CPn) — KO(Ln(p)) is the

induced homomorphism of π. Let σn denote the stable class of ηLny i.e.,

δn=ηLn—2<=KO(Ln{p)). We recall τLnξ$\=(n+\)ηLn where τLn is the tangent

bundle of Ln{p). The theorem of T. Kambe (Th. 2, [4]) is as follows:

Theorem {Kambe). Let p be an odd prime, q=(p—l)/2 and n=s(p—l)+r
—l). Then

~ ^ r (Z,+i)™+(Z,γ-™ .» (ifnmO mod\)
[ J [P)) 1 Z + ( Z ) ^ + ( Z ) f f - i f / i i - ( t y n = 0 mod 4)

and the direct summand ( Z ^ + i ) [ r / 2 ] and (Zps)9~ίr/21 are addίtίvely generated by

On> ••*> σ Λ

[ r / 2 ] and σ Λ

[ r / 2 ] + \ •••, σn

q respectively. Moreover its ring structure is

given by

^(2q+l)(q+il\ , [M/2]+1 _ Q

« =i (2ί—1) \ 2 ί — 2

In the theorem, (Za)
b indicates the direct sum of δ-copies of cyclic group

of order a. Let p=3 in the above theorem. If n ΐ 0 mod 4 then
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KO(Ln(3)) c* Z*9 ί =

and Z3# is generated by σH. Its ring structure is given by

3. The proofs of Theorem 1 and Corollary 2. From Th. 11.3 in [2],
we obtain the following equality. (For the proof, see Proposition 5, in the last
part of this section.) Let β>j: H«{Ln{3): Z3)->H«+4*(Ln(3): Z3) the ft-th
reduced power operation mod 3. Then we have

(6) W(Ps(?)) = (nΈjn(ζ)ρm(ζ))Ps(ζ)+ Σftίf) (- )Σ

for O^k^s.
Let ί be an integer such as (1) in 1. Since dj=0 for allj>s and ds^0,

then (6) gives

(7) MiPJίζ)) = ( β + Σ /

For an element x23 of Hs(Ln(3): Z3), we have

^ a n d ^

From 2 ί + 2 f t ^ 4 ί ^ 2 ί < n + l , ^ + 2 * φ 0 . Hence f 2 Λ = Σ

By induction, we obtain dj = ( S

t ) mod 3. Therefore

+ ( ' ) * 2 * mod 3

==(l+x 2) 5 mod 3 .

The proof of Theorem 1 is completed if we prove Proposition 5. Now, it is
well known that the bundle vLn over Ln(3) has the total Pontryagin class mod
3 />( 7 7L M )=1+^ 2 . Thus the proof of Corollary 2 is completed.

Now, in order to prove the formula (6) in the proof of Theorem 1, we
conisder a following symmetric polynomial. Let 2 # I # ^ #?# Λ + 1 Λ:S be a
homogeneous symmetric polynomial in variables x19 x,, •••, xt of degree
N=(p—l)k-\-s where p, k and N are positive integers.

To prove (6), we show the following propositions.
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Proposition 1.

Σ xix$-xlxk+ι-xM

where A(i)=(-l)i2(s~k+2ί) A(i-j), l^i^k and i4(0)=l.
y=i V j J

Proof. Ptu f(k, s)= Σ xl - x2kXk+i' 'xs' By a n e a sY calculation,

(8) /(*, s) = (Σ ̂ - ^ ) ( Σ *•••*.)- Σ (s~k+2jl)f(k-j19 s+j\)

By making use of (8) repeatedly, we have

/ - I

where F,=(-l)' ± %... g (-*+2Λ) . (S 7 * " ) ' . - ^ ^ , , »«

Sk- Σy,-^Λ-(/-ί). If / = * , then A= Si,-

Let Aι{i) be the coefficient of σΛ_, σ5+l in Fl9 then

-(-D'Σ Σ

Put A(ι)=Aλ(ι)Λ \-Ai(i). Then

Since 2] A^^j) is a coefficient ^4(j) of σk_jσs+J in /(Λ, ί), we have

This completes the proof of Proposition 1.

Proposition 2.

) i 4 ( 0 ) = l
J /

(b) A(i)=(-l)i+1 mod3
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Proof. The part of (a) is completed by Proposition 1. The proof of (b)

is obtained by induction. For i = l , 2, A(l)=(—l)(2 ) = 1 and A(2)=2.

Assuming the equation (b) for integers i^2q, we have

A(i+l) = 2 Σ ( 2 / + 2)(-l)'-- 1 2+2( 2 /+ 2)
j ^ \ ] J \ z + 1 /

By making use of Σ )(~1) =( + 2 ) + 2( ~ )+2 ' ,
y B M\ j r } \i+lJ \2i+2/ V 0 / V/+1/

we have
A(i+l)=l mod 3.

Assuming the equation (b) for integers i^2q-\-1, we can obtain A(i-\-\)=2 mod 3.
Thus Proposition 2 is obtained by induction.

Proposition 3.

Proof. Put/(α, b) = ^Σx\"'xlxl+ί*'-xl+bxa+b+1"-xc with c=N—2a—b. By
calculation, we have the following equality;

k

( 9 ) /(A, 0) = ( Σ *i * * K - Σ / ( * - α » «i)

Define ao—ky bo=O and co=N—2ao—bo. Then (9) is reformed as follows:

(10) /(αo> δ0) =/(0, aQ)σCo— Σ / ( β i 5 î) where ax=a0—aly bx = a1+β1(β1=0)

Now for each term/(^n 6X) in (10), we obtain

(11) f(aly bx) =/(0, ^ V A Γ - 2 ^ - ^ - Σ Σ A(a2, /5 2)/K-α 2, α 2 + ^ 2 )

for some integers A(a2> β2) and ^4(0, b^^O. We can inductively define two
sequences {#,•}, {b^ satisfying the followings

(12) f(ai^,bi_1)=f(O,ai_1)

(13) a{ = «,_,-<

with some integers A{aiy β{) and ^4(0, b{_^) = 0 .
Put ci_1=N— 2flt _1—&._!. Then we have j<έr1<έr2< —<£:,•<•••. From (13),
cii+i^^i f°r aH ί Hence conisder the following cases:

(14) there exists an integer n such as αί+1<Λf for all z^w,

(15) there exists an integer m such as am=- =ai=- for all i^m.
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If (14) is satisfied, then ag=0 for some integer q. From (12) andProposition
1, we have

(16) /K_1( i,_.) =/(0- ^ - . K , . , ΣM(0, /?,)/((), 6.)

Σ Σ

If (15) is satisfied, then b^b^ for all i
Therefore br=0 for some integer r. From (12) we have

M-i, K-i) =/(0, «r-iK,.2- ΣA(ar, 0)f(ar, 0).
ar-\

Σ
<* = 0

Since ar<a0, the above discussion is also applied to f(ar, 0) in this case. Hence,
by making use of (9) repeatedly, we have finally

From Proposition 2 and Proposition 3 we have the following

Proposition 4.

Σ *ϊ . * ϊ w *, = (*ϊ+ Σ (-iy+v,_yσ,+y)cr5

Now, we can prove the formula (6) in the proof of Theorem 1.

Propositions. <PJ(f,(?)) = ( Σ pn(ζ)pm(ζ))Ps(ζ)+Έpl(ζ)(-) •

Proof. Let C^H2i(Bmo : Z8) be the ί-th Chern class mod 3. By Th. 11.3
([2]) and Proposition. 4, we have

έ(17) (P!(C,.) = ( C i + Σ ( - i y

Let />s(£) be the s-th Pontrjagin class mod 3 of a real bundle ζ. Then ps{ζ)
=(—l)sC2s(ζ®C) mod 3 where C2s(ζ®C) is a 2^-th Chern class of ζ®C.
From (17) we obtain

and (PΪ'+ 1(A(r))=2(ΣA_ ί(r)/>< + /(r))^r)+Σ( )A(r) This completes the

proof of Proposition 5.

4. Proofs of Theorem 3, 4 and 5. To prove Theorem 3, we discuss
the following lemmas. The proofs of Lemma 1, 2 and 3 are omitted.
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Lemma 1. Let Ao, Ax, •••, An be integers with v3(A/)>0 for all j^n and

Lemma 2. If r, s, a and u are positive integers with s<a<3u and
(r, 3)=1 then following hold.

(19)

Lemma 3. If u and n are positive integers, then

(20) Ws((3-)!) = ? ! = 1

(21)

(22) v3((2n)\)<n.

Put ^y=(-iy(-3)'-y-1(.^.)-( iT i) U = 0,l, , [ i ] ) for some

positive integer q, i>2 with q>i—j

Lemma 4. L ί̂ ^4y be above integers. Then

li/21

v3( Σ A/} = ^3(^[ty2]) /or 1 = 1 morf 6 αwrf ί = 0 mod 2 .

Proof. If i=2n, then for each / = 1 , 2, •••, w—1

From Lemma 3 (22) v8(Λ-/)—^8(Λ)>/-i'8((2/)0 T h e n w e have

vs(Aj)>v3(AM) and i/3(^y)>0 for all φrc .

£./2]

Therefore by Lemma 1 we obtain v3( X] Aj)=p3(Ali/2i) for ί = 0 mod 2.

From Lemma 3 (21), we obtain

under the conditon i=l mod 6, — \=n=3m.

Now we prove the theorems.



EXTENDIBLE VECTOR BUNDLES 405

Proof of Theorem 3. Let ζ' be the extension over Lm{3) of ζ. By the

structure of XΌ-ring of the lens space ([4]), ζ' is stably equivalent to qηL*»9 for

some JGZ 3 [W2]. Since ζ'—t=qσmeKO(Lm(3)), we have

(23) ζ-t = q(i*ηLm-2)tΞKO{Ln{Z))

where i*: KO(Lm(3))-*KO(Ln(3)) is the induced homomorphism of natural
embedding i: Ln(3)-+Lm(3). If 2q^ty then ζ is stably equivalent to ? L » Θ —

(#) θ>7z,» for some integer # (0^2#^*). If 2q>ty yi(qσm)=0 for all
. dim (qoM) ([1] Prop. 2 3). Since t^g. dim (<7σw), we have

(24) 7'(ί*-) = ° foraUi>ί.

According to the Theorem of Kambe ([4] Lemma 4.8),

where Aj=(-iγ(-3)*-H q )(aTj) •

\(X—]'\ 1 '

Then we have ryi(qσm)= Σ ^yσw. From (23),
Σ

( ΣMΣ , ) σ , » = 0eKO(Lm(3)) = Z^-ΛI for all i>t. Therefore

(24) ^(E^y)^[f] foraUi>ί.

Now, according to Lemma 4, we have

u/2]

^3( Σ
 Aj) = ^(^[t72]) f o r ί > ί (feO mod 2 and ί = 1 mod 6)

And so we have

a n d / = l mod 6.
Now the total Pontrjagin class mod 3 of qηL*n is given by the equation p(qvL

m)
=(l+x2y. Since m>2t— 1, Theorem 1 implies that there exists an integer s
such that

Hence we have
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(l+x?y=(l+x?)s mod 3, i.e.,

J Ϊ - ' ^ I - Λ I Ξ I mod 3 .
\[»/2]/1 / \[»/2]

This implies that there exists an integer u such that

(26) q-s = 3"r, (r, 3) = 1 and 3">[m/2] .

Then we obtain the following

z—
for *</<m (by Lemma 2)

-^-] for

= «-„,(,-[i/2]).

Hence from (25) «+(*— [ί/2]— l)_v,(ί_[ί/2])H-v,[(*"—^2^

t<i<m and z'=0 mod 2, /= 1 mod 6. By the assumption (5) of Theorem 3, we
have

(27) ι ι ^ N 2 ] - M m [ ( ί - ^ ^

= [iff/2]-/98(ί,iff)^[if/2].

According to (23), (26) and (27), there exists an integer s such that

= Son.

This completes the proof of Theorem 3.

Proof of Theorem 4. By the contraposition of Theorem 3 and the main
theorem of Kambe ([4] Th. 2), it is clear.

Proof of Theorem 5. Since τ(Ln{Vj)@\={n+\)ηLn and w ]
L Aι -i

= [1/2 dim τ(L*(3))], Theorem 4 implies that the tangent bundle T is not exten-
dible to Lφc2M+1'n)(3). For every m>2n+l, β3(2n+l9 m)^n whenever n = 0
mod 3, n=ί mod 3 β3(2n+ϊ, m)<n whenever n = 2 mod 3. Then φ(2/z+l, n)

This completes the proof of Theorem 5.
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REMARK. The following table shows the value of φ(t, ή) where

407

and

\. n

t \

1

2

3

4

5

6

7

8

9

10

1

3

5

6

8

10

12

14

16

18

20

2

3

5

6

8

10

12

14

16

18

20

3

3

5

6

8

10

12

14

16

18

20

4

4

6

6

8

10

12

14

16

18

20

5

4

6

6

8

10

12

14

16

18

20

6

6

8

8

8

10

12

14

16

18

20

7

6

8

8

8

10

12

14

16

18

20

8

8

10

10

10

10

14

14

16

18

20

9

8

10

10

10

10

14

14

16

18

20

10

10

12

12

12

12

16

16

18

18

20

11

10

12

12

12

12

16

16

18

18

20

12

12

14

14

14

14

18

18

20

20

20

13

12

14

14

14

14

18

18

20

20

20

14

14

16

16

16

16

20

20

22

22

22

15

14

16

16

16

16

20

20

22

22

22

16

16

18

18

18

18

22

22

24

24

24
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